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Abstract

Background: The genetic architecture responsible for chronic kidney disease (CKD) remains incompletely
described. The Oligosyndactyly (Os) mouse models focal and segmental glomerulosclerosis (FSGS), which is
associated with reduced nephron number caused by the Os mutation. The Os mutation leads to FSGS in multiple
strains including the ROP-Os/+. However, on the C57Bl/6J background the mutation does not cause FSGS, although
nephron number in these mice are equivalent to those in ROP-Os/+ mice. We exploited this phenotypic variation
to identify genes that potentially contribute to glomerulosclerosis.

Methods: To identify such novel genes, which regulate susceptibility or resistance to renal disease progression, we
generated and compared the renal transcriptomes using serial analysis of gene expression (SAGE) from the
sclerosis-prone ROP-Os/+ and sclerosis resistant C57-Os/+ mouse kidneys. We confirmed the validity of the
differential gene expression using multiple approaches. We also used an Ingenuity Pathway Analysis engine to
assemble differentially regulated molecular networks. Cell culture techniques were employed to confirm functional
relevance of selected genes.

Results: A comparative analysis of the kidney transcriptomes revealed multiple genes, with expression levels that
were statistically different. These novel, candidate, renal disease susceptibility/resistance genes included neuropilin2
(Nrp2), glutathione-S-transferase theta (Gstt1) and itchy (Itch). Of 34 genes with the most robust statistical difference
in expression levels between ROP-Os/+ and C57-Os/+ mice, 13 and 3 transcripts localized to glomerular and
tubulointerstitial compartments, respectively, from micro-dissected human FSGS biopsies. Network analysis of all
significantly differentially expressed genes identified 13 connectivity networks. The most highly scored network
highlighted the roles for oxidative stress and mitochondrial dysfunction pathways. Functional analyses of these
networks provided evidence for activation of transforming growth factor beta (TGFβ) signaling in ROP-Os/+ kidneys
despite similar expression of the TGFβ ligand between the tested strains.

Conclusions: These data demonstrate the complex dysregulation of normal cellular functions in this animal model
of FSGS and suggest that therapies directed at multiple levels will be needed to effectively treat human kidney
diseases.
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Background
Focal segmental glomerulosclerosis (FSGS) is a leading
cause of nephrotic syndrome in adults and is particularly
prevalent in the African American population [1-3]. The
incidence of FSGS is increasing in young children [4,5].
Immunosuppressive therapies are the mainstay of treat-
ment, though most patients with FSGS are resistant to
treatment [6]. Unfortunately, a large proportion of FSGS
patients, who do not respond to treatment, frequently
continue to lose kidney function and progress to end
stage renal disease (ESRD), requiring dialysis or kidney
transplantation. Moreover, recurrent FSGS is a leading
cause of proteinuria and allograft loss after kidney trans-
plantation [7-9].
In recent years, genes have been linked or associated

with both familial and sporadic FSGS [10-16], which
supports the premise that genetic factors play a major
pathophysiologic role [17]. To identify novel, candidate
FSGS susceptibility genes, we used Serial Analysis of
Gene Expression (SAGE) to characterize the kidney
transcriptome in the Oligosyndactyly (Os) mouse, a gen-
etic model of oligomeganephronia and progressive FSGS.
Homozygous Os/Os mice die in utero at the 64-cells stage
of development [18], but heterozygote Os/+ mice have a
skeletal phenotype mainly in the form of fused digits (oli-
gosyndactyly), and a renal phenotype in the form of 50%
reduction in nephron number [19,20]. The ROP/GnLe
strain (ROP-Os/+), was established at the Jackson Lab and
has been maintained by sibling mating. As the ROP-Os/+
mice age, they develop a histopathologic lesion similar to
human FSGS. The Os mutation causes on average 50%
reduction of nephron number, an effect which is inde-
pendent of genetic background. The ROP-Os/+ mice
model progressive kidney disease, as demonstrated by
glomerulosclerosis, proteinuria, and increase in creatin-
ine which reflects a diminished glomerular filtration
rate ([21], and El-Meanawy, unpublished data). The Os
mutation produces a similar renal phenotype when bred
on other genetic backgrounds, such as FvB and C3H
[20,22-24]. However, a congenic mouse strain, the
C57Bl/6J-Os/+ (C57-Os/+), which has the Os mutation
on a C57Bl/6J background, develops oligosyndactyly
and oligomeganephronia but not FSGS [22], thus pro-
viding an ideal model for transcriptome comparison
with the ROP-Os/+ mouse.
SAGE captures an unbiased, quantitative snapshot of

gene expression patterns [25-27]. SAGE libraries are
comprised of cDNA sequence tags derived from the 3’
end of the cDNA pool, and a count of SAGE-derived
cDNA tags provides a quantitative representation of the
corresponding mRNAs in the sample. We previously
used SAGE to generate a tag library from normal mouse
kidney, which yielded a potassium channel not known to
be expressed in the kidney [28,29]. In the current report,
we exploited phenotypic differences between the
sclerosis-prone ROP-Os/+ and the sclerosis-resistant
C57-Os/+ mice to discover candidate FSGS susceptibility
and/or protective genes by comparing the kidney tran-
scriptomes between the two mouse strains using SAGE.
To identify pathophysiologically relevant genes, we spe-
cifically examined transcriptome profiles in young mice
after completion of nephrogenesis, but prior to the de-
velopment of significant FSGS. Statistical analysis of the
SAGE libraries from ROP-Os/+ and C57-Os/+ mice kid-
neys, followed by assembly of differentially expressed
transcripts into networks, allowed identification of genes
which potentially play a role in the pathogenesis of glo-
merulosclerosis in the Os mouse model.

