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Abstract

Background: The cestode Echinococcus multilocularis is the causative agent of human alveolar echinococcosis (AE).
However, this life-threatening disease is still difficult to treat and control, due to the lack of efficient drugs and
vaccines. Excretory/secretory (ES) proteins are crucial for parasite survival and represent potential preferred targets
for novel intervention strategies. However, the ES protein features in this parasite have been poorly investigated
until now. The current study was carried out to identify and characterise a repertoire of ES proteins in £.
multilocularis at the genome-wide level.

Methods: Here we predicted and functionally annotated the classical and non-classical ES proteins, and
comprehensively compared the features and evolution of ES and non-ES proteins in £. multilocularis genome using
an integration of bioinformatics tools. The intervention target and antigen potentials as well as the transcription
information were also investigated.

Results: Computational analysis of the £. multilocularis proteins identified 673 putative ES proteins (6.4 %), of which
617 (91.68 %) could be supported by transcription analyses. The predicted ES proteins in E. multilocularis were
mostly represented by molecular functions of protease inhibitors, proteases, glycoside hydrolases, immunoglobulin-
like folds and growth factors. Analysis of the ratio between synonymous and non-synonymous substitution rates
(dN/dS) revealed no significant difference of the evolution selection pressure on ES and non-ES protein coding genes.
ES proteins showed higher antigenic density measured by AAR values as compared with the transmembrane proteins
but had no significant difference of that feature with intracellular proteins. Additionally, 383 possible ideal drug targets
were identified in ES proteins, of which four proteins have corresponding known drugs.

Conclusions: The present study is the first to identify a repertoire of predicted ES proteins at the genome-wide level in
E. multilocularis. The comprehensive analysis provides some novel understanding of the parasite ES protein features
and a valuable resource of potential targets for future experimental studies to develop new intervention tools against
this parasite.
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Background

The tapeworm Echinococcus multilocularis is a cyclo-
phyllidean cestode of great medical and agricultural im-
portance. Its life-cycle comprises a strobilar adult stage
that resides within the intestine of the definitive host
(e.g. foxes and dogs), and three larval stages (onco-
sphere, metacestode and protoscolex) that are involved
in the infection of the intermediate host (small rodents
and, occasionally, humans) [1, 2]. The metacestode lar-
vae can cause the disease alveolar echinococcosis (AE)
in humans, which is one of the most dangerous hel-
minth infections [3]. However, this deadly disease is still
difficult to treat and control due to the lack of efficient
drugs and vaccines [3, 4]. Among the candidate molecules
that are of value to combat tapeworm infections, ex-
cretory/secretory (ES) proteins are worthy of particular
attention because of their central roles in understanding
host-parasite interactions [5, 6].

ES proteins of parasites are crucial for their survival
inside and outside of their host organisms and can act as
virulence factors or immune regulators to the host im-
mune responses [5, 7, 8]. Therefore, they represent a
preferred group of antigens for the development of new
intervention strategies, such as vaccine candidates or
drug targets [9-11]. Moreover, ES proteins are usually
immunogenic diagnosis antigens due to their accessibil-
ity to be recognised by host immune systems and thus
considerable attention has been made in ES proteins as
biomarkers to detect the presence of a parasite and/or
the status of the infection in different infectious diseases.
ES products from E. multilocularis have been reported
to tightly downregulate accessory cell functions of mac-
rophages [12] and induce apoptosis and tolerogenic
properties in dendritic cells, which is likely important
for generating an immunosuppressive environment at
infection phases [1]. The E. multilocularis antigens Em2
and Em492 that are involved in modulating the host-
parasite interface have also been identified [6, 13, 14]. In
particular, another ES protein EmTIP, an E. multilocu-
laris homologue of the human T-cell immunomodula-
tory protein, has been shown to promote IFN-y release
by CD4+ T-cells, and is suggested as a promising lead
for future studies on the development of anti-Echinococ-
cus intervention strategies [1]. Recently, E. multilocularis
have been developed as an experimental model of host-
parasite interplay and parasitic immunopathology be-
cause of its advantages in culture in vitro and genetic
manipulation under laboratory conditions, in which the
excretory/secretory metabolic products are considered
to play a central role [6, 15]. However, until now, the ES
proteins of this tapeworm have been relatively poorly
investigated.

