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Theory of Non-Equilibrium Stationary States
as a Theory of Resonances

Marco Merkli∗, Matthias Mück†, and Israel Michael Sigal‡

Abstract. We study a small quantum system (e.g., a simplified model for
an atom or molecule) interacting with two bosonic or fermionic reservoirs
(say, photon or phonon fields). We show that the combined system has a
family of stationary states parametrized by two numbers, T1 and T2 (‘reservoir
temperatures’). If T1 �= T2, then these states are non-equilibrium stationary
states (NESS). In the latter case we show that they have nonvanishing heat
fluxes and positive entropy production and are dynamically asymptotically
stable. The latter means that the evolution with an initial condition, normal
with respect to any state where the reservoirs are in equilibria at temperatures
T1 and T2, converges to the corresponding NESS. Our results are valid for the
temperatures satisfying the bound min(T1, T2) > g2+α, where g is the coupling
constant and 0 < α < 1 is a power related to the infra-red behaviour of the
coupling functions.

1. Introduction

The present paper is a contribution to rigorous quantum statistical mechanics. Key
problems here are dynamical stability of equilibrium states, and characterization
(if not the definition) and stability of non-equilibrium stationary states (NESS).

While our understanding of the quantum equilibrium states, the subject of
equilibrium statistical mechanics (see [9, 16, 17, 31]), and the recent progress in
proving their dynamical stability [8, 10, 11, 14, 18, 22, 23] are satisfactory, results
on non-equilibrium stationary states are just beginning to emerge. The problem
is that we do not have a simple stationary characterization of NESS similar to
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the principle of maximum of entropy or the KMS characterization for equilibrium
states. Thus it is remarkable that certain characterizations of NESS and their
stability were recently shown for (idealized) particle systems coupled to Fermi
reservoirs at high temperatures, min(T1, T2) > C[ln 1

g ]
−1, in [21], for XY-chains [4]

and for coupled Fermi reservoirs in [1,2,12,15]. Here, T1,2 are the temperatures of
the reservoirs, and g is the coupling constant, which is assumed to be sufficiently
small.

There are two rigorous approaches to non-equilibrium, quantum statistical
mechanics. One is based on scattering theory – wave (or Møller) morphisms – and
the other, on the theory of resonances via complex deformations. In this paper we
follow the second approach which we believe applies to a wider class of physical
models.

In this paper we establish a spectral characterization of the NESS and prove
their dynamical stability for (idealized) particle systems coupled to two Bose reser-
voirs (e.g., photons or phonons) for reservoir temperatures satisfying min(T1, T2) >
Cg2+α, where C is a constant and 0 < α < 1 (α = μ−1/2

μ+1/2 , where μ > 1/2 is given
in Condition (B) below). Our approach applies to an arbitrary finite number of
bosonic or fermionic reservoirs; in the latter case, it gives an extension of the re-
sults of [21] to the temperature range mentioned above. Moreover, we develop a
perturbation theory for NESS and use it to prove that the entropy production is
strictly positive.

An appropriate iteration of our estimates in the spirit of the spectral renor-
malization group of [5–8] would give the above results for all temperatures. This
extension will be presented elsewhere.

Similarly to [21], we construct a NESS from a zero (non-degenerate) resonance
eigenvector of a certain non-self-adjoint Liouville operator, K, acting on a positive
temperature Hilbert space. The operator K is the analogue of a C-Liouvillean in
the terminology for C∗-dynamical systems [21].

To show dynamical stability of a NESS we have to establish certain long-time
(ergodic) properties of the evolution, U(t), generated by K. The operator K does
not belong to a class for which the evolution is a priori known to exist (e.g., a
class of normal or accretive operators). To overcome this problem we establish a
direct connection between desired ergodic properties of U(t) and certain spectral
properties of a complex deformation, Kθ, θ ∈ C2, of K. For technical reasons we
can use neither the complex deformations introduced in [18] nor those introduced
in [8] but we combine both types, hence θ is in C

2 rather than in C. (Such a com-
bination was already mentioned in [8]). In order to establish the desired spectral
characteristics of the operator family Kθ, we use the method of the Feshbach map,
as developed in [5–7].

The present paper suffers from the main weaknesses shared by all the works
in the area, except, in some aspects, of [8]:

(i) The particle system has a finite-dimensional state space;
(ii) The restriction on the coupling functions is severe;
(iii) Temperatures considered are high.
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To overcome the first limitation one would have to go beyond, or at least sig-
nificantly extend, the present approach. The second limitation is due to use of
translation analyticity (which in our case is combined with the dilation analytic-
ity), see Remark 3 in Section 3. This analyticity is used in the present work in
a single place – in controlling the nonsingular part of the resolvent of the opera-
tor Kθ near the zero resonance pole by rendering this pole isolated and therefore
the nonsingular part of the resolvent analytic (see the estimate (8.8)). Without it
the zero resonance of the operator Kθ is not separated from the continuous spec-
trum and sits exactly at a threshold of the latter. Hence to control the nonsingular
part of the resolvent near the zero threshold becomes a delicate matter.

The paper [8] has rather mild restrictions on the coupling functions due to
using the dilation analyticity. Since [8] deals with the dynamics near equilibrium,
the operator K in this case is self-adjoint and an analogue of (8.8) is obtained
with help of an abstract spectral theory of self-adjoint operators. Furthermore, [8]
handles arbitrary temperatures by employing the spectral renormalization group.
In the present paper we take the first step in removing the high temperature
restriction. To this end we use the Feshbach map of [7]. Already a single application
of the Feshbach map considered in this paper improves the temperature bounds
yielding the results mentioned above. We also set the stage for the iteration of
this map – the spectral renormalization group method – which would remove the
restriction on the temperature altogether. The iteration procedure will be carried
out elsewhere. (Note that the works [12,15] deal with arbitrary temperatures, but
the scattering approach they use seems to be inapplicable to the models considered
in this paper.)

A more detailed outline of our approach and of the organization of the paper
is given in Section 2.

2. Model and approach

We consider a system consisting of a particle system, described by a self-adjoint
Hamiltonian Hp on a Hilbert space Hp, and two bosonic reservoirs, at inverse
temperatures β1 and β2, described by the Hamiltonians Hr1 and Hr2 acting on
Hilbert spaces Hr1 and Hr2, respectively. The full Hamiltonian is

H := H0 + gv , (2.1)

acting on the tensor product space H0 := Hp ⊗Hr1 ⊗Hr2. Here

H0 := Hp ⊗ 1⊗ 1 + 1⊗Hr1 ⊗ 1 + 1⊗ 1⊗Hr2 (2.2)

is the unperturbed Hamiltonian, v is an operator on H0 describing the interaction
and g ∈ R is a coupling constant.

For our key results we have to assume that the spaceHp is finite-dimensional,
through some of the results hold for infinite-dimensional spaces.



1542 M. Merkli, M. Mück, and I.M. Sigal Ann. Henri Poincaré

The operators Hrj describe free scalar (or vector, if wished) quantum fields
on Hrj , the bosonic Fock spaces over the one-particle space L2(R3, d3k),

Hrj =
∫
ω(k)a∗j (k)aj(k) d

3k , (2.3)

where a∗j (k) and aj(k) are creation and annihilation operators on Hrj and ω(k) =
|k| is the dispersion relation for relativistic massless bosons. The interaction oper-
ator is given by

v =
2∑
j=1

vj with vj = aj(Gj) + a∗j (Gj) . (2.4)

Its choice is motivated by standard models of particles interacting with the quan-
tized electromagnetic field or with phonons.

In (2.4), Gj : k �→ Gj(k) is a map from R3 into B(Hp), the algebra of bounded
operators on Hp, and

aj(Gj) :=
∫
Gj(k)∗ ⊗ aj(k) d3k and a∗j (Gj) := aj(Gj)∗ . (2.5)

If the coupling operators Gj are such that

g2

∫

R3

(
1 + |k|−1

) ‖Gj(k)‖2 dk is sufficiently small , (2.6)

then the operator H is self-adjoint (see e.g., [8]).
Now we set up a mathematical framework for non-equilibrium statistical me-

chanics. Operators on the Hilbert spaceH0 will be called observables. (Only certain
self-adjoint operators on H0 are actually physical observables.) As an algebra of
observables describing the system we take the C∗-algebra

A = B(Hp)⊗W(L2
0)⊗W(L2

0) , (2.7)

where W(L2
0) denotes the Weyl CCR algebra over L2

0 := L2(R3, (1 + |k|−1)d3k),
i.e., the C∗−algebra generated by the Weyl operators Wj(f) := eiφj(f), φj(f) :=
1√
2
(a∗j (f) + aj(f)), with f ∈ L2

0, see, e.g., [9]. States of the system are positive
linear (‘expectation’) functionals ψ on the algebra A, normalized as ψ(1) = 1.

The reason we chose A rather than B(H0) is that the algebra A supports
states in which each reservoir is at a thermal equilibrium at its own temperature.
More precisely, consider the evolution for the j-th reservoir given by

αtrj(A) := eiHrj tAe−iHrj t . (2.8)

Then there are stationary states on the j-th reservoir algebra of observables,
W(L2

0), which describe (single-phase) thermal equilibria. These states are parame-
trized by the inverse temperature βj = 1/Tj and their generating functional is
given by

ω
(βj)
rj

(
Wj(f)

)
= exp

{
−1

4

∫
R3

eβj|k| + 1
eβj|k| − 1

|f(k)|2d3k

}
. (2.9)
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The choice of the space L2
0 above is dictated by the need to have the r.h.s. of this

functional finite. These states are characterized by the KMS condition and are
called the (αtrj , βj)-KMS states.

Remark. It is convenient to define states ψ on products a#(f1) . . . a#(fn) of the
creation and annihilation operators, where a# denotes either a or a∗. This is done
using derivatives ∂sk

of its values on the Weyl operators W (s1f1) . . .W (snfn)
(see [9], Section 5.2.3 and (2.15)).

Consider states (on A) of the form

ω0 := ωp ⊗ ω(β1)
r1 ⊗ ω(β2)

r2 , (2.10)

where ωp is a state of the particle system and ω
(β)
ri is the (αtri, β)-KMS state of

the i-th reservoir. The set of states which are normal w.r.t. ω0 is the same for any
choice of ωp. A state normal w.r.t. ω0 will be called a β1β2-normal state.

In the particular case ωp(·) = Tr(e−βpHp ·)/Tr(e−βpHp) we call ω0 a reference
state.

The Hamiltonian H generates the dynamics of observables A ∈ B(H0) ac-
cording to the rule

A �→ αt(A) := eiHtAe−iHt . (2.11)
Equation (2.11) defines a group of *-automorphisms of B(H0). However, αt does
not map the subalgebraA ⊂ B(H0) into itself, so (2.11) does not define a dynamics
on A. To circumvent this problem we define the interacting evolution of a class of
states on A by using the Araki–Dyson expansion. Namely, we define the evolution
of a state ψ on A which is normal w.r.t. ω0 by

ψt(A) := lim
n→∞

∞∑
m=0

(ig)m
∫ t

0

dt1 · · ·
∫ tm−1

0

dtm ψt,t1,...,tmn (A) , (2.12)

where the term with m = 0 is ψ(αt0(A)), and, for m ≥ 1,

ψt,t1,...,tmn (A) := ψ
([
αtm0 (vn), · · · [αt10 (vn), αt0(A)

] · · · ]) .
Here, vn = v∗n ∈ A is an approximating sequence for the operator v, satisfying the
relation

lim
n→∞ω0

(
A∗(v∗n − v∗)(vn − v)A

)
= 0 , (2.13)

for all A polynomials in a∗j (f), j = 1, 2, f ∈ L2
0. Such a sequence is constructed

as follows. Let {em} be an orthonormal basis in L2
0. We define the approximate

creation operators

a∗j,n(Gj) =
μ∑

m=1

〈em, Gj〉b∗j,λ(em) , (2.14)

where n = (λ, μ), and, for any f ∈ L2(R3) and λ > 0,

b∗j,λ(f) :=
λ√
2i

{
Wj(f/λ)− 1− iWj(if/λ) + i1

}
. (2.15)
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Similarly we define the approximate annihilation operators aj,n(Gj). These opera-
tors belong toA. Via the above construction we obtain the family of interactions vn
which belongs to A and, as can be easily shown using (2.9), satisfies (2.13).

We show in Appendix A that under condition (2.13) the integrands on the
r.h.s. of (2.12) are continuous functions in t1, . . . , tm, that the series is absolutely
convergent and that the limit exists and is independent of the approximating
sequence vn.

Our goal is to understand stationary states of the interacting system orig-
inating from β1β2-normal states either by a perturbation theory or through an
ergodic limit of the full evolution αt. These states are not equilibrium (KMS)
states states. They will be called non-equilibrium stationary states or NESS for
short. Their main feature is that the energy (heat) fluxes between the reservoirs
and the particle system do not vanish.

Assuming certain smoothness and smallness conditions on the coupling op-
erators gGj(k) and assuming that the particle system is effectively coupled to the
reservoirs, we show that, starting initially in any β1β2-normal state ψ, the system
converges, under the evolution αt, to a state η:

ψt −→ η as t→∞ . (2.16)

The convergence (2.16) is understood in the weak∗ sense on the sub-C∗-algebra of
“analytic observables”

A1 = B(Hp)⊗W(Danal)⊗W(Danal) . (2.17)

Here, W(Danal) is the Weyl CCR algebra over the dense set Danal ⊂ L2
0 which

we define in Appendix C. Roughly speaking, Danal consists of vectors from the
space

⋂
b≥0 e

−b|k|L2
0 which have some analyticity properties in |k| and a certain

behaviour at k = 0. The density of Danal ⊂ L2
0 implies that A1 is strongly dense

in A. The construction of the state η and the proof of its stability, (2.16), will rely
on the theory of resonances for the evolution ψ → ψt.

As mentioned in the introduction, so far, we do not have a simple charac-
terization of NESS. However, there is a key physical quantity which differentiates
between equilibrium and non-equilibrium stationary states – the collection of heat
fluxes. In our case, the heat flux, or more precisely the heat flow rate (i.e., the
energy flow rate due to thermal contact), φj , j = 1, 2, into the j-th reservoir is
given by

φj :=
∂

∂t

∣∣
t=0

αt(Hrj) , (2.18)

and the heat flux, φ0, into the particle system is defined as

φ0 :=
∂

∂t

∣∣
t=0

αt(Hp) . (2.19)

The heat fluxes can be combined into a single quantity – the entropy pro-
duction. Motivated by the second law of thermodynamics (dS =

∑
βjdQj) we
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introduce the observable of entropy production (rate) as

s :=
2∑
j=0

βjφj , (2.20)

where, for notational convenience, we write β0 := βp. The entropy production,
EP (ω), in a state ω is defined as (see [19–21,27, 28, 32–36])

EP (ω) = ω(s) . (2.21)

Since s is not a bounded operator, we have to use an approximation procedure
similar to the one mentioned in the remark after (2.9) in order to define the r.h.s.
of (2.21) for sufficiently regular states.

The entropy production EP (η) of the NESS is independent of the particle
state ωp entering Definition (2.10) of the state of the decoupled system, since η
is independent of ωp. Notice that η(φ0) = ∂t

∣∣
t=0

η(αt(Hp)), since, by assumption,
Hp ∈ B(Hp) is a proper observable and η is a continuous and stationary state.
Hence

η(φ0) = 0 . (2.22)

Therefore, writing
∑2

j=1 η(φj) =
∑2

j=0 η(φj) = η(∂t|t=0α
t(H0)) =−∂t

∣∣
t=0

η(αt(v))
= 0, we obtain

2∑
j=1

η(φj) = 0 . (2.23)

Observe that the zero total flow relation (2.23) and Definition (2.20) for the
entropy production rate imply that

EP (η) = (β1 − β2)η(φ1) . (2.24)

Thus, the relation EP (η) > 0 is equivalent to

η(φ1) > 0 whenever T2 > T1 , (2.25)

where Tj = β−1
j is the temperature of the j-th reservoir. In other words, in the

state η the energy flows from the hotter to the colder reservoir.
A general result due to [19] shows that EP (ω) ≥ 0 for any NESS ω. We show

that for the NESS η,
EP (η) > 0 iff β1 �= β2 ,

see Theorem 3.2 and Section 12 for a precise statement of this result. Moreover,
we develop a perturbation theory for the NESS and compute EP (η) in leading
order in the coupling constant g.

Let us outline the main steps of our proof of the convergence (2.16) (c.f. [21]).
We pass to the Araki–Woods GNS representation of (A, ω0), with ω0 of the
form (2.10) and ωp(A) := Tr(e−βpHpA)/Tr(e−βpHp);

(A, ω0)→ (H, π,Ω0) ,
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where H, π and Ω0 are a Hilbert space, a representation of the algebra A by
bounded operators on H, and a cyclic element in H (meaning that π(A)Ω0 = H)
s.t.

ω0(A) =
〈
Ω0, π(A)Ω0

〉
.

The GNS representation provides us with a Hilbert space framework which
we use to convert the dynamical problem described above into a spectral problem
for a certain non-self-adjoint operator K on the Hilbert space H. With the free
evolution αt0(A) := eitH0Ae−itH0 one associates the unitary one-parameter group
U0(t) = eitL0 on H s.t.

