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Abstract

Background: Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative
for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has
been described in patients with these expansions. We set out to identify genetic modifiers of disease risk, age at
onset, and survival after onset that may contribute to this clinical variability.

Results: We examined a cohort of 330 C9ORF72 expansion carriers and 374 controls. In these individuals, we assessed
variants previously implicated in FTD and/or MND; 36 variants were included in our analysis. After adjustment for
multiple testing, our analysis revealed three variants significantly associated with age at onset (rs7018487 [UBAP1;
p-value = 0.003], rs6052771 [PRNP; p-value = 0.003], and rs7403881 [MT-Ie; p-value = 0.003]), and six variants significantly
associated with survival after onset (rs5848 [GRN; p-value = 0.001], rs7403881 [MT-Ie; p-value = 0.001], rs13268953 [ELP3;
p-value = 0.003], the epsilon 4 allele [APOE; p-value = 0.004], rs12608932 [UNC13A; p-value = 0.003], and rs1800435
[ALAD; p-value = 0.003]).

Conclusions: Variants identified through this study were previously reported to be involved in FTD and/or MND,
but we are the first to describe their effects as potential disease modifiers in the presence of a clear pathogenic
mutation (i.e. C9ORF72 repeat expansion). Although validation of our findings is necessary, these variants
highlight the importance of protein degradation, antioxidant defense and RNA-processing pathways, and
additionally, they are promising targets for the development of therapeutic strategies and prognostic tests.
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Background
Two fatal neurodegenerative diseases, frontotemporal
dementia (FTD) and motor neuron disease (MND),
demonstrate clinical, pathological and genetic overlap.
In up to 50% of FTD patients, for instance, signs of
motor neuron dysfunction are present and an equal per-
centage of MND patients can show cognitive symptoms of
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frontal lobe impairment [1-4]. Moreover, inclusions of
transactive response DNA-binding protein 43 (TDP-43)
are the most common subtype of FTD and are also a
pathological hallmark of MND [5,6]. Interestingly,
hexanucleotide repeat expansions in the chromosome 9
open reading frame 72 (C9ORF72) gene have been
identified in FTD and MND [7,8], representing the
most frequent genetic cause of both diseases [9]. Con-
siderable clinical variability, however, has been detected
in carriers of these expansions, including heterogeneity
in age at onset and disease duration [10]. While recent
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studies implicated variants in transmembrane protein
106 B (TMEM106B), intermediate repeats in ataxin-2
(ATXN2), C9ORF72 expansion size, and the presence of
double mutations as genetic modifiers of the clinical
presentation in C9ORF72 expansion carriers [11-15], it
remains largely unknown why some individuals develop
disease symptoms in their 40s whereas others remain
unaffected until old age.
In C9ORF72 expansion carriers, FTD and/or MND-

associated variants that modify disease risk, age at onset or
survival after onset have not been studied systematically.
For this reason, we conducted a thorough literature search
and included 36 known variants in our study. These
variants were investigated in a cohort of 330 C9ORF72
expansion carriers and 374 controls; importantly, we iden-
tified eight potential disease modifiers that may aid in
explaining the reported phenotypic heterogeneity.

Results
We investigated a cohort of 330 C9ORF72 expansion
carriers and 374 controls for 36 variants known to mod-
ify disease risk, age at onset or survival after onset in
FTD and/or MND (Table 1; Additional file 1: Table S1).
For simplicity, we have included an overview of signifi-
cant associations, displaying only the genotypic model
for which evidence of association was strongest (Table 2);
results of all genotypic models for analyses that con-
tained significant associations are shown in the supple-
ment (Additional file 1: Table S2 [age at onset] and
Additional file 1: Table S3 [survival after onset]).
Our primary analysis focused on the 265 probands

carrying C9ORF72 repeat expansions with FTD, FTD/
MND, or MND. Under a false discovery rate (FDR) of
10%, none of the variants studied was significantly associ-
ated with disease risk, neither in our overall group nor in
any of our disease subgroups. Age at onset analysis, how-
ever, revealed three significant associations in our overall
group (Table 2; Figure 1). Each additional minor allele of
rs7018487 (ubiquitin-associated protein 1 [UBAP1]) was
associated with a decrease in mean age at onset of
2.62 years (p-value = 0.003; additive genotypic model). For
rs6052771 (prion protein [PRNP]), the mean age at onset
Table 1 Subject characteristics

