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Abstract

Background: High-throughput transcriptomic data generated by microarray experiments is the most abundant
and frequently stored kind of data currently used in translational medicine studies. Although microarray data is
supported in data warehouses such as tranSMART, when querying relational databases for hundreds of different
patient gene expression records queries are slow due to poor performance. Non-relational data models, such as
the key-value model implemented in NoSQL databases, hold promise to be more performant solutions. Our
motivation is to improve the performance of the tranSMART data warehouse with a view to supporting Next
Generation Sequencing data.

Results: In this paper we introduce a new data model better suited for high-dimensional data storage and
querying, optimized for database scalability and performance. We have designed a key-value pair data model to
support faster queries over large-scale microarray data and implemented the model using HBase, an
implementation of Google’s BigTable storage system. An experimental performance comparison was carried out
against the traditional relational data model implemented in both MySQL Cluster and MongoDB, using a large
publicly available transcriptomic data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value
data model implemented on HBase exhibits an average 5.24-fold increase in high-dimensional biological data
query performance compared to the relational model implemented on MySQL Cluster, and an average 6.47-fold
increase on query performance on MongoDB.

Conclusions: The performance evaluation found that the new key-value data model, in particular its
implementation in HBase, outperforms the relational model currently implemented in tranSMART. We propose that
NoSQL technology holds great promise for large-scale data management, in particular for high-dimensional
biological data such as that demonstrated in the performance evaluation described in this paper. We aim to use
this new data model as a basis for migrating tranSMART’s implementation to a more scalable solution for Big Data.

Background
An ever increasing amount of biological data being pro-
duced has predicated the use of databases capable of stor-
ing and analyzing such data. In the field of translational
research, knowledge management platforms use databases
to store a variety of data produced from clinical studies,
including patient information, clinical outcomes as well as
high-dimensional omics data. For optimal analyzes and

meaningful interpretations, such databases also store
legacy data taken from public sources, such as the Gene
Expression Omnibus (GEO) [1] and the Gene Expression
Atlas [2], alongside new study data. This enables cross-
study comparisons and cross-validation to take place.
High-throughput transcriptomic data generated by micro-
array experiments is the most abundant and frequently
stored data type currently used in translational studies.
Originally developed by Johnson and Johnson for in-

house clinical trial and knowledge management needs in
translational studies, tranSMART is one such knowledge
management software platform [3] that has recently
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been open-sourced. For the needs of various collabora-
tive translational research projects, an instance of tranS-
MART is hosted at Imperial College London and has
been configured to use an Oracle relational database for
back-end storage. It currently holds over 70 million
gene expression records. When querying the database
simultaneously for hundreds of patient gene expression
records, a typical exercise in translational studies, the
record retrieval time can currently take up to several
minutes. These kinds of response times impede analyzes
performed by researchers using this deployed configura-
tion of tranSMART. Anticipating the requirement to
store and analyze next generation sequencing data,
where the volume of data being produced will be in the
terabyte (TB) range, the current performance exhibited
by tranSMART is unacceptably poor.
A typical query involves searching for and retrieving

patient gene/probeset values in a study in order to per-
form data analysis. For each study, the transcriptomic data
stored in the database is comprised of individual probeset
values for each patient sample (in some cases multiple
samples from each patient are profiled), and annotation
information further describing the experiment (e, g. trial
information, microarray platform identifier, normalization
method, gene descriptions). Once retrieved the data is
passed to analytical tools, such as GenePattern [4] or cus-
tom R workflows for further analysis or visualization.
Table 1 shows a typical structure of a microarray table

that is used in a relational database system. This example
is based on the DEAPP schema used in the implementa-
tion of tranSMART 1.1. GENE_SYMBOL, PROBESET_ID,
PATIENT_ID, TRIAL_NAME correspond to basic annota-
tion data; RAW, LOG and ZSCORE are probeset values [5].
All records in the table are organized by a B-tree like

structure, a tree data structure that allows search,
access, and deletions of tree leaves in logarithmic time.
B-tree like structures are commonly used in the imple-
mentation of databases and file systems and are fully
described in [6]. The time to fetch the patient probeset
data using a relational model, such as that in Table 1, is
therefore:

pnps × logm
(
pnps

) × tr

where the time to find a next node in the tree is one
standard unit, the order of the tree is m, the time to fetch
a record in relational database is tr , number of patients is
pn , and the number of probesets for each patient is ps .
For example, if there are 559 patients in a study and each

patient has 54,675 probesets, the tree is of order m, the
total theoretical query time to retrieve all patient probe-
sets,