Methods
Animals and tissue collection
Animal experiments were conducted in accordance with
the National Institute of Health guidelines and approved
by the Institutional Animal Care and Utilization com-
mittee at Case Western Reserve University and the Med-
ical College of Wisconsin. ROP-Os/+ and C57-Os/+
mice were purchased from Jackson Laboratories (Bar
Harbor, ME) and housed in the animal facilities at the
above institutions. We phenotyped mice at 6,10,12, and
16 weeks by comparing urine protein to creatinine ratio,
glomerular surface area, and sclerosis score in Periodic
Acid Schiff (PAS) stained sections as previously
described [30]. Glomerular number was determined by
the maceration method as previously described [31]. The
kidneys were collected for SAGE library construction at
6 weeks of age to avoid identification of developmental
genes (because mouse nephrogenesis continues up to
4 weeks of age), and prior to the onset of significant
renal disease. After sacrifice, the kidneys were promptly
removed and the renal medulla was dissected away and
discarded. A small portion of each kidney was fixed in
formaldehyde, sectioned, and stained with PAS for histo-
pathological analysis.

Generation of SAGE libraries
Poly(A)+ RNA was isolated from renal cortices of ROP-Os/+
and C57Bl/6-Os/+ mice using ion-exchange column kits
from Qiagen (Valencia, CA). The quality of the isolated
RNA was analyzed by agarose gel electrophoresis and RNA
concentration was determined by UV spectrophotometry
[32]. RNA from three mice per strain was pooled and cDNA
was synthesized from a starting amount of 5 μg poly(A)+

RNA using cDNA synthesis kit, according to manufacturer
recommendation (Invitrogen). A fraction of first and second
strand reactions was labeled with [32P] to evaluate synthesis
efficiency. cDNA quality was assessed using agarose gel elec-
trophoresis and by measuring radioisotope incorporation.
SAGE steps were performed as described previously [29]
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using the restriction endonuclease Nla-III as the anchoring
enzyme [29]. We used SAGE software to analyze the SAGE
produced concatemer sequences, which identifies the cDNA
tags flanked by Nla-III restriction enzyme recognition se-
quence. In addition, the software identifies and excludes du-
plicate ditags, which are likely to be PCR amplification
artifacts. Confirmation of SAGE tag gene identity, as well as
relative expression levels were performed using northern
blots, RNase protection assay or real-time RT-PCR. The
confirmatory methods and data are in a Additional file 1.

Statistical analysis of SAGE tags
We applied several statistical models, which employ Bayes-
ian methods or Poisson distributions, to identify tags that
were significantly different between the ROP-Os/+ and
C57-Os/+ kidney libraries [33-36]. The method allows
comparison of unequal libraries based on the assumption
that tag counts are binomially distributed. Regardless
of the method used to identify statistically significant differ-
entially expressed tags, rank orders and p-values were
comparable.

Annotation of SAGE tags
Accurate annotation of SAGE tag libraries requires a
combination of methods. Accordingly, we used multiple
approaches to annotate SAGE tags including the online
engine “SAGE genie” (http://cgap.nci.nih.gov/SAGE/
mSEM), and manual nucleotide blast (blastn) searches.
We also constructed genome-wide mouse cDNA data
sets from NCBI-Ref-Seq and Riken-Fantom collections
and designed a software program, which identifies and
catalogues the 3’-most “CATG” sequence string (Nla-III
recognition sequence) with the 3’ flanking 10 nucleo-
tides. These tag-to-gene database tables were used to an-
notate the SAGE tags. Ambiguous tags, which mapped
to multiple genes, and single copy tags were excluded.
Tags were assigned gene identifiers if the tag mapped to
a sequence that contained the most 3’-CATG sequence.
Sequence databases were searched in the following
priority: 1) our own libraries containing tags extracted
from Ref-Seq and Fantom cDNA databases; 2) the
mouse mSAGE expression matrix using SAGE Genie; or
3) the mouse mRNA (non-redundant [nr] and expressed
sequence tags [dbest]) databases using blastn.

Assembly of transcriptome networks and pathways
We utilized the Ingenuity Pathway Analysis (IPA) system
(Ingenuity Systems, Mountain View, CA, USA, www.
ingenuity.com) to visualize the SAGE data as biological
networks. To perform a “connectivity” analysis, a table
containing selected gene identifiers, defined as Focus
Genes, and their corresponding relative mRNA expres-
sion ratios between ROP-Os/+ and C57-Os/+ kidneys
was uploaded into the application. Criteria for selection
as Focus Genes included: 1) a greater than 2-fold differ-
ence in expression levels between the ROP-Os/+ and
C57-Os/+ kidney libraries; and/or 2) a p-value < 0.05 for
differential expression after correction for multiple
testing. Three hundred and nine genes met these
criteria, were mapped to their corresponding gene
objects in the Ingenuity Pathway Knowledge Base and
subsequently overlaid onto a global molecular network
developed from information contained in Ingenuity
Pathways Knowledge Base. Networks were then algorith-
mically generated based on the connectivity of the
eligible genes. Twenty-eight Focus Genes failed to gener-
ate a shared molecular network or pathway. Function of
the connectivity networks was inferred from the func-
tions of the genes in the network as annotated in the
Knowledge Base.
An additional set of networks was generated using the