π
(
αt0(A)

)
= U0(t)π(A)U0(t)−1 (2.26)

and U0(t)Ω0 = Ω0. Define the operator L(�) := L0 + gπ(v) on the dense domain
Dom(L0) ∩ Dom(π(v)). Here π(v) can be defined either using explicit formulae
for π in the Araki–Woods representation given below or by using the approxima-
tion, vn ∈ A, for the operator v constructed above. By the Glimm–Jaffe–Nelson
commutator theorem the operator L(�) is essentially self-adjoint; we denote its
self-adjoint closure again by the same symbol L(�). The operator L(�) induces the
one-parameter group σt on π(A)′′, the weak closure of π(A),

σt(B) := eitL
(�)
Be−itL

(�)
(2.27)

for any B ∈ π(A)′′. Let ψ be a state on the algebra A normal w.r.t. ω0, i.e.,

ψ(A) = Tr
(
ρπ(A)

)
(2.28)

for some positive trace class operator ρ onH of trace one. It is shown in Appendix A
that for ψ as above the limit on the r.h.s. of (2.12) exists and equals

ψt(A) = Tr
(
ρσt

(
π(A)

))
. (2.29)

In particular, the limit is independent of the choice of the approximating family vn.
Due to (2.29) the dynamics on normal states, defined in (2.12), gives rise to

the dynamics on the Hilbert space H, determined by a one-parameter group U(t),
satisfying

Tr
(
ρU(t)π(A)U(t)−1

)
= ψt(A) , ∀A ∈ A . (2.30)

Due to the fact that the von Neumann algebra π(A)′′ has a large commutant (which
isomorphic to π(A)′′, as is known from Tomita–Takesaki theory), relation (2.30)
does not define U(t) uniquely; however, if we impose in addition to (2.30) the
invariance condition

U(t)Ω = Ω , (2.31)
where Ω is a fixed cyclic and separating vector, then U(t) is uniquely determined.
(The vector Ω is called cyclic if π(A)Ω is dense in H and separating if π(A)′Ω is
dense in H, the prime denoting the commutant.) If Ω were the vector representing
an equilibrium state then U(t) satisfying (2.30) and (2.31) would be a unitary
group. In the non-equilibrium case β1 �= β2, one can see that (2.31) cannot be
satisfied for a unitary U(t) implementing the dynamics as in (2.30). For technical
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reasons, we choose U(t) to satisfy (2.31) for a convenient vector Ω, rather than to
be unitary (cf. [21]).

We will show that U(t) is strongly differentiable on a dense set of vectors
and we will calculate explicitly its generator, K := −i ∂∂tU(t)|t=0. In the non-
equilibrium situationK∗ �=K (U(t) is not unitary!) and (2.31) implies thatKΩ=0.
The main effort of our analysis is to derive enough spectral information on the
operator K to enable us to show (2.16) and to identify the NESS with

η(A) =
〈
Ω∗, π(A)Ω

〉
, (2.32)

where Ω∗ is a zero resonance of the operator K∗: K∗Ω∗ = 0 (in the sense of distri-
butions) and Ω∗ ∈ D′

anal, for an appropriate dense set Danal ⊂ H, and A are such
that π(A)Ω ∈ Danal.

In order to obtain rather subtle spectral information on the operator K,
and to give a precise meaning to expression (2.32), we develop a new type of
spectral deformation, K �→ Kθ, with a spectral deformation parameter θ ∈ C2, in
combination with an application of a Feshbach map acting on Kθ.

In conclusion of this outline we present here the GNS triple provided by
the Araki–Woods construction, which forms a mathematical framework for our
analysis (see [8, 9, 18] for details and [3, 17] for original papers). In the Araki–
Woods GNS representation the (positive temperature) Hilbert space is given by

H = Hp ⊗Hr , (2.33)

where Hp = Hp ⊗Hp and Hr = Hr1 ⊗Hr2 with

Hrj = Hrj ⊗Hrj . (2.34)

We denote by a#
�,j(f) (resp., a#

r,j(f)) the creation and annihilation operators which
act on the left (resp., right) factor of (2.34). They are related to the zero temper-
ature creation and annihilation operators a#

j (f) by

π
(
aj(f)

)
= a�j

(√
1 + ρj f

)
+ a∗rj

(√
ρj f̄

)
(2.35)

and
π′(aj(f)

)
= a∗�j

(√
ρj f

)
+ arj

(√
1 + ρj f̄

)
(2.36)

where ρj ≡ ρj(k) = (eβjω(k) − 1)−1 with ω(k) = |k|. Finally, we denote Ωr :=
Ωr1 ⊗ Ωr2, where Ωrj := Ωrj,� ⊗ Ωrj,r are the vacua in Hrj . Thus, Ωr is the
vacuum in Hr.

Definition (2.10) and our choice of ωp made at the beginning of this section
imply that

Ω0 = Ωp ⊗ Ωr with Ωp ≡ Ω(βp)
p =

∑
j e

−βpEj/2ϕj ⊗ ϕj
[
∑

j e
−βpEj ]1/2

, (2.37)

where Ej and ϕj are the eigenvalues and normalized eigenvectors of Hp.
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The self-adjoint operator L0 generating the free evolution U0(t) defined in
(2.26) is of the form L0 = Lp⊗1r+1p⊗Lr with Lr =

∑2
j=1 Lrj . The operator Lp

has the standard form
Lp = Hp ⊗ 1p − 1p ⊗Hp ,

and

Lrj =
∫
ω(k)

(
a∗�,j(k)a�,j(k)− a∗r,j(k)ar,j(k)

)
d3k .

The operator K can be written as K = L0 + g(V − W ) with V = π(v) and
W = π′(w) with w a non-self-adjoint operator obtained by a simple transformation
of v.

A standard argument shows that the spectrum of the operator L0 fills the
axis R with the thresholds and eigenvalues located at σ(Lp) and with 0 an eigen-
value of multiplicity at least dimHp and at most (dimHp)2 (depending on the
degeneracy of the spectrum of Lp). A priori we do not know anything about the
spectrum of the non-self-adjoint operator K besides the fact that it has an eigen-
value 0. For all we know its spectrum might fill in the entire complex plane! Thus
understanding the evolution generated by the operator K is a subtle matter.

This paper is organized as follows. In Section 3 we give a precise formulation of
our assumptions, state the results and discuss assumptions and results. In Section 4
we present the Hilbert space framework and define the vector Ω and the evolution
U(t) and in Section 5 we describe the generator K. In Section 6 we introduce the
complex deformation Kθ of K and establish the connection between the resolvents
of K and Kθ. In Section 7 we establish the spectral properties of Kθ which we
then use in Section 8 to express the dynamics in terms of an integral over the
resolvent of Kθ. In Section 9 we prove our first main result, the existence and
explicit form of the NESS, and its dynamical stability. In Section 11 we develop
a perturbation theory for NESS and in Section 12 we prove the positivity of the
entropy production. Finally, in Appendices A–D we collect some technical results.
Section 10 contains a supplementary result on level shift operators.

3. Assumptions and results

In order to state assumption (B) below, it is practical to define the map γ :
L2(R3)→ L2(R× S2),

(γf)(u, σ) =
√
|u|

{
f(uσ) , u ≥ 0 ,
−f(−uσ) , u < 0 .

(3.1)

Let jθ(u) = eδsgn(u)u + τ for θ = (δ, τ) ∈ C2 and u ∈ R (see (B.2.2)) and define
(γθf)(u, σ) = (γf)(jθ(u), σ), for f ∈ L2(R×S2), θ ∈ R

2. The maps γ and γθ have
obvious extensions to operator valued functions.

(A) Ultraviolet cut-off.
∫ ‖Gj(k)‖2ea|k|2 [1 + |k|−1]d3k <∞ for some a > 0.
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(B) Analyticity. For j = 1, 2 and every fixed (u, σ) ∈ R× S2, the maps

θ �→ (γθGj)(u, σ) (3.2)

from R
2 to the bounded operators on Hp have analytic continuations to{

(δ, τ) ∈ C
2
∣∣|Im δ| < δ0, |τ | < τ0

}
, (3.3)

for some δ0, τ0 > 0, τ0
cos δ0

≤ 2π
β , where β = max(β1, β2). Moreover,

‖Gj‖δβj ,μ,θ
:=

∑
ν=1/2,μ

⎡
⎣

∫

R×S2

∥∥∥∥∥γθ
(√|u|+ 1

|u|ν eδβj |u|/2Gj

)
(u, σ)

∥∥∥∥∥
2

dudσ

⎤
⎦

1/2

<∞ ,

(3.4)
for some fixed μ > 1/2 and where δβj = β − βj . For future references,
θ0 := (δ0, τ0).

(C) Non-degeneracy of the particle system. We have dimHp = N < ∞ and the
Hamiltonian Hp has non-degenerate spectrum {En}N−1

n=0 .
(D) Fermi golden rule condition. We have, for j = 1, 2,

γ0 := min
0≤n<m≤N−1

∫

R3

δ(|k| − Emn)|Gj(k)nm|2d3k > 0 , (3.5)

where Emn = Em − En, Gj(k)mn := 〈ϕm, Gj(k)ϕn〉, the ϕn are normalized
eigenvectors of Hp corresponding to the eigenvalues En, and δ is the Dirac
delta distribution.

(E) Either dimHp = 2, or dimHp ≥ 3 and the inverse temperatures satisfy

|β1 − β2| ≤ c , or |β1 − β2| ≥ C and min
j
βj ≥ C , (3.6)

where 0 < c,C <∞ are constants depending only on the interaction G1,2.

Remarks. 1) The map (3.1) has the following origin. In the positive-temperature
representation of the CCR (the Araki–Woods representation on a suitable Hilbert
space, see Appendix A), the interaction term vj is represented by aj(γ̃βjGj) +
a∗j (γ̃βjGj), where

γ̃β :=
√

u

1− e−βu γ . (3.7)

2) The Condition (A) can be removed at expense of a slightly more involved
proof of existence of the operator Γ(z) in Lemma 4.2, see the remark after the proof
of Lemma 4.2. However, since the ultraviolet behavior of the coupling functions is
inessential in the models considered, we choose a stronger assumption over extra
steps in the corresponding proof.

3) A class of interactions satisfying Conditions (A) and (B) is given by
Gj(k) = g(|k|)G, where g(u) = uαe−u

2
, with u ≥ 0, α = n + 1/2, n = 0, 1, 2, . . .,
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and G = G∗ ∈ B(Hp). A straightforward estimate gives that the norms (3.4) have
the bound

‖Gj‖δβj ,μ,θ
≤ C

(
1 + e(δβj)

2/4
)
||G|| , (3.8)

provided μ < α+1, where the constant C does not depend on the inverse temper-
atures, nor on θ varying in any compact set (compare this with the bound (4.13)
of [21]). The restriction α = n+1/2 with n = 0, 1, 2, . . . comes from the requirement
of translation analyticity (the τ -component of θ), which appears also in [21].

4) The condition τ0/ cos δ0 < 2π/β after (3.3) guarantees that the square
root in (3.7) is analytic in translations u �→ u+ τ .

5) What we need in our analysis is that the level shift operator Λ0, the N×N
matrix defined in (7.1), has a spectral gap at zero which is bounded below by a
strictly positive constant independent of the temperatures. Condition (E) ensures
this property. If one can show the desired property of the gap by other means then
Condition (E) can be dropped.

Let
σ := min

{|λ− μ| | λ, μ ∈ σ(Hp), λ �= μ
}

(3.9)
and define

g0 := Cσ1/2 sin(δ0)

[(
1 + β

−1/2
1 + β

−1/2
2

)
max
j

sup
|θ|≤θ0

‖Gj‖δβj ,1/2,θ

]−1

,

where C is a constant depending only on tan δ0, and δβj = β− βj , δβp = |β− βp|,
and set

g1 := min
(
(g0)1/α,

[
min(β−1

1 , β−1
2 )

] 1
2+α

)
, (3.10)

where α = μ−1/2
μ+1/2 , and μ > 1/2 is given in (3.4).

The main results of this paper are given in the following theorems, where by
a “state” on a subalgebra (which is not necessarily a C∗-subalgebra), we mean a
positive normalized linear functional.

Theorem 3.1. Assume conditions (A)–(E) are obeyed for some 0 < β1, β2 < ∞,
μ > 1, and let β = max(β1, β2).

If 0 < |g| < g1 then there is a stationary state η = ηβ1β2 , defined on a strongly
dense subalgebra A1 of A (see (2.7)), satisfying

ψt → η , t→∞ (3.11)

for any β1β2-normal initial state ψ. η is continuous in the norm of A. The con-
vergence is in the weak∗ sense (i.e., pointwise for each A ∈ A1). For A ∈ A1, η(A)
is analytic in g.

Remark. 6) Our analysis shows that the NESS is actually defined on a bigger
(but somewhat less explicit) Banach space of operators A0 ⊇ A1 (see (9.11)),
and the convergence to the NESS, (3.11), holds on A0. On A1 one can introduce a
“deformation norm” ||| · ||| ≤ ‖·‖, see (9.9), such that in this norm, the convergence
in (3.11) is uniform, supA∈A1

|ψt(A) − η(A)|/|||A||| → 0. Moreover, on A1, the
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convergence is exponentially fast for initial conditions ψ in a dense set (in the
topology of bounded linear functionals on A) – this set is the convex hull of vector
states with deformation analytic vectors.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied and let ηβ1β2

and g be as in Theorem 3.1. Let β1 �= β2, and let g and |β1 − β2| be sufficiently
small (independently). If either G1 = G2 or dimHp = 2, then EP (ηβ1β2) > 0.

Our analysis gives a stronger result than the one presented in Theorem 3.2.
Namely, for μ > 3/2, we show that EP (ηβ1β2) > 0, provided o(g0)O(δβ) ≤ η′,
where δβ = |β1− β2| (see Theorem 12.1). Here, η′ depends on the inverse temper-
atures and the coupling functions and is given by

η′ =
2π√
N

∑
j>i

(γjeβ1Eji − γi)Eji gji(Eji)
2

eβ1Eji − 1
,

where Eji = Ej − Ei, gji(E)2 =
∫

R3 d
3k| 〈ϕi, G1(k)ϕj〉 |2δ(Eji − ω) (see Condi-

tion (C)). The numbers γj ≥ 0 are the coordinates (in the basis {ϕj ⊗ ϕj} of
Null(Lp)) of the unique vector ζ∗ in the kernel of the adjoint level shift opera-
tor Λ∗

0, at the value βp = 0 (and normalized as
∑
j γj =

√
N). (The operator Λ0

is defined in Section 10.)
By general arguments one can prove that η′ ≥ 0 for β1 > β2, η′ ≤ 0 for

β1 < β2, and η′ = 0 if β1 = β2. We also show that η′ > 0 for β1 > β2 and η′ < 0
for β1 < β2, for all β1, β2, except possibly for finitely many values in any compact
set, see the remark at the end of Section 12.

The dependence of η′ on δβ is determined by the coordinates γj . We compute
those in the cases when G1 = G2 and dimHp = 2 (see the proof of Theorem 12.1,
and equation (11.22), respectively).

Remarks. 7) Using Araki’s theory of perturbation of KMS states, one shows that if
the temperatures of both reservoirs are equal then the limit state is an equilibrium
state and has zero entropy production. Non-existence of equilibrium states for
β1 �= β2 has been shown in [25].

8) For a model with fermionic reservoirs, using a sufficiently fast convergence
rate in (3.11) (e.g., O(t−α) with α > 1 suffices) and the fact that η is not a normal
state for β1 �= β1, it has been shown by an abstract argument that EP (ηβ1β2) > 0,
provided |β1−β2| ≥ Cg for some C > 0 (see [21]). Instead of this indirect derivation
we compute EP (ηβ1β2) to the leading order in g and derive the results stated in
the theorem.

9) The condition G1 = G2 can be relaxed to G1−G2 being small in a suitable
sense.

4. Spectral theory of NESS

In this section we outline a spectral theory of NESS applicable to Bose and Fermi
reservoirs. Our approach follows the one developed for the Fermi reservoirs in [21].
Fix a state, ω0, of the form (2.10) with ωp(A) := Tr(e−βpHpA)/Tr(e−βpHp).
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In this and the next section we use Conditions (A) and

(Hp + i)−1 is of a trace class . (4.1)

In particular, the θ-analyticity of the coupling functions and the finiteness of the
dimension of the particle space are not required.

We pass to the Araki–Woods GNS representation for the unperturbed system:

(A, ω0) → (H, π,Ω0)

where H, π and Ω0 are a Hilbert space, a representation of the algebra A by
bounded operators on H, and a cyclic element in H s.t.

ω0(A) =
〈
Ω0, π(A)Ω0

〉
.

There is also an anti-linear representation, π′, of the algebra A in bounded oper-
ators on the space H, s.t. π′ commutes with π (i.e., [π′(A), π(B)] = 0 ∀A,B ∈ A)
and π′(A)Ω0 = H.

The full dynamics is implemented by a one-parameter group U(t) satisfying

U(t)BΩ = σt(B)Ω , ∀B ∈ π(A) , (4.2)

where Ω is a cyclic and separating vector for π(A) to be specified below and where

σt(B) := eitL
(�)
Be−itL

(�)
(4.3)

for any B ∈ π(A) with, recall, L(�) := L0 + gπ(v) and L0 is defined on the line
before (2.26) (see also the paragraph after (2.37)). Observe that (4.2) implies that

U(t)Ω = Ω . (4.4)

If the state ω corresponding to Ω is stationary (i.e., ωt = ω) then U(t) comes out
to be unitary. In our situation we expect that there is no ω0-normal stationary
state and U(t) will be a non-unitary group.

We pick the vector Ω as follows. Let β = maxj=1,2 βj . We define

Ω := e−βL
(�)/2Ω0/‖e−βL(�)/2Ω0‖ . (4.5)

The facts that Ω is well defined, i.e., that Ω0 ∈ Dom(e−βL
(�)/2), and that Ω is

cyclic and separating, are established in Proposition 4.1 at the end of this section.
The family U(t) is not unitary since ω := 〈Ω, π( · )Ω〉 is not stationary:

〈
U(t)π(A)Ω, U(t)π(B)Ω

〉
=
〈
Ω, σt

(
π(A∗B)

)
Ω
〉

= ωt(A∗B)

�= ω(A∗B) =
〈
π(A)Ω, π(B)Ω

〉
, (4.6)

for some A,B, t. Let now ψ be an ω0-normal state corresponding to the vector
QΩ ∈ H (i.e., ψ(A) = 〈QΩ, π(A)QΩ〉), where Q ∈ π′(A) then

ψt(A) =
〈
QΩ, σt

(
π(A)

)
QΩ

〉
. (4.7)
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Due to (A.4) and σt0(π(A)) := π(αt0(A)) and due to convergence of σt(n)(π(A))
to σt(π(A)) established after (A.4), we see that the operator Q commutes with
σt(π(A)). Using this together with (4.2) and (4.4) we arrive at

ψt(A) =
〈
Q∗QΩ, U(t)π(A)Ω

〉
. (4.8)

This key formula, due to [21], connects the long time behaviour of ψt(A) with
spectral properties of U(t) or its generator. We explain what this means.