Because experimental identification of ES proteins is
time-consuming and expensive, the prediction of ES
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proteins from sequenced genomes is a novel alternative
strategy used to prioritise the experimental study of new
therapeutic and immunodiagnostic targets for human
parasitic diseases [7-9, 16—19]. The availability of whole
genome sequences for E. multilocularis [4] gives us the
opportunity to systematically explore the parasite secre-
tome using computational approaches. Here, we com-
bined several different but highly complementary
analytical approaches to predict, functionally annotate
and comprehensively analyse the E. multilocularis
secretome in detail. We believe that our genome-wide
exploration of ES proteins could provide a valuable
resource for future experimental studies and give a
better understanding of the parasite secretome. More-
over, as E. multilocularis has been recently developed
as an experimental model for tapeworm research, the
present study will also give the clues to proteomes in
other tapeworms.

Methods

Prediction of ES proteins of E. multilocularis genome

The proteome of E. multilocularis (version 3) was down-
loaded from GeneDB (http://www.genedb.org/Home-
page). Our bioinformatics workflow is shown in Fig. 1,
using a strategy of integrating several tools. The algo-
rithm TMHMM (version 2.0) [20] was used to predict
transmembrane (TM) regions. For the proteins predicted
to contain only one TM domain, further TM prediction
was performed by the Phobius algorithm [19] to help
discriminate hydrophobic helices of TM topologies from
those of signal peptides, in which only the proteins con-
firmed by Phobius were considered as TM proteins. All
the proteins predicted to carry a TM domain were dis-
carded for the further analysis. SignalP (version 4.1) [21]
was used for predicting signal peptides of classically
secreted proteins, with options of eukaryote organism
categories, truncation of protein sequence at 70 amino
acids and default D-cutoff values. The non-classical se-
creted proteins were predicted by SecretomeP (version
2.0) [22], filtered by NN-scores larger than 0.9 and other
default options for mammalian organisms. All the clas-
sical and non-classical secretory proteins were merged
together and the resulting list was scanned by TargetP
(version 1.1) [23] to predict the subcellular localisation
of mitochondrial proteins, using a specificity of 90 %
and the default options for non-plant organisms. The
predicted mitochondrial proteins by TargetP were dis-
carded from the protein data set. The resulting ES pro-
teins were subsequently scanned for the presence of ER
targeting signals by PS-Scan [24] (Prosite pattern:
PS00014) and GPI-anchor signals by PredGPI [25] with
default parameters. For comparison, we define the pro-
teins that are neither ES nor TM-containing proteins as
“intracellular proteins” in our analysis. Therefore, the
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Fig. 1 Bioinformatic workflow used for ES protein analysis. The detailed process is described in the Methods section
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total non-ES proteins consist of the TM-containing pro-
teins and the intracellular proteins.

Functional annotations and expression profiling

All the predicted ES proteins were annotated for protein
domains and family classifications using InterProScan
(version 5) [26], including the gene ontology (GO) terms
option. The KAAS server [27] was used to map ES
proteins to KEGG pathways and to KEGG BRITE
objects, using the single-directional best hit method
to assign the orthologs (threshold of BLAST bit
scores = 50). The representative gene data set for eu-
karyotes plus that of Schistosoma mansoni were used
as references in KAAS mapping. Go term enrichment
analysis of ES proteins was performed by BIAST2GO by
Fisher’s Exact Test with Multiple Testing Correction of

FDR (FDR<0.05) (using the entire proteome as the
reference group).

The transcriptomic information available in the refer-
ence [4] was used for transcription expression analysis
of E. multilocularis. The expression levels of ES proteins
were evaluated and ranked by fragments per kilobase of
exon per million fragments mapped (FPKM) values
based on the normalised read counts of RNA-seq
[lumina reads [4]. The following life-cycle stages were
involved in our analysis: metacetode, pre-gravid adult
and gravid adult. To determine significant differences
in the levels of gene expression between the different
life-cycle stages, we defined as differentially expressed
genes (DEGs) those for which the p-value was smaller
than 0.01 and for which the fold change was larger
than 2 (either up- or downregulated). For each ES protein,
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a relative measure of transcription in the stages was in-
ferred by ranking individual genes from E. multilocularis
by their FPKM values (highest to lowest). The top 25 % of
genes were defined as having very high transcription, 25—
50 % as high, 50-75 % as medium and 75-100 % as low.
Wilcoxon Signed-Rank test, implemented in R (using the
option paired = FALSE), was used to compare the expres-
sion differences between ES genes and non-ES genes.