functional information in the Ingenuity Pathways Know-
ledge Base (“functional” analysis). Genes from the SAGE
kidney libraries, which met the cutoffs defined above
and that were associated with biological functions in the
Ingenuity Pathways Knowledge Base, were considered
for this analysis. Right-tailed Fisher’s exact test was used
to calculate a p-value reflecting the probability that each
biological function assigned to that network is due to
chance alone. Networks were ranked according to the
combinatorial p-value of differentially expressed genes
represented in the network.
TGFβ Western blot analysis
Western blot of kidney protein extracts were performed
as previously described [37] using TGFβ specific anti-
body. Equal loading was verified by stripping the mem-
brane and probing for actin expression.
TGFβ assay
TGFβ activity was determined using mink lung epithelial
cells expressing the firefly luciferase reporter gene under
the control of the minimal, TGFβ-responsive, plasmino-
gen activator inhibitor-1 (PAI-1) promoter [38] (gift
from Dr. Daniel Rifkin, New York University). The cul-
ture conditions were as previously described [39]. The
effect of Itch overexpression on TGFβ was determined
from two nearly confluent six-well tissue culture plates,
which were transiently transfected with either mouse
Itch cDNA which was cloned in pCDNA3.1 or empty
vector control, using lipofectamine (Invitrogen) accord-
ing to manufacturer recommendations. Twenty-four
hours after transfection, TGFβ (R&D system) was added
to the culture media at 200 ng/ml. The cultures were
maintained for 8 h and luciferase activity was assayed
using a Promega kit according to manufacturer instruc-
tions. Relative luminescence units were determined

http://cgap.nci.nih.gov/SAGE/mSEM
http://cgap.nci.nih.gov/SAGE/mSEM
http://www.ingenuity.com
http://www.ingenuity.com


Table 1 SAGE tag counts

C57-Os/+ ROP-Os/+

Total tags 26599 22989

Unique tags 11014 9580

The statistical analysis algorithm normalizes the tag representation in each
library, based on the total number of tags per library. Duplicate ditags and
tags that contained linker sequence were excluded from the analysis.
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compared to control conditions (empty pCDNA3.1 plas-
mid transfected cells).

Comparing differentially expressed Os mice genes to
human FSGS expression data
We compared 40 SAGE-derived transcripts with the
most divergent expression levels between ROP-Os/+
versus C57-Os/+ kidneys, with the human microarray
expression data, comprised of samples obtained from
micro-dissected human kidney biopsies from patients
with FSGS [40]. The fold change and significance
(assessed by q-value, corrected for multiple testing) was
calculated by the Significance Analysis of Microarrays
method (SAM) [41] using the MeV software from the
Institute of Genome Research (www.jcvi.org).

Identification of glomerular enriched genes in the Os
model of FSGS
To identify genes which are differentially expressed in
our model system, and are known to be expressed in the
glomerulus, we searched for common genes between the
glombase [42] gene list, SAGE glomerular tags [43] and
annotated transcripts with the most significant differen-
tial expression between ROP-Os/+ versus C57-Os/+ kid-
neys. We then used Pubmed and Ingenuity pathway
analysis to mine the literature for possible links between
these genes and nephropathy.

Results
Mouse phenotype
We found that the urine protein to creatinine ratio was
significantly higher in ROP-Os/+ mice compared to both
C57-Os/+ and ROP-+/+ at all time points. The protein-
uria in ROP-Os/+ mice reached a peak at 12 weeks. The
glomerular surface area at 6 weeks was similar between
the ROP-Os/+ and C57-Os/+ (5646 ± 286 and 5708 ±
460 μm2, respectively) and significantly larger than
glomerular surface area of ROP-+/+ (3984 ± 456 μm2).
However, by 16 weeks of age, the surface area had
increased significantly in the ROP-Os/+ compared to
C57-Os/+glomeruli (8990 ± 628 vs 6458 ± 1259 μm2).
Furthermore, the ROP-Os/+ mice showed progressive
increase in sclerosis score over time (Additional file 1).

Os/+ kidney SAGE libraries
We constructed SAGE libraries from renal cortical RNA
extracted from ROP-Os/+ and C57-Os/+ kidneys at
6 weeks of age (Table 1), a time point which permitted
completion of differentiation, but prior to observation of
significant glomerulosclerosis. The combined ROP-Os/+
and C57-Os/+ kidney SAGE libraries contained 49,588
cDNA sequence tags, of which 20,594 were unique. We
did not observe “loss of AT-rich tags” bias [44] and the
libraries demonstrated 54.32% A+T and 45.68% C+G
nucleotides. Table 2 shows the 50 most statistically sig-
nificant, differentially expressed and annotated tags. We
compared the annotated genes in our SAGE libraries to
publically available wild type mouse Nla-III-anchored
SAGE libraries. Of the genes not previously described in
SAGE kidney libraries, we observed significant expres-
sion of arginine-glutamic acid dipeptide (RE) repeats
(Rere or Atrophin-2), insulin-like growth factor binding
protein (Igfbp7), aminolevulinic acid synthase (Alas1),
glutathione S-transferase, theta 1 (Gstt1), and propionyl
coenzyme A carboxylase (Pccb). Interestingly, all of these
transcripts were induced to a detectable level in ROP-Os/+,
suggesting that deep SAGE coverage can unmask changes
in kidney gene expression patterns induced in a disease
model. To identify differentially expressed glomerular
genes, we searched for common genes between glombase
[42], SAGE glomerular tags [43] and 220 annotated
transcripts with the most significant differential expression
between ROP-Os/+ versus C57-Os/+ kidneys. This com-
parison yielded 67 genes, of which 53 were upregulated,
and only 14 were downregulated in the ROP-Os/+ mouse
(Table 3). We confirmed a reduction in glomerular number
in 6 week old ROP-Os/+ mice (data not shown), suggesting
that upregulated gene expression is not due to altered
glomerular mass.