Assume we can show that, for a certain class of φ and Ψ, and as t→∞,〈
φ,U(t)Ψ

〉→ 〈φ, PΨ〉 (4.9)

where P is the eigenprojection on the fixed point subspace of U(t) (i.e., U(t)P =
PU(t) = P ), which we assume for a moment to exist. Relations (4.8) and (4.9)
imply

ψt → η , t→∞ , (4.10)
where the state η is defined (on an appropriate set of observables) by

η(A) :=
〈
Q∗QΩ, Pπ(A)Ω

〉
. (4.11)

We will show below that (4.9) holds for some unbounded projection operator P .
To understand the structure of this operator, we proceed as follows.

We will show that U(t) is strongly differentiable on a dense set and we
will compute its non-self-adjoint generator, K := −i ∂∂t |t=0U(t), which satisfies
(see (4.4))

KΩ = 0 . (4.12)
The operator P is the eigenprojection onto the eigenspace of K associated

with the eigenvalue 0 (i.e., KP = PK = 0). We show that dimP = 1 and

P = |Ω〉 〈Ω∗| (4.13)

for some Ω∗ /∈ H, satisfying K∗Ω∗ = 0 in a weak sense (Ω∗ ∈ D′
anal, where

Danal = ∪Imθ>0Dom(Uθ) with the family Uθ defined in Section 6). Understand-
ing the nature of the vector Ω∗, which we call the NESS vector, is a goal of our
analysis.

Substituting (4.13) into (4.11) and using that 〈Q∗QΩ,Ω〉=‖QΩ‖2 =ψ(1)=1,
we obtain

η(A) =
〈
Ω∗, π(A)Ω

〉
. (4.14)

Since Ω∗ /∈ H the state η is not normal but it is well defined for a dense set of
observables. The question now is what is Ω∗? The answer, provided in subsequent
sections, is that Ω∗ is a resonance of K∗.

In the following sections we construct a mathematical framework which pro-
vides meaningful expressions replacing formal ones, (4.9)–(4.14), and with the help
of which we can prove the convergence (4.10).

Remark. Evolution groups and their generators given by conditions of the type
of (4.4) (or (4.12)) were introduced in [21], where the group U(t) is specified
by the condition U(t)Ω0 = Ω0. where Ω0 is the unperturbed vector (“vacuum”)
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introduced in (2.37) above. However, an analysis of the operator K (see Sections 6
and 7) defined this way requires, instead of Condition (B), the condition obtained
from Condition (B) by replacing the weight eδβj|u|/2 by eβj|u|/2. This leads to an
additional restriction on the temperatures of the form

g ≤ cmin
j
{e−βj} , i.e., min

j
Tj ≥ c

[
ln(1/g)

]−1
. (4.15)

Using in [21] the vector Ω instead of Ω0 would improve this bound to minj Tj ≥ cg.

Now we proceed to the main technical result of this section – the proof of
the existence of the vector Ω and establishing its properties mentioned and used
above.

Proposition 4.1. Ω0∈Dom(e−βL
(�)/2) and the vector Ω:=e−βL

(�)/2Ω0/‖e−βL(�)/2Ω0‖
is cyclic and separating for the von Neumann algebra π(A)′′.

We begin with some preliminary technical results. To do manipulations with
unbounded operators we use the dense subset, D, of our Hilbert space, H, defined
by

D := π(Ã)Ω0 , (4.16)

where Ã = B(Hp)⊗P1 ⊗P2. Here Pj is the polynomial algebra generated by the
annihilation and creation operators, aj(f) and a∗j (f), of the j-th reservoir acting
on Hrj with f ∈ L2(R3, ea

′|k|2(1 + |k|−1)d3k) for some a′ > 0. D is a subset of

F0 := {ψ ∈ H | Pnψ = ψ, for some n <∞} , (4.17)

where Pn is the spectral projection of the self-adjoint operator Ñ=max{N1, N2} :=∫
max(λ, μ)dEN1(λ) ⊗ dEN2(μ) associated to the interval [0, n]. Here, Nj :=∫ [
a∗�,j(k)a�,j(k) + a∗r,j(k)ar,j(k)

]
d3k is the number operator of reservoir j (see

also (6.3)). F0 is commonly called the finite-particle subspace.
Let Δ and J be the modular operator and modular conjugation associated

with the pair {π(A)′′, Ω0} and let κt be defined by

κt = αβpt
p ⊗ αβ1t

r1 ⊗ αβ2t
r2 . (4.18)

The vector Ω0 defines a (κ, 1)-KMS state and one can show that

Δ−itAΔit = π
(
κt(A)

) ∀ A ∈ A . (4.19)

Using this one computes that Δ = e−L̃, where L̃ = βpLp + βr1Lr1 + βr2Lr2, and,
in particular, Δit commutes with eitL0 . Observe that

eτL0D = D and ΔτD = D ∀τ ∈ R . (4.20)

In the sequel, an important role is played by the operators

Γ(z) := e−zL
(�)/2ezL0/2 (4.21)

(defined as products of two, in general, unbounded operators). We study properties
of these operators in the following lemma.
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Lemma 4.2. The following statements hold for all z ∈ C and all ϕ, ψ ∈ D:

D ⊂ Dom
(
Γ(z)

)
, (4.22)

z �→ Γ(z)ϕ is entire , (4.23)

e−zL
(�)/2 = Γ(z)e−zL0/2 on D , (4.24)〈

BΓ(z̄)ψ,Γ(−z)ϕ〉 = 〈Bψ ,ϕ〉 ∀B ∈ π(A)′ , (4.25)〈
JAΓ(z)Ω0, ϕ

〉
=
〈
A∗Ω0 ,Γ(z)Δ1/2ϕ

〉
, ∀A ∈ π(A)′′ , (4.26)

Γ(z)D is dense . (4.27)

Remark. π(A)′ is the von Neumann algebra π′(A)′′, the weak closure of π′(A).

Proof of Proposition 4.1. Let Γ = Γ(β), where Γ(z) is defined in (4.21). Since
eτL0Ω0 = Ω0, the property Ω0 ∈ Dom(e−βL

(�)/2) is equivalent to Ω0 ∈ Dom(Γ)
(see (4.24)), which is proven in Lemma 4.2, relation (4.22). Hence the vector Ω
exists.

For the cyclicity it is enough to show that if B∈π(A)′ and BΩ=0 then B=0.
Let Ω′ := e−βL

(�)/2Ω0 = ΓΩ0. By (4.25), ∀ϕ ∈ D, 0 = 〈BΓ(β)Ω0,Γ(−β)ϕ〉 =
〈BΩ0 , ϕ〉. This implies BΩ0 = 0. Since Ω0 is separating for π(A)′ we have that
B = 0.

Now we show that Ω is separating for π(A)′′. Let A ∈ π(A)′′ be such that
AΩ = 0. The relation AΓΩ0 = 0 and equation (4.26) imply that

0 = 〈JAΓΩ0, ϕ〉 =
〈
A∗Ω0 ,ΓΔ1/2ϕ

〉
, (4.28)

for any ϕ ∈ D ⊂ F0. Now Δ1/2D = D and ΓD is dense (as is shown in (4.27)), so
we have that ΓΔ1/2D is dense and it follows from (4.28) that A∗Ω0 = 0. Since Ω0

is separating this implies that A = 0 and therefore Ω is separating. �

Proof of Lemma 4.2. We first show that for all ϕ ∈ F0 the following formal Dyson
expansion of the operator Γ(z) is well defined:

Γ̃(z)ϕ :=
∑
m≥0

(−gz
2

)m ∫ 1

0

dτ1 · · ·
∫ τm−1

0

dτmσ
izτm/2
0 (V ) · · ·σizτ1/20 (V )ϕ . (4.29)

The integrals on the r.h.s. are understood as strong limits of Riemann sums. Due
to the UV-cut-off Condition (A), the transformation σiw0 (V ) = e−wL0V ewL0 is
well defined and strongly analytic on F0 for w ∈ C. Since ϕ ∈ F0, there is a ν0 s.t.
Pν0ϕ = ϕ (see also (4.17)). Because each interaction V can increase the number of
particles in each reservoir by at most one, we can write the integrand of (4.29) as

σ
izτm/2
0 (V )Pν0+m−1 σ

izτm−1/2
0 (V )Pν0+m−2 · · ·σizτ1/20 (V )Pν0ϕ .

Since σiw0 (V )Pk are bounded operators, the integrand on the r.h.s. of (4.29) belong
to H. Moreover, it is strongly continuous in τ1, . . . , τm.
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Let us first show that the series in (4.29) converges absolutely, for all values
of g, z ∈ C. We use the bound ‖σiw0 (V )Pν‖ ≤ C(Imw)(ν + 1)1/2 which follows in
a standard way from the explicit expression of V . The constant is given by

C(Imw) = 2e2Imw‖Hp‖
∑
j=1,2

[∫
R3
‖Gj(k)‖2 e

|k|(Imw+βj)

eβj|k| − 1
d3k

]1/2

.

It follows that the norm of the m−th term in the series of (4.29) has the upper

bound [|gz|C(Imz/2)]m

2mm!

√
(ν0+m)!
ν0!

. Consequently, the series converges absolutely, for
any g, z ∈ C, and for any ϕ ∈ F0.

Next, we show that D ⊂ Dom(Γ(z)), and that Γ̃(z)ϕ = Γ(z)ϕ for all ϕ ∈ D.
It suffices to establish that for any ϕ ∈ D,

〈
e−zL

(�)/2ψ, ezL0/2ϕ
〉

=
〈
ψ, Γ̃(z)ϕ

〉
, (4.30)

for all ψ ∈ H s.t. ψ = f(L(�))ψ for some f ∈ C∞
0 (R) (such ψ form a core for

e−zL
(�)/2). Indeed, this would show that ezL0/2ϕ ∈ Dom(e−zL

(�)/2) and therefore
ϕ ∈ Dom(Γ(z)). Equation (4.30) can be shown, e.g., using the analyticity of both
sides in z, and the fact that the equation holds for z ∈ iR. Indeed, in the latter
case Γ(z) are bounded operators and the Dyson series expansion (4.29) is valid
for them. In particular, D ⊂ Dom(Γ(z)). Moving e−zL

(�)/2 in (4.30) to the right
factor proves that Γ(z)ϕ = Γ̃(z)ϕ, for all ϕ ∈ D. This also shows (4.23), since the
series (4.29) is entire in z. Thus we have shown (4.22) and (4.23).

Furthermore, since ezL0/2D = D, we have by the argument above (see (4.30)
and the argument after it) that (4.24) holds. Moreover, ∀ϕ ∈ D, e−zL(�)/2ϕ is
analytic due to the formula e−zL

(�)/2ϕ = Γ(z)e−zL0/2ϕ and analyticity of the
factors on the r.h.s. .

To prove (4.25) we note that, due to the Dyson expansion, it is true for purely
imaginary z and by analyticity of the l.h.s. for all z.

Now, we prove (4.26). Denote by Γk(z)ϕ the truncated series on the r.h.s.
of (4.29), with m ≤ k. Let A ∈ π(A)′′. Choose a sequence of linear combinations
of (Hp ⊗ Hp-valued) field operators An ∈ π(Ã) converging weakly to A. We use
the defining property of the operator S = Δ−1/2J , and the results proven above,
to obtain the following relation for all ϕ ∈ D :

〈
JAΓ(z)Ω0, ϕ

〉
= lim
k→∞

〈
JAΓk(z)Ω0, ϕ

〉

= lim
k→∞

lim
n→∞

〈
JAnΓk(z)Ω0, ϕ

〉

= lim
k→∞

lim
n→∞

〈
Γk(z)∗(An)∗Ω0,Δ1/2ϕ

〉
(4.31)

= lim
k→∞

〈
A∗Ω0,Γk(z)Δ1/2ϕ

〉

=
〈
A∗Ω0,Γ(z)Δ1/2ϕ

〉
.
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We have used that (An)∗Ω0 ∈ D ⊂ F0, Δ1/2ψ ∈ D ⊂ F0, and in (4.31) that
JΔ1/2AnΓk(z)Ω0 = Γk(z)∗(An)∗Ω0. The latter relation follows from the facts that
Γk(z) is affiliated with the von Neumann algebra π(A)′′, and that (An)∗ leaves F0

invariant. It can also be verified directly, using the explicit actions of J and Δ1/2.
This shows (4.26).

To prove the last statement we introduce a new family of operators Γ&(z) :=
ezL0/2e−zL

(�)/2 related to the adjoint of Γ(z). First we prove thatD ⊂ Dom(Γ&(z)).
To this end we note that, exactly as above, the formal expansion of Γ&(z), which
we denote by Γ̃&(z), converges on elements of D and is entire as a function of z.
Next, we observe that, since ezL0/2D = D, the equation ezL0/2ϕ ∈ Dom(e−zL

(�)/2),
proven above, implies that D ⊂ Dom(e−zL

(�)/2). Let D1 := {ψ ∈ H| ψ = f(L0)ψ
for some f ∈ C∞

0 (R)}. Then D1 is a core for e−zL0/2. Now we claim that for any
ϕ ∈ D and any ψ ∈ D1,〈

ezL0/2ψ, e−zL
(�)/2ϕ

〉
=
〈
ψ, Γ̃&(z)ϕ

〉
. (4.32)

Indeed, the latter relation is true for z purely imaginary and it remains to be
true for complex z by analyticity of both sides. The last relation and the fact
that D1 is a core of the operator ezL0/2 show that e−zL

(�)/2ϕ ∈ Dom(ezL0/2)
and

〈
ψ, ezL0/2e−zL

(�)/2ϕ
〉

=
〈
ψ, Γ̃&(z)ϕ

〉
. In other words, ϕ ∈ Dom(Γ&(z)) and

Γ&(z)ϕ = Γ̃&(z)ϕ. This proves that D ⊂ Dom(Γ&(z)) and that Γ&(z) is an entire
operator-function.

To prove (4.27) it suffices to show that Γ(z)D ⊇ D. To prove the latter, let
ψ ∈ D ⊂ Dom(Γ&(z)). Then ezL0/2e−zL

(�)/2ψ ∈ Dom(ezL
(�)/2e−zL0/2), and the

image of this vector under ezL
(�)/2e−zL0/2 is just ψ. Hence ψ ∈ Γ(z)D as required.

This completes the proof of Lemma 4.2. �

Remark. A sharper estimate can be obtained by using a standard argument to
estimate the norms of the integrands (to keep notation simple we set ϕ = Ω0),

‖ σiτm
0 (V ) · · ·σiτ10 (V )Ω0 ‖= ω0

(
α−iτ1

0 (v) · · ·α−iτm
0 (v)αiτm

0 (v) · · ·αiτ10 (v)
)1/2

,
(4.33)

by using Wick’s theorem, the expression for the imaginary-time two-point func-
tions, in the same way as it is done, for instance, in [8], Thm IV.3.

5. Generator K and interpolating family K(s)

In this section we find an explicit form and some properties of the generator K of
the one-parameter group U(t) introduced in the preceding section (cf. [21]), and
of the family K(s) which interpolates K to a selfadjoint operator.

Let ω0 be the state of the algebraA fixed at the beginning of the Section 4 and
let J and Δ be the Tomita–Takesaki modular conjugation and modular operator
associated with the couple (A, ω0). We have the following standard relations:

Jπ(A)J = π′(A) , (5.1)
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JΔ1/2π(A)Ω0 = π(A∗)Ω0, Δ1/2Ω0 = Ω0 and Δ−itπ(A)Δit = π(κt(A)), where κ
is the automorphism of the algebra A defined in (4.18). The last three equations
imply

Jπ(A)Ω0 = π
(
κi/2(A∗)

)
Ω0 . (5.2)

Finally, we recall that β = max(β1, β2) and that L(�) is the self-adjoint oper-
ator defined as L(�) := L0 + gV where V := π(v).

Theorem 5.1. Assume that (A) and (4.1) hold. The semigroup U(t), defined in
(4.2)–(4.4), is differentiable on the domain Dom(L(�))∩π(A)Ω, and the generator
K = −i ∂∂t

∣∣
t=0

U(t) is given on this domain by the expression

K = L0 + g(V − V ′
−i/2) , (5.3)

where V = π(v) and V ′
s = π′(γs(v)) with γs := α−βs

0 ◦ κs (due to condition (A)
the operator V ′

−i/2 is well defined). Furthermore, the domain Dom(L(�)) ∩ π(A)Ω
is dense in H.

Remark. The imaginary part of the generator K is not semi-bounded. Therefore,
the group U(t), densely defined on π(A)Ω, does not extend to a group of bounded
operators.

Proof of Theorem 5.1. Due to Condition (A), we have e−βL0/2L(�)Ω0 =
ge−βL0/2π(v)Ω0 = gπ(σiβ/20 (v))Ω0 ∈ D. It thus follows from Lemma 4.2 that
L(�)Ω0 ∈ Dom(e−βL

(�)/2). The latter fact implies that eitL
(�)

Ω is differentiable at
t = 0 and therefore Ω ∈ Dom(L(�)). Now, let B ∈ π(A) be such that BΩ ∈
Dom(L(�)). Taking into account equation (4.3) we see that σt(B) and there-
fore, due to (4.2), also U(t)BΩ, are differentiable in t at t = 0. Indeed, let
1
t (e

itL(�)
Be−itL

(�) − B)Ω = F + G, where F := eitL
(�)
B 1
t (e

−itL(�) − 1)Ω and
G := 1

t (e
itL(�) − 1)BΩ. Clearly, F → −iBL(�)Ω and G → iL(�)BΩ. Now, dif-

ferentiating equation (4.2) we find

KBΩ = L(�)BΩ−BL(�)Ω . (5.4)

Now we compute the last term on the r.h.s. of this expression. To this end we use
the following relations:

π(A)Ω0 = π′(κi/2(A∗)
)
Ω0 (5.5)

and, for z = it,
ezL

(�)
π′(A)e−zL

(�)
= π′(αiz0 (A)

)
. (5.6)

Equation (5.5) follows from relations (5.1) and (5.2). Equality (5.6) is proven by
using the Kato–Trotter product formula.