Group N Female gender A

Controls 374 172 (46.0%) 6

All repeat expansion carriers 330 149 (45.2%) 5

FTD, FTD/MND, and MND probands 265 115 (43.4%) 5

FTD probands 74 29 (39.2%) 6

FTD/MND probands 71 25 (35.2%) 6

MND probands 120 61 (50.8%) 5

Continuous variables are summarized with the sample mean ± standard deviation (
clinically diagnosed patients, and age at death in pathologically diagnosed patients
was 4.42 years later in probands with two copies of the
minor allele, than in probands with at least one copy of
the major allele (p-value = 0.003; recessive genotypic
model). Probands carrying at least one copy of the minor
allele in rs7403881 (metallothionein 1 E [MT-Ie] haplo-
block), demonstrated a delay of 3.95 years in mean age at
onset as compared to probands homozygous for the major
allele (p-value = 0.003; dominant genotypic model). We
did not detect significant associations for any of the dis-
ease subgroups.
In the 221 FTD, FTD/MND, and MND probands with

information available regarding survival after onset,
median follow-up length after onset was three years (range:
4 months – 24 years [FTD: 1 year – 24 years, FTD/MND:
10 months – 24 years, MND: 4 months – 9 years]). The
survival after onset analysis resulted in significant associa-
tions with six variants (Table 2). Of those associations, one
was present in our overall group, three were present in our
FTD subgroup, and two were present in our MND sub-
group. When concentrating on our overall group (Table 2;
Figure 2), we noted a significant association only for
rs5848 (granulin precursor [GRN]; relative risk [RR] = 1.64;
p-value = 0.001; additive genotypic model). However, we
also performed an additional analysis to evaluate the com-
bined effect of two other variants, rs13268953 and
rs6985069 (elongator acetyltransferase complex subunit 3
[ELP3]; not in linkage disequilibrium [LD]), on survival
after onset, especially because these variants both showed
non-significant trends towards an association and were
located near the same gene. When combining these vari-
ants, we did detect a significant association with survival
after onset (p-value = 0.001; Additional file 1: Table S4).
In our disease subgroups (Table 2; Figure 2), we observed

significant associations in our FTD probands for rs7403881
(MT-Ie; RR = 3.81; p-value = 0.001; recessive genotypic
model), rs13268953 (ELP3; RR = 3.65; p-value = 0.003; re-
cessive genotypic model), and the epsilon 4 allele (apolipo-
protein E [APOE]; rs429358 and rs7412; RR = 3.13; p-value
= 0.004; dominant genotypic model). In our MND pro-
bands, significant associations were found for rs12608932
(unc-13 homolog A, C. elegans [UNC13A]; RR = 5.65; p-
value = 0.003; recessive genotypic model) and rs1800435
ge Age at onset Pathological diagnosis

1.2 ± 10.2 (35–90) N/A N/A

9.4 ± 10.0 (35–90) 56.5 ± 9.1 (34–83) 123 (37.3%)

9.6 ± 10.0 (35–90) 56.8 ± 9.1 (34–83) 112 (42.3%)

3.1 ± 12.2 (35–90) 57.7 ± 9.8 (34–79) 45 (60.8%)

0.6 ± 8.5 (39–80) 56.2 ± 9.0 (34–74) 51 (71.8%)

6.9 ± 8.6 (37–83) 56.5 ± 8.7 (36–83) 16 (13.3%)

range). The age provided is age at blood draw in controls, age at onset in
. Information was unavailable for age (n = 41) and age at onset (n = 59).