Assembly of differentially expressed networks and
pathways
Using the Ingenuity Pathway Analysis software to perform
a connectivity analysis (see Methods), we identified multiple
molecular networks of genes differentially expressed in
ROP-Os/+ and C57-Os/+ kidneys. These interactions are
developed from published literature describing either phys-
ical or functional interactions between the molecules. The
13 most significant gene networks, based on connectivity
and their imputed molecular and cellular functions, are
shown in Table 4; corresponding diagrams of the actual
connectivity networks are shown in Figure 1 and the
supplemental data (Additional file 1).
Because TGFβ has been implicated in the pathogenesis

of glomerulosclerosis, we next chose to overlay the ca-
nonical TGFβ signaling network onto our connectivity
networks. TGFβ1 signaling pathway target genes, Hnf4a,
Itch, and Map3K7ip1, were upregulated in the ROP-Os/+
kidneys, in agreement with published microarray analysis
of laser-captured/microdissected human glomeruli from

http://www.jcvi.org


Table 2 Top 50 differentially expressed tags between ROP-Os/+ and C57-Os/+kidneys

TAG ROP-Os C57-Os P-Value Gene Symbol Gene Name

CTATCCTCTC 873 613 1.47E-10 Gpx3 Glutathione peroxidase 3

ATTAACTTGG 54 14 75E-06 Glud1 Glutamate dehydrogenase 1

TGGTTGCTGG 8 42 2.53E-05 Nrp2b Neuropilin2b

TCAAAAAAAA 15 0 0.000115878 Pea15 Phosphoprotein enriched in astrocytes 15

ACAAAAAAAA 20 2 0.000138392 Pde6c Phosphodiesterase 6C, cGMP specific, cone, alpha prime

AACTTGATTA 14 0 0.000237608 Ndufa12 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12

GTTCACTTTC 27 6 0.000390333 Atp5e ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit

CTGCTGTAAT 15 2 0.000577048 Aspm Asp (abnormal spindle)-like, microcephaly associated (Drosophila)

TGTTGTGTTT 0 15 0.000858214 Lman2l Lectin, mannose-binding 2-like

GTGAGCCCAT 0 14 0.001280824 Hsp90ab1 Heat shock protein 90 kDa alpha (cytosolic), class B member 1

GCCACGCCCC 24 6 0.001296626 Hpd 4-hydroxyphenylpyruvic acid dioxygenase

ATTCTCCAGT 14 39 0.0017137 Rpl23 Ribosomal protein L32

GTCCTGAGAG 9 0 0.002106134 Vamp8 Vesicle-associated membrane protein 8

ATAAAAAAAA 9 0 0.002106134 Bag4 BCL2-associated athanogene 4

ATTCTAACAT 15 2 0.002151531 Acadm Acyl-Coenzyme A dehydrogenase, medium chain

TGGATGCCTT 1 16 0.002228166 Adh1 Alcohol dehydrogenase

GATTCCGTGA 1 4 0.002494576 Rpl37 Ribosomal protein L37

GCTTTGAATG 19 4 0.002494576 Atpif1 ATPase inhibitory factor 1

TGTCATCTAG 6 30 0.000282 Rpsa Ribosomal protein SA (laminin receptor like 1)

TGCTGCTCCC 0 12 0.00287027 Gyk Glycerol kinase

GCTGGCCTCC 1 15 0.003314916 Rhoq Ras homolog gene family, member Q

GCCAAGTGGA 22 6 0.0041826 Eef2 Eukaryotic translation elongation factor 2

GTTTGTAAAA 22 6 0.0041826 Acsm3 Acyl-CoA synthetase medium-chain family member 3

AGATAACACA 8 0 0.004417209 Rere (atrophin-2) Arginine glutamic acid dipeptide (RE) repeats

AAGACCTATG 39 17 0.004902036 Dbi Diazepam binding inhibitor

ATCCGATTCC 11 31 0.005368014 Miox myo-inositol oxygenase

GTCAATGACG 1 13 0.007371123 Aqp1 Aquaporin1

TCAGGCTGCC 180 130 0.008291421 Fth1 Ferritin heavy chain1

TTGTTAGTGC 36 66 0.008331722 Mdh1 Malate dehydrogenase 1

CTAGTCTTTG 22 7 0.008750438 Rps29 Ribosomal protein S29

CTGCTGTGGA 22 7 0.008750438 Hmgcs2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2

AGAGACAAGG 46 23 0.008962126 Ndrg1 N-myc downstream regulated gene 1

GATCAGAAAA 7 0 0.009358827 Prdm16 PR domain containing 16

GTGTGATACA 7 0 0.009358827 Pccb propionyl Coenzyme A carboxylase, beta polypeptide

CAGTTGGTTC 7 0 0.009358827 Mm.399814 Transcribed locus

CAGTAAAAAA 7 0 0.009358827 Map3k7ip1 Mitogen-activated protein kinase kinasekinase 7interacting protein 1

AACTTTTAAA 7 0 0.009358827 Hp1bp3 Heterochromatin protein 1, binding protein 3

GCTGTATTCA 7 0 0.009358827 Folh1 Folate hydrolase

AATAAAAACT 7 0 0.009358827 FBXL12 F-box and leucine-rich repeat protein 12

TTTGTGACTG 7 0 0.009358827 Ctbp1 C-terminal binding protein 1

AGATCTGCCC 7 0 0.009358827 Atp6v1g1 ATPase, H+ transporting, lysosomal V1 subunit G1