Now, we claim that ∀ψ ∈ D
〈
ψ,BezL

(�)
π(v)Ω0

〉
=
〈[
π′(αiz0 ◦ κi/2(v))

]∗
ψ,BezL

(�)
Ω0

〉
. (5.7)

Observe that the vectors ezL
(�)
ϕ = Γ(−2z)ezL0ϕ, ϕ ∈ D, are entire in z, by

Lemma 4.2. Hence both sides of (5.7) are entire in z. Therefore it suffices to
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prove (5.7) for z = it. Equation (5.7) with z = it follows from the relations (5.5)
and (5.6) proven above. Thus (5.7) is demonstrated.

Now, let Ω′ := e−βL
(�)/2Ω0. Recall that L(�)Ω′=ge−βL

(�)/2π(v)Ω0. Then (5.7)
with z = β/2 and the definition of the transformation γs imply that ∀ψ ∈ D

〈
ψ,BL(�)Ω′〉 = g

〈
ψ,Be−βL

(�)/2π(v)Ω0

〉

= g

〈[
π′(γi/2(v))]∗ψ,BΩ′

〉
. (5.8)

This relation and the fact that D is a core of π′(γi/2(v))∗ (which is a linear combi-
nation of creation and annihilation operators) show that BΩ′ ∈ Dom(π′(γi/2(v))
and

BL(�)Ω = π′(γi/2(v))BΩ . (5.9)

Since the r.h.s. of (5.9) is V ′
−i/2BΩ, this equation together with (5.4) implies (5.3).

Finally, Dom(L(�)) ∩ π(A)Ω contains the set D and is therefore dense in H. �

Observe that

κt|βj=βp=β = αβt0 and γt|βj=βp=β = id . (5.10)

This implies that

K|βj=βp=β = L , (5.11)

where L := L0 + gV − gV ′, with V ′ := π′(v), is the standard self-adjoint Liouville
operator. In what follows we write K = L0 + gI, where

I = V − V ′
−i/2 .

The operator K is non-self-adjoint for δβ �= 0, and the perturbation I is not
relatively bounded w.r.t. the unperturbed operator L0. To study the evolution
generated by K we use the family of operators

K(s) := L0 + g(V − V ′
s ) , (5.12)

where, recall, V = π(v), and V ′
s := π′(γs(v)). This family interpolates between the

operator K,

K = K(−i/2) , (5.13)

(see (5.3)) and the self-adjoint operators K(s) with real s. Under condition (A)
on v, V ′

(s) and K(s) are well defined on the dense domain Dom(L(�)) ∩ π(A)Ω for
all s in the strip

Sε :=
{
t ∈ C

∣∣|Im t| < 1
2

+ ε

}
, (5.14)

for ε > 0, and are strongly analytic there (recall that π′ is anti-linear).
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6. Spectral deformation of K and K(s)

Since the operator K is not self-adjoint it is not a simple matter to derive long-
time properties of the dynamics eiKt from spectral properties of K. As a result
we bypass establishing the connection of the dynamics to the spectrum of K and
instead connect it to certain spectral properties of a complex deformation, Kθ,
of this operator. To do this we use the interpolating family K(s)θ, which is the
complex deformation of the family K(s), (5.12). In this section we define complex
deformations Kθ and K(s)θ and in the next section we establish their spectral
characteristics which are relevant for us.

In order to carry out the spectral analysis of the operator K, which we
begin in this section, we use the specifics of the Araki–Woods representation in an
essential way. They were not used in an essential way for the developments up to
this section.

As a complex deformation we choose a combination of the complex dilation
used in [8] and complex translation due to [18] (see [8], Section V.2 for a sketch
of the relevant ideas). This complex deformation was used in [25] in the spectral
analysis for a general class of Liouville type operators.

First we define the group of dilations. Let Ûd,δ be the second quantization of
the one-parameter group

ud,δ : f(k)→ e3δ/2f(eδk)

of dilations on L2(Rn). This group acts on creation and annihilation operators
a#
r (f) on the Fock space, Hr, according to the rule

Ûd,δa
#
r (f)Û−1

d,δ = a#
r (ud,δf) , Ûd,δΩrj = Ωrj . (6.1)

We lift this group to the positive-temperature Hilbert space, (2.33), according to
the formula

Ud,δ = 1p ⊗ 1p ⊗ Ûd,δ ⊗ Ûd,−δ ⊗ Ûd,δ ⊗ Ûd,−δ . (6.2)
Note that we could dilate each reservoir by a different amount. However, this does
not give us any advantage, so to keep notation simple we use the same dilation
parameter for both reservoirs.

We record for future reference how the group Ud,δ acts on the Liouville op-
erator L0 and the positive-temperature photon number operator N :=

∑2
j=1Nj ,

where
Nj :=

∫ [
a∗�,j(k)a�,j(k) + a∗r,j(k)ar,j(k)

]
d3k , (6.3)

and the operators a#
{�,r},j(k) were introduced after (2.34). We have (below we do

not display the identity operators):

Ud,δLrjU
−1
d,δ = cosh(δ)Lrj + sinh(δ)Λj , (6.4)

where Λj is the positive operator on the jth reservoir Hilbert space given by

Λj =
∫
ω(k)

(
a∗�,j(k)a�,j(k) + a∗r,j(k)ar,j(k)

)
d3k , (6.5)
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and
Ud,δNjU

−1
d,δ = Nj . (6.6)

Now we define a one-parameter group of translations. It can be defined as
one-parameter group arising from transformations of the underlying physical space
similarly to the dilation group. This is done in Appendix B. We define here the
translation group by means of the selfadjoint generator T :=

∑2
j=1 Tj, where

Tj =
∫ [

a∗�,j(k)γa�,j(k) + a∗r,j(k)γar,j(k)
]
d3k . (6.7)

The operator γ = i(k̂ · ∇ + ∇ · k̂), with k̂ = k/|k|, is a symmetric, but not a
self-adjoint operator. Nevertheless, the operators Tj, j = 1, 2, are self-adjoint [25].
Thus the operator T is self-adjoint as well. We define the one-parameter group of
translations as

Ut,τ := 1p ⊗ 1p ⊗ eiτT . (6.8)

Equations (6.7)–(6.8) imply the following expressions for the action of this group
on the Liouville operators:

Ut,τLrjU
−1
t,τ = Lrj + τNj . (6.9)

Observe that neither the dilation nor the translation group affects the particle
vectors, and that Ut,τNjU−1

t,τ = Nj.
Now we want to apply the product of these transformations to the full op-

erator K = L0 + gI. Since the dilation and translation transformations do not
commute we have to choose the order in which we apply them. Since the operator
Λ =

∑
j Λj is not analytic under the translations while the operator N is analytic

under dilations we apply first the translation and then the dilation transformation.
We define the combined translation-dilation transformation as

Uθ = Ud,δUt,τ (6.10)

where θ = (δ, τ). Note that Uθ leaves the finite-particle space F0, as well as
Dom(Λ) ∩Dom(N) invariant, for θ ∈ R2.

In what follows we will use the notation |θ| = (|δ|, |τ |), Imθ = (Imδ, Imτ),
and similarly for Reθ, and

Imθ > 0 ⇐⇒ Imδ > 0 ∧ Imτ > 0 . (6.11)

Now we are ready to define a complex deformation of the operator K. On
the set Dom(Λ) ∩Dom(N) we define for θ ∈ R2

Kθ := UθKU
−1
θ . (6.12)

Recalling the decomposition K = L0 + gI, where L0 := Lp + Lr, Lr :=
∑2

j=1 Lrj
and I = V − V ′

−i/2, we have

Kθ = L0,θ + gIθ , (6.13)
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where the families L0,θ and Iθ are defined accordingly. Due to (6.4), (6.6) and (6.9)
we have:

L0,θ = Lp + cosh(δ)Lr + sinh(δ)Λ + τN , (6.14)

where θ = (δ, τ), and Λ =
∑2
j=1 Λj . An explicit expression for the family Iθ is

given in Appendix B.2 (see (B.2.5) and (B.2.7)).
Similarly, we define the family K(s)θ := UθK(s)U

−1
θ (recall (5.12)).

The operator families above are well defined for real θ. Our task is to define
them as analytic families on the strips

S±
θ0

=
{
θ ∈ C

2|0 < ±Imθ < θ0
}

(6.15)

where θ0 = (δ0, τ0) > 0 is the same as in Condition (B). Recall that the inequality
±Imθ < θ0 is equivalent to the following inequalities: ±Imδ < δ0 and ±Imτ < τ0.
(The fact that analyticity in a neighbourhood of a fixed θ ∈ S±

θ0
implies analyticity

in the corresponding strip in which Reθ is not constraint follows from the explicit
formulas (6.14), (B.2.5) and (B.2.7).) The analytic continuations (if they exist) are
denoted by the same symbols.

We define the family Kθ for θ ∈ {θ ∈ C
2
∣∣|Im θ| < θ0} by the explicit

expressions (6.13), (6.14), (B.2.5) and (B.2.7). Clearly, Dom(Λ) ∩ Dom(N) ⊂
Dom(L0θ) and on this domain the family L0θ is manifestly strongly analytic in
θ ∈ {θ ∈ C2

∣∣|Imθ| < θ0}. It is shown in Appendix B that for |Imθ| < θ0 we have
Dom(Λ1/2) ⊂ Dom(Iθ) and Iθf is analytic ∀f ∈ Dom(Λ1/2). Here Condition (B)
of Section 3 is used. Hence the family Kθ for θ ∈ {θ ∈ C2

∣∣|Im θ| < θ0} is bounded
from Dom(Λ) ∩ Dom(N) to H (and Kθf is analytic in θ ∈ {θ ∈ C2

∣∣|Im θ| < θ0},
∀f ∈ Dom(Λ) ∩Dom(N)). Moreover, for |Im θ| > 0 the operators Kθ are closable
on the domain Dom(Λ) ∩ Dom(N), since their adjoints are defined on this dense
domain. We denote their closures by the same symbols.

However, {Kθ | Imθ < θ0} is not an analytic family in the sense of Kato.
The problem here is the lack of coercivity – the perturbation I is not bounded
relatively to the unperturbed operator L0. To compensate for this we have chosen
the deformation Uθ in such a way that the operator Mθ := ImL0,θ is coercive for
Imθ > 0 , i.e., the perturbation Iθ as well as ReL0,θ are bounded relative to this
operator. The problem here is that Mθ → 0 as Imθ → 0 so we have to proceed
carefully.

Everything said about Kθ applies also to the family K(s)θ.
The next result gives some analyticity properties and some global spectral

properties of K(s)θ.

Theorem 6.1 ([25]). Assume that Condition (B) holds and let θ0 = (δ0, τ0) be as
in that condition. Take an

a >
g2

sin(Imδ)
C2

0

⎛
⎝ 2∑
j=1

‖Gj‖δβj ,1/2,θ

⎞
⎠

2

, (6.16)
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where C0 := C(1 + β
−1/2
1 + β

−1/2
2 ), and where C is a constant depending only on

tan δ0. Then we have:

(i) {z ∈ C|Im z ≤ −a} ⊆ ρ(K(s)θ) (resolvent set) if either s ∈ R and θ ∈ S+
θ0

, or
if s ∈ Sε and θ ∈ S+

θ0
;

(ii) Let Ca,b be the truncated cone

Ca,b :=
{
z ∈ C | Im z > −a

2
, |Re z| < 2

[
(sin b)−1 + a/4

]
(Im z + a) + ‖Lp‖+ 1

}
.

Take s ∈ Sε, θ ∈ S+
θ0

, and take a as in (6.16). Then σ(Kθ) ⊂ Ca,Im δ, and
for z ∈ C\Ca,Im δ we have

‖(Kθ − z)−1‖ ≤ (
dist (z, Ca,Im δ)

)−1
. (6.17)

(iii) The family K(s)θ, s ∈ Sε, θ ∈ S+
θ0

, is analytic of type A (in the sense of Kato)
in θ ∈ S+

θ0
, for all s ∈ Sε, and in s ∈ Sε, for all θ ∈ S+

θ0
;

(iv) Let s ∈ R. For any u and v which are Uθ-analytic in a strip{
θ ∈ C2|0 ≤ Imθ < θ1

}
, for some θ1 = (δ1, τ0), δ1 ∈ [0,min{π/3, θ0}), the

following relation holds:
〈
u, (K(s) − z)−1v

〉
=
〈
uθ, (K(s)θ − z)−1vθ

〉
, (6.18)

where uθ = Uθu, etc., Im z ≤ −a and 0 < Im θ < θ1/2.

Proof. Statements (i), (iii) and (iv) are special cases of Theorem 5.1 in [25], with
the exception of the assertion about analyticity of s �→ K(s)θ in (iii). This assertion
is easily proven by noticing that ∂s(K(s)θ − z)−1 = −(K(s)θ − z)−1(∂sV ′

s )(K(s)θ −
z)−1. Statement (ii) is the content of Proposition 5.2 in [25]. �

7. Spectral analysis of Kθ

In what follows, given a self-adjoint operator A and a ∈ R we use the notation
χA≤a for the spectral projection of A associated to the set {λ ∈ R |λ ≤ a} and
similarly for χA≥a and χA=a, etc. Fix a θ satisfying 0 < Im θ < θ0.

Theorem 7.1. Assume Conditions (A)–(D). Let θ0 be the same as in Condi-
tion (B), let g1 be as in Theorem 3.1 and let θ0 > Imθ = (δ′, τ ′) > 0. If 0 < |g| < g1
and τ ′ > |g|2+α then

(a) 0 is an isolated and simple eigenvalue of Kθ;
(b) σ(Kθ)\{0} ⊂ {z ∈ C

+|Imz ≥ min(cg2, 1
2 τ

′)},
for some c > 0, independent of θ.

Theorem 7.1 is proven at the end of this section. Together with Theorem 6.1
it gives the following picture for the spectrum of Kθ.



1564 M. Merkli, M. Mück, and I.M. Sigal Ann. Henri Poincaré
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Spectrum of Kθ for Imθ > 0.

The motion of resonances bifurcating out of the eigenvalues of L0 is governed,
to second order in the coupling constant g, by level shift operators, see [24,25] for
a discussion closest to the situation at hand. Let e be an eigenvalue of Lp and
let Λe be the level shift operator acting on RanχLp=e, defined by

Λe := −PeI(L0 − e+ i0)−1IPe , (7.1)

where Pe = χLp=e ⊗χLr=0. The notation +i0 in (7.1) stands for the limit of iε as
ε ↓ 0. The following result summarizes properties of the level shift operators which
are essential for the proof of Theorem 7.1.

Theorem 7.2. Assume Condition (C). The level shift operators Λe, (7.1), satisfy

σ(Λe) ⊂ C+ (7.2)

σ(Λe) ∩ R =
{ ∅ if e �= 0
{0} if e = 0 (7.3)

dim Ker (Λe=0) = 1 . (7.4)

Furthermore, there is a γ0 > 0 which does not depend on the inverse temperatures,
s.t. ImΛe ≥ γ0, for all e �= 0. Moreover, if Condition (D) is satisfied, then there is a
δ0>0 which does not depend on the inverse temperatures, s.t. Im(σ(Λ0)\{0})≥δ0.

We prove this theorem in Section 10.

Proof of Theorem 7.1. That 0 is an eigenvalue of Kθ follows readily from the equa-
tions KΩ = 0 and the fact that Ω is Uθ-analytic in the strip (6.15), as we show in
Lemma 7.3 below. So we have

KθΩθ = 0 , (7.5)

where Ωθ := UθΩ.

Lemma 7.3. Ω is Uθ-analytic, for θ = (δ, τ) ∈ S±
θ0

, see (6.15).

Proof of Lemma 7.3. This follows from the Dyson series expansion (4.29) given in
Lemma 4.2, and the analyticity condition (B). �
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Let ρ0 ∈ (0, σ/2), where σ is given in (3.9), and consider the half-space

S =
{
z ∈ C

∣∣Im z <
1
4
ρ0 sin(Im δ)ρ0

}
. (7.6)

We decompose this region into the strips Se = {z ∈ S| |Re z − e| ≤ ρ0}, where e ∈
σ(Lp), and the complement. The following result is a special case of Theorem 6.1
of [25].

Theorem 7.4. Assume that condition (B) holds and that there are constants γ0 > 0
and δ0 > 0 satisfying ImΛe ≥ γ0 for all 0 �= e ∈ σ(Lp) and Im(σ(Λ0)\{0}) ≥ δ0.
Take 0 < |g| < √ρ0g0 and let α = (μ− 1/2)/(μ+ 1/2), where μ > 1/2 is given in
Condition (B). Then

1. We have σ(Kθ) ∩ S ⊂ ⋃
e∈σ(Lp) Se.

2. Choose ρ0 = |g|2−2α. There is a C > 0 s.t. if 0 < |g| < C(γ0)1/α, then, for
all e �= 0,

σ(Kθ) ∩ Se ⊂
{
z ∈ C | Imz ≥ 1

2
g2γ0

}
, (7.7)

3. Choose ρ0 = |g|2−2α. There is a C > 0 s.t. if 0 < |g| < Cmin[(δ0)1/α, (τ ′)
1

2+α ]
then

σ(Kθ) ∩ S0 ⊂ {z0} ∪
{
z ∈ C | Imz ≥ 1

2
min(g2δ0, τ

′)
}
, (7.8)

where z0 is a simple isolated eigenvalue of Kθ, satisfying |z0| = O(|g|2+α).