Analysis of dN/dS and adaptive evolution

In order to test whether the ES proteins of E. multilocu-
laris have undergone higher selection pressure during
evolution, we calculated the dN/dS (w) values of the ES
proteins along this parasite lineage. The whole gene sets
from three tapeworms (Echinococcus granulosus, E. mul-
tilocularis and Taenia solium; http://www.genedb.org/)
were used to identify orthologue groups by the program
Inparanoid (version 4.0) [28] and Multiparanoid (version
1.0) [29]. All the transcripts that lacked intact coding re-
gions (CDSs), that had in-frame stop codons, that had
CDSs of <100 bp, or that had CDSs whose lengths were
not multiples of three were discarded. To establish 1:1
orthology, each ortholog was examined for evidence of
an inparalog (a paralog arising from a recent duplica-
tion) with respect to the other species. Specifically, if ei-
ther gene had inparalogs, then that gene was considered
recently duplicated and was excluded from the analyses
of positive selection. Multiple protein-coding codon
alignments were generated using ParaAT (version 1.0)
[30] and Mafft (version 7.147b) [31], with all gaps in the
alignments deleted. The likelihood ratio test (LRT) for
selection (P <0.05) on any branch of the phylogeny was
performed based on the results from the Codeml pro-
gram between the null hypothesis of one-ration model
(model = 0) that fixed the w =1 and the alternative
hypothesis with free-ration model (model=1) as im-
plemented in the PAML package (version 4.7) [32].
P-values were computed assuming the null distribu-
tion was a 50:50 mixture of a x> (df=2) distribution
and a point mass at zero. Significance of difference
between w values (<10) of ES proteins and non-ES
proteins in the free-ratio model were calculated using
Wilcoxon Signed-Rank test (paired = FALSE).

Antigenic Region abundance and drug target potential
analysis

To evaluate the antigenicity potential of E. multilocularis
secretome, the number of antigenic regions for each
protein sequence was detected using the bioinformatics
algorithm Bepipred [33] with a threshold of 0.90 and the
method Kolaskar-Tongaonkar [34] implemented in EM-
BOSS packages [35] with a threshold 1.0. Only antigenic
segments with length of at least 6 amino acids were in-
cluded in further analyses. The Abundance of Antigenic
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Regions (AAR) value [36] was utilised in this study to
normalise the number of antigenic regions by sequence
length. This value was calculated as the ratio between
the sequence length and the number of predicted anti-
genic regions for each protein. Hence, this value repre-
sents the mean number of amino acids that is needed to
find one antigenic region in a protein sequence.

In order to identify the specific ES proteins in E. mul-
tilocularis that show no sequence similarities with its
hosts, we performed homology searches by BLASTP al-
gorithm (threshold e-value of 1e™®) using the entire pre-
dicted secretome as queries against the proteomes of
human and dog (http://www.ensembl.org/index.html).
Proteins not homologous to the host proteomes were fur-
ther screened for sequence similarities against the known
drug targets. Drug target sequences were extracted from
the following databases: 1. ChEMBL (ftp://ftp.ebi.ac.uk/
pub/databases/chembl/DrugEBIlity/releases/3.0/), 16072
drug target protein sequences and 212919 domain se-
quences; 2. DrugBank (http://www.drugbank.ca/), 3789
proteins; 3. Therapeutic Targets Database (http://bidd.nu-
s.edu.sg/group/ttd/), 1973 proteins.

Results

Prediction of ES proteins in E. multilocularis genome

Of the 10,552 putative proteins in E. multilocularis,
2150 sequences were predicted by TMHMM to contain
one or more TM regions. For the sequences (924) that
were detected with only one TM domain, 784 sequences
were confirmed by Phobius as transmembrane proteins,
by excluding the overlapping predictions between hydro-
phobic regions of real TM topologies and those of signal
peptides. The remaining 8542 TM-free sequences were
submitted to SignalP to predict a signal cleavage site,
resulting in 551 sequences (5.2 %) as classical secreted
proteins. Of the 7991 sequences without a signal peptide
predicted by SignalP, Secretome could classify 230 pro-
teins (2.2 %) as non-classical secreted proteins. Combin-
ing the results above yielded a total of 781 (7.4 %)
classical and non-classical proteins that were then
checked by TargetP, resulting in 25 mitochondrial target-
ing proteins. The C-terminal [KRHQSA][DENQ]EL Pro-
site pattern identified 9 proteins with retention signals as
ER proteins in the analysis. In addition, 74 proteins con-
taining a GPI anchor determined by PreGPI were also dis-
carded. In the end, a total of 673 (6.4 %) sequences
(Additional file 1: Table S1) were finally predicted as ES
proteins that are used for further analyses.