CTGCGGGTCT 7 0 0.009358827 Angptl7 Angiopoietin-like 7

GACCGTCTCA 0 9 0.0098287 Slc4a4 Solute carrier family 4 (anion exchanger), member 4

TTGGACTGAG 0 9 0.0098287 Gabarapl2 Gamma-aminobutyric acid (GABA-A) receptorassociated protein-like 2
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Table 2 Top 50 differentially expressed tags between ROP-Os/+ and C57-Os/+kidneys (Continued)

TGATTTTGAA 9 1 0.01011074 Por P450 (cytochrome) oxidoreductase

GAGACTAGCA 3 15 0.010247643 Tspan3 Tetraspanin 3

GTCGTGCCAT 14 33 0.010481768 Nudt19 Nudix (nucleoside diphosphate linked moiety X)-typemotif 19

TGAGGGGAGC 1 12 0.011021395 Flrt2 Fibronectin leucine rich transmembraneprotein 2

TGCCCCCTCC 1 12 0.011021395 Cgnl1 Cingulin-like 1

TAGCTTTAAA 74 45 0.011671747 Igfbp7 Insulin-like growth factor binding protein 7

Mitochondrial, unknown, and ambiguous tags (those that match multiple genes) were excluded from the analysis.
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FSGS biopsies [45]. Overlaying TGFβ1-regulated signaling
pathways on to the connectivity networks of differentially
expressed genes demonstrated that directional changes in
gene expression patterns (up or down) in multiple
networks (1, 2, 6, 8, and 13) could be a result of TGFβ1
signaling. Figure 2 shows molecular network 1 (Table 4)
with the TGFβ signature identified.
We also performed a functional analysis using the In-

genuity Pathway Analysis system (see Methods). These
data demonstrated functional clustering of differentially
expressed genes within known canonical pathways, and
highlighted mitochondrial dysfunction and oxidative
stress responses as mechanisms for disease (Figure 2).
Interestingly, a Nrf2-dependent stress response, which is
the target for a new class of diabetic nephropathy drug
[46], appears to also be activated in ROP-Os/+ kidneys.
Surprisingly, TGFβ Tag was not differentially expressed

between the sclerotic and non-sclerotic kidneys. Because
the pathway analyses identified a prominent role for TGFβ
in ROP-Os/+−dependent FSGS pathogenesis, we there fore
compared TGFβ proteinbetween ROP-Os/+ and C57-Os/+
kidneys using Western blot analysis, and found no signifi-
cant difference between the two strains (Figure 3).

Itch overexpression increases sensitivity to TGFβ invitro
To test the involvement of TGFβ-related candidate genes
in glomerular fibrogenesis, we evaluated the effect of Itch,
which was upregulated in ROP-Os/+ kidneys, on TGFβ
signaling. This gene was selected because Itch, an E3
ubiquitin ligase, amplifies TGFβ signaling by facilitating
the interaction between the TGFβ receptor and SMAD2
[47]. For these experiments we used mink lung epithelial
cells which express the firefly luciferase under the control
of minimal TGFβ-responsive PAI-1 promoter [38]. As
seen in Figure 4 cells transfected with Itch cDNA showed
higher luciferase activity in response to TGFβ, compared
to control cells transfected with empty vector, suggesting
that enhanced Itch expression may be relevant to the
ROP-Os/+ phenotype by stimulating TGFβ signaling.

Differentially expressed genes in murine FSGS are
similarly regulated in human FSGS
To determine if the comparative transcriptome analysis
illuminated changes in gene expression in human FSGS,
we compared the 40 most significant, differentially
expressed genes derived from the ROP-Os/+ vs. C57-Os/+
analysis, with microarray data from kidney biopsy samples
derived from patients with FSGS [48]. Of the 40 queried
genes, corresponding oligonucleotides from six (ACSM2A,
TSPAN33, ERRFI1, NDUFA12, TMEM27, and RHPN2)
were not spotted on the array chip. Of the remaining 34
genes, 17 were concordantly regulated in the human
glomerulus and ROP-Os/+ mouse kidney, and altered
mRNA expression in the human samples was statistically
significant for 13 of the 17 genes. Two of the 13 genes
were also concordantly regulated in the human tubuloin-
terstitium and ROP-Os/+ mouse kidney (Table 5). An add-
itional concordantly regulated gene, ID2, which encodes
inhibitor of DNA binding 2, localized exclusively to the
human tubulointerstitium.

Discussion
Focal and segmental glomerulosclerosis is the histo-
pathologic pattern of a spectrum of renal diseases which
start with the glomerulus. There exists the likelihood
that multiple insults converge on a common pathogenic
pathway. Monogenic forms of familial FSGS due to
mutations in TRPC6, α-actinin-4, podocin or APOL1
have been previously described [15,16,49]. To identify
novel, candidate FSGS susceptibility genes, we compared
SAGE-generated kidney transcriptomes from ROP-Os/+
and C57-Os/+mouse strains that are glomerulosclerosis-
susceptible and resistant, respectively. Both strains carry
the Os mutation which causes reduction in nephron
number. The quantitative decrease in nephron number
is similar between the two strains, however, the C57-Os/+
strain is protected against the development of renal disease
[22,50]. The glomerulosclerosis phenotype that is
associated with the Os-induced reduction in nephron
number has been shown in other strains, but it
appears the C57-BL/6 genetic background is unique
in its resistance to glomerulosclerosis [23,24]. The in-
crease in glomerular surface area in the ROP-Os/+
strain reflects a hyperfiltration physiology which appear
to be not as prominent in the C57-Os/+ strain. Compari-
son between the ROP-Os/+ and C57-Os/+ transcriptome
is therefore a useful approach to identify potential
nephropathy genes.