For a coupling constant satisfying

0 < |g| < min
[
(g0)1/α, (γ0)1/α, (δ0)1/α, (τ ′)

1
2+α

]
(7.9)

all three parts of Theorem 7.4 apply. Thus Kθ has a simple isolated eigenvalue {z0}
in a neighbourhood O(|g|2+α) of the origin, and σ(Kθ)\{z0} ⊂ {z ∈ C+ | Imz ≥
min(cg2, 1

2τ
′)}, where c = 1

2 min(γ0, δ0). In order to complete the proof of The-
orem 7.1 we only need to remark that z0 = 0 since zero is an eigenvalue of Kθ,
see (7.5). (One can also give a dynamical argument to prove that z0 = 0, see the
remark after (8.12).) �

8. Resolvent representation and pole approximation

In order to study the long-time behaviour of the evolution U(t) = eiKt (defined
on the domain π(A)Ω by (4.2)) we relate it to an object which we understand
relatively well, namely the resolvent (Kθ − z)−1 of the deformation Kθ, defined in
Section 6. The main result of this section is
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Theorem 8.1. Assume that Conditions (A), (B) and (4.1) hold. Let φ and Ψ be
Uθ-analytic vectors, and let Ψ = π(A)Ω for some A ∈ A. We have the following
representation

〈
φ, eiKtΨ

〉
= − 1

2πi

∮

Γ

〈
φθ, (Kθ − z)−1Ψθ

〉
eiztdz , (8.1)

where Ψθ = UθΨ (similarly for φ or any other vector), θ ∈ S+
θ0

, and Γ is the path

Γ := {z = λ− iτ ′/3, |λ| ≤ C} ∪ {z = λ− i2τ ′/3 + iλτ ′/3C, λ ≥ C}
∪ {z = λ− i2τ ′/3− iλτ ′/3C, λ ≤ −C} (8.2)

for a sufficiently large constant C. The integral on the r.h.s. of (8.1) is well defined
in virtue of Theorem 6.1, (6.17), and the estimate |eizt| ≤ e−λτ

′/3C on the infinite
branches of Γ.

Proof. In the proof below, the vectors φ and Ψ are as in the theorem. To prove
the equality in (8.1) we use the family K(s) of operators defined in (5.12)–(5.13)
(here we use Conditions (A) and (4.1)). Note that Ω ∈ Dom(eνN ) for any ν > 0,
as follows from the relation Ω0 ∈ Dom(eνNe−βL

(�)/2) which is shown in the same
way as the relation Ω0 ∈ Dom(e−βL

(�)/2), see Lemma 4.2.
Next, we define the operator eiK(s)t as follows: eiK(s)tΩ is given by a Dyson

expansion, where the part −gV ′
s of K(s) is treated as a perturbation. The fact that

the Dyson series converges is easily seen from the relation Ω ∈ Dom(eνN ), ν > 0,
shown above. Moreover, it is clear that this series defines a vector which is analytic
in s ∈ Sε, i.e., s �→ eiK(s)tΩ is analytic for s ∈ Sε. We define the action of eiK(s)t

on vectors π(A)Ω, A ∈ A (which form a dense set), by

eiK(s)tπ(A)Ω = σt
(
π(A)

)
eiK(s)tΩ . (8.3)

Consequently, the map s �→ eiK(s)tπ(A)Ω is analytic for s ∈ Sε. For s = −i/2 this
definition gives eiKt.

Since K(s) is self-adjoint for s real we derive from Stone’s formula
〈
φ, eiK(s)tΨ

〉
= − 1

2πi

∮

R−i

〈
φ, (K(s) − z)−1Ψ

〉
eiztdz , s ∈ R . (8.4)

Next, using eizt = 1
it

∂
∂(Re z)e

izt and integrating by parts we can represent the r.h.s.
of (8.4) as

RHS(8.4) = − 1
2πi

∫

R−i

〈
φ, (K(s) − z)−2Ψ

〉
eiztdz .

Now we perform the spectral deformation, Theorem 6.1, (iv), to obtain for θ1/2 >
Imθ > 0 (where θ1 is given in Theorem 6.1, (iv); here we use Conditions (B))

RHS(8.4) = − 1
2πi

1
it

∫

R−i

〈
φθ, (K(s)θ − z)−2Ψθ

〉
eiztdz . (8.5)
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The integral converges since due to (6.17) we have
∥∥(K(s)θ − z)−n‖ ≤ Cn〈Re z〉−n

for z ∈ R− iε, where 〈x〉 :=
√

1 + x2.
In (8.5) we deform the contour of integration from R−i to Γ which is fine due

to (6.17), and we integrate by parts in the opposite direction of above, to obtain
〈
φ, eiK(s)tΨ

〉
= − 1

2πi

∮

Γ

〈
φθ, (K(s)θ − z)−1Ψθ

〉
eiztdz . (8.6)

Both sides of this expression are well defined and analytic for s ∈ Sε (see The-
orem 6.1, (6.17), and after equation (8.3)). Since they are equal for real s they
are equal for all s in their domain of analyticity. Taking s = −i/2 in this formula
gives (8.1). �

It is shown in Section 7 that the operator family Kθ has a simple isolated
eigenvalue at 0 and the rest of its spectrum is located in a truncated cone in
{z ∈ C+|Im z > 1

3τ
′}, where τ ′ = Im τ . In the integral on the r.h.s. of formula (8.1)

we deform the contour of integration to

Γ′ :=
{
z = λ+

1
3
iτ ′, |λ| ≤ C

}
∪ {z = λ+ iλτ ′/3C, λ ≥ C}

∪ {z = λ− iλτ ′/3C, λ ≤ −C} (8.7)

where C is sufficiently large. Picking up the residue from the simple eigenvalue 0
of Kθ we derive from (8.1)〈

φ, eiKtΨ〉 = 〈φθ, PθΨθ

〉
+O(‖φθ‖ ‖Ψθ‖e−τ ′t/3) , (8.8)

where Pθ = −1
2πi

∮
(Kθ − z)−1dz is the eigenprojection of Kθ corresponding to the

simple and isolated eigenvalue 0 and the remainder bound is coming from the term
1
2π

∮
Γ′
〈
φθ, (Kθ − z)−1Ψθ

〉
eiztdz. The contour integral is over a small circle around

the origin and the path Γ′ is defined in (8.7). This is the only place where we use
that 0 is an isolated eigenvalue of Kθ – the fact we show using complex translation
in addition to complex dilation.

Pθ is a rank one projection which is analytic in θ ∈ S+
θ0

. One proves using a
standard argument that it satisfies KθPθ = PθKθ = 0. Hence, Pθ can be written
as

Pθ = |Ωθ〉
〈
Ω∗
θ

∣∣ , (8.9)

where Ωθ and Ω∗
θ

are zero eigenvectors of Kθ and its adjoint operator

(Kθ)∗ = (K∗)θ =: K∗
θ
, (8.10)

i.e., we have
KθΩθ = 0 and K∗

θ
Ω∗
θ

= 0 , (8.11)

with the normalization 〈Ω∗
θ
,Ωθ〉 = 1. Since Pθ and Ωθ are analytic in θ ∈ S+

θ0
, then

so is Ω∗
θ

in the variable θ ∈ S−
θ0

. (The possibility of the normalization, 〈Ω∗
θ
,Ωθ〉 �= 0,

follows also from results of Section 11. Analyticity of Ω∗
θ

in θ ∈ S−
θ0

can also be
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shown directly by using the analyticity and spectral properties of K∗
θ
, see Sec-

tion 7). Equation (8.9) implies〈
φθ, PθΨθ

〉
= 〈φ,Ω〉 〈Ω∗

θ
,Ψθ

〉
. (8.12)

The resonance vector Ω∗ appearing in (2.32) and (4.13) is defined by 〈Ω∗, ϕ〉 =
〈Ω∗

θ, (U−θ)∗ϕ〉.
Remark. We present here another proof of the relation z0 = 0, where z0 is the sim-
ple isolated eigenvalue of Kθ given in Theorem 7.4. Starting with the information
on the spectrum of Kθ given in Theorem 7.4 and proceeding with a contour de-
formation as above we find that

〈
φ, eiKtψ

〉
= eiz0t

〈
φθ, Pθψθ

〉
+O(e(|Im z0|−τ ′/3)t)

instead of (8.8). Applying this formula to φ = ψ = Ω and using (4.2) we obtain
〈Ω,Ω〉 = eiz0t 〈Ω,Ω〉 + O(e(|Im z0|−τ ′/3)t). Since |z0| = O(|g|2+α) << τ ′ the error
term tends to zero as t → ∞, so by taking limT→∞

∫ T
0 dt on both sides we see

that z0 must be zero.

9. Proof of Theorem 3.1

Let ψ be any ω0-normal state on A. For the following reasoning, we may assume
without loss of generality that ψ(A) = 〈Ωψ, π(A)Ωψ〉, for some Ωψ ∈ H. Since Ω
is cyclic for π(A)′, ψ can be approximated as follows. For any ε > 0 there is a
Q ∈ π(A)′ s.t., for all A ∈ A,∣∣ψ(A) − 〈

QΩ, π(A)QΩ
〉∣∣ < ε‖A‖ . (9.1)

Applying this to ψt(A) = 〈Ωψ , σt(π(A))Ωψ〉 pulling Q through σt(π(A)) and tak-
ing into account (2.30), U(t) = eitK and U(t)Ω = 0, we obtain∣∣ψt(A) − 〈

Q∗QΩ, eitKπ(A)Ω
〉∣∣ < ε‖A‖ , (9.2)

uniformly in t ∈ R. In order to examine the long time behaviour of〈
Q∗QΩ, eitKπ(A)Ω

〉
, via (8.8), we first approximate the vector Q∗QΩ ∈ H by

a family of Uθ-analytic vectors χε, s.t. ‖χε −Q∗QΩ‖ < ε. We have∣∣〈Q∗QΩ− χε, eitKπ(A)Ω
〉∣∣ < ε‖eitKπ(A)Ω‖ = ε

∥∥σt(π(A)
)
Ω
∥∥ < ε‖A‖ . (9.3)

It follows from (9.2), (9.3), (8.8) and (8.12) that∣∣∣ψt(A)− 〈χε,Ω〉
〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉∣∣∣ ≤ 2ε‖A‖+ C‖χε,θ‖
∥∥(π(A)Ω

)
θ

∥∥e−τ ′t/3 . (9.4)

Since 〈Q∗QΩ,Ω〉 → 1 as ε → 0, we have 〈χε,Ω〉 = 1 + o(ε0), where o(ε0)
denotes a quantity that vanishes in the limit ε→ 0. Thus
∣∣∣ψt(A)− 〈χε,Ω〉

〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉∣∣∣
≥
∣∣∣ψt(A)−

〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉∣∣∣− o(ε0)
∣∣∣
〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉∣∣∣ .
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Combining this estimate with (9.4) we arrive at
∣∣∣ψt(A)−

〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉∣∣∣
≤ o(ε0)

(
‖A‖+

∣∣∣
〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉∣∣∣
)

+ C‖χε,θ‖
∥∥(π(A)Ω

)
θ

∥∥e−τ ′t/3 , (9.5)

where o(ε0) is independent of A and θ. In particular, taking first t→∞ and then
ε→ 0 yields

lim
t→∞ψt(A) =

〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉
. (9.6)

Equation (9.6) shows that |〈Ω∗
θ
, (π(A)Ω)θ〉| ≤ ‖A‖. We re-inject this inequality

into r.h.s. of (9.5) to arrive at

lim
t→∞ sup

A∈Â

|ψt(A)− η(A)|
|||A||| = 0 , (9.7)

where
Â =

{
A ∈ A | π(A)Ω is Uθ-analytic for |θ| < θ0

}
, (9.8)

and where ||| · ||| is the norm on Â defined by

|||A||| = ‖A‖+ sup
|θ|<θ0

∥∥(π(A)Ω
)
θ

∥∥ , for A ∈ Â . (9.9)

The state η on Â in (9.7) is given by

η(A) :=
〈
Ω∗
θ
,
(
π(A)Ω

)
θ

〉
, (9.10)

it is independent of the deformation parameter θ, if 0 < Im θ < θ0, and 0 < g < g0
(g0 depends on sin(Im δ), see the equation after (3.9)).

Observe that 1 ∈ Â, and that the normalization
〈
Ω∗
θ
,Ωθ

〉
=1 implies η(1)=1.

Â is a linear subspace of A, but not an algebra.
We show in Appendix C, Proposition C.1, that A1 (defined in (2.17)) is

strongly dense in A (defined in (2.7)), and that any A ∈ A1 has the property that
π(A)Ω is Uθ-analytic, for θ in a neighbourhood of θ = 0. Hence A1 ⊆ Â ⊆ A, and
therefore Â is strongly dense in A.

We have thus shown that for any ω0-normal state ψ, ψt → η as t→∞, where
the convergence is understood in the ||| · |||-topology of linear functionals on Â.

It is clear from (9.7) that |η(A)| ≤ ‖A‖, for A ∈ Â, hence η extends to a
bounded positive linear functional on the Banach space of observables

A0 := ‖ · ‖-closure of Â , (9.11)

normalized as η(1) = 1. Standard perturbation theory shows that η(A), A ∈ Â, is
analytic in the coupling constant g.

Observe that we can rewrite the state η(A) also in the form

η(A) = Tr
(
π(A)θPθ

)
(9.12)
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where π(A)θ := Uθπ(A)U−1
θ . Formally one can undo the rotation in (9.10) to

obtain (4.14) with Ω∗ := U−1

θ
Ω∗
θ
. However, in the non-equilibrium situation Ω∗ �∈

H! The set A1 is exactly the set on which (4.14) makes sense. Thus we gave a
rigorous meaning to (4.14) and the NESS vector Ω∗.

10. Proof of Theorem 7.2

Our task is to show that the spectrum of (7.1) lies in the upper complex half plane
{Im z > 0} if e �= 0; and that it has a simple eigenvalue at zero and all the other
eigenvalues lie in the upper complex half plane if e = 0. While this analysis is
standard in the case when I is a selfadjoint operator (then the imaginary part
of (7.1) is just PeIδ(L0− e)IPe, manifestly a non-negative operator; see, e.g., [8]),
it needs some more thought in our case, where the interaction is non-selfadjoint.
Let

Vj = π(vj) , and V ′
j = π′(vj) .

The main ingredient of the proof is

Proposition 10.1. Assume Conditions (A). We have

Λe =
(
e−βpHp/2 ⊗ 1lp

)⎡⎣∑
j=1,2

(
eβjHp/2 ⊗ 1lp

)
Λje

(
e−βjHp/2 ⊗ 1lp

)⎤⎦

×
(
eβpHp/2 ⊗ 1lp

)
, (10.1)

where, setting R := (L0 − e+ i0)−1,

Λje = −Pe(Vj − V ′
j )R(Vj − V ′

j )Pe . (10.2)

Notice that (10.1) shows that the spectrum of Λe is independent of βp.

The importance of (10.1) is that it relates Λe to the operators Λje whose
spectral characteristics are well known. Indeed, Λje are the level shift operators
corresponding to the reservoir j coupled to the particle system, studied in [8, 24].

Before proceeding to the proof we examine some consequences of this propo-
sition. We assume Conditions (C) and (D) in addition to Conditions (A).

The case e �= 0. Let us assume that the nonzero eigenvalues of Lp are simple,
i.e., Ei − Ej = Em − En ⇔ i = m, j = n. For a treatment of the more general
case where Ei − Ej = Em − En, for (i, j) �= (m,n), with simple Ej , we refer
to [26]. Since Pe is of rank one Λe is just a complex number, namely the sum of
Λ1e + Λ2e (the dependence on β1, β2 disappears). Under condition (3.5), one has
Im Λe ≥ γ0, where γ0 is a strictly positive constant which is independent of the
inverse temperatures, see [8]). This shows (7.2) and (7.3) for e �= 0.

The case e = 0. Zero is necessarily a degenerate eigenvalue of L0, so the
above reasoning does not apply. In particular, Λ10 and Λ20 do not commute. It is
shown in [24, 26] that

Λj0 = iIm Λj0 =: iΓj0 , (10.3)
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where Im Λj0 := 1
2i (Λj0 − Λ∗

j0). We use here implicitly Condition (C) on the non-
degeneracy of Hp; if the small system has degenerate energy levels then Λj0 are not
purely imaginary [24]. One shows as in [8,24,26] that Γj0 are real matrices having
strictly negative off-diagonal entries, (Γj0)mn < 0, for m �= n, and satisfying

Γj0Ω(βj)
p = 0 , (10.4)

where Ω(βj)
p is the particle Gibbs state at temperature βj . Hence, since

(
e(βp−βj)Hp/2 ⊗ 1lp

)
Ω(βp)
p =

√
tre−βjHp/2

tre−βpHp/2
Ω(βj)
p ,

we see that

Γ0Ω(βp)
p =

∑
j=1,2

(
e(−βp+βj)Hp/2 ⊗ 1lp

)√ tre−βjHp/2

tre−βpHp/2
Γj0Ω(βj)

p = 0 ,

where Γ0 := −iΛ0. Thus, Ω(βp)
p is an eigenvector of the real matrix Γ0 with

eigenvalue zero. Notice that the vector Ω(βp)
p has strictly positive components,

[tre−βpHp/2]−1e−βpEn/2, in the orthonormal basis {ϕn⊗ϕn} of RanχLp=0 (where
Hpϕn = Enϕn, ‖ϕn‖ = 1). Moreover, the off-diagonal elements of the real matrix
(which is not symmetric for β1 �= β2) Γ0 are given by

(Γ0)m,n =
∑
j=1,2

[(
e(−βp+βj)Hp/2 ⊗ 1lp

)
Γj0

(
e−(−βp+βj)Hp/2 ⊗ 1lp

)]
mn

= −π
∑
j=1,2

E2
mne

−(βp−βj)Emn/2

| sinh(βjEmn/2)|
∫
S2
dσ

∣∣[Gj(Emn, σ)
]
nm

∣∣2 (10.5)

for m > n (and similarly for m < n, see also [8,26]). Hence Condition (D) implies
that (Γ0)m,n < 0. A standard Perron–Frobenius argument shows that zero is a
simple eigenvalue of Γ0, and that σ(Γ0)\{0} ⊂ C+. This shows equations (7.3)–
(7.4) for e = 0. It is shown in [8] that the gap at the bottom of the spectrum of
Γj0, j = 1, 2 has a lower bound which is independent of the inverse temperatures.

