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Abstract
An SIR epidemiological model with suscptibles dispersal between two patches is
addressed and discussed. The basic reproduction numbers R01 and R02 are defined as
the threshold parameters. It shows that if both R01 and R02 are below unity, the
disease-free equilibrium is shown to be globally asymptotically stable by using the
comparison principle of the cooperative systems. If R01 is above unity and R02 is below
unity, the disease persists in the first patch provided S1*2 < S2*2 . If R02 is above unity, R01
is below unity, and S2*1 < S1*1 , the disease persists in the second patch. And if R01 and
R02 are above unity, and further S1*2 > S2*2 and S2*1 > S1*1 are satisfied, the unique
endemic equilibrium is globally asymptotically stable by constructing the Lyapunov
function. Furthermore, it follows that the susceptibles dispersal in the population
does not alter the qualitative behavior of the epidemiological model.

1 Introduction
The development of economic globalization and the progression of science and technol-
ogy yieldmore andmore frequent contact and communication between people in different
countries and regions, which further directly accelerates the development of global econ-
omy and fosters the prosperity and flourishing of a society. However, the bad things may
occur simultaneously, such as, the spread of  SARS and  HN influenza almost
throughout the world. SARS involved  countries and regions, caused more than ,
patients, and  deaths [, ]. The HN influenza virus quickly spread worldwide due
to airplane travel. As of May , , the virus had invaded in  countries including
Mexico and the United States, and a total of , people were confirmed to be infected
by it []. It then follows that the studies on the influence of infectious diseases transmission
on the global population that formulates patchymodels aremore andmore significant and
practical.
A great number of mathematical patchy models have been proposed and analyzed to

illustrate the influence of the transmission of infectious diseases on the local population
among many countries and regions [, , , , ]. But for many mathematical models of
infectious diseases in a patchy environment, the global stability of the endemic equilib-
rium is still an open problem.Motivated by this, in the present paper, a class of simple SIR
models with susceptibles dispersal in a patchy environment is to be formulated and in-
vestigated the stability of the endemic equilibrium by constructing the Lyapunov function
(also see [, , –, , ]).
The rest of this paper is organized as follows. In Sect. , the SIR model with suscepti-

bles dispersal between two disjoint patches is formulated, and the existence, uniqueness,
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Figure 1 The transfer diagram of a class of SIR epidemic models.

and boundedness of the solutions are analyzed. The existence of equilibria and the basic
reproduction numbers are derived in Sect. . In Sect. , the long-term behavior of the SIR
model is studied. The brief conclusions and discussions are given in Sect. .

2 Model formulation
In this section, a class of SIR epidemic models for infectious diseases between two patches
is developed, in which only susceptible people may disperse between two disjoint patches.
All the persons are classified into three compartments: susceptible (S), infectious (I), and
removed (R) in each patch, respectively. It is assumed that the mass action incidence is
used and there is no birth or death during travel. Based on the transfer diagram of Figure ,
the SIR epidemic model to understand the impact of susceptibles dispersal on the whole
population is described by the following system of ordinary differential equations:

dS
dt

= � – βSI –μS + aS – aS,

dI
dt

= βSI – (μ + d + γ)I,

dS
dt

= � – βSI –μS + aS – aS,

dI
dt

= βSI – (μ + d + γ)I.

()

Since R and R do not involve in other equations but themselves in system (), they are
not directly taken into account in system ().

�i (i = , ) is the recruitment constant rate of the population in the ith patch. βi (i = , )
represents the transmission rate in the ith patch. μi (i = , ) represents the natural death
rate in the ith patch. di (i = , ) is the induced-death rate in the ith patch. γi (i = , ) is
the recovery rate of the infectious persons in the ith patch. a represents the dispersal
rate of susceptible individuals from the second patch to the first patch. a represents the
dispersal rate of susceptible individuals from the first patch to the second patch. All the
parameters considered in the present paper are nonnegative. Ni(t) (i = , ) denotes the
number of the total population in the ith patch at time t. Therefore, Ni = Si + Ii + Ri (i =
, ).
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By applying the Theorem .. of [], it then follows that for any (S, I,S, I) ∈R

+,

system () exists a unique local nonnegative solution (S(t), I(t),S(t), I(t)) through the
initial value (S(), I(),S(), I()) = (S, I,S, I).
The expressions of Ni and Eq. () give rise to the following formula:

dN

dt
+
dN

dt
= � +� –μN –μN – dI – dI

≤ � +� –min{μ,μ}(N +N). ()

System () implies lim supt→∞(N + N) ≤ (� + �)/min{μ,μ}. Therefore, N + N is
ultimately bounded and all the solutions of system () globally exists on the interval [,∞).
The aforementioned discussions can be summarized into the following results.