Table 3 Genes which are differentially expressed between
ROP-Os/+ and C57-Os/+ which have been shown to be
expressed in the glomerulus

Gene symbol ROP-Os C57-Os P-Value

Glud1 54 14 2.7461E-06

Pea15 15 0 0.000115878

Aspm 15 1 0.000577048

Hsp90ab1 0 14 0.001280824

Rpl23 14 39 0.0017137

Atpif1 19 4 0.002494576

Rpl37 19 4 0.002494576

Aqp1 1 13 0.007371123

Mdh1 36 66 0.008331722

Ndrg1 46 23 0.008962126

Atp6v1g1 7 0 0.009358827

Ctbp1 7 0 0.009358827

Nudt19 14 33 0.010481768

Cgnl1 1 12 0.011021395

Igfbp7 74 45 0.011671747

Cox6c 39 19 0.012221381

Cox4i1 26 10 0.012316032

Ddx5 27 11 0.013319653

Psap 53 30 0.018772506

Agps 5 0 0.020110086

Dpep1 5 0 0.020110086

Prdx6 5 0 0.020110086

Tmsb4x 5 0 0.020110086

Tufm 5 0 0.020110086

Uqcrh 5 0 0.020110086

Pdzk1ip1 7 20 0.022573009

Mdh2 12 3 0.022949534

Sod1 12 3 0.022949534

Id2 3 12 0.032439845

Sdf4 0 6 0.035034341

Tns1 14 14 0.037827945

Herpud1 16 6 0.038419946

Ttr 16 16 6 0.038419946

Prdx1 5 16 0.041379494

Calm2 11 3 0.042872521

Rps28 11 3 0.042872521

Slc25a3 14 28 0.042939254

Ankhd1 7 1 0.043285935

Fech 7 7 1 0.043521115

Tmem111 7 1 0.043285935

Gnb2 7 18 0.043285935

Abhd3 4 0 0.044128269

Table 3 Genes which are differentially expressed between
ROP-Os/+ and C57-Os/+ which have been shown to be
expressed in the glomerulus (Continued)

Acad9 4 0 0.044128269

Aig1 4 0 0.044128269

Atp6ap1 4 0 0.044128269

B3gat3 4 0 0.044128269

Cct4 4 0 0.044128269

Cited2 4 0 0.044128269

Creld1 4 0 0.044128269

Ctgf 4 0 0.044128269

Fads2 4 0 0.044128269

Fkbp2 4 0 0.044128269

HNMT 4 0 0.044128269

Itgb1 4 0 0.044128269

Kctd2 4 0 0.044128269

Mcl1 4 0 0.044128269

Mknk2 4 0 0.044128269

Mpdu1 4 0 0.044128269

Nucb1 4 0 0.044128269

Pmm1 4 0 0.044128269

Ptger4 4 0 0.044128269

Rab24 4 0 0.044128269

Sbf1 4 0 0.044128269

Scpep1 4 0 0.044128269

Sfrs6 4 0 0.044128269

Zdhhc8 4 0 0.044128269

Hspa5 3 11 0.047594628
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Potentialcandidate nephropathy genes and pathways
There are >100 potentially different expressed genes with
a p-value of <0.05 between the mouse strains studied in
this report. It is likely that the sclerosis phenotype of the
ROP-Os/+ mice (or the resistance of the C57-Os/+ to
sclerosis) can be attributed to the combined effect of
multiple genes. The renal pathology is due to the expres-
sion pattern of these genes on top of the reduced neph-
ron number with its consequent hyperfiltration. The
FSGS phenotype is not merely due to difference in the
expression of background genes, as we contrasted the
wild type ROP versus C57BL/6 kidney transcriptome
using microarray, and did not detect differential expres-
sion of the SAGE identified genes (data not shown).
In addition to the TGFβ-related genes, which were evalu-

ated in detail in Results, SAGE data showed that
neuropilin-2 (Nrp2), which is expressed in the glomerulus
and regulates vascular endothelial growth factor (Vegf) sig-
naling [51,52], is downregulated in the sclerosis prone
ROP-Os/+ mouse. Nrp2 knockout mice show progressive



Table 4 The rank list of the metabolic networks which encompass differentially expressed genes between ROP-Os/+
and C57-Os/+

ID Score Focus
Molecules

Top Functions

1 61 32 Energy Production, Small Molecule Biochemistry, Genetic Disorder

2 55 30 Molecular Transport, Small Molecule Biochemistry, Cellular Function and Maintenance

3 44 26 Cellular Compromise, Cellular Assembly and Organization, Cellular Function and Maintenance

4 39 24 Cell-To-Cell Signaling and Interaction, Nervous System Development and Function, Cellular Assembly and
Organization

5 33 21 Genetic Disorder, Neurological Disease, Metabolic Disease

6 23 17 Cellular Assembly and Organization, RNA Post-Transcriptional Modification, Protein Synthesis

7 19 14 Cellular Development, DNA Replication, Recombination, and Repair, Nucleic Acid Metabolism

8 19 14 Gene Expression, Genetic Disorder, Metabolic Disease

9 7 13 Carbohydrate Metabolism, Molecular Transport, Small Molecule Biochemistry

10 16 13 RNA Post-Transcriptional Modification, Cell Death, Post-Translational Modification

11 15 12 RNA Post-Transcriptional Modification, Cellular Function and Maintenance, Carbohydrate Metabolism

