
REVIEW Open Access

Sex differences, gonadal hormones and the fear
extinction network: implications for anxiety
disorders
Kelimer Lebron-Milad and Mohammed R Milad*

Abstract

Convergent data from rodents and human studies have led to the development of models describing the neural
mechanisms of fear extinction. Key components of the now well-characterized fear extinction network include the
amygdala, hippocampus, and medial prefrontal cortical regions. These models are fueling novel hypotheses that
are currently being tested with much refined experimental tools to examine the interactions within this network.
Lagging far behind, however, is the examination of sex differences in this network and how sex hormones
influence the functional activity and reactivity of these brain regions in the context of fear inhibition. Indeed, there
is a large body of literature suggesting that sex hormones, such as estrogen, do modulate neural plasticity within
the fear extinction network, especially in the hippocampus.
After a brief overview of the fear extinction network, we summarize what is currently known about sex differences
in fear extinction and the influence of gonadal hormones on the fear extinction network. We then go on to
propose possible mechanisms by which sex hormones, such as estrogen, may influence neural plasticity within the
fear extinction network. We end with a discussion of how knowledge to be gained from developing this line of
research may have significant ramifications towards the etiology, epidemiology and treatment of anxiety disorders.
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Background
There are now substantial data indicating that struc-
tural, cellular and molecular differences exist between
the male and female brains in regions that are important
for cognition, memory and affect, such as the hippocam-
pus, amygdala and prefrontal cortex. Some of these dif-
ferences may have clinical relevance, as marked
disparities in disease incidence, manifestation, prognosis
and treatment have been observed between the sexes.
For example, men have a higher prevalence of condi-
tions that emerge early in development, such as autism,
attention deficit hyperactivity disorder and schizophre-
nia. Women, on the other hand, have a higher preva-
lence of disorders that emerge in adolescence or
adulthood, such as major depression and anxiety disor-
ders. Surprisingly, very little is known about the neural
mechanisms that underlie the expression of sex

differences in psychiatric disorders. A 2001 report by
the Institute of Medicine highlighted the need to con-
duct scientific studies at the cellular, molecular and
whole organism level that take into account sex as a
variable to investigate the neural mechanisms that lead
to epidemiological differences in psychiatric disorders.
The need to examine sex differences in the network

mediating fear learning and its extinction can be sur-
mised from two different perspectives. From a clinical
perspective, we need to understand what contributes to
the significant epidemiological differences in psychiatric
disorders that are characterized by exaggerated fear and
anxiety, such as post traumatic stress disorder. From a
basic neuroscience perspective, it is essential that we
understand how male and female brains differ in proces-
sing fundamental neurobiological phenomena such as
emotional learning and memory. There is now a clear
indication that failure in the function of brain regions
that mediate fear learning and fear inhibition may be
associated with the psychopathology of anxiety disorders
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[1-5]. Sexual dimorphism in the amygdala, hippocampus
and medial prefrontal cortices is well documented [6,7].
These brain regions also contain elevated levels of estro-
gen receptors [8-10]. Thus, the structural and functional
differences in these brain regions between the sexes may
explain in part, or contribute to, some of the basic and
clinical differences observed between men and women.
In examining the literature pertinent to learning and
memory, fear conditioning, and fear extinction, it is
astonishing to note that of all that we have learned
about these processes, less than 2% of this research has
been focused on the female brain (Figure 1).

The fear extinction network: a brief overview
Review of the fear extinction literature in general is
beyond the scope of this article. We direct the reader to
some recent reviews on fear extinction that focused on
the translational aspects of this line of research [11], the
general clinical relevance [12-16] and the molecular
machinery of fear extinction [17]. Our review of fear
extinction will be brief with the objective of setting the
stage for the points we intend to make regarding sex
differences in, and estrogen’s influence on, the fear
extinction network.
Components of the fear extinction network
Early studies of conditioned fear extinction showed that
blockade of N-Methyl-D-aspartic acid (NMDA) recep-
tors within the amygdala impair the extinction of fear
potentiated startle [18]. A number of studies subse-
quently showed that lesion or pharmacological manipu-
lations of the basolateral amygdala (BLA) and the
intercalated GABAergic neurons within the amygdala
interfere with fear extinction learning [19-21]. Electro-
physiological data recorded from the BLA during fear
extinction indicate the existence of two neural popula-
tions: one signals fear and the other signals fear