Table 2 Variants significantly associated with age at onset or survival after onset

Variant (gene/disease group) Number of patients with each genotypea Model Association measure (95% CI) P-value

Age at onset (overall) Regression coefficient

rs7018487 (UBAP1) 122 / 96 / 23 Additive −2.62 (−4.36, −0.89) 0.003

rs6052771 (PRNP) 92 / 104 / 46 Recessive 4.42 (1.51, 7.32) 0.003

rs7403881 (MT-Ie) 65 / 118 / 60 Dominant 3.95 (1.36, 6.54) 0.003

Survival after onset (overall) Relative risk

rs5848 (GRN) 116 / 86 / 19 Additive 1.64 (1.22, 2.22) 0.001

Survival after onset (disease subgroups) Relative risk

rs7403881 (MT-Ie): FTD 13 / 31 / 14 Recessiveb 3.81 (1.71, 8.46) 0.001

rs13268953 (ELP3): FTD 16 / 31 / 11 Recessive 3.65 (1.56, 8.55) 0.003

Epsilon 4 (APOE): FTD 42 / 13 / 2 Dominant 3.13 (1.45, 6.74) 0.004

rs12608932 (UNC13A): MND 44 / 40 / 23 Recessiveb 5.65 (1.82, 17.58) 0.003

rs1800435 (ALAD): MND 88 / 18 / 1 Dominant N/Ac 0.003

Association measure = regression coefficient (age at onset analysis) and relative risk (survival after onset analysis); CI = confidence interval. Additive models, dominant
models, and recessive models were utilized. We adjusted for multiple testing using a false discovery rate (FDR) of 10%. aOrder of genotypes: major-major/major-minor/
minor-minor. bIndicates that the variant was also significantly associated with the given outcome under an additive model. cFor rs1800435, none of the 19 MND patients
(0.0%) who carried the minor allele died as compared to 14 of 78 MND patients (15.9%) who did not carry the minor allele; the p-value of 0.003 results from a log-rank
test. The strongest association with the given outcome is displayed in this table; other associations are shown in Additional file 1: Table S2 (age at onset) and Additional
file 1: Table S3 (survival after onset).

Figure 1 Associations with age at onset in the overall group of FTD, FTD/MND, and MND probands. Three variants are shown that
demonstrate a significant association with age at onset in C9ORF72 expansion carriers (rs7018487:T > G [UBAP1; panel A], rs6052771:A > G [PRNP;
panel B], and rs7403881:G > C [MT-Ie; panel C]). In each panel, the mean in the given group is denoted by a solid horizontal line; associations are
specified in Table 2 and genotype frequencies in Additional file 1: Table S1.
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Figure 2 Variants significantly associated with survival after onset. Six significant associations with survival after onset are presented (rs5848:
G > A [GRN; panel A], rs7403881:G > C [MT-Ie; panel B], rs13268953:A > G [ELP3; panel C], the epsilon 4 allele:E4- > E4+ [APOE; panel D], rs12608932:
A > C [UNC13A; panel E], and rs1800435G > C [ALAD; panel F]). When three curves are shown (rs5848), zero copies of the minor allele are
displayed in black, one copy of the minor allele is displayed in blue, and two copies of the minor allele are displayed in red. If two curves are
present (other variants), then the common genotype is shown in black and the rare genotype is shown in blue.
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(delta-aminolevulinate dehydratase [ALAD]; 0.0% death
in carriers of minor allele versus 15.9% in non-carriers;
p-value = 0.003; dominant genotypic model).
Of note, all results of statistical analyses involving dis-

ease risk, age at onset and survival after onset were very
similar when including individuals who were family mem-
bers or who had received another diagnosis, and also
when additionally adjusting models for age in the disease
risk analysis (data not shown).