We now prove the existence of δ0, assuming that Condition (E) is satisfied. If
dimHp = 2 then one eigenvalue of Λ0 is zero and the other equals the trace of Λ0.
Expressions (10.1) and (10.3) show that Tr(Λ0) = i[Tr(Γ10) + Tr(Γ20)]. Thus the
spectral gap of Λ0 is the sum of the gaps of Γ01 and Γ02, which have lower bounds
uniform in the inverse temperatures.

Next take dimHp ≥ 3. For δβ = |β1 − β2| = 0 the matrix Λ0 has the
same spectrum as

∑
j Λj0, see (10.1). An application of the minimax principle

demonstrates that the spectral gap of the latter operator has to be at least as large
as the maximum of the gaps of Γj0, j = 1, 2. For small values of δβ (c.f. (3.6)),
the existence of δ0 follows by perturbation theory.

Finally we consider the case where δβ and β1, β2 are large (see (3.6)). Let us
take β2 = β1 + δβ. As is easily seen from (10.1) we have

σ(Λ0) = iσ
([

Γ10 + (eδβHp/2 ⊗ 1l)Γ20(e−δβHp/2 ⊗ 1l)
])
. (10.6)
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Using the explicit expression for the matrix elements of Γ20 in the basis ϕj ⊗ ϕj
(which can be read off of relation (10.5) for off-diagonal terms, and is easy to obtain
for the diagonal ones), one verifies that the matrix (eδβHp/2⊗1l)Γ20(e−δβHp/2⊗1l)
converges to a lower-triangular matrix Q(β1), in the limit δβ → ∞ (uniformly
in β1), and furthermore, that Q(β1) → D as β1 → ∞, where D is a diagonal
matrix with non-negative entries. The minimax principle implies that all but one
eigenvalues of Γ10 +D are greater than, or equal to the gap of Γ10. From pertur-
bation theory we know that for δβ and β1 sufficiently large (independently of each
other), all but one eigenvalues of the operator Γ10+(eδβHp/2⊗1l)Γ20(e−δβHp/2⊗1l)
must have real part greater than, or equal to half of the gap of Γ10. The existence
of δ0 now follows from (10.6). �

Proof of Proposition 10.1. Let V =
∑2

j=1 Vj and V ′ =
∑2
j=1 V

′
j . By the definition

of the operator I, I := V − V ′
−i/2, and the relation V ′

−i/2 = eL̃/2V ′e−L̃/2 we have

I = V − eL̃/2V ′e−L̃/2 ,

where L̃ := δβpLp + δβ1Lr1 + δβ2Lr2 with δβp = βp − β and δβj = βj − β. Using
that Pee−δβpLp/2 = Pee

−δβpe/2 we decompose

Λe = PeVRV Pe + PeV
′RV ′Pe

− PeVReL̃/2V ′Pee−δβpe/2 − PeV ′e−L̃/2RV Peeδβpe/2 . (10.7)

Notice that V and R commute with 1lp ⊗ eδβpHp/2. Using this and the relation

(1p ⊗ eδβpHp/2)Pe = e−δβpe/2(eδβpHp/2 ⊗ 1p)Pe , (10.8)

we obtain

PeVRV Pe = eδβpe/2Pe

(
e−δβpHp/2 ⊗ eδβpHp/2

)
VRV Pe

= eδβpe/2Pe

(
e−δβpHp/2 ⊗ 1lp

)
VRV

(
1lp ⊗ eδβpHp/2

)
Pe

=
(
e−δβpHp/2 ⊗ 1lp

)
PeVRV Pe

(
eδβpHp/2 ⊗ 1lp

)
.

Next, using (10.8) again, we find

PeVReL̃/2V ′Pee−δβpe/2

= PeVR
(
eδβpHp/2 ⊗ e−δβpHp/2

)
e(δβ1Lr1+δβ2Lr2)/2V ′Pee−δβpe/2

= Pe

(
1lp ⊗ e−δβpHp/2

)
VRe(δβ1Lr1+δβ2Lr2)/2V ′

(
eδβpHp/2 ⊗ 1lp

)
Pee

−δβpe/2

=
(
e−δβpHp/2 ⊗ 1lp

)
PeVRe(δβ1Lr1+δβ2Lr2)/2V ′Pe

(
eδβpHp/2 ⊗ 1lp

)
.
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Treating the other two terms in (10.7) in a similar way, we arrive at

−Λe =
(
e−δβpHp/2 ⊗ 1lp

)
Pe
[
VRV + V ′RV ′

− VRe(δβ1Lr1+δβ2Lr2)/2V ′

− V ′Re(−δβ1Lr1−δβ2Lr2)/2V
]
Pe

(
eδβpHp/2 ⊗ 1lp

)
. (10.9)

We now examine the term in [· · · ]. Write V = V1 +V2, V ′ = V ′
1 +V ′

2 , where, recall,
Vj = π(vj), V ′

j = π′(vj). Notice that we have (1lp⊗1lp⊗PΩ⊗1l2)V1(1lp⊗1lp⊗PΩ⊗
1l2) = 0, and similarly for V2, from which it follows that the expression Pe[· · · ]Pe
in (10.9) splits into a sum

Pe
∑
j=1,2

[
VjRVj + V ′RV ′

j − VjRe(δβ1Lr1+δβ2Lr2)/2V ′
j

−V ′
jRe(−δβ1Lr1−δβ2Lr2)/2Vj

]
Pe .

We consider the j = 1 term. Using that Lr2 commutes with V1, V
′
1 and that

Lr2Pe = 0, we see that

PeV1Reδβ1Lr1+δβ2Lr2V ′
1Pe

= PeV1Reδβ1Lr1/2V ′
1Pe = PeV1Reδβ1L0/2e−δβ1Lp/2V ′

1Pe

= Pe

(
1lp ⊗ eδβ1Hp/2

)
V1Reδβ1L0/2V ′

1

(
e−δβpHp/2 ⊗ 1lp

)
Pe

=
(
eδβ1Hp/2 ⊗ 1lp

)
PeV1Reδβ1(L0−e)/2V ′

1Pe

(
e−δβ1Hp/2 ⊗ 1lp

)
.

All other terms in (10.9) for j = 1, as well as the terms for j = 2, are treated
similarly and one arrives at

−Λe =
(
e−βpHp/2 ⊗ 1lp

) ∑
j=1,2

(
eβjHp/2 ⊗ 1l

)
Pe
[
VjRVj + V ′

jRV ′
j

− VjReδβj(L0−e)/2V ′
j

− V ′
jRe−δβj(L0−e)/2Vj

]
Pe

(
e−βjHp/2 ⊗ 1lp

)(
eβpHp/2 ⊗ 1lp

)
,

where we used δβp − δβj = βp − βj . Hence, −Λe = RHS(10.1) + (e−δpHp ⊗
1lp)R(eδpHp ⊗ 1lp), where

R =
∑
j=1,2

(
eβjHp/2 ⊗ 1l

)
Pe
[
VjR(1 − eδβj(L0−e)/2)V ′

j

+ V ′
jR(1 − e−δβj(L0−e)/2)Vj

]
Pe

(
e−βjHp/2 ⊗ 1lp

)
.

Since L0 implements the free dynamics, we have that eizL0Vje
−izL0 commutes

with V ′
j , for z ∈ C. Using this, writing 1−eδβj (L0−e)/2

L0−e±i0 = − ∫ δβj/2

0 ds es(L0−e) and
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using that PeL0 = ePe, we see that

PeVj
1− eδβj(L0−e)/2

L0 − e− i0 V ′
jPe = −PeV ′

j

1− e−δβj(L0−e)/2

L0 − e+ i0
VjPe .

Consequently, R = 0. This concludes the proof of Proposition 10.1. �

11. Perturbation theory for NESS

In this section we develop a perturbation theory for the NESS η(A) :=〈
Ω∗
θ
, π(A)θΩθ

〉
. The vectors Ω∗

θ
and Ωθ are the zero eigenvectors of the operators

K∗
θ

and Kθ respectively, see (8.10) and (8.11). We derive perturbation expansions
for Ω∗

θ
and Ωθ, see (11.11) and (11.15) below, using the Feshbach maps introduced

in [6, 7], and extended in [5]. We review the definitions and some properties of
these maps referring the reader to [5, 7] for more detail. For simplicity we present
here the original version, [6, 7], though the refined one, [5], the smooth Feshbach
map, is easier to use from a technical point of view.

Let X be a Banach space and let P be a projection on X . Define P := 1−P
and let HP := PHP and RP (H) := PH−1

P
P if HP is invertible on RanP . We

define the Feshbach map FP by the relation FP (H) := P (H −HRP (H)H)P on
the domain

Dom(FP ) ={
H : X → X |HP is invertible, RanP ⊆ Dom(H),RanRP (H) ⊆ Dom(PHP )

}
.

A key property of the maps FP is given in the following statement proven in [7]:

Theorem 11.1 (Isospectrality theorem). (i) 0 ∈ σ(H) ⇐⇒ 0 ∈ σ(FP (H)),
(ii) Hψ = 0 ⇐⇒ FP (H)ϕ = 0 with ϕ = Pψ (“⇒”) and ψ = (1 − RP (H)H)ϕ

(“⇐”).

Let Peρ be defined as

Peρ := χLp=e ⊗ χMθ≤ρ , (11.1)

where χLp=e is the eigenprojection for the operator Lp corresponding to an eigen-
value e ∈ σ(Lp) and χMθ≤ρ is the spectral projection for the self-adjoint operator
Mθ := ImL0,θ corresponding to the spectral interval [0, ρ] (remember that Mθ is
a positive operator).

The following result is proven in [25], Lemma 6.3.

Lemma 11.2. Assume Condition (B). Take ρ0 ∈ (0, σ/2) and let |g| < √
ρ0 g0,

where g0 is given after (3.9). If z ∈ Se then Kθz := Kθ − z ∈ Dom(FPeρ0
), and

the operator K(1)
θz := FPeρ0

(Kθz) acting on RanPeρ0 is of the form

K
(1)
θz = (e− z)1 + Lrθ + g2Λe +O

(
ε(g, ρ0)

)
. (11.2)
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The remainder is estimated in operator norm, ‖O(ε(g, ρ0))‖ ≤ Cε(g
δβ
, ρ0), where

g
δβ

= |g|maxj sup|θ|<θ0 ‖Gj‖δβj ,1/2,θ, with a C independent of δβj, θ, and where
we have set

ε(g, ρ) := |g|ρμ + |g|3ρ−1/2 + |g|2ρ2μ−1 . (11.3)

To unify the following analysis we write Ω#
θ for either Ωθ or Ω∗

θ
. Corre-

spondingly, I#
θ , L0θ# and K#

θ stand for either Iθ or I∗
θ
, for either L0θ or L0θ,

and for either Kθ or K∗
θ
, respectively. We use the shorthand P0 ≡ P0ρ0 and

R0(A) := P 0A
−1

P 0
P 0, where AP := PAP . We will assume that

τ ′ � g2+α , α =
μ− 1

2

μ+ 1
2

. (11.4)

Theorem 11.1 and Lemma 11.2 imply that K#
θ ∈ Dom(FP0 ), that

FP0(K
#
θ )P0Ω

#
θ = 0 , (11.5)

and that the original eigenvector Ω#
θ can be reconstructed as

Ω#
θ =

[
1− gR0(K

#
θ )I#

θ

]
P0Ω

#
θ . (11.6)

We expand R0(K
#
θ ) in this expression into a Neumann series,

Ω#
θ =

N−1∑
n=0

gn
(
−R0

(
L0θ#

)
I#
θ

)n
P0Ω

#
θ +O

((
g

δβ
ρ
−1/2
0

)N)
, (11.7)

for any N ≥ 1, provided that O((g
δβ
ρ
−1/2
0 )) = og(1). The remainder term in (11.7)

is obtained by using a standard estimate on the Nth term of the convergent Neu-
mann series. Indeed, writing

[
R0(L0θ#)I#

θ

]N

= (Mθ + ρ0)−1/2

[
Mθ + ρ0

L0θ#P 0

P 0(Mθ + ρ0)−1/2I#
θ (Mθ + ρ0)−1/2

]N
(Mθ + ρ0)1/2

(11.8)

and using the estimates

|g|∥∥(Mθ + ρ0)−1/2I#
θ (Mθ + ρ0)−1/2

∥∥ ≤ g
δβ
ρ
−1/2
0 (11.9)

(see also Lemma 5.3 of [25]) and
∥∥ M0+ρ0
L0θ#P 0

P 0

∥∥ ≤ C, we obtain

|g|N
∥∥∥∥
[
R0(L0θ#)I#

θ

]N
P0Ω

#
θ

∥∥∥∥ ≤ ρ
−1/2
0

(
g

δβ
ρ
−1/2
0

)N
ρ
1/2
0 . (11.10)

Observe that since g
δβ
ρ−1
0 = og(1) we have

Ω#
θ =

∑
n=0,1

gn
(
−R0

(
L0θ#

)
I#
θ

)n
P0Ω

#
θ + o(g) . (11.11)
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Let K#(1) := FP0(K
#
θ ). As in (11.2) it can be written as

K#(1) = K
#(1)
0 +W# ,

where K#(1)
0 := Lrθ# + g2Λ# with Λ# either Λ0 or Λ∗

0, where Λ0 is given by (7.1)
with e = 0. We assume that δβ varies in the set |δβ| ≤ c, for some c > 0, so that
g

δβ
can be replaced by g. Take ρ0 = g2−2α with α = μ−1/2

μ+1/2 , then Lemma 11.2 gives

W# = O(g2+α) . (11.12)

By Theorem 11.1,
K#(1)P0Ω

#
θ = 0 . (11.13)

Let Q#
0 := χ

K
#(1)
0 =0

= χΛ#=0 ⊗ χLr=0, where χΛ#=0 is the Riesz projection onto

the kernel of Λ#. The operator K#(1)
0 is normal with the simple eigenvalue 0

separated from the rest of the spectrum by a gap ≥ cmin(τ ′, g2) for some c > 0.
The operator K#(1) has also the simple eigenvalue 0, which, by the Kato–Rellich
theorem, (11.12) and the assumption (11.4), is separated from the rest of the
spectrum by a gap ≥ c′ min(τ ′, g2) for some c′ > 0. Hence, we conclude that
K#(1) ∈ Dom(FQ#

0
). Therefore, by Theorem 11.1,

P0Ω
#
θ =

(
1−R

Q#
0
(K#(1))W#

)
Q#

0 Ω#
θ . (11.14)

Since ‖R
Q#

0
(K#(1))‖ ≤ C[min(τ ′, g2)]−1 we have the absolutely convergent per-

turbation expansion

P0Ω
#
θ = C#

∞∑
n=0

(
−R

Q#
0
(K#(1)

0 )W#
)n
ζ# ⊗ Ωr . (11.15)

Here, ζ# ∈ RanχLp=0 is the unique vector in the kernel of Λ#, normalized as

Λ#ζ# = 0 , ‖ζ‖ = 1 , 〈ζ∗, ζ〉 = 1 . (11.16)

(Recall that Λ# is either Λ0 or Λ∗
0, so ζ# is either a null vector, ζ, of Λ0 or a null

vector, ζ∗, of Λ∗
0.) Letting ζ## equal ζ if # = ∗ and letting it equal ζ∗ otherwise,

the constant in (11.15) takes the form C# =
〈
ζ## ⊗ Ωr,Ω

#
θ

〉
.

The overlap 〈ζ∗, ζ〉 can be chosen strictly positive since the ζ# are the
Perron–Frobenius eigenvectors of Λ# (i.e., their components can be chosen non-
negative), and every component of ζ is strictly positive (see below). The last
relation in (11.16) is then achieved by scaling ζ∗ properly. The normalization
〈Ω∗

θ,Ωθ〉 = 1 together with (11.7), (11.12) (11.15) and (11.16) implies that

C∗C = 1 + o(g) . (11.17)

If the condition (11.4), τ ′ � g2+α, does not hold then we have to apply
the Feshbach map iteratively and use a corresponding perturbation theory for
eigenvectors. We omit here this analysis and refer the reader to [5–7] for general
references on such a RG perturbation theory and we will present elsewhere the
RG perturbation theory in our specific case.
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In Section 10 we have shown that NullΛ = CΩp and consequently ζ = Ωp
and the vector Ω0 = ζ ⊗ Ωr = Ωp ⊗ Ωr is our unperturbed state introduced in
Section 6. Recall that Ωp = Ωβp

p is the particle Gibbs state at temperature βp.
Expressions (10.1)–(10.2) for Λ0 imply the following relation among vec-

tors ζ∗ corresponding to different particle temperatures

ζ∗ =

√
Tr e−βpHp

N
(eβpHp/2 ⊗ 1lp)ζ∗|βp=0 . (11.18)

In view of (11.18), it suffices to consider βp = 0.
In general there is no simple expression for the eigenvector ζ∗. However, there

are three cases where such an expression can be obtained. We expand ζ∗|βp=0 in
the basis ϕj ⊗ ϕj as

ζ∗|βp=0 =
∑
j

γjϕj ⊗ ϕj . (11.19)

Here ϕj and Ej are defined after (2.37). Note that the normalization condition
and (2.37) imply that

∑
j γj =

√
N . We have the following results:

(i) If β1 = β2 = β and βp = 0, then

γj =

√
N

Tr e−βHp
e−βEj . (11.20)

(ii) If β1 is fixed and β2 → 0, and βp = 0, then

γj =
1√
N

+O(β2) . (11.21)

(iii) If N = dimHp = 2 and βp = 0, then

γ1 =
√

2α(E)
α(E) + 1

and γ2 =
√

2
α(E) + 1

, (11.22)

where

α(E) = 1 +

∑
j=1,2 gj(E)∑

j=1,2 gj(E)ρj(E)
. (11.23)

Here, we use the notation E := E2 − E1, ρj(E) := 1

eβj E−1
and

gj(E) :=
∫

|k|=|E|

[|Gj(k)12|2 + |Gj(k)21|2
]
dk .