Theorem. System () exists a unique and bounded solution throughout the initial value
(S, I,S, I)∈R

+. Further, the compact set

� :=
{
(S, I,S, I) ∈ R


+ : S + I + S + I ≤ � +�

min{μ,μ}
}

is a positively invariant set and attracts all positive orbits in R

+.

Note that the long-time behaviors of the solutions of system () are investigated in region
� instead of the space R

+.

3 Equilibria and the basic reproduction numbers
In this section, the existence of equilibria and the basic reproduction numbers are stud-
ied. By the direct calculation, system () always exhibits one disease-free equilibrium
P = (S , ,S , ) for all parameters, where

S =
�a +�a +�μ

μμ +μa +μa
, S =

�a +�a +�μ

μμ +μa +μa
.

Applying the next generation matrix approach developed in [] gives rise to the follow-
ing formulas:

F =

[
βS 
 βS

]
=:

[
F 
 F

]
,

and

V =

[
μ + d + γ 

 μ + d + γ

]
=:

[
V 
 V

]
.

Therefore, the basic reproduction number is defined as

R = ρ
(
FV–) =max

{
ρ
(
FV–


)
,ρ

(
FV–


)}

= max{R,R} =max

{
βS

μ + d + γ
,

βS
μ + d + γ

}
,
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where ρ(M) denotes for the spectral radius of the matrix M, R and R correspond to
the basic reproduction numbers of the first and the second patch when there is no dis-
persal between two patches, respectively. The proof process of [], Theorem  implies the
following statements.

Lemma . There hold
() LetM = F –V and s(M) be the maximum real part of all the eigenvalues of the

matrixM. Then s(M) <  if and only if R < , and s(M) >  if and only if R > ;
() LetM = F –V and s(M) be the maximum real part of all the eigenvalues of the

matrixM. Then s(M) <  if and only if R < , and s(M) >  if and only if R > .

Furthermore, if R >  and R < , there exists a nontrivial boundary equilibrium P* =
(S* , I* ,S* , ), where

S* =
μ + d + γ

β
, S* =

� + aS*
μ + a

,

I* =
(μμ +μa +μa)S* (R – )

(μ + a)(μ + d + γ)
.

If R >  and R < , there exists another nontrivial boundary equilibrium P* = (S* , ,
S* , I* ), where

S* =
� + aS*
μ + a

, S* =
μ + d + γ

β
,

I* =
(μμ +μa +μa)S* (R – )

(μ + a)(μ + d + γ)
.

IfR > ,R > , S* > S* , and S* > S* , system () admits exactly one endemic equilibrium
P** = (S** , I** ,S** , I** ), where

S** = S* , I** =
S* – S**

(μ + a)βS**
, S** = S* , I** =

S* – S**
(μ + a)βS**

.

4 Threshold dynamics
In this section, the stability of equilibria is to be formulated. First of all, the global stability
of the disease-free equilibrium P is to be discussed. There holds the following result.

Theorem . If the basic reproduction number R is less than one, the disease-free equi-
librium P is globally asymptotically stable; while if the basic reproduction number R is
greater than one, the disease-free equilibrium P is unstable.