12 15 12 Carbohydrate Metabolism, Nucleic Acid Metabolism, Small Molecule Biochemistry

13 15 12 Genetic Disorder, Hepatic System Disease, Liver Cholestasis

14 14 11 Gene Expression, Lipid Metabolism, Molecular Transport

15 2 10 Cell Signaling, Infection Mechanism, Cell Death

16 2 1 Genetic Disorder

17 2 1 Genetic Disorder, Metabolic Disease, Lipid Metabolism

18 2 1 Molecular Transport, Protein Trafficking

19 2 1 Lipid Metabolism, Nucleic Acid Metabolism, Small Molecule Biochemistry

20 2 1 Cell Morphology, Cancer, Reproductive System Disease

21 2 1 Cancer, Cellular Development, Skeletal and Muscular System Development and Function

22 2 1 Genetic Disorder, Neurological Disease, Small Molecule Biochemistry

23 2 1 Lipid Metabolism, Small Molecule Biochemistry

24 1 1 Cancer, Genetic Disorder, Hepatic System Disease

25 1 1 DNA Replication, Recombination, and Repair, Cellular Compromise, Cell Death

Genes from the SAGE kidney libraries, which met the 2-fold difference in expression level cut-off between ROP-Os/+ and C57-Os/+ were assigned biological
functions using the Ingenuity Pathways Knowledge Base. A right-tailed Fisher’s exact test was used to calculate a p-value describing the probability that each
biological function assigned to that network is due to chance alone. Networks were ranked according to the combinatorial p-value of differentially expressed
genes represented in the network. Corresponding network diagrams are shown as supplemental figures S3-S14.
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glomerular damage after injection of the podocyte toxin,
adriamycin, in contrast to their wild type littermates, who
recover after the initial injury (J. Sedor, unpublished data).
Pea15 gene, which is overexpressed in the sclerotic

mouse kidney, is a death effector domain-containing
protein and promoter of autophagy. PEA15 inhibits cas-
pase activation and increases ERK activity [53]. Trans-
genic mice overexpressing PEA15 have glomerular
mesangial expansion and a histological pattern similar to
diabetic nephropathy [54]. PEA15 induces the expres-
sion of the glucose transporter Glut1 in skeletal muscle
cells [55]. Interestingly, Glut1 is also overexpressed in
glomeruli from the FvB-Os/+ mice (Os mutation bred
on FvB genetic background) [24], suggesting that PEA15
regulation of Glut1 may play a role in non-diabetic
glomerular scarring.
In the ROP-Os/+ strain a number of ubiquitin-prote-
asome pathway genes are differentially expressed; Psmb5,
Psma3, Fbxl12, and Itch gene expression was enhanced,
while Siah1a was downregulated. The differential expres-
sion of these genes suggests a role for aberrant protein
degradation in glomerulosclerosis phenotype of the Os
mice. Itch has been linked to the regulation of a multi-
tude of signaling cascades, including TGFβ and EGF
through ubiquitin and non-ubiquitin mediated mechan-
isms [47,56]. We tested the effect of Itch overexpression
in vitro as a proof of concept that it regulates TGFβ
signaling, which has been widely implicated in the patho-
genesis of glomerulosclerosis. The experimental data
support the hypothesis that Itch overexpression increases
TGFβ signaling, independent of TGFβ ligand level
(Figures 3 and 4). Itch expression is regulated by the Src



Figure 1 Ingenuity Pathway analysis generated Network 1 diagram. The networks are based on known protein-protein interactions and
functional relations. Genes that are differentially expressed in the SAGE libraries are depicted in shades of red (upregulated) or green
(downregulated); empty symbols represent network genes that were not differentially expressed in the SAGE libraries. TGFβ is inserted into the
model to identify gene whose expression is modulated by TGFβ. The diagram to the right explains the relationship lines.
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kinase Fyn [57-60], which regulates podocyte function
through phosphorylation of nephrin [61,62]. Bigenic Fyn/
Cd2ap heterozygotes demonstrated an FSGS phenotype
[63]. Because of the links with Fyn, TGFβ and other TGFβ-
related signaling molecules, such as Pcbp1 [64], we
speculate that Itch may function as a molecular rheostat, by
regulating downstream TGFβ signaling (and FSGS patho-
physiology) independent of ligand concentration.
Laser capture microdissection-microarray analysis of

FSGS glomeruli demonstrated multiple changes consist-
ent with activity of TGFβ signaling [45]. Although we
did not identify differences in TGFβ ligand SAGE tag
expression in our libraries, and Western blot analysis
showed similar TGFβ protein expression between ROP-
Os/+ and C57-Os/+ mouse kidneys, we postulate that
the TGFβ pathway in the ROP-Os/+ kidney is upregu-
lated by downstream molecules, such as Itch and SnoN.
Using the Ingenuity Pathway Analysis engine, the clus-

tering of genes involved in oxidative stress response like
the Nrf2 response genes and GPX suggests a role for an
electrophile or oxidative stress in the mechanisms pro-
moting renal injury in the ROP-Os/+ model [65]. Re-
cently, bardoxolone methyl, which activates the Keap1-
Nrf2 anti-oxidant pathway, was shown to protect kidney
function in patients with type 2 diabetes [46].
Genes overexpressed in the C57-Os/+ mouse may be

protective. For example, glutathione-S-transferase theta
(Gstt1) tag counts were 18.6 fold higher in the C57-Os/+
compared to ROP-Os/+ mice, and it was shown that the
deletion of this gene increases the likelihood of ESRD in



Figure 2 Ingenuity Pathway Analysis identifies canonical pathways containing SAGE differentially expressed genes. These pathways are
ranked by their statistical significance (−log p-value) which is shown along the horizontal axis. The top three pathways are depicted in this figure,
and highlight the prominence of mitochondrial dysfunction and oxidative stress genes which could potentially mediate renal injury in the ROP-
Os/+ mouse model.
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diabetic patients [66]. Also, upregulation of Hsp90ab1,
Vcp, Prdx1, and Prdx2 genes in the sclerosis resistant
C57-Os/+ strain could indicate a robust protective re-
sponse to the increased oxidative stress induced by the
Os mutation.