inhibition or extinction [22]. Thus, in addition to its
role in fear acquisition [23], the amygdala appears to
also play a critical role in fear extinction [24,25].
In addition to the amygdala, the infralimbic (IL)

region of the rat ventromedial prefrontal cortex
(vmPFC) appears critical for the consolidation and
retrieval of the extinction memory after a delay. Lesions
[26-28], pharmacological manipulations [24,29,30] and
electrophysiological recording [31] studies implicate the
IL in extinction memory consolidation and expression.
Moreover, electrical stimulation of IL simulates extinc-
tion memory [32,33]. Subsequent studies have further
supported these findings using different experimental
tools, including measuring intrinsic excitability of IL
neurons [30,34,35], using metabolic mapping [36],
potentiation of thalamic inputs to IL [37], and manipu-
lations of hippocampal inputs to IL [38,39].
Another key structure that plays a role in fear extinc-

tion is the hippocampus. While its specific role in fear
extinction is currently being investigated, it is likely that
the hippocampus learns about the context in which fear
learning took place and learns about the context in
which extinction learning takes place [40,41]. During
extinction recall, the hippocampus can, depending on
the context, allow the expression of either the fear
memory via activation of the amygdala fear neurons, or
safety memory via activation of IL neurons [42]. A num-
ber of studies have now shown that the interaction
between the hippocampus and IL during fear extinction
is key to the success of extinction memory consolidation
and expression [41,43-45].
Neuroimaging studies have translated these findings to

the human brain using comparable fear conditioning
paradigms, some of which use contextual manipulations
of fear conditioning and extinction [46-49]. Imaging stu-
dies began by implicating the human amygdala in fear
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conditioning and also during extinction learning
[46,50,51]. Recent functional magnetic resonance ima-
ging studies (fMRI) designed specific paradigms to
examine extinction recall and found that, like the rat IL,
the human vmPFC increased activation to the extin-
guished cue during extinction recall; the level of activa-
tion positively correlates with the extinction recall
magnitude [46,47,51]. Thickness of the vmPFC is also
correlated with magnitude of extinction recall [52,53].
Like the amygdala and vmPFC, activation of the hippo-
campus during fear extinction is reported in a number
of imaging studies during contextual conditioning [48]
and extinction memory recall [47,51]. Deactivation of
the hippocampus at the time of the delivery of the
unconditioned stimulus (US) has also been reported in
humans [54].
The molecular machinery mediating learning not to fear
There now exists a large database regarding the molecu-
lar machinery involved in fear extinction within the
amygdala, hippocampus and IL in rodents. In BLA,
interfering with mitogen activated protein kinase
(MAPK), phosphoinositide 3-kinase (PI3-K), immediate
early genes cfos and early growth response protein 1
(EGR-1) prevented consolidation of extinction
[17,24,41]. Protein synthesis in BLA is also necessary for
fear extinction [55]. Extinction training leads to struc-
tural changes in BLA. For example, mRNA for the
brain-derived neurotrophic factor (BDNF) is up-regu-
lated [56]. Furthermore, rats with lentiviral-induced
reduction in BDNF receptors in the BLA can extinguish
normally within a session, but were unable to recall
extinction the following day, consistent with a role of
BLA in consolidation of extinction [56]. In IL, extinction
memory requires NMDA receptor activation [57,58],
protein kinase A [17], MAPK [59], cannabinoid recep-
tors [60], and protein synthesis [17,29]. In the hippo-
campus, extinction of context conditioning requires
protein synthesis [61] cyclic adenosine monophosphate
(c-AMP) [62], BDNF [43] and a number of protein
kinases and their regulators [63].