Discussion
This study was designed to help elucidate the clinical vari-
ability observed in C9ORF72 expansion carriers. We
investigated variants previously implicated in FTD and/or
MND, and determined their effects in a unique cohort of
subjects with known pathogenic expansions in C9ORF72.
Excitingly, we discovered eight variants that may assist in
explaining the reported phenotypic variability, especially
with regard to age at onset and survival after onset
(Table 2). Although it should be stressed that replication
is needed, our results represent a major step forward in
the search for genetic modifiers, and they provide direc-
tions for future validation and meta-analytical studies.
We identified one single nucleotide polymorphism

(SNP) located near UBAP1 (rs7018487) that was associ-
ated with age at onset in our overall group of C9ORF72
expansion carriers (p-value = 0.003). UBAP1 functions in
ubiquitin-dependent sorting at the multivesicular body
(MVB), and depletion of UBAP1 severely disrupts this
complex process [16,17]. Variants in UBAP1 have already
been linked to FTD risk, and colocalization of UBAP1 and
TDP-43 in neuronal cytoplasmic inclusions has been dem-
onstrated [18]. Our results also revealed an association
between PRNP (rs6052771; in LD with rs1799990) and
age at onset in our overall group (p-value = 0.003). The
contribution of PRNP to the pathogenesis of FTD and/or
MND has not been studied thoroughly [19,20], and conse-
quently, little is known about its effects on these diseases.
One study, however, reported an association of PRNP with
age at onset in a small number of FTD patients harboring
GRN mutations [21], supporting the premise of a common
underlying mechanism.
Moreover, we discovered a variant in metallothionein

(rs7403881) that is associated with a delayed age at onset
in our overall group (p-value = 0.003). In addition to this
delay, we detected a decrease in survival after onset in our
FTD subgroup (p-value = 0.001). Currently, only a few
studies investigating FTD and/or MND have focused on
the metallothionein family, which is involved in antioxi-
dant defense [22]. One of these studies suggested that
rs7403881 increases MND risk [23]. A recent study in
superoxide dismutase-1 (Sod1) mice, revealed that overex-
pression of metallothioneins slows disease progression
and extends lifespan [24]. Further evidence for a potential
role of oxidative stress is provided by the association be-
tween survival after onset and a coding SNP in ALAD
(rs1800435; p-value = 0.003). The ALAD enzyme influ-
ences susceptibility to lead exposure, which may contrib-
ute to MND risk; although studies published thus far are
insufficient for a definitive conclusion [25-27].
Interestingly, we also found a significant association be-

tween a functional SNP in GRN (rs5848; 3’-untranslated
region [UTR]) and survival after onset in our overall group.
It has already been reported that carriers homozygous for
the minor allele of rs5848 demonstrate an increased FTD
risk as compared to homozygous major allele carriers [28],
but no associations with either FTD risk or age at onset
were observed in other studies [21,29-32]. Thus, although
the contribution of GRN SNPs to neurodegenerative
diseases has not been elucidated, our present finding sug-
gests that GRN is associated with survival after onset in
carriers of C9ORF72 repeat expansions (p-value = 0.001).
We also examined two variants near ELP3 (rs13268953

and rs6985069; not in LD). ELP3 is a component of the
RNA polymerase II complex, and as such, is involved in
the acetylation of histones H3 and H4 to make DNA ac-
cessible for transcription [33,34]. Importantly, another
type of histone modification has already been implicated
in C9ORF72 expansion carriers: a recent report demon-
strated that trimethylation of lysine residues within his-
tones H3 and H4 might reduce C9ORF72 expression in
expansion carriers [35]. An association study and muta-
genesis screen have also exposed associations between
ELP3 and MND susceptibility [36], representing one of
many FTD and/or MND-associated genes that function in
RNA-processing pathways [37]. Our present findings are
in agreement with these studies, as shown by the
combined effects of these ELP3 SNPs in our overall group
(p-value = 0.001), and one ELP3 SNP (rs13268953) in our
FTD subgroup (p-value = 0.003).
In addition, we assessed APOE, a gene that has been

carefully investigated, particularly in patients with
dementia. A recent meta-analysis included 28 case–con-
trol studies, and demonstrated that the epsilon 4 allele
increases susceptibility to FTD [38]. Interestingly, we
discovered that the APOE epsilon 4 allele was associated
with a decline in survival after onset in our FTD sub-
group (p-value = 0.004).
Our last potential modifier (rs12608932), an intronic