Proof If R < , [], Theorem , yields that P is locally asymptotically stable. Thus, it is
sufficient to prove the global attractivity of P when R < . The first and third equations
of system () implies

dS
dt

≤ � – (μ + a)S + aS,

dS
dt

≤ � – (μ + a)S + aS.
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It is easy to see the following linear system:

dŜ
dt

= � – (μ + a)Ŝ + aŜ,

dŜ
dt

= � – (μ + a)Ŝ + aŜ,

()

has a positive equilibrium Ŝ = (S ,S) and Ŝ is globally asymptotically stable for sys-
tem () in R


+. Consequently, the comparison principle of cooperative systems [], The-

orem B., yields that for any ε > , Si(t) < Si + ε (i = , ) is satisfied, for sufficiently large t.
Thus, if t is sufficiently large, the second and fourth equations of system () admit

dI
dt

< βI
(
S + ε

)
– (μ + d + γ)I,

dI
dt

< βI
(
S + ε

)
– (μ + d + γ)I.

Thus, it suffices to prove the following system:

dĨ
dt

=
(
βS – (μ + d + γ)

)
Ĩ + εβ Ĩ,

dĨ
dt

=
(
βS – (μ + d + γ)

)
Ĩ + εβ Ĩ,

()

tends to the zero solution as t goes to infinity. Let M̄ = β, and M̄ = β. R <  implies
R <  and R < . Lemma . implies s(M) <  and s(M) < . By the continuity of
s(M + εM̄) and s(M + εM̄) in ε, ε can be chosen small enough so that s(M + εM̄) < 
and s(M + εM̄) < . Consequently, the solutions of system () approach to zero with t
going to infinity. The comparison principle of cooperative systems [], Theorem B., im-
plies I(t)→ and I(t)→ as t→∞. Therefore, the theory of asymptotically autonomous
systems [], Theorem ., shows that lim

t→∞Si(t) = Si (i = , ).
In the case of R > , [], Theorem , admits that P is unstable, which finishes the the-

orem. �

Next, the two results regarding the stability of the boundary equilibria are given by ap-
plying the so-called Routh-Hurwitz criterion.

Theorem . If R >  and R < , the boundary equilibrium P* is stable when S* < S* ;
while the boundary equilibrium P* is unstable when S* > S* .

Proof R >  and R <  imply that system () has a boundary equilibrium P*. The Jaco-
bianmatrix of the right-hand side of system () at the equilibrium P*, ordering coordinates
as (S,S, I, I), is given by

M(P*) =

⎡
⎢⎢⎢⎣
–βI* – (μ + a) a –βS* 

a –(μ + a)  –βS*
βI*   
   b̂

⎤
⎥⎥⎥⎦ ,
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where b̂ = βS* – (μ + d + γ) = β(S* – S* ). Therefore, the eigenvalues are: b̂ and the
solutions of the following cubic equation:

λ + bλ + bλ + b = , ()

where

b = (μ + a) + (μ + a) + βI* > ,

b = μμ +μa +μβI* +μa + aβI* + βS* βI* > ,

b = βS* βI* (μ + a) > .

Since

bb – b =
(
μ + a + βI*

)
b

+ (μ + a)
(
μμ +μa +μβI* +μa + aβI*

)
> ,

Routh-Hurwitz criterion implies all the roots of Eq. () have a negative real part.
Therefore, S* < S* yields the boundary equilibrium P* is locally stable; while S* > S*

demonstrates the boundary equilibrium P* is unstable. �

Theorem . If R >  and R < , the boundary equilibrium P* is stable when S* < S* ;
while the boundary equilibrium P* is unstable when S* > S* .

Proof Because R >  and R < , there exists another boundary equilibrium P* for sys-
tem (). The Jacobian matrix of the right-hand side of system () at the equilibrium P* is
denoted by

M(P*) =

⎡
⎢⎢⎢⎣
–(μ + a) –βS* a 

 ĉ  
a  –βI* – (μ + a) –βS*
  βI* 

⎤
⎥⎥⎥⎦ ,

where ĉ = βS* – (μ + d + γ) = β(S* – S* ).
It is easy to see that all the eigenvalues of the matrix M(P*) are: ĉ and the roots of the

following equation:

λ + cλ + cλ + c = , ()

where

c = (μ + a) + (μ + a) + βI* > ,

c = μμ +μa +μβI* +μa + aβI* + βS* βI* > ,

c = (μ + a)βS* βI* > .

http://www.advancesindifferenceequations.com/content/2012/1/131
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Because

cc – c =
(
μ + a + βI*

)
c

+ (μ + a)
(
μμ +μa +μβI* +μa + aβI*

)
> ,

by using the Routh-Hurwitz criterion, it then follows that the real part of all the solutions
of () is negative.
Furthermore, it is easier to see that if S* < S* , the boundary equilibrium P* is locally

stable; while if S* > S* , the boundary equilibrium P* is unstable. �

Now we are in the position to discuss the global stability of the endemic equilibrium.