Sex differences during conditioning and its extinction
A number of studies have investigated differences
between females and males in learning and memory
using a number of behavioral tasks. For example,
females acquire eye-blink conditioning at a faster rate
relative to males [64]. In inhibitory avoidance tasks,
females outperform males in escaping during a one-way
avoidance task and a two-way avoidance task [65]. Stu-
dies conducted to examine sex differences in the acqui-
sition of cued and contextual fear conditioning showed
that male rodents exhibit increased contextual and cued
fear conditioning relative to females [66-70], whereas

other studies failed to show sex differences in these
learning tasks [71].
Relative to fear acquisition, few studies have investi-

gated potential sex differences during extinction learning
and recall [72,73]. We showed that sex differences in
fear extinction are influenced by the phase of the
estrous cycle in female rats and the menstrual cycle in
women [74-76]. When not taking cycle phase into con-
sideration, differences in fear extinction recall were not
noted in either female rats or in naturally cycling
women. When females were divided into low and high
endogenous estradiol groups, however, sex differences
emerged. During extinction recall, male rats showed
comparable levels of extinction retention to female rats
with high estradiol; both were significantly higher than
females with low estradiol [75]. The same pattern of
results was observed in women. That is, men’s extinc-
tion retention was comparable to that of women with
high estradiol; and both groups showed significantly
higher levels of extinction retention compared to
women with low estradiol [76]. Thus, the lack of sex dif-
ferences reported in previous studies or the discrepant
results between studies may be the result of not taking
into consideration the cycle phase of the animals being
tested. These data also raise the following question:
could sex hormones influence the learning, consolida-
tion and plasticity typically associated with fear extinc-
tion in the female brain?

Sex hormones influencing fear extinction in the female
rat and in women
The data reviewed above indicate that sex hormones in
rodents and humans may contribute to differences in
fear learning and fear extinction. In support of this,
estrogen treatment in ovariectomized female rats
enhanced the acquisition of fear conditioning [70,77]
and fear potentiated startle [78]; though elevated estro-
gen levels have been associated with reduced contextual
conditioning in another study [67]. A few studies have
shown that estrogen facilitated the extinction of passive
avoidance [79] and conditioned taste aversion [80]. To
date, there are few published studies that specifically
examined the role of sex hormones on fear extinction
learning and its subsequent recall. One exception is
Chang et al., (2009), who have recently shown that infu-
sion of estrogen into the hippocampus facilitates extinc-
tion of context conditioning and enhances hippocampal
long term potentiation (LTP) [81].
We have recently conducted a number of experiments

examining how endogenous fluctuations and exogenous
manipulations of sex hormones, particularly estrogen
and progesterone, influence fear extinction in female
rats. A diagram of the natural fluctuations of sex
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hormones during the estrous cycle in rats and the men-
strual cycle in women is shown in Figure 2. We
observed that naturally cycling females exhibited the
least amount of freezing during extinction recall when
they underwent extinction learning during the proestrus
phase (high estrogen and progesterone) of the estrous
cycle [75]. These findings suggest that estrogen and/or
progesterone may facilitate the consolidation of extinc-
tion learning (Figure 3B). In support of this, systemic
pre- or post-extinction administration of estradiol into
female rats undergoing extinction learning in the metes-
trus phase (low estrogen and progesterone) significantly
reduced freezing during recall (Figure 4a, b) [75]. Sys-
temic blockade of estrogen receptors alpha (ERa) and
estrogen receptor beta (ERb) in female rats undergoing
extinction in the proestrus phase significantly increased
freezing [75]. In a later study, we observed that adminis-
tration of ERb but not ERa agonists were able to facili-
tate extinction recall in female rats undergoing
extinction training in the metestrus phase of the cycle
[74]. These data provide strong evidence that cycling
sex hormones, estradiol in particular, in female rats do
indeed influence extinction consolidation, possibly via
the selective activation of the ERb receptors.
In women, neuroimaging studies have shown that

measures of fear and arousal are associated with changes
in hormonal levels throughout the menstrual cycle
[67,82,83]. Interestingly, increased vmPFC activation was
observed in women in the luteal phase relative to those
in the early follicular phase of the menstrual cycle while
performing a Go-No-Go Task [84], suggesting that
estrogen may facilitate the functional activation of the
vmPFC. We have conducted an initial psychophysiologi-
cal study to assess the influence of the menstrual cycle

phase on recall of fear extinction in healthy women, and
found that natural fluctuations of gonadal hormones do
modulate extinction recall [85]. Women with high estro-
gen exhibited significantly enhanced extinction recall
(that is, less fear) relative to women with low estrogen
levels [76] (Figure 3A). In a more recent study, we repli-
cated the effect of facilitated extinction recall in women
with high estrogen and found that the increased estro-
gen levels in these women is associated with increased
vmPFC, hippocampal and amygdala activation during
extinction recall (Figure 5), further supporting the idea
that estrogen may be playing a critical role in extinction
memory consolidation [74].