SNP in UNC13A, has been identified through a genome-
wide association study in MND patients [39]. This finding
was strengthened by an analysis of expression quantitative
trait loci (eQTLs) that demonstrated genome-wide signifi-
cance for UNC13A [40]. UNC13A is involved in neuro-
transmitter release [41], a tightly regulated process that is
thought to be disrupted in MND patients. Our results
show that variants in UNC13A are also associated with sur-
vival after onset in the presence of a C9ORF72 repeat



van Blitterswijk et al. Molecular Neurodegeneration 2014, 9:38 Page 6 of 10
http://www.molecularneurodegeneration.com/content/9/1/38
expansion: we detected an association in our MND sub-
group (p-value = 0.003).
We would like to reiterate that we performed a system-

atic study of variants reported in the literature. For many
variants, however, previous findings were inconclusive and
based on our current discoveries we speculate that some
of the seemingly conflicting results are due to differences
in the composition (and size) of study cohorts, most im-
portantly: (1) the number of patients with predominant
FTD, predominant MND or a mixture of both diseases,
(2) the percentage of subjects with a pathologically con-
firmed diagnosis, and (3) the subset of individuals with
pathogenic mutations in particular FTD and/or MND-
associated genes (such as C9ORF72). Hence, because of
our present findings and results of aforementioned stud-
ies, reinvestigation of previously published data after ex-
clusion of certain subgroups seems warranted, and new
well-sized studies should be performed concentrating on
these subgroups, in order to determine the specificity of
results.
In our study, we used an FDR rather than a family-

wise error rate (FWER)-controlling procedure for
multiple testing adjustments. The FDR procedure is rela-
tively new, and controlling the FDR is a valid method to
adjust for multiple comparisons [42]. An FDR correc-
tion, however, is less conservative than an FWER correc-
tion and its interpretation is different (Methods). We
used an FDR of 10%, which means that for each group
of statistically significant associations we would expect
the vast majority (90%) to be real (i.e. for each group
only 1 out of 10 significant findings is expected to be
false). Naturally, there is always a balance between the
two different types of statistical error that can occur for
any given conclusion – a type I error (i.e. a false-positive
association) and a type II error (i.e. a false-negative asso-
ciation), both of which are undesirable. Because the bal-
ance tips more in the direction of type I error for the
FDR than for the FWER procedures, it is important to
highlight that our results, though promising, do require
validation.
Additionally, it should be noted that we focused our

article on those associations that remained significant
after adjustment for multiple testing. Future studies
could investigate nominally significant associations
(Additional file 1: Table S2 and Additional file 1: Table
S3) in larger cohorts and/or meta-analyses, to determine
whether any of these potential associations contribute to
the pleiotropy detected in C9ORF72 expansion carriers.
Other studies could also concentrate on variants not in-
cluded in our present study (i.e. recently published vari-
ants); especially since it seems plausible that more
variants (either known or unknown) modify the pheno-
type of C9ORF72 expansion carriers. Furthermore, our
study was designed to investigate associations with
disease risk (i.e. by comparing patients and controls) and
to identify factors that could modify age at onset or sur-
vival after onset. Interestingly, some of the associations
we observed were only significant in the phenotypic sub-
group for which the risk variant was originally reported;
for example, APOE genotypes only affected survival after
onset in our subgroup of C9ORF72 expansion carriers
with FTD, whereas the UNC13A variant only affected
survival after onset in our MND subgroup. To further
investigate the clinical phenotype, a larger number of
expansion carriers with either FTD or MND is needed
(e.g. international genome-wide association study), so
that direct comparisons of expansion carriers with FTD
and MND could be performed.

Conclusions
Our present study reveals eight variants that may account
for the phenotypic variability reported in C9ORF72 expan-
sion carriers. These variants strongly emphasize the import-
ance of proper protein degradation, antioxidant defense,
and processing of RNA. Although identified genes (and
their corresponding pathways) have already been linked to
FTD and/or MND, it was unclear whether they were able
to act as disease modifiers on the background of a
C9ORF72 repeat expansion. Our findings, thus, underscore
the complex interplay between many factors that influence
the occurrence and prognosis of these destructive diseases,
particularly in C9ORF72 expansion carriers. Though large
for a study of C9ORF72 expansion carriers, our findings re-
sult from a relatively small sample size, and therefore, re-
peated replication and meta-analyses will be necessary to
increase our understanding of these potential genetic dis-
ease modifiers. With that said, the factors identified in this
study may represent excellent targets for novel treatments,
including preventative treatment strategies, and for the
development of predictive tests aiming at the continuum of
FTD and MND.