Theorem . If the following statements hold:
(i) R > ;
(ii) R > ;
(iii) S* > S* ;
(iv) S* > S* ;

then the endemic equilibrium P** is globally asymptotically stable.

Proof Conditions (i)-(iv) imply system () exists the endemic equilibrium P**. Next, we
study the stability of the endemic equilibrium P** by using the Lyapunov approach.
The following equations are derived at the endemic equilibrium P**:

� = βS** I
**
 +μS** – aS** + aS** ,

μ + d + γ = βS** ,

� = βS** I
**
 +μS** – aS** + aS** ,

μ + d + γ = βS** .

()

Construct the following Lyapunov function:

U = S – S** lnS + I – I** ln I +A
(
S – S** lnS

)
+A

(
I – I** ln I

)
, ()

where A = aS**
aS**

.
Differentiating the function V along with the solutions of system () with respect to

time t gives

dU
dt

∣∣∣∣
()

=
(
 –

S**
S

)
dS
dt

+
(
 –

I**
I

)
dI
dt

+A
(
 –

S**
S

)
dS
dt

+A
(
 –

I**
I

)
dI
dt

.

Combining system () admits

dU
dt

∣∣∣∣
()

=
(
 –

S**
S

)
(� – βSI –μS + aS – aS)

+
(
 –

I**
I

)[
βSI – (μ + d + γ)I

]

http://www.advancesindifferenceequations.com/content/2012/1/131
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+A
(
 –

S**
S

)
(� – βSI –μS + aS – aS)

+A
(
 –

I**
I

)[
βSI – (μ + d + γ)I

]
.

Applying Eq. () shows

dU
dt

∣∣∣∣
()

=
(
 –

S**
S

)(
βS** I

**
 +μS** – aS** + aS** – βSI –μS + aS – aS

)

+A
(
 –

S**
S

)(
βS** I

**
 +μS** – aS** + aS**

– βSI –μS + aS – aS
)

+
(
 –

I**
I

)(
βSI – βS** I

)
+A

(
 –

I**
I

)(
βSI – βS** I

)
.

Rearranging the above equation, it then follows

dU
dt

∣∣∣∣
()

= μS**

(
 –

S**
S

)(
 –

S
S**

)
+ βS** I

**


(
 –

S**
S

)(
 –

SI
S** I**

)

+ aS**

(
 –

S**
S

)(
S
S**

– 
)
+ aS**

(
 –

S**
S

)(
 –

S
S**

)

+ βS** I
**


(
 –

I**
I

)(
SI
S** I**

–
I
I**

)
+AμS**

(
 –

S**
S

)(
 –

S
S**

)

+AβS** I
**


(
 –

S**
S

)(
 –

SI
S** I**

)
+AaS**

(
 –

S**
S

)(
S
S**

– 
)

+AaS**

(
 –

S**
S

)(
 –

S
S**

)
+AβS** I

**


(
 –

I**
I

)(
SI
S** I**

–
I
I**

)
.

By denoting x := S
S**
, y := I

I**
, z := S

S**
, and w := I

I**
, the above formula can be rewritten as

dU
dt

∣∣∣∣
()

= μS**

(
 –


x

)
( – x) + βS** I

**


(
 –


x

)
( – xy) + aS**

(
 –


x

)
(z – )

+ aS**

(
 –


x

)
( – x) + βS** I

**


(
 –


y

)
(xy – y) +AμS**

(
 –


z

)
( – z)

+AβS** I
**


(
 –


z

)
( – zw) +AaS**

(
 –


z

)
(x – )

+AaS**

(
 –


z

)
( – z) +AβS** I

**


(
 –


w

)
(zw –w)