How might estrogen modulate extinction recall?
Estrogen and its receptors
In females, estrogen is primarily produced by the ovar-
ies, while in males testosterone is produce by the testis
and then aromatized into estrogen [86]. Estrogen can
also be synthesized in brain regions, such as the hippo-
campus [87]. The most potent circulating estrogen is
17b-estradiol and the most characterized ERs are ERa
and ERb [88]. These receptors belong to the nuclear
receptor superfamily and can be localized in the nucleus
as well as in the cytoplasm of the cell [88]. ERa and
ERb are coded by different genes but share similar
DNA-binding and ligand-binding domains. Estrogen
binds to either ERa or ERb through its estrogen
response element DNA binding site. These result in
receptor dimerization and subsequence gene transcrip-
tion [89].
Localization of the estrogen receptors
Both receptors are located throughout the rostral-caudal
extent of the brain and spinal cord, including regions of
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Figure 2 The menstrual cycle and the estrous cycle [164].
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the fear circuitry [90,91]. Previous studies have shown
that expression of ERa and ERb overlap in many brain
regions, such as the bed nucleus of the stria terminalis,
medial and cortical amygdaloid nuclei, periaqueductal
grey and locus coeruleus [91]. However, differences in
expression have also been shown where one type of
receptor is either expressed alone or at higher concen-
trations relative to the other. For example, ERa is the
predominant receptor expressed in the ventromedial
nucleus of the hypothalamus while ERb is most preva-
lent in the hippocampus [92]. ERa and ERb are
expressed in the amygdala while ERb is mostly
expressed in PFC [93-95]. Activation of these two types
of receptors leads to different behavioral consequences.
Accumulating evidence now indicates that selective ERb
agonists typically exert potent anxiolytic activity when
animals were tested in a number of behavioral para-
digms [91,96,97]. In contrast, selective ERa agonists
were found to be anxiogenic and correspondingly
increased the hormonal stress response [91].
Sex differences in the estrogen receptors
ERa and ERb have similar distributions in male and
female brains, although subcellular distributions of ER
to the nucleus, cytoplasm, dendrites and nerve terminals
have been reported to be different in male and female
human hypothalamus [98]. Although the functional con-
sequences of these differences remain to be determined,
this could indicate differential effects of estrogen in the
male versus female brains regarding cellular processes,
such as neurite extension, synaptic plasticity and mito-
chondrial energy regulation via mitochondrial ERs.

There is also evidence for sex differences in intracellular
signaling, expression of co-regulatory proteins, and in
the response of the brain ER/aromatase system to injury
[88].
Estrogen-induced molecular and cellular changes
The influence of estrogen on molecular and cellular
changes in the brain has been examined mostly in the
hippocampus [99,100] and in the hypothalamus [88].
Hippocampal estrogen enhances synaptogenesis and
long-term potentiation (LTP) [101], increases the forma-
tion of dendritic spines [102,103], increases cell prolif-
eration [104], and increases neural excitability [105,106].
Estrogen-induced LTP in the hippocampus is mediated
via synaptic transmission of NMDA receptors [107],
specifically through the increased expression of the
NR2B subunit [108].
Increased estrogen is also associated with increased

BDNF expression in the hippocampus [109,110]. It is
possible that estrogen-enhanced extinction memory con-
solidation may be mediated via increasing BDNF expres-
sion in the hippocampus or the vmPFC. Indeed, BDNF
expression is critical for successful fear extinction in
both rodents and humans [111]. Peters et al. (2010)
showed that hippocampal infusion of BDNF before
extinction training enhanced extinction memory in an
NMDAr dependent process, suggesting that hippocam-
pal BDNF modulates IL activity during the consolidation
of extinction memory [112]. Estrogen and BDNF are
known to have similar mechanisms of actions, activate
the same cascades, and have the same behavioral effects,
especially within the hippocampus. For example, both
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estrogen and BDNF enhance hippocampal-dependent
learning [109,110]. The direct interaction between estro-
gen and BDNF during fear extinction has not yet been
investigated.