Functional annotation of E. multilocularis secretome

Of the 673 E. multilocularis ES proteins, InterProScan
was able to match 358 (53 %) proteins to known do-
mains in at least one database, apart from signal pep-
tides. The most represented InterPro terms are shown in
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Table 1 (complete results available from Additional file 2:
Table S2). The ES proteins associated with these terms
represent protein functions of peptidase inhibitors
(pancreatic trypsin and cathepsin), immunoglobulin-
like domains, cysteine proteases, glycoside hydrolases,
taeniid antigens, cysteine-rich secretory protein family
(CRISP) from CAP superfamily, homeodomain/homeo-
box, and growth factors (epidermal growth factor-like
and EGF-like).

In total, 245 ES proteins were assigned to 535 GO
terms (Additional file 1: Table S1), which could be di-
vided into 162 GO terms originating from the Biological
process (Additional file 3: Figure S1), 67 GO terms from
the Cellular component (Additional file 4: Figure S2)
and 306 GO terms from the Molecular function (Fig. 2
and Additional file 5: Figure S3). A summary of GO term
annotations at a third level subcategory from the Molecu-
lar function is provided in Fig. 2 (a summary of a second
level subcategory in Additional file 5: Figure S3). Of the
Molecular function at a second level (Additional file 3:
Figure S1), the binding, catalytic activity and enzyme regu-
lator activity terms represented with 129 annotations
(49 %), 95 annotations (36 %) and 23 annotations (9 %) re-
spectively, almost accounted for 100 % of all the annota-
tions. The parental term binding (at the second level)
includes the third level subcategory terms protein binding

Table 1 Top 20 most represented protein domains found in ES
proteins using Interproscan

InterPro IDs  Description No. of ES (%)
proteins (%)

IPRO02223  Proteinase inhibitor |12, Kunitz metazoa 17 (2.53 %)
IPRO13783  Immunoglobulin-like fold 15 (2.23 %)
IPR0O20901  Proteinase inhibitor 12, Kunitz, conserved site 15 (2.23 %)
IPRO13128  Peptidase C1A 10 (149 %)
IPRO17853  Glycoside hydrolase, superfamily 10 (1.49 %)
IPRO00668  Peptidase C1A, papain C-terminal 10 (1.49 %)
IPRO25660  Cysteine peptidase, histidine active site 10 (1.49 %)
IPRO0O7110  Immunoglobulin-like domain 10 (1.49 %)
IPRO00169  Cysteine peptidase, cysteine active site 10 (1.49 %)
IPRO03599  Immunoglobulin subtype 9 (1.34 %)
IPRO0B860  Taeniid antigen 9 (1.34 %)
IPRO14044  Cysteine-rich secretory protein family (CAP) 9 (1.34 %)
IPRO13032  EGF-like, conserved site 9 (1.34 %)
IPRO25661  Cysteine peptidase, asparagine active site 9 (1.34 %)
IPRO00742  Epidermal growth factor-like domain 9 (1.34 %)
IPRO13201  Proteinase inhibitor 129, cathepsin propeptide 8 (1.19 %)
IPRO09057  Homeodomain-like 8 (1.19 %)
IPRO13098  Immunoglobulin I-set 7 (1.04 %)
IPRO01356  Homeobox domain 6 (0.89 %)
IPRO07087  Zinc finger, C2H2 6 (0.89 %)
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(59 annotations), ion binding (47), heterocyclic compound
binding (40), organic cyclic compound binding (40),
carbohydrate binding (9), small molecule binding (14),
cofactor binding (3), lipid binding (2), and carbohydrate
derivative binding (4). The second largest second-level
term catalytic activity was represented by the third-
level terms hydrolase activity (62), oxidoreductase ac-
tivity (12), isomerase activity (6), transferase activity
(13) and lyase activity (2). The parental second-level
term enzyme regulator activity includes the third-level
terms peptidase regulator activity (23) and metalloen-
zyme regulator activity (1).