Methods
Subjects
We collected DNA from a cohort of 330 C9ORF72 ex-
pansion carriers, obtained at the Mayo Clinic (n = 121),
Coriell Research Institute (n = 71), University of British
Columbia, Canada (n = 58), University of California,
San Francisco (n = 38), Robarts Research Institute (n =
11), Northwestern University Feinberg School of Medicine
(n = 9), Drexel University College of Medicine (n = 7),
University of Western Ontario, Canada (n = 7), Banner
Sun Health Research Institute (n = 5), and University of
Tübingen (n = 3). Based on available clinical and/or
pathological data, these subjects were diagnosed with FTD
(n = 91), FTD/MND (n = 78) or MND (n = 127), with
another diagnosis (n = 7; e.g. dementia due to Alzheimer’s
disease, alcohol abuse or behavioral impairment), or they
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were asymptomatic at time of last evaluation (n = 27; mean
age at evaluation: 43.6 ± 12.7 standard deviation [SD]). Of
those expansion carriers 45.2% (n = 149) were female, their
mean age was 59.4 ± 10.0 years, their main age at onset
was 56.5 ± 9.1 years, and 37.3% (n = 123) had received a
neuropathological diagnosis (Table 1). Age at onset was es-
timated based on the appearance of the first disease symp-
toms, namely progressive cognitive dysfunction in
judgment, language, or memory; or changes in behavior or
personality (FTD patients); or fasciculations, muscle weak-
ness, falls, dysarthria, and dysphagia (MND patients).
When symptoms of both FTD and MND were noted, the
earliest observation of decline was recorded for age at on-
set. Survival after onset was defined as the interval between
age at onset of disease symptoms and the age at death for
deceased patients, and as the interval between age at onset
and present age for other patients (when follow-up data
was available).
We also included neurologically normal controls (n =

374), of whom 46.0% (n = 172) were female, and whose
mean age was 61.2 ± 10.2 years. All subjects agreed to be in
the study, and biological samples were obtained after in-
formed consent with ethical committee approval from the
respective institutions. Approval for the genetic analyses
was performed in agreement with ethical committee ap-
proval at Mayo Clinic

Genotyping
C9ORF72 expansion carriers were identified using our
previously published 2-step PCR protocol [7]; Southern
blotting techniques were employed to confirm the pres-
ence of the repeat expansion when sufficient high quality
DNA was available (>25% of expansion carriers) [14]. To
select candidates that could potentially act as disease
modifiers in carriers of C9ORF72 repeat expansions, we
performed a literature search on PubMed (August 2012)
that revealed all publications on a combination of FTD
and/or MND with SNPs. Subsequently, we selected one or
two variants per gene possibly associated with these dis-
eases (top SNPs were preferred), which were suitable for
the Sequenom MassArray iPLEX platform (San Diego,
CA, USA) and could be incorporated in Sequenom panels;
these variants were analyzed with Typer 4.0 software.
Sequenom genotype data was supplemented with five Taq-
man SNP genotyping assays (C_3084793_20, C_108560
0_10, C_2070266_20, C_8921964_20, and C_7563736_10;
Invitrogen, Carlsbad, CA, USA) performed on a 7900HT
Fast Real Time PCR system; genotype calls were made
using SDS 2.4 software (Applied Biosystems, Foster City,
CA, USA). After genotyping, we excluded SNPs with a
significant deviation from the Hardy-Weinberg equilib-
rium (HWE) in our control cohort (rs45559331 and
rs6903982), rare SNPs with a minor allele frequency
(MAF) of less than 1% in expansion carriers and controls
(rs121909536, rs75654767, rs121909541, rs140547520,
rs80265967, rs80356715, and rs35070491), and SNPs with
a call rate below 95% (rs4680, rs4859146, rs854560,
rs7277748, rs4880, and rs2275294). In total, 36 variants
were included in our analysis (Additional file 1: Table S1);
the call rate of these variants was greater than 99% and
none of these variants was in LD. All genetic analyses were
performed at the Mayo Clinic, and genotypes were assigned
using all of the data from the study simultaneously.