Few studies have examined the influence of estrogen
on the function of the vmPFC in the rat. Estrogen has
been shown to increase spine density in vmPFC [113],
preserve the functional integrity of the IL when
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subjecting the rats to chronic stress [114], and to
enhance working memory [115]. These data indicate
that estrogen influences the function of the vmPFC in
the rat brain. Markers of neural activity and synaptic
plasticity, such as c-Fos, Jun-b and BDNF, have been
shown to be modulated by estrogen variance
[74,116-118]. Therefore, we propose that estrogen may
modulate fear extinction learning and consolidation via
its interaction with a number of molecular markers of
plasticity, within the fear extinction network.
We recently examined the influence of estradiol

administration on c-fos and Jun-b mRNA expression
within some components of the fear extinction network.
Female rats undergoing fear extinction during the
metestrus phase of the cycle (low estrogen) received
estradiol immediately post-extinction training and were
sacrificed immediately after a brief extinction recall test.
The results of this study showed that administration of
estradiol after extinction training enhanced c-fos and
June-b mRNA expression in IL (Figure 5b) and signifi-
cantly reduced the expression of both in the amygdala
during recall [74]. These data further support the idea
that estrogen fluctuations may be a critical modulator of
extinction memory consolidation in females. In order to
fully understand the role of estrogen in fear extinction,
it is necessary to identify the molecular cascades by
which estrogen may enhance extinction memory and
investigate sex differences in estrogen action within the
extinction network.

What about progesterone and testosterone?
Progesterone
Several studies have shown that progesterone adminis-
tration to ovariectomized female rats facilitates contex-
tual and cued fear conditioning, and enhances cognitive

performance in a variety of other behavioral tasks in
mice [119]. In healthy young women, administration of
progesterone during the early follicular phase (when
progesterone and estrogen are at their lowest level) led
to increased reactivity in the amygdala while looking at
threatening faces [120]. Also, progesterone increased the
functional coupling of the amygdala with the mPFC
[121], indicating that progesterone influences interac-
tions between the amygdala-PFC circuits. Moreover,
progesterone is metabolized into allopregnanolone [122],
which acts via GABAA receptors and appears to have
anxiolytic effects when infused into the amygdala or
vmPFC before an elevated plus-maze test and shock-
probe burying test [122,123]. In other tasks, progester-
one facilitates extinction of cocaine self-administration
[124]. We have shown that systemic administration of
progesterone into female rats (either alone or in con-
junction with estrogen) facilitates extinction consolida-
tion [75], suggesting that progesterone appears to also
influence the function of brain regions involved in
extinction consolidation. Our data gathered in women,
however, showed that variance in progesterone levels in
two separate cohorts of women did not correlate with
extinction recall [74,76]. While progesterone’s influence
on fear extinction may differ across species, it is impor-
tant to note that we were not able to fully examine the
effects of progesterone independent of estrogen. Thus, it
remains possible that progesterone may have an effect
on fear extinction consolidation in women directly or
perhaps by interacting with estrogen. Additional studies
are needed to further examine the role of progesterone
in fear extinction in women.
Testosterone
It is established that besides the masculinization/defemi-
nizing role of testosterone during sexual differentiation,
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this hormone is also critical for the modulation of beha-
vioral and physiological responses to anger [125,126].
Men demonstrating higher dominance express high
levels of testosterone. In male primates, dominance is
associated with higher testosterone levels and a decrease
in stress response, indicating that dominant males find
dominance signals less stressful and are more primed to
engage in a dominance challenge [127,128]. More inter-
estingly, previous studies have shown that testosterone
reduces cortisol response and stress axis reactivity
[129,130]. Other studies demonstrated that endogenous
as well as exogenous testosterone influence neural reac-
tivity to threatening faces in the amygdala and orbito-
frontal cortex (OFC) in males, and in the amygdala in
women [128,131]. Exogenous testosterone also increases
amygdala reactivity to threatening faces, but reduces
functional coupling between the amygdala and OFC in
middle-aged women, suggesting that the testosterone
may regulate interactions between amygdala and OFC
[128]. It is important to note that effects of testosterone
may be mediated via direct interactions with androgen
receptors or via conversion to other steroids. Testoster-
one is metabolized to dihydrotestosterone (DHT), which
also acts via androgen receptors, and to androstanediol
that modulates GABAA receptor similar to allopregna-
nolone [132]. Lastly, testosterone is also aromatized into
17b-estradiol, the most potent type of estradiol, and it
has been suggested that most of the effects of testoster-
one are mediated by estrogen [133,134]. Clinical and
basic studies are needed to assess the role of testoster-
one during fear extinction.