=
(
μS** + aS**

)(
 – x –


x

)
+ βS** I

**


(
 – x –


x

)

+A
(
μS** + aS**

)(
 – z –


z

)
+AβS** I

**


(
 – z –


z

)

+ aS**

(
z –  –

z
x
+

x

)
+AaS**

(
x –  –

x
z
+

z

)
.
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Figure 2 Bifurcation diagram for system (1). In region I, the disease-free equilibrium P0 is globally
asymptotically stable; in region II, the boundary equilibrium P1* is locally stable; in region III, the boundary
equilibrium P2* is locally stable; and in region IV, the endemic equilibrium P** is globally asymptotically stable.
In the regions V and VI, the two boundary equilibria are unstable.

Because of A = aS**
aS**

, the above equation can be rewritten down as

dU
dt

∣∣∣∣
()

=
(
μS** + aS** + βS** I

**

)(

 – x –

x

)

+A
(
μS** + aS** + βS** I

**

)(

 – z –

z

)

+ aS**

[(
z +


z
– 

)
+

(
 –

z
x
–
x
z

)
+

(
x +


x
– 

)]

=
(
μS** + aS** + βS** I

**
 – aS**

)(
 – x –


x

)
+ aS**

(
 –

z
x
–
x
z

)

+A
(
μS** + aS** + βS** I

**
 – aS**

)(
 – z –


z

)
.

Using Eqs. () gives rise to

dU
dt

∣∣∣∣
()

= �

(
 – x –


x

)
+A�

(
 – z –


z

)
+ aS**

(
 –

z
x
–
x
z

)
.

The inequality of arithmetic-geometric mean implies dU/dt|() ≤ . The equality holds if
and only if x = z = . That is, when S = S** and S = S** , dV /dt|() = . By using the LaSalle
invariant principle [], the endemic equilibrium P** is globally asymptotically stable. �

Theorems .-. can be summarized in Figure . The basic reproduction numbers R

and R are two important threshold parameters. It shows that if both R and R are less
than one, the disease-free equilibrium P is globally asymptotically stable and the disease
eventually dies out (the region I in Figure ); if R is greater than one, R is less than
one, and S* < S* , the boundary equilibrium P* is locally stable and the disease persists
in patch one but can be eradicated in patch two (the region II in Figure ); if R is greater
than one, R is less than one, and S* < S* , the boundary equilibrium P* is locally stable
and the disease persists in patch two but can be eradicated in patch one (the region III in
Figure ); and if R > , R > , S* > S* , and S* > S* , there is exactly one endemic equi-

http://www.advancesindifferenceequations.com/content/2012/1/131
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librium P**, which is globally asymptotically stable by applying Lyapunov method, and the
disease persists in two patches (the region IV in Figure ). In addition, the two boundary
equilibria are unstable in the regions V and VI.

5 Conclusions and discussions
In this paper, an SIR infectious diseases model with susceptibles dispersal between two
disjoint patches has been proposed and analyzed to investigate the impact of susceptibles
dispersal on diseases transmission in the whole population. The existence of equilibria is
obtained and the basic reproduction numbers R, R, and R are defined. It is indicated
that R and R are two important threshold parameters to determine the long-term be-
havior of the solutions of system (). The disease-free equilibrium is globally asymptot-
ically stable and the disease ultimately dies out by applying the comparison principle of
cooperative systems if the basic reproduction numbers both R and R are below unity.
The disease persists in patch one and can be eradicated in patch two if R is above one, R

is below one, and S* < S* . The disease persists in patch two and can be eradicated in patch
one if R is above one, R is below one, and S* < S* .While the disease uniformly persists
in the whole population and the endemic equilibrium is globally asymptotically stable by
using the Lyapunov approach if the conditions R > , R > , S* > S* , and S* > S* are
satisfied.
System () almost shares the same qualitative behavior as the simple SIR epidemicmodel

if dispersal can not be considered in the population. The patchy models need not be con-
sidered if only susceptibles disperse among patches. Furthermore, all the patches can be
thought of as just one patch and susceptibles dispersal has no influence on disease trans-
mission.
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