The significantly enriched terms filtered by Fisher’s
Exact Test (FDR<0.01) in the E. multilocularis secre-
tome, are shown in Fig. 3. The terms mostly related to
peptidase inhibitor activity, peptidase activity, hydrolase
activity, carbohydrate binding and receptor binding are
significantly enriched in the Molecular Function category.
Of the terms associated to peptidases, the serine-type pep-
tidase activity and cysteine-type peptidase activity are sig-
nificantly enriched in the ES proteins. Additionally, several
other enriched terms representing hydrolase activity were
also detected, including hydrolase activity acting on
glycosyl bonds and on L-amino acid peptides, manno-
sidase activity and alpha-mannosidase activity. For the
Biological process category, the most enrichment
terms are: proteolysis, single-multicellular organism
process, multicellular organismal process, and multicellular
organismal development. The terms extracellular region
and extracellular matrix show enrichment in the Cellular
component category.

KEGG pathway analysis by KAAS assigned 187 ES
proteins into 135 pathways (Additional file 1: Table S1).
The top 10 pathways are listed in Table 2 (the complete
data set is in Additional file 6: Table S3). The most rep-
resented pathway is the lysosome, followed by the pro-
tein processing in endoplasmic reticulum pathway.
Several other pathways, such as signaling pathways regu-
lating pluripotency of stem cells, hippo signaling path-
way, PI3K-Akt signaling pathway, focal adhesion and
glycan degradation were also involved in the top path-
ways. In particular, some signaling pathways contained
assigned components related to growth factors, like
insulin-like growth factor (IGF), wingless-type MMTV
integration site family member 1 (Wntl) and EGE, could
also be found in the KEGG pathway analysis.

Transcription profiling analysis

According to the transcription analysis using RNA-
seq data, 91.68 % (617) of the 673 ES proteins in E.
multilocularis could be detected to have transcript
support in at least one life-cycle stage. Specifically,
for the ES protein coding genes that could be sup-
ported by RNA transcripts, 377 genes were shared by
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all the three stages, whereas 14, 11 and 42 genes were
observed as stage-specific genes in metacestode, pre-
gravid and gravid stages, respectively (Fig. 4). Other-
wise, 138, 198 and 194 ES proteins were expressed at
a very high level (top 25 %) in the three stages accordingly
(Fig. 4 and Additional file 7: Table S4), of which 90 genes
have very high expression levels among all the three

stages. For the 90 very highly expressed genes, 51 genes
could be annotated by InterproScan, in which the most
represented domains were related to peptidase inhibitor
activity, ion binding, peptidase activity, hydrolase activity
and Taeniidae antigen. Moreover, 112 genes have signifi-
cantly different expressions among the three stages
(Additional file 7: Table S4). Out of the 383 ES genes
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Fig. 3 Differential GO term distribution between the predicted secretome and the whole proteome of £. multilocularis. The test set is the
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Table 2 Top 10 most represented KEGG pathways found in ES
proteins predicted by KAAS

Pathway name No. of ES proteins

represented (%)

Lysosome 18 (2.7 %)
Protein processing in endoplasmic reticulum 14 (2.1 %)
Pathways in cancer 7 (1.1 %)
Signaling pathways regulating pluripotency 6 (0.9 %)
of stem cells

Hippo signaling pathway 6 (0.9 %)
PI3K-Akt signaling pathway 6 (0.9 %)
Focal adhesion 6 (0.9 %)
Proteoglycans in cancer 5 (0.7 %)
Hedgehog signaling pathway 5(0.7 %)
Other glycan degradation 5(0.7 %)

specific in E. multilocularis, which exhibited no simi-
larities to proteomes of dog and human (threshold e-
value of le™®), 348 had RNA transcripts in at least
one stage (Additional file 8: Figure S4). Moreover, 92, 131
and 116 E. multilocularis-specific genes were detected with
very high expression levels in the metacestode, pre-gravid
and gravid, stages respectively. Of these highly expressed
ES genes, 48 genes were expressed in all the three stages
(Additional file 7: Table S4 and Additional file 8: Figure S4).
Comparisons of FPKM values between ES protein coding
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genes and each group of non-ES protein coding genes (i.e.
the total non-ES, TM-containing and intracellular protein
coding genes) revealed that there were no significant differ-
ences (p-value <0.01) of expression levels between them in
the adult life stage, respectively (Fig. 5). Interestingly, lower
expression level distribution of ES protein coding genes
were supported by the Wilcoxon Signed-Rank tests, com-
pared with those of the total non-ES (p-value = 5.628¢™*),
TM-containing (p-value = 2.426e"**), and intracellular pro-
tein coding genes (p-value = 5.185¢™%) in the metacestode
stage, respectively (Fig. 5).