∑
tr , is:

559 × 54, 675 × logm (559 × 54, 675) × tr

What this illustrates is that in order to traverse the tree
to retrieve a large study, a significant number of records
need to be read from the physical disk where such a large
number of database operations will cumulatively be slow.
A common solution for scalability issues in relational data-
bases is database partitioning [7], which allows for a logical
database to be divided into constituent parts and distribu-
ted over a number of nodes, for example in a compute
cluster. This approach has enabled relational databases to
support large-scale genomics datasets through horizontal
partitioning (also referred to as sharding), however this
still does not solve the data retrieval performance issues
such as those observed in translational research studies
loaded into tranSMART.
An alternative solution, and what forms the contribu-

tion described in this paper, is to use a non-relational
database modality, the key-value pair data model, as
implemented in NoSQL databases such as Google Big-
Table [8], a column-oriented storage system for struc-
tured data. BigTable uses a Row Key and a Column Key
to locate a Value. The first advantage of such a data
model is that it typically maintains data in lexicographic
order by Row Key. The second advantage is that the
Column Key includes two parts: a Family and a Quali-
fier, where database columns (Qualifiers) are grouped
into sets (Families) and all data stored in a Family is
usually of the same type and is compressed and stored
together. When a key is retrieved, a key-value array,
termed a StoreFile, is loaded into memory and the
expected key-value pairs are returned. Taking these fea-
tures of the key-value model into account, we hypothe-
sized that a key-value pair data model would more
performant in data retrieval than the current relational
model used for microarray data storage in tranSMART.
In this paper we describe an experiment using a new
database model for one of tranSMART’s microarray
data tables that may be more suitable for high-dimen-
sional data storage and querying than the relational
model currently implemented in tranSMART.

Related work
The current version of tranSMART operates with SQL-
based databases in a single node mode, typically as

Table 1 Relational microarray data schema

GENE_SYMBOL PROBESET_ID PATIENT_ID TRIAL_NAME RAW LOG ZSCORE

VARCHAR2(100) VARCHAR2(100) NUMBER(18) VARCHAR2(50) NUMBER(18) NUMBER(18) NUMBER(18)

A classic microarray table structure, the DEAPP schema in tranSMART.
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single PostgreSQL [9] 9.3 or Oracle 11g [10] database. It
is possible to migrate the current tranSMART data
model to SQL-based database clusters to solve the per-
formance problem mentioned in motivating example.
For example, MySQL Cluster [11] is an open-source
high performance database cluster. MySQL Cluster con-
sists of multiple network database nodes (NDB), a single
management node (MGM) and multiple MySQL nodes.
The data is horizontally partitioned across the NDBs,
where each MySQL node is responsible for handling
SQL operations. The MGM controls all NDB and
MySQL nodes. MySQL Cluster can use the same rela-
tional data model detailed previously in Table 1.
NoSQL document storage systems, such as MongoDB

[12], CouchDB [13], Riak [14] are popular alternatives
to using relational database management systems such
as MySQL, because relational data models can easily
map to a document-based key-value model. For exam-
ple, MongoDB has features such as indexing in the form
of B-trees, auto-sharding and asynchronous replication
of data between servers. MongoDB stores data in collec-
tions and each collection contains documents. Each
document is a serialized JSON [15] object. Our Mon-
goDB implementation is similar to the relational model
where each column is represented with a field in a
JSON object. For example, the relational data record in
Table 2 maps to the JSON object shown in Figure 1.
Note that the field _id holds a unique key generated
for each JSON object.
All of the data is imported into a single collection

with the index built on the keys, where the sharding key
uses PATIENT_ID to distribute the data into multiple
ranges based on PATIENT_ID.
NoSQL systems for structured data, such as BigTable

and Cassandra [16], have been developed for managing
very large amounts of data spread out across many ser-
vers. In contrast to document key-value storage, such as
MongoDB, NoSQL structured data systems do not easily
map from a relational data model to a key-value model.
HBase [17] is a popular example of such a system where
it is part of the Hadoop framework that has been widely
adopted for large-scale storage and processing. HBase is
an Apache Software Foundation open source project
written in the Java programming language, and provides
BigTable-like capabilities. There are three major compo-
nents of HBase. The HBase Master assigns Regions to
HRegion Servers. HRegion Servers handle client read
and write requests. The HBase client discovers HRe-
gionServers, which are serving a particular row range of

interest. Our microarray data model implementation
using HBase is described in our Results section.