Statistical analysis
In order to satisfy the statistical assumption of independ-
ent measurements, our primary analysis focused on a sub-
set of C9ORF72 expansion carriers: 265 unrelated
probands with FTD (n = 74), FTD/MND (n = 71), or
MND (n = 120). We performed secondary analyses, how-
ever, that included the remaining expansion carriers to
examine the sensitivity of our results. The entire cohort of
C9ORF72 expansion carriers was assessed, and also dis-
ease subgroups separately (FTD, FTD/MND and MND).
First, we used logistic regression models adjusted for gen-
der to evaluate associations of each of the 36 variants with
disease risk; odds ratios (ORs) and 95% confidence inter-
vals (CIs) were estimated. In addition, we examined asso-
ciations of each of these variants with age at onset using
linear regression models adjusted for gender and disease
subgroup; while associations with survival after onset were
assessed using Cox proportional hazards regression
models adjusted for age at onset, gender, and disease sub-
group. Regression coefficients (interpreted as changes in
mean age at onset) and 95% CIs were estimated in the age
at onset linear regression analysis; whereas in Cox regres-
sion analysis, RRs and 95% CIs were estimated, and data
was censored at last follow-up. Each variant was investi-
gated under an additive genotypic model (effect of each
additional minor allele), a dominant genotypic model
(presence versus absence of the minor allele), and a reces-
sive genotypic model (presence versus absence of two cop-
ies of the minor allele). Models were not adjusted for
C9ORF72 expansion size, since expansion sizes were only
available for a subset of samples (>25%) and they were es-
timated in DNA obtained from various tissues, which
hampers analyses [14]. In order to reduce the chance of
spurious findings and non-informative tests, association
analyses were not performed for variants with fewer than
ten carriers of the minor allele in the given group, or
under an additive or recessive genotypic model when
fewer than ten rare homozygotes were present in the given
group.
To account for multiple testing, we made an adjust-

ment separately for each disease group and separately
for each outcome measure (disease risk, age at onset,
and survival after onset). Given the relatively small sam-
ple size of this study, controlling the FWER (i.e. the
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probability of any false-positive finding among the entire
group of tests) at 5% using a procedure such as a single-
step minP permutation correction [43] would result in very
low power to detect associations. We, therefore, opted for
an alternative approach and utilized an FDR correction
[44]. This increasingly used method has a different inter-
pretation than FWER-controlling procedures; an FDR pro-
cedure attempts to control the expected proportion of
false-positive findings among those associations considered
significant. Note that due to this difference in interpret-
ation, the FDR does not necessarily need to be controlled
at 5%, only at a reasonable level to allow for high confi-
dence in results, which was deemed at 10% for our study
[42]. All statistical tests were two-sided, and were per-
formed using SAS (version 9.2; SAS Institute, Inc., Cary,
NC, USA) and R Statistical Software (version 2.14.0; R
Foundation for Statistical Computing, Vienna, Austria).

Additional file

Additional file 1: Genotype counts and frequencies (Table S1),
Associations with age at onset under additive, dominant and
recessive models in the overall group of FTD, FTD/MND, and MND
probands (n = 243; Table S2), Associations with survival after onset
under additive, dominant and recessive models in the overall group
of FTD, FTD/MND, and MND probands (n = 221; Table S3a),
Associations with survival after onset under additive, dominant and
recessive models in FTD probands (n = 58; Table S3b), Associations
with survival after onset under additive, dominant and recessive
models in MND probands (n = 107; Table S3c), Combinations of
ELP3 variants rs13268953 and rs6985069 in relation to survival after
onset in the overall group (Table S4).
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