Differentially regulated genes known to be involved in
renal pathology
Connective tissue growth factor (Ctgf ), integrin-β1
(Itgb1), and secreted phosphoprotein 1 (Spp1) were all
upregulated in the sclerosis-prone ROP-Os/+ mouse
kidney. These genes are also upregulated in a other renal
diseases characterized by fibrosis [67-72]. On the other
hand, complement factor H (Ctf ) and prosaposin (Psap)
are relatively downregulated in ROP-Os/+ kidneys, simi-
lar to observations in membranoproliferative glomerulo-
nephritis (MPGN) and tubular damage [73,74].
Figure 3 A representative western blot analysis of protein
extracts from 6 weeks old ROP-Os/+ and C57-Os/+ kidneys
probed with anti-TGFβ antibody. For comparison proteins from
the WT ROP-+/+ kidneys are included. α-actin is used for loading
control. Densitometry analysis of protein blots showed no difference
in TGFβ protein level between ROP-Os/+ and C57-Os/+.
The ROP-Os/+ mouse and human FSGS
By comparing our ROP-Os/+SAGE libraries to previ-
ously published kidney SAGE libraries, we identified 13
genes, which were concordantly regulated in ROP-Os/+
kidneys and human FSGS kidney biopsies, all of which
localize to the glomerulus. None of these have been pre-
viously detected using either SAGE or microarray librar-
ies from normal kidneys, (http://www.ncbi.nlm.nih.gov/
geo/) [43,75], suggesting that novel glomerular gene sets
are induced as part of the pathophysiology of FSGS.
Alternatively, the regulation of gene expression in fi-
brotic glomeruli could be a manifestation (rather than a
Figure 4 Itch regulation TGFβ signaling, as determined by PAI-
1/luciferase activity in mink lung epithelial cells (see Methods).
Cells were either transiently transfected with pCDNA3.1 empty
vector (control) or mouse Itch cDNA in pCDNA3.1 under the control
of a CMV promoter. Both groups were treated with TGFβ (200 ng/
ml, 8 hr, 37°C). The readout (relative fluorescence), which is depicted
on the Y-axis is calculated from the ratio of fluorescence units in
cells transfected with Itch to fluorescence units in control cells (n = 3).
Results are expressed as mean ± SD. A two-tailed t-test yielded a p-
value of < 0.05 between groups.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Table 5 Concordantly regulated SAGE transcripts from the ROP-Os/+ mouse model (as compared to C57-Os) and
transcripts derived from microarray of human kidney biopsies from patients with FSGS (as compared to normal
controls)

TAG count
in ROP-Os

TAG count
in C57-Os

Genes concordantly regulated
between mouse model and

human Glomerulus

log Fold
Change

q-value Genes concordantly regulated
between mouse model and
human tubuloninterstitium

log Fold
Change

q- value

0 7 Slc 22a6 −0.42 0.00 Slc22a6 −0.22 0.00

0 9 Slc4a4 −0.32 0.00

1.35 13 Aqp1 −0.30 0.00

5.4 0 Psmb5 0.21 0.00

5.4 0 Pcbp1 0.24 0.00

5.4 0 Psma3 0.31 0.00

6.75 20 Pdzk1ip1 −0.15 0.02

74.25 45 Igfbp7 0.14 0.02

12.15 3 Mdh2 0.16 0.02

9.45 0 Vamp8 0.11 0.03

8.1 1 Tmbim4 0.12 0.03

5.4 0 Ndufb11 0.21 0.03

4.05 16 Lifr −0.09 0.05 Lifr −0.27 0.00

12.15 3 Sod1 0.06 0.09

16.2 6 Herpud1 −0.07 0.14

2.7 13 Atp6v1a −0.03 0.15

8.1 42 Nrp2b −0.03 0.15

2.7 12 0.11 0.11 Id2 −0.40 0.00
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cause) of fibrogenesis, though we attempted to minimize
this possibility by selecting mice for study at an age prior
to the appearance of glomerulosclerosis.

Limitations of SAGE
SAGE is a powerful tool for gene and pathway discovery.
However, like other global gene expression analysis meth-
ods, it has inherent limitations. The lack of a uniform anno-
tation tool for SAGE tags makes data analysis burdensome.
Although SAGE permits assembly of a comprehensive tran-
scriptome, the sequencing costs can be significant. As a re-
sult, most labs have resorted to microarray technology to
achieve adequate, but less comprehensive coverage.

Conclusions
In this paper we have identified multiple candidate
nephropathy genes which might regulate FSGS pathogen-
esis in a mouse model. The identified candidate genes
and pathways need to be validated in knockout mice and/
or other renal disease models, in order to discover targets
for rational drug design or novel renal disease susceptibil-
ity markers. The number of networks derived from the
differentially expressed gene set underscores the complex-
ity of renal disease pathogenesis, and suggests that ther-
apies directed at multiple pathways will be needed to
effectively treat human kidney diseases.
Additional file
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sequences, and full table of statistically significant, differentially
expressed SAGE Tags (Table 2S).
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