Analysis of dN/dS and adaptive evolution

We determined 6105 1:1 orthology groups among E.
multilocularis, E. granulosus and T. solium. Using the
free-ratio model, we calculated the w value of each gene
along the lineage E. multilocularis. The mean o values
(with all the values >10 excluded) for all the genes (n =
5,798), ES protein coding genes (1 =263), and non-ES
protein coding genes (n = 5,535) were 0.4470, 0.5477 and
0.4423 respectively, suggesting strong purifying selection
on each group in E. multilocularis. Interestingly, by
comparing the  value distributions of the ES and non-
ES proteins, we found no significant differences of evo-
lutionary selection pressure in average among these
groups in E. multilocularis (Fig. 6a). In total, 252 genes
were identified as positively selected genes (PSGs) deter-
mined by the LRT tests (p-value <0.01), of which only
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11 genes encoded for the ES proteins (Additional file 9:
Table S5). All these PSGs were supported by transcrip-
tion data, in which the very highly expressed genes pro-
tease inhibitor 125 (cystatin) and EG19 antigen were
under positive selection.

Antigenic region and drug target potential analyses

The AAR value [36] was used to define the mean num-
ber of amino acids between antigenic regions per se-
quence. Hence, a lower AAR value means that a protein
has a higher epitope density. We determined the AAR
values for the 673 ES proteins, which were 95.77 on
average for the BepiPred method and 28.05 for the
Kolaskar-Tongaonkar method, while TM-domain con-
taining proteins (n =2,010) had significantly higher AAR
value with average one antigenic region each 133.33
amino acids for the BepiPred method and 28.96 amino
acids for the Kolaskar-Tongaonkar method (Table 3).
However, no statistically significant differences of AAR
value distributions between ES proteins and intracellular

proteins (n=7,869; 96.36 for the BepiPred method and
28.53 amino acids for the Kolaskar-Tongaonkar method)
were revealed by the Wilcoxon Signed-Rank test (p-value
<0.01) (Fig. 6b—c). Hence in our analysis, although the
epitope density in ES proteins of E. multilocularis is
slightly lower than for total non-ES proteins (n=9,879;
103.54 and 28.62), the real difference resulted from the
higher AAR values of TM domain-containing proteins.
BLASTP homology search (threshold e-value of le®) of
the 673 predicted ES proteins from E. multilocularis re-
vealed 284 matches within the human proteome, and 287
matches within the dog proteome. Consequently, we found
389 ES and 386 ES proteins had no sequence similarity
against human and dog proteins respectively (threshold e-
value of 1e™). Combing the two datasets, 383 proteins
were found specific to the parasite against the proteomes
of both human and dog (Additional file 1: Table S1). These
parasite-specific proteins were further searched for se-
quence similarity against known drug targets available
from the three drug databases (see methods). Of the 383
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predicted ES proteins, only four E. multilocularis ES
proteins (EmuJ_000059500.1, EmuJ_000879900.1, Emu]_
000381000.1, EmuJ_001070600.1) were found to exhibit
similarities with 28 known drug targets, homologous to
glycoside hydrolase, beta-D-xylosidase 2, low-density lipo-
protein receptor and neuropeptide F, respectively.