Clinical relevance
Increased expression of inappropriate fear is the hall-
mark of anxiety disorders [135-138]. A large body of
evidence from neuroimaging studies indicates that the
neural circuits subserving fear conditioning and extinc-
tion are impaired across the different anxiety disorders
[12]. For example, post-traumatic stress disorder (PTSD)
patients exhibit decreased vmPFC and hippocampal acti-
vation along with exaggerated amygdala activation dur-
ing the processing of emotional stimuli in a wide array
of paradigms [139-142]. Experimental extinction is also
deficient in PTSD patients [10,143-146]. We have
recently shown that fear extinction is deficient in PTSD
patients and that such deficiency is associated with aber-
rant activation of the vmPFC, hippocampus and amyg-
dala (in addition to insula and striatal regions) during
fear acquisition, extinction learning and extinction recall
[1,5,54,74].
Epidemiological data suggest that the prevalence of

anxiety disorders is higher in women relative to men.
Women are more likely to develop panic disorder (8%
vs. 3%), PTSD (12.5% vs. 6%) and generalized anxiety

disorder (GAD) (7% vs. 4%) (Pigott, 2003; Breslau et al.,
1998;Kinrys and Wygant, 2005). Aside from prevalence,
women diagnosed with PTSD have longer symptom
duration (48 vs. 12 months) [147], have higher symptom
severity and functional impairment [148], and have
worse quality of life [149]. Women diagnosed with GAD
are more likely to develop comorbid psychiatric disor-
ders and have worse prognoses and impairments [150].
In addition to increased prevalence of panic disorder in
women, studies also suggest that panic attacks occur
more frequently in women relative to men [151]. These
findings point to brain-based differences in the proces-
sing of emotional stimuli in women compared to men,
and suggest that sex hormones, such as estrogen, play a
key role in mediating these differences. Indeed, there are
some clinical data suggesting that estrogen therapy
improves anxiety symptoms in postnatal depression
[152], in recurrent postpartum affective disorder [153],
and in menopause [154,155]. Despite these glaring dif-
ferences, it is puzzling that so few studies have consid-
ered sex differences as a critical variable of interest.

Conclusions
The data reviewed herein point to clear sex differences
in, and clear influence of, sex hormones, especially
estrogen, on fear extinction. The data discussed show
that sex hormones may have direct effects on the mole-
cular machinery mediating synaptic plasticity in the hip-
pocampus, and the vmPFC during fear extinction. These
data also point to significant clinical implications. Future
studies need to develop paradigms to test specific
hypotheses based on what we know thus far. For exam-
ple, does estrogen serve a protective function against
elevated fear and anxiety? Could transient periods of
low estradiol levels be associated with impaired reten-
tion of safety memory? In addition, fear extinction in
women using oral contraceptives and in menopausal
women with and without hormone replacement therapy
should be examined. This is especially important given
that the use of oral and intrauterine contraceptives is
known to reduce endogenous cycling estradiol levels
[156]. Moreover, women appear to be vulnerable to
developing mood and anxiety disorders during postpar-
tum [157,158] and menopausal periods [159-163] when
endogenous estradiol levels are low. Additional studies
investigating the effects of cycling sex hormones and
exogenous manipulations of these hormones in animal
models of fear inhibition could potentially introduce
ways to adapt, improve or produce therapies specifically
tailored to women.
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