Equation (11.20) follows from (10.1), (10.3) and (10.4). The expressions (11.22)–
(11.23) come simply from solving a two-dimensional eigenvalue problem. Equa-
tion (11.21) follows from a straightforward perturbation theory in β2. See Appen-
dix D for an outline of the proofs.
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12. Entropy production rate for η

In this section we prove Theorem 3.2. Recall that the stationary state η mentioned
in this theorem is, in fact, given in (9.10). To analyze the entropy production,
EP (η), in this state η we use expression (2.24),

EP (η) = (β1 − β2)η(φ1) , (12.1)

which relates it to the heat flow, η(φ1), in the state η. Recall that

φ1 = ig[v1, Hr1] = igη
(
a1(ωG1)− a∗1(ωG1)

)
. (12.2)

If β1 = β2, then η(φ1) = 0, c.f. [19]. We want to show here that η(φ1) > 0 if
β1 > β2. Our proof is based on

Theorem 12.1. Set β = max(β1, β2) and let Ω∗
0 = ζ∗ ⊗ Ωr with Λ∗ζ∗ = 0 (see

(11.16)) and with the vector Ω0 defined in (2.37). Under the conditions of Theo-
rem 3.1, we have

η(φ1) = g2η′ + o(g2)O (δβ) , (12.3)

where, recall, δβ := β1 − β2 and

η′ = 2Re
〈
Ω∗

0, π(v1)Lr1i(L0 + i0)−1e−βL0/2π(v1)Ω0

〉
. (12.4)

Moreover, we have the explicit expression

η′ =
2π√
N

∑
j>i

(
γje

β1Eji − γi
)Eji gji(Eji)2
eβ1Eji − 1

, (12.5)

where Eji = Ej − Ei, gji(E)2 =
∫

R3 d
3k| 〈ϕj , G1(k)ϕi〉 |2δ(Eji − ω). The numbers

γj ≥ 0 are the components of the vector ζ∗, see (11.19), normalized as in (11.16),
at βp = 0. Observe that by (11.20), η′ = 0 for β1 = β2.

The following result shows that η′ is strictly positive for small nonzero tem-
perature differences.

Theorem 12.2. If δβ = β1−β2 > 0 is small and the coupling functions (2.4) satisfy
G = G1 = G2 then the linear term of η′ in δβ is

δβ

2
Zp(βp)

Zp(β1 + βp/2)

∑
j>k

E2
jk gjk(Ejk)

2

eβ1Ej − eβ1Ek
> 0 , (12.6)

where Zp(β) = tr e−βHp is the particle partition function.

Remark. Using (11.22) for the two-dimensional case it is easy to verify that the
linear term of η′ in δβ is strictly positive (without the assumption G1 = G2), see
the proof of Theorem 3.2 below which gives also an explicit expression for η′. Also,
in the general case, if G1 is close to G2 one deduces strict positivity of η′ in the
linear term in δβ by a perturbation argument.
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Proof of Theorem 12.1. To simplify the exposition we restrict ourselves to the case
τ ′ � g2+α, for α = μ−1/2

μ+1/2 , and μ > 3/2. Pick ρ0 = g2−2α. First we prove an
estimate on η(φ1) which is rougher than (12.3) and then we explain how to ob-
tain (12.3). Recall that

η(φ1) =
〈
Ω∗
θ
, π(φ1)θΩθ

〉
. (12.7)

Let Ω#
0 = ζ# ⊗ Ωr and take a number M so large that (g2+α[min(τ ′, g2)]−1)M =

o(g). Substituting expansions (11.7) and (11.15) into the r.h.s. of this expression,
using that (g

δβ
ρ
−1/2
0 )2 = o(g), for ρ0 = g2−2α, α > 1/2, and using that φ1 is

proportional to g, we find

η(φ1) = η0 + η1 + Rem + o(g2) , (12.8)

where

η0 :=
〈
Ω∗

0, π(φ1)Ω0

〉
, (12.9)

η1 := −g
〈
Ω∗

0,
[
IθR0(L0θ)π(φ1)θ + π(φ1)θR0(L0θ)Iθ)

]
Ω0

〉
, (12.10)

Rem =
M∑

m+n≥1

1∑
k,l=0

gk+l
〈(−R0(L0θ)I

∗
θ

)k(−RQ∗
0
(K#(1)

0 )W ∗)mΩ∗
0,

π(φ1)θ
(−R0(L0θ)Iθ

)l(−RQ0
(K(1)

0 )W
)nΩ0

〉
. (12.11)

Here we replaced on the r.h.s the factor C∗C = 1 + o(g) by 1 (see (11.15)
and (11.17)). Using the pull-through procedure and elementary estimates of the
resulting integrals we obtain that

Rem = o(g2) . (12.12)

Since φ1 is linear in creation and annihilation operators, see (12.1), we have

η0 = 0 . (12.13)

It remains to compute η1. Using

(P ρ0 − 1)I#
θ Ω#

0 = O(ρ0) (12.14)

([25] Lemma 5.3), removing the spectral deformation and using that π(φ1) =
g[π(v1), iLr1], we obtain η1 = g2η′ + o(g2), where

η′ = −
〈
Ω∗

0,
[
π(v1)iLr1(L0 + i0)−1I − I(L0 + i0)−1iLr1π(v1)

]
Ω0

〉
. (12.15)

Next, note that the contribution of the v2-part of I to η′ is zero since the resulting
expression is linear in creation and annihilation operators for the first and second
reservoirs separately. The contribution of the π(v1)-part of I is also zero by the
symmetry of (12.15). Hence we have η′ = A−B, where

A =
〈
Ω∗

0, π(v1)iLr1(L0 + i0)−1π′(γi/2(v1))Ω0

〉
,

B =
〈
Ω∗

0, π
′(γi/2(v1))iLr1(L0 + i0)−1π(v1)Ω0

〉
.
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Using that π′(γi/2(v1))Ω0 = Je(βL0−L̃)/2π(v1)Ω0, where L̃ is given after (4.19),
and the fact that Je−L̃/2π(v1)Ω0 = π(v∗1)Ω0 = π(v1)Ω0, we transform

A =
〈
Ω∗

0, π(v1)iLr1(L0 + i0)−1e−βL0/2π(v1)Ω0

〉
.

We use the relations π′(γi/2(v1)) = Je(βL0−L̃)/2π(v1)e−(βL0−L̃)/2J and

JiLr1(L0 + i0)−1π(v1)Ω0 = −iLr1(L0 + i0)−1e−L̃/2π(v1)Ω0 ,

see also (5.1), to find that

B = −〈Ω∗
0, Je

(βL0+L̃)/2π(v1)iLr1(L0 + i0)−1e−βL0/2π(v1)Ω0

〉
.

Finally, since 〈Ju, Jv〉 = 〈u, v〉, JΩ∗
0 = Ω∗

0, LpΩ
∗
0 = 0 and (βL0 − L)Ω∗

0 = 0 we
obtain

B = −〈Ω∗
0, π(v1)iLr1(L0 + i0)−1e−βL0/2π(v1)Ω0

〉
= −A .

Since η′ = A−B this gives (12.4).
Collecting estimates (12.8), (12.12), (12.13) and η1 = g2η′ + o(g2) we find

that
η(φ1) = g2η′ + o(g2) (12.16)

where η′ is given by (12.4). This proves the rough version of (12.3)–(12.4).
Before we refine estimate (12.16) let us show (12.5). We expand the vectors Ω∗

0

and Ω0 in the basis ϕjj ⊗ Ωr, ϕjj = ϕj ⊗ ϕj ,

Ω0 =
n∑
j=1

αjϕjj ⊗ Ωr , Ω∗
0 =

n∑
j=1

γ̃jϕjj ⊗ Ωr (12.17)

with αj ≥ 0,
∑
j α

2
j = 1 and γ̃j ≥ 0,

∑
j αj γ̃j = 1. Plugging the expressions

in (12.17) into the r.h.s. of (12.4), using (2.35) in order to express π(v1) in terms
of creation and annihilation operators, a#

�1 and a#
r1,

π(v1) = a�1
(√

1 + ρ1G1�

)
+ ar1

(√
ρ1G1�

)
+ h.c. ,

where ρ1 = (eβ1ω − 1)−1, pulling through the annihilation operators to the right
and using that π(v1) (or G1�) acts only on the first (left) factor in ϕjj = ϕj ⊗ ϕj ,
we obtain

η′ = −2
∑
j

αj γ̃jIm

×
∫ {

(1 + ρ1)ω
〈
ϕj , G

∗
1(Hp − Ej + ω + i0)−1e−β(Hp−Ej+ω)/2G1ϕj

〉

− ρ1ω
〈
ϕj , G

∗
1(Hp − Ej − ω + i0)−1e−β(Hp−Ej−ω)/2G∗

1ϕj
〉}
d3k .

Inserting the partition of unity 1 =
∑
j |ϕj〉 〈ϕj | into the inner products on the

r.h.s. we obtain furthermore

η′ = 2π
∑
i,j

αiγ̃i

∫
ω| 〈ϕi, G1ϕj〉 |2

{
(1 + ρ1)δ(Eji + ω)− ρ1δ(Eji − ω)

}
d3k .



Vol. 8 (2007) Theory of NESS as a Theory of Resonances 1581

Interchanging the labels in the sum of the first term and noticing that in the
resulting expression the integrals vanish unless Eji > 0, i.e., Ej > Ei, or j > i, we
arrive at

η′ = 2π
∑
j>i

(
αj γ̃je

β1Eji − αiγ̃i
)
Eji gji(Eji)2 (eβ1Eji − 1)−1,

where gji(E)2 :=
∫

R3 d
3k | 〈ϕj , G1(k)ϕi〉 |2δ(Eji−ω). Observing that, due to (11.18),

αiγ̃i = N−1/2γ̃i|βp=0 ≡ N−1/2γi, we arrive at (12.5).
Since η′ = O(δβ) (the energy flow vanishes if β1 = β2) estimate (12.16)

is ineffective if δβ is so small that δβ g2 = o(g2). However, with a little bit more
work (12.16) can be upgraded to estimate (12.3). We sketch a proof of this estimate
without going into much detail. We begin with some notation.

Consider the self-adjoint Liouville operator for equal reservoir temperatures
β2 = β1 = β,

L̃ = L0 + gĨ , (12.18)

where

Ĩ = π̃(v)− π̃′(v) (12.19)

with π̃ = π|β1=β2=β and similarly for π̃′. Define Ω̃ = e−βL̃(l)/2Ω0

‖e−βL̃(l)/2Ω0‖
, where L̃(l) =

L0 + π̃(v). Since the entropy production does not depend on βp we set from now
on βp = β1. The operator K|βp=β1=β2=β = L̃ is selfadjoint, (5.11), and hence
Ω̃∗
θ

= Ω̃θ. From (12.7) we obtain

η(φ1) =
〈
(Ω∗

θ
− Ω̃θ), π(φ1)θΩθ

〉
+
〈
Ω̃θ, π(φ1)θ(Ωθ − Ω̃θ)

〉
+
〈
Ω̃θ, π(φ1)θΩ̃θ

〉
. (12.20)

We consider the last term first. Recall that φ1 = g[v, iHr1] = g[v1, iHr1] and
therefore π(φ1) = π̃(φ1). It follows that

〈
Ω̃θ, π(φ1)θΩ̃θ

〉
=
〈
Ω̃θ, π̃(φ1)θΩ̃θ

〉
=
〈
Ω̃, π̃(φ1)Ω̃

〉
. (12.21)

Note that the r.h.s. of (12.21) describes the heat flow into reservoir r1 for the
equal temperature system. Since the heat flows vanish individually in the equal
temperature case we have shown that the last term in (12.20) vanishes.

To estimate the first two terms on the r.h.s. we use as before expansions (11.7)
and (11.15) for Ω#

θ = Ωθ,Ω∗
θ

and similar expansions (obtained by setting β2 =

β1 = β in (11.7) and (11.15)) for Ω̃θ. As a result we obtain an expression for
(12.20) of the type (12.8)–(12.11) but with some of the powers in Rem, (12.11), re-
placed by the differences, e.g., (−R0(L0θ)Iθ)l−(−R0(L0θ)Ĩθ)l or (RQ0

(K(1)
0 )W )n−
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(RQ0
(K(1)

0 )W )n|β2=β1=β . These differences are estimated by using a telescopic ex-
pansion, e.g.,
(−R0(L0θ)Iθ

)l − (−R0(L0θ)Ĩθ
)l

=
l∑

j=1

(−R0(L0θ)Iθ
)j−1(−R0(L0θ)

)
(Iθ − Ĩθ)

(−R0(L0θ)Ĩθ
)l−j

, (12.22)

and then estimating the first type of the differences in norm while for the second
type we do first the pull-through and contraction procedure and then estimate the
resulting integrals. As a result we have

η(φ1) = −g〈Ω∗
0 − Ω0, π(φ1)θR0(L0,θ)IθΩ0

〉
− g〈R0(L0,θ)[I

∗
θ
Ω∗

0 − ĨθΩ0], π(φ1)θΩ0

〉
− g〈Ω0, π(φ1)θR0(L0,θ)[Iθ − Ĩθ]Ω0

〉
+ o(g2)O(δβ)

= η1 + η2 + o(g2)O(δβ) (12.23)

where η1 is given in (12.10) and

η2 = g
〈
Ω0,

[
ĨθR0(L0,θ)π(φ1)θ + π(φ1)θR0(L0,θ)Ĩθ

]
Ω0

〉
. (12.24)

Since the contribution of the v2-component of Ĩθ is zero we can omit the tilde (∼)
in (12.24). Thus the expression for η2 coincides up to the sign and the substitution
Ω∗

0 → Ω0 with the expression (12.10) for η1, i.e.,

η1 + η2 = −g
〈
Ω∗

0 − Ω0,
[
IθR0(L0,θ)π(φ1)θ + π(φ1)θR0(L0,θ)Iθ

]
Ω0

〉
. (12.25)

We proceed with the r.h.s. of (12.25) exactly as we did above with η1 alone in
equation (12.14), and we arrive at

η(φ1) = 2g2Re
〈
Ω∗

0 − Ω0, π(v1)iLr1(L0 + i0)−1e−βL0/2π(v1)Ω0

〉
+ o(g2)O(δβ) .

(12.3) follows by noticing that

Re
〈
Ω0, π(v1)iLr1(L0 + i0)−1e−βL0/2π(v1)Ω0

〉
= 0 . �

Proof of Theorem 12.2. We want to control the components γj , appearing in the
expression (12.5) for η′. To this end we employ basic analytic perturbation theory
(in δβ) for the matrix family M(δβ) := Λ∗

0(δβ)|βp=0, where we consider β1 to be
fixed. Write Γj instead of Γj0, see (10.3). According to Proposition 10.1 we have
M(δβ) = M0 + δβM1 +O(δβ2), where

M0 = −i(e−β1Hp/2 ⊗ 1l)
{
Γ1(β1) + Γ2(β1)

}
(eβ1Hp/2 ⊗ 1l) , (12.26)

M1 = −i(e−β1Hp/2 ⊗ 1l)
{

1
2
[
Hp ⊗ 1l,Γ2(β1)

]− (∂βΓ2)(β1)
}

(eβ1Hp/2 ⊗ 1l) .

(12.27)
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Let ζ∗ =
∑
j≥0(δβ)jζ∗j . The normalization 〈ζ∗, ζ〉 = 1 (where ζ = Ωp(βp) is the

particle Gibbs state) implies that 〈ζ∗0 , ζ〉 = 1 and
〈
ζ∗j , ζ

〉
= 0, for j ≥ 1. Solving

the zero-oder eigenvalue equation M0ζ
∗
0 = 0 gives

ζ∗0 =
∑
j

γ
(0)
j ϕj ⊗ ϕj , γ

(0)
j =

Zp(βp)
Zp(β1 + βp/2)

e−β1Ej . (12.28)

The first-order eigenvalue equation reads M1ζ
∗
0 +M0ζ

∗
1 = 0, which implies[

Γ1(β1) + Γ2(β1)
]
(eβ1Hp/2 ⊗ 1l)ζ∗1 = ∂β |β1Γ2(β)(eβHp/2 ⊗ 1l)ζ∗0 . (12.29)

We use here that (eβ1Hp/2⊗1l)ζ∗0 is in the kernel ofHp. Let Ψ(β) :=
∑

j e
−βEj/2ϕj⊗

ϕj . Since Γ2(β)Ψ(β) = 0 we have (∂βΓ2)(β)Ψ(β) = −Γ2(β)(∂βΨ)(β), so

∂β |β1Γ2(β)(eβHp/2 ⊗ 1l)ζ∗0 = C(β1)∂β |β1Γ2(β)Ψ(2β1 − β)

= C(β1)Γ2(β1)(Hp ⊗ 1l)Ψ(β1) , (12.30)

where C(β1) = Zp(βp)/Zp(β1 + βp/2). The r.h.s. of (12.30) is a vector in the
orthogonal complement of kerΓ2(β1) = CΨ(β1). Using this fact and (12.30) we
solve (12.29) for ζ∗1 :

ζ∗1 = C(β1)(e−β1Hp/2 ⊗ 1l)
[
Γ1(β1) + Γ2(β1)

]−1Γ2(β1)(Hp ⊗ 1l)Ψ(β1) (12.31)

+ C′(e−β1Hp/2 ⊗ 1l)Ψ(β1) , (12.32)

where the constant C′ is determined by the normalization condition 〈ζ∗1 , ζ〉 = 0.
From expression (12.5) it is clear that the term (12.32) does not contribute to the
value of η′ (this is the same as saying that η′ = 0 for δβ = 0).