Discussion

The availability of genomic and transcriptomic data sets
for E. multilocularis provides unprecedented opportun-
ities to explore ES proteins that are essential for the sur-
vival of this parasite. In the current study, a repertoire of

Table 3 Abundance of antigenic regions (AAR) for different E.
multilocularis protein datasets

No. of proteins Average of AAR  Average of AAR
in the dataset  values (BepiPred) values (Kolaskar)

Protein dataset

ES proteins 673 95.77 28.05
TM-containing 2010 13333 28.96
proteins
Intracellular 7869 96.36 2853
proteins
Non-ES proteins 9879 103.54 28.62

673 ES proteins in E. multilocularis were identified and
annotated by a pipeline established on the combination
of multiple bioinformatics approaches. These ES pro-
teins represents 6.4 % of the entire proteome, com-
parable to those reported in other parasites [7-9, 36].
Most of these ES proteins (91.68 %) can be supported
by RNA transcription, which confirms their potential
participation in the parasite life. In particular, the ES
genes expressed in the metacestode stage (422), which
directly interfaces with host tissues, possibly has more
potential to function as key players in the host-parasite in-
teractions [6].

Functional information of the ES proteins was ob-
tained through the GO term, domain and pathway ana-
lyses. Similar to the case in the 7. solium secretome [36],
a relatively large part of the domains were related to
peptidase inhibitors and peptidases that were signifi-
cantly enriched in the E. multilocularis secretome (Figs. 2
and 3). Secreted proteases have been reported to be key
in host-tissue degradation, excystment/encystment, tis-
sue invasion, and larval migration for a range of hel-
minths [37, 38], including tapeworms [39]. In addition,
they are involved in modulating host immune responses
against parasitic helminths [5, 6, 40]. For the protease
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inhibitors, they probably have capacity to regulate host
protease activities and host immune responses for sur-
vival [41-43]. Therefore, it is not surprising to identify a
high proportion of peptidases and peptidase regulating
proteins in the secretomes of E. multilocularis and T.
solium. Moreover, as peptidases are unusually immuno-
genic, these secreted proteases may have the potential to
be exploited as ideal serodiagnostic markers and vaccine
targets. The enrichment of peptidase-related proteins in
the two parasite secretomes suggested that these pro-
teins might play critical roles in survival and interactions
with hosts for taeniid tapeworms. Of the most repre-
sented domains in the E. multilocularis secretome, ES
proteins with immunoglobulin-like domains, CAP do-
mains, taeniid antigen domains and of biological activ-
ities that are strongly related to the typical functions of
secreted proteins, are shared with those of the T. solium
secretome. In particular, ES proteins from Venom
Allergen-Like family were found, which belongs to the
cysteine-rich secretory protein family (CAP domain).
Members from this family have been identified from the
ES products of several trematode species and were sug-
gested as potential modulators of host immune function
and components of sexual development during the in-
fection processes [44—48]. We also found several glyco-
side hydrolases among the top InterPro terms, all of
which could be detected with transcript expressions in all
of the three life-cycle stages (Additional file 7: Table S4).
Proteomic analysis of the ES products from larval
stages of Ascaris suum also revealed high abundance
of glycosyl hydrolases [49]. This could suggest that
the degradation of complex carbohydrates may form
an essential part of the energy metabolism of these
parasitic helminths once they establish in the intestine
of the definitive host or tissues of the intermediate
host. Along with the well-known ES proteins, about
half of the predicted ES proteins (47 %) could not be
assigned to any known domain, whereas most of
them could be supported by RNA transcription levels
(Additional file 7: Table S4). Further investigations of these
molecules might lead to new and innovative approaches
for the treatment and control of these parasitic diseases.
KEGG pathway mapping analysis predicted ES pro-
teins to be most frequently located in the lysosome
(Table 2), similar to the case in the 7. solium [36] and
Dermanyssus gallinae secretomes [7]. This phenomenon
might result from the large number of lysosome-related
proteins such as proteases, lipases and glycosyl hydro-
lases which may act as hydrolases in the lysosome [50].
These proteins act as hydrolases in the lysosome and
may be involved in the degradation of host in the tape-
worms. Other most representatively mapped KEGG
pathways, such as signaling pathways regulating pluripo-
tency of stem cells, pathways in cancer and the hippo
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signaling pathway were mostly related to some ligands
in the pathways, involving von Willebrand factor (VWE),
EGF, IGF, bone morphogenetic protein 2/4 (BMP4),
and wingless-type MMTYV integration site family mem-
ber 1 (Wntl). These growth factors and their pathways
have extensive functions on growth, metabolism and
development during parasite life-cycle [2]. In addition,
we also identified nine taeniid antigens (Antigen B)
that are found mostly in taeniid cestodes, from the
most represented ES proteins. In fact, this protein fam-
ily was also identified in the 7. solium secretome [36]
and has been well studied for its highly immunogenic
properties that can be recognised by more than 80 %
of sera from patients with AE [50]. Nevertheless, its
precise biological function remains undetermined in
these tapeworms.