Under the assumption G1 = G2 = G we have Γ1(β1) = Γ2(β1) and the
r.h.s. of (12.31) simplifies to an easy expression, which, when used in (12.5), yields
(12.6). �

Proof of Theorem 3.2. If G1 = G2 or if the dimension of the particle system is 2
then we have η′ = ηδβ + O((δβ)2) with η > 0 independent of δβ. This follows
from Theorem 12.2 in the case G1 = G2 and from (11.22), (11.23) for the two-
dimensional case. In the latter case we use that, due to (12.5),

η′ =
2π

α(E21) + 1
(
eβ1E21 − α(E21)

)E21 g21(E21)2

eβ1E21 − 1

and we expand eβ1E21−α(E21) around δβ = β1−β2 = 0. Hence for g and δβ both
small, but independently of each other, we have, by (12.3), EP (ηβ1β2) > 0, which
is the statement of Theorem 3.2. �

Remark. A stronger statement, mentioned in the second paragraph after Theo-
rem 3.2, can be proved as follows. By an abstract result of [19], EP (η) ≥ 0. There-
fore, due to (12.1), η(φ1) ≥ 0 for β1 ≥ β2. Hence, due to (12.3), for g sufficiently
small (depending on δβ in general),

η′ ≥ 0 for β1 ≥ β2 . (12.33)
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Next, the γj are analytic in β1 and β2 separately, away from β1 = 0, β2 = 0.
To show this, we proceed as follows. From the explicit form of the level shift op-
erator Λ∗

0, given in Proposition 10.1 and equation (10.5) and similar expressions
for diagonal elements, we know that Λ∗

0 is analytic separately in β1 and β2, every-
where except for β1 = 0, β2 = 0. We also know that for each β1, β2 nonzero, Λ∗

0

has a simple eigenvalue at zero (since Λ0 does). It follows from the Kato–Rellich
theorem that we can find a zero-eigenvalue eigenvector ζ∗1 , which is analytic in
β1, β2. Next, we have to normalize that vector s.t. its overlap with Ωp is unity.
This yields ζ∗ = 〈ζ∗1 ,Ωp〉−1ζ∗1 . Since 〈ζ∗1 ,Ωp〉 cannot vanish, we have that ζ∗ is
analytic. Finally, the γj of Theorem 12.1 are the components of ζ∗, with βp = 0.
From (11.18) we see that analyticity of the components of ζ∗ in β1, β2 is true re-
gardless of what βp is. Hence, the γj are analytic separately in β1, β2, for β1 �= 0,
β2 �= 0.

Analyticity of the γj and expression (12.5) show that

η′ is analytic separately in β1 and β2, for β1 �= 0, β2 �= 0 . (12.34)

Equations (11.21) and (12.5) imply that

η′ > 0 if β1 is fixed and β2 is sufficiently small . (12.35)

Relations (12.33)–(12.35) imply η(φ1) > 0 if β1 > β2 for almost all values of
(β1, β2) ∈ (0,∞) × (0,∞), in the sense that for fixed β1 ∈ (0,∞), η′ can vanish
only for finitely many values of β2 in any bounded subset of (0,∞). The same
holds for β1 and β2 interchanged.

Appendix A. Proof of existence of dynamics

In this appendix we prove the existence of dynamics (2.12). Recall the defini-
tion of the operator L(�) := L0 + gπ(v) and the one-parameter group σt(B) :=
eitL

(�)
Be−itL

(�)
, B ∈ π(A)′′.

Proposition A.1. Assume the operators vn ∈ A satisfy (2.13). Then for any state ψ
normal w.r.to ω0 the integrands on the r.h.s. of (2.12) are continuous functions,
the series is absolutely convergent, the limit exists and equals

ψt(A) = Tr
(
ρσt

(
π(A)

))
(A.1)

where ρ is a positive, trace-class operator defined by ψ(A) := Tr(ρπ(A)). In par-
ticular, ψt(A) is independent of the approximating operators.

Proof. Let vn ∈ A be an approximating sequence for the operator v satisfying
(2.13). We define the selfadjoint operators L(�)

n := L0+gπ(vn) on the dense domain
D(L0). Let the one parameter group σt(n) on π(A) be given by

σt(n)(B) := eitL
(�)
n Be−itL

(�)
n .
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Set σt0(π(A)) := π(αt0(A)) and let ψ be an ω0-normal state on A, i.e.,

ψ(A) = Tr
(
ρπ(A)

)
(A.2)

for some positive, trace-class operator ρ on H of trace 1. Then using the definition
Vn = π(vn) we find

ψ
([
αtm0 (vn), · · ·

[
αt10 (vn), αt0(A)

] · · · ])=Tr
(
ρ
[
σtm0 (Vn), · · ·

[
σt10 (Vn), σt0(A)

] · · · ]
)
.

(A.3)
Clearly the r.h.s. is continuous in t1, . . . , tm and therefore the integrals in (2.12)
are well defined. Since the r.h.s. of (A.3) is bounded by (c‖Vn‖)m‖σt0(A)‖, the
series on the r.h.s. of (2.12) converges absolutely. In fact, using the Araki–Dyson
series

σt(n)

(
π(A)

)
=

∞∑
m=0

(ig)m
∫ t

0

dt1 · · ·
∫ tm−1

0

dtm

[
σtm0

(
π(vn)

)
, · · ·

· · ·
[
σt10

(
π(vn)

)
, σt0

(
π(A)

)] · · ·
]
, (A.4)

one can easily see that the series in (2.12) is nothing but the Araki–Dyson expan-
sion of the function Tr(ρσt(n)(π(A))). Thus we have shown that the r.h.s. of (2.12)
is equal to limn→∞ Tr(ρσt(n)(π(A))).

Now, Vn converges to V strongly on the dense set C := Hp ⊗ Hp ⊗
Span{π(A)Ω0}, where A ranges over all polynomials in creation and annihilation
operators a∗j (f), j = 1, 2, with f ∈ L2

0. This follows from (2.13) and the relation

‖(Vn − V )π(A)Ω0‖2 = ω0

(
A∗(v∗n − v∗)(vn − v)A

)
. (A.5)

Hence L(�)
n converges to L(�) strongly on C. The set C is a core for both L(�)

n and L(�).
(This can be seen by using the GJN commutator theorem, [13], Theorem 3.1, by
taking Y = Λ + N + 1l for the comparison operator in this theorem, and by
noticing that C is a core for Y . The latter fact follows from [30], Corollary 2 to
Nelson’s analytic vector theorem X.39.) It follows from Theorem VIII.25 of [29]
that L(�)

n converges to L(�) in the strong resolvent sense as n→∞. In particular,
eitL

(�)
n → eitL

(�)
strongly, so Tr(ρσt(n)(π(A))) → Tr(ρσt(π(A))) which, in particular,

shows (A.1). �

Appendix B. Positive temperature representation

B.1. Gluing

In this appendix, we represent the Hilbert space H in a form which is well suited
for a definition of the translation transformation. This representation is due to [18].

Consider the Fock space

F := F
(
L2
(
X × {1, 2})) , X = R× S2 (B.1.1)
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and denote x = (u, σ) ∈ X . The vacuum in F is denoted by Ω̃r. The smeared-out
creation operator a∗(F ), F ∈ L2(X × {1, 2}) is given by

a∗(F ) =
∑
α

∫
X

F (x, α)a∗(x, α)

and analogously for annihilation operators. The CCR read

[
a(x, α), a∗(x′, α′)

]
= δα,α′δ(x − x′) .

Following [18], we introduce the unitary map

U :
[
F(L2(R3)

)⊗F(L2(R3)
)]⊗[F(L2(R3)

)⊗F(L2(R3)
)]→ F

(
L2
(
X×{1, 2}))

(B.1.2)
defined by

U
(
[Ωr1 ⊗ Ωr1]⊗ [Ωr2 ⊗ Ωr2]

)
:= Ω̃r (B.1.3)

and

U
([
a∗(f1)⊗ 1 + 1⊗ a∗(g1)

]⊗ 1⊗ 1

+ 1⊗ 1⊗ [
a∗(f2)⊗ 1 + 1⊗ a∗(g2)

])
U−1 := a∗(f ⊕ g) , (B.1.4)

where, for x = (u, σ) ∈ X ,

[f ⊕ g] (u, σ, α) :=

{
u fα(uσ) , u ≥ 0 ,
u gα(−uσ) , u < 0 .

(B.1.5)

This map is extended to the Hilbert space H = Hp ⊗ F in the obvious way. We
keep the same notation for its extension.

The operators Lr1 ⊗ 1r2 + 1r1 ⊗Lr2 and Nr1 ⊗ 1r2 + 1r1 ⊗Nr2 are mapped
under U to the (total) free field Liouvillian and number operator given by

Lf = dΓ(u) =
∑
α

∫
X

a∗(x, α)ua(x, α) ,

N = dΓ(1l) =
∑
α

∫
X

a∗(x, α)a(x, α) .

Moreover, the interaction takes the form

UIU−1 = a∗(F1) + a(F2) , (B.1.6)
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where F1,2 ∈ L2(X×{1, 2},B(Hp⊗Hp)) are explicitly given by (x = (u, σ) ∈ X =
R× S2)

F1(u, σ, α) =
√

u

1− e−βαu
(B.1.7)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
u
(
Gα(uσ)⊗ 1lp − e−βαu/2eδβαu/2 1lp ⊗ αi δβp/2

p

(
Gα

∗
(uσ)

))
,

u > 0
−√−u

(
G∗
α(−uσ)⊗ 1lp − e−βαu/2eδβαu/2 1lp ⊗ αi δβp/2

p

(
Gα(−uσ)

))
,

u < 0

and

F2(u, σ, α) =
√

u

1− e−βαu
(B.1.8)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
u
(
Gα(uσ)⊗ 1lp − e−βαu/2e−δβαu/2 1lp ⊗ α−i δβp/2

p

(
Gα

∗
(uσ)

))
,

u > 0
−√−u

(
G∗
α(−uσ)⊗ 1lp − e−βαu/2e−δβαu/2 1lp ⊗ α−i δβp/2

p

(
Gα(−uσ)

))
,

u < 0

B.2. Complex deformation

Now we express the complex deformation operators Uθ introduced in Section 6
in the glued Hilbert space. For a function F ∈ L2 (X × {1, 2}) and θ = (δ, τ),
x = (u, σ) ∈ X , define

[ũθF ] (u, σ, α) = e
1
2 δsgn(u)F

(
jθ(u), σ, α

)
, (B.2.1)

where
jθ(u) = eδsgn(u)u+ τ , (B.2.2)

and sgn is the sign function, sgn(u) = 1 if u ≥ 0, sgn(−u) = −sgn(u). Next, we
lift the operator family ũθ from L2(X × {1, 2}) to the operator family, Ũθ, on
Hp ⊗F(L2(X × {1, 2})) in a standard way (cf. (6.1)). The family Ũθ is related to
the family Uθ introduced in Section 6 as

Uθ = U−1ŨθU .

The operator K̃ := UKU−1 becomes after spectral deformation

K̃θ := ŨθKŨ
−1
θ = L̃0,θ + gĨθ (B.2.3)

where

L̃0,θ = Lp + cosh δ Lf + sinh δ Λf + τN , (B.2.4)

Λf = dΓ(|u|) =
∑
α

∫
X

a∗(x, α)|u|a(x, α) ,

Ĩθ = a∗(F1,θ) + a(F2,θ) with Fj,θ = ũθFj . (B.2.5)
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This spectral deformation can be translated to the original space H as

Kθ := UK̃θU
−1 = L0,θ + gIθ (B.2.6)

where L0,θ := U−1L̃0,θU is given by (6.14) and

Iθ = U−1ĨθU . (B.2.7)

Appendix C. The C∗-algebra A1

Proposition C.1. Let the algebras A1 and A be defined by (2.17) with Danal given
in the proof below, and (2.7), respectively. Then A1 is strongly dense in A.

Proof. Let L2
1 = {f a.e. continuous, ‖f‖2

L2
1

:=
∫ |f(k)|2(|k|−1 + 1)d3k < ∞}.

Recall the real linear map γ̃β defined in (3.7). Using that for x ≥ 0, max(1/x, 1) ≤
1+e−x

1−e−x ≤ 4 max(1/x, 1), we obtain

c||f ||2L2
1
≤ ‖γ̃βf‖2L2 =

∫
S2
dσ

∫ ∞

0

du
1 + e−βu

1− e−βu u2 |f(uσ)|2 ≤ C‖f‖2L2
1
, (C.1)

so γ̃β is bounded and invertible (on R := γ̃βL
2
1 ⊂ L2), and γ̃−1

β is a (real linear)
bounded map. We have the equivalence

g ∈ R ⇔ g(u, σ) = −eβu/2g(−u, σ) for a.e. u ∈ R

and
∫

R

du

∫

S2

dσ|g(u, σ)|2 <∞ . (C.2)

Let R0 := {g ∈ R, ebu
2
g ∈ L2 for some b ≥ 0} ⊂ R. The set R0 is dense in R

and (C.2) implies that

R0 =
{
eβu/4h| : ebu2

h ∈ L2 for some b > 0 and h(u, σ) = −h(−u, σ)
}
. (C.3)

Given g = eβu/4h ∈ R0, define hε := Gε ∗ h, the convolution in the variable u of h
with the Gaussian Gε(u) := ε−1G(u/ε), where G(u) = π−1/2e−u

2
and ε > 0. hε is

continuous (actually analytic), satisfies ebu
2
hε ∈ L2, and since Gε(·) is real valued

and odd:
hε(u, σ) = −hε(−u, σ) .

Therefore, gε := eβu/4hε ∈ R0. Since hε → h in L2, we conclude that gε → g in L2

as ε→ 0. Clearly, gε extends to an entire function z �→ gε(z, σ). Define the set

Ranal :=
{
eβu/4hε| h satisfies the conditions on r.h.s. of (C.3), ε > 0

}
.

Ranal is a subset of R that is dense in R. Since γ̃−1
β is bounded, then Danal :=

γ̃−1
β (Ranal) is dense in L2

1. Since L2
1 is dense in L2, we conclude that Danal is also

dense in L2.
Define A1 as in (2.17) with Danal given above. Since Danal is dense in L2, A1

is strongly dense in A (defined by (2.7)). Next we have for real θ

Uθπ
(
Ap ⊗W (f1)⊗W (f2)

)
Ω = πp(Ap)⊗W

(
(γ̃βf1)θ

)⊗W (
(γ̃βf2)θ

)
Ωθ (C.4)
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where the map g → gθ is defined by gθ(u, σ) := g(jθ(u), σ) with the function jθ
defined in (A2.2) and where we understand the Weyl operators on the r.h.s. as
acting on the (glued) GNS space and Ωθ given in the same representation. Using
that θ → (γ̃βfj)θ are analytic for fj ∈ Danal and (γ̃βfj)θ ∈ L2(R× S2) as long as
| tan(Im δ)| < b

1+b and expanding W ((γ̃βfj)θ) into the Taylor series and Ωθ into
the Dayson-Araki one, one can show the r.h.s. of (C.4) has an analytic continuation
in θ into the neighbourhood of R given by{

θ ∈ C
2
∣∣| tan(Im δ)| < b

1 + b
and |Im τ | < β−1

}
. �

Appendix D. The vectors ζ∗

In this appendix, we outline the calculation of the vectors ζ∗ in the special cases
mentioned in (11.18)–(11.23). As mentioned after (11.18), we may restrict our
attention to βp = 0.

(i) β1 = β2 = β. Proposition 10.1 gives

Λ∗
0 =

[
e−βHp/2 ⊗ 1l

]
(Λ∗

10 + Λ∗
20)

[
eβHp/2 ⊗ 1l

]
.

Therefore,
[
eβHp/2 ⊗ 1l

]
ζ∗ must be in the kernel of Λ∗

10+Λ∗
20, which is spanned

by Ωβp . Thus

ζ∗ ∝
[
e−βHp/2 ⊗ 1l

]∑
j

e−βEj/2ϕj ⊗ ϕj =
∑
j

e−βEjϕj ⊗ ϕj .

The normalization is given by setting 〈Ω(βp=0)
p , ζ∗〉 = 1. This yields the ex-

pression (11.20).
(ii) Proposition 10.1 and equation (10.3) imply that

Λ∗
0 = iΓ10 +O(1) (D.1)

where the operator O(1) is bounded as β2 → 0. The matrix elements of
Γ10 = Γ10(β2) in the basis {ϕn ⊗ ϕn} are (see [8], equations (B21)–(B22))

(Γ10)m,n = δm,n
∑

k=0,k �=m
eβ2Emk/2ηmk − (1 − δmn)ηmn ,

where δmn is the Kronecker symbol, and where

ηmn = 2πE2
mn

eβ2|Emn|/2

eβ2|Emn| − 1

∫
S2
dσ|G2(|Emn|, σ)mn|2 .

We expand Γ10 in β2:

Γ10 =
1
β2

Γ′ +O(1) , (D.2)
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where O(1) is bounded as β2 → 0, and where

(Γ′)m,n = 2πδm,n
∑

k=0,k �=m
|Emk|

∫
S2
dσ|G2(|Emk|, σ)m,k|2

− 2π(1− δmn)|Emn|
∫
S2
dσ|G2(|Emn|, σ)m,n|2 .

It is obvious that the vector with constant coordinates [1, 1, . . . , 1]T is in the
kernel of Γ′, and, by the Perron–Frobenius theorem, that zero is a simple
eigenvalue of Γ′.

Hence, we see from (D.1) and (D.2), by perturbation theory, that the
vector in the kernel of Λ∗

0 is of the form ζ∗ ∝ [1, 1, . . . , 1]T +O(β2), as β2 → 0.
The proper normalization 〈Ω(βp=0)

p , ζ∗〉 = 1 yields (11.21).
(iii) dimHp = 2. Let E = E2 − E1 > 0. We use Proposition 10.1 and formula

(10.5) to obtain the following expression for the level shift operator Λ0:

Λ0 = 2πiE2

[
a −a
−b b

]
,

where

a =
∑
j=1,2

(eβjE − 1)−1

∫
S2
dσ

∣∣[Gj(E, σ)
]
12

∣∣2 ,

b =
∑
j=1,2

eβjE

eβjE − 1

∫
S2
dσ

∣∣[Gj(E, σ)
]
12

∣∣2 .

It is easily seen that Ω(βp=0)
p ∝ [1, 1]T is in the kernel of Λ0, as it should be.

The eigenvalues of Λ0 are thus zero and TrΛ0 = 2πiE2(a+b) �= 0. The kernel
of Λ∗

0 is spanned by C[b/a, 1]T , so ζ∗ ∝ [b/a, 1]T = b
aϕ1 ⊗ ϕ1 + ϕ2 ⊗ ϕ2. The

normalization is given by setting 〈Ω(βp=0)
p , ζ∗〉 = 1. This yields the expressions

(11.22), (11.23).
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