Investigating the number of synonymous and non-
synonymous substitutions along a lineage can provide
information about the degree of selection for a species
during evolution. Although the ES proteins were directly
recognised by host immune systems in the host-parasite
interaction, no significant difference of evolution selec-
tion pressure between ES and non-ES proteins coding
genes was detected along E. multilocularis lineage in our
analysis. This implies that host immune system might
make relatively limited selection effects on the ES pro-
tein evolution during the evolution of this parasite after
divergence from the common ancestor with E. granulo-
sus. This is consistent with the lower ratio of PSGs in ES
protein coding genes. Interestingly, the protease inhibi-
tor cystatin and EG19 antigen were under positive selec-
tion determined by the LRT test. These two genes were
both among the very highly expressed genes in the
metacestode life-cycle stage. Recently, some studies have
reported that nematode cystatins can regulate host
protease activity and modulate host immune responses
[39, 40]. Although the biological roles of EG19 have been
poorly investigated, the present result implies that this
protein might possess important functions for environ-
ment adaptation of this parasite.

High epitope density in a single protein molecule has
been suggested to significantly enhance their antigenicity
and immunogenicity [36, 51]. Calculation of AAR value
of a protein is an effective way to normalise the anti-
genic region numbers by the sequence length in a pro-
tein [36]. In our analysis, we observed the average AAR
values for ES proteins in the E. multilocularis genome
were ~95.77 for the Bepipred method and ~28.05 for the
Kolaskar-Tongaonkar method, ie. values very similar to
those of the predicted 7. solium secretome (93.6 for the
Bepipred method; 26.2 for the Kolaskar-Tongaonkar
method), the known E. multilocularis ES proteins
(92.0; 28.0) and other helminth secretomes (65.9—
105.0; 24.6-29.1) determined by Gomez S and colleagues
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[36]. Additionally, statistical difference of AAR value
distributions between ES proteins and TM-containing
proteins was detected for both methods, implying distin-
guishable immunological features between them. How-
ever, the Abundance of Antigenic Regions (AAR) for the
E. multilocularis secretome is not significantly enriched
with antigenic regions as compared to the intracellular
proteins in our analysis. This implies that the low AAR
value might not be a typically unique feature for ES
proteins in E. multilocularis. However, due to the
accessibility to be recognised by the host immune
system, the higher epitode density of the ES proteins
as compared with that of transmembrane proteins
can probably make the ES proteins perfect antigens
to capture antibodies from infected patients or ani-
mals. We found that 383 ES proteins identified in E.
multilocularis had no sequence similarity against
human and dog proteins. Because of the absence in
their hosts, these ES proteins would be preferred
biological markers and the antibodies can be used to
directly detect the ES antigens in infected hosts
through a sandwich ELISA. Moreover, given the key
roles of the secretome in parasite survival, efficient
drugs with mild side effects may be developed on the
basis of these parasite-specific ES proteins. Particu-
larly, the ES proteins with very high expression levels
involved in both the metacestode and gravid adult
stages may provide more useful opportunities to find
new interventions against both E. multilocularis larvae
and adults. Of the predicted specific ES proteins, homo-
logues to known drug targets could be found, implying
the possibility that useful drugs against this parasite can
be found by screening known drugs or chemicals. Among
these known potential targets, Neuropeptide F which is
originally isolated from the flatworm Moniezia expansa
[52, 53] has been considered as a promising target for
novel anthelmintics, due to its widespread expression in
flatworm parasites [53, 54].

Conclusions

This study applied an integrated pipeline to identify and
comprehensively characterise the E. multilocularis ES
proteins at the genome-wide level for the first time.
Novel insights about the functions, antigenic density and
adaptive evolution of these proteins were discovered.
Additionally, it provides a valuable resource of proteins,
which constitute promising candidates for drug, diagno-
sis or vaccine targets for further experimental research
that may lead to new intervention strategies against this
parasite. Nevertheless, bioinformatic analyses in silico
are highly algorithm-dependent to identify sequence
features and thus future experimental studies on the
proteomic level are necessary to confirm and improve
the predicted secretome.
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