Results
We designed a key-value [18] based data model to support
faster queries over large-scale microarray data, and imple-
mented the schema using HBase. We compared the query
retrieval time against a traditional relational data model run-
ning on a MySQL Cluster database, and a relational model
running on a MongoDB key-value document database.

Schema design
Determining Row Key and Column Key of transcriptomic
data
In order to speed up queries, the TRIAL_NAME and
PATIENT_ID are placed in the Row Key. This is for two
reasons. The first reason is that a Family can manage a
single data type (RAW, LOG, or ZSCORE) of data efficiently.
When a Family is used in this way, all attributes larger
than the data type (TRIAL_NAME and PATIENT_ID) are
placed in the Row Key and attributes smaller than the data
type (GENE_SYMBOL and PROBESET_ID) are placed in
the Qualifier. The second reason is that all records belong-
ing to a patient are stored together in several StoreFiles.
For a typical use case when multiple identical PATIENT_-
IDs are retrieved, the StoreFiles storing these patients’
data will be loaded into BigTable caches. Therefore, only
retrieving the first record causes a significant delay when
loading data from disk to memory, while all other records
in the same StoreFile are fetched directly from memory
caches. This design takes full advantage of BigTable
caches.

Table 2 Example of a relational model representation of a patient record

GENE_SYMBOL PROBESET_ID PATIENT_ID TRIAL_NAME RAW LOG ZSCORE

LDOC1 204454_at 79622 MULTMYEL 71.900002 6.16791991 8.3069731

Figure 1 JSON example. Example of a JSON object that maps to
the patient record illustrated in Table 2.
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Optimizing the Row Key to speed up data location
The order of the two fields in the Row Key also has a
very significant effect on the query performance. Typical
user cases always begin with a gene information query
of several patients. By placing the TRIAL_NAME before
the PATIENT_ID (TRIAL_NAME + PATIENT_ID), the
composite key becomes two indices on the trial and
patient respectively. When multiple identical patients
are retrieved, TRIAL_NAME + PATIENT_ID can pre-
cisely locate all StoreFiles expected by using TRIAL_-
NAME + PATIENT_ID to compare to the Start and End
keys of a StoreFile.
Optimizing the Column Key to increase cache hit rate
One way to further increase cache hit rate is to design a
new structure by classifying different types of data under
Column Key. The Family divides different types of data
(RAW, LOG, and ZSCORE) into different StoreFiles and the
Qualifier (GENE_SYMBOL + PROBESET_ID) orders pro-
beset values lexicographically. In the motivating example
above, the user requests data on several patients that con-
tains only one type of probeset, but the query returns mil-
lions of records. Such large numbers of probeset records
can be loaded with only a limited number of disk loading
operations through the corresponding Column Keys.
Key-value data model example
To better explain our design, we can illustrate its applica-
tion using the relational example in Table 3 and trans-
forming it into our key-value model shown in Table 4.
Table 3 shows how a StoreFile stores these key-value data
on physical disks. Key-value pairs are ordered alphabeti-
cally by the Key in Table 3 and each pair is an array of
Java data type byte.
For example, if the raw intensity values of all patients

in the trial MULTMYEL are retrieved, the key-value sys-
tem will locate the Key,

Trial Name (MULTMYEL) + minimum Patient
ID(00000) + Family (Raw) + Gene
(00000000) + Probeset(00000000)

and then load a StoreFile containing Key1

MULTMYEL + 79622 + 10001 + RAW + EI24 +
216396_s_at into memory. This StoreFile prob-
ably also contains Key2 consisting of
MULTMYEL + 79622 + 10001 + RAW + LDOC1 +
204454_at because Key2 is typically stored

adjacent to Key1 in the physical storage. This results
in a reduction in query response time by increasing
the cache hit rate.

As in the relational model, key-value data is organized
as a B-tree. Each leaf in the tree is a StoreFile (128 MB
by default), each of which contains data from more than
one patient. Considering the maximum probeset count
in our database of 54,675 probesets per sample using
the GPL570 platform, where the average probeset data
size is 300 bytes, we can see that,

300 B × 54, 675 ≈ 16 MB < 128 MB

Table 3 Example in DEAPP

GENE_SYMBOL PROBESET_ID PATIENT_ID TRIAL_NAME RAW LOG ZSCORE

LDOC1 204454_at 79622 MULTMYEL 71.900002 6.16791991 8.3069731

EI24 216396_s_at 79622 MULTMYEL 917.20001 9.84109256 9.57629541

GRID1 1555267_at 79737 MULTMYEL 608.29999 9.24863917 8.88386512

Table 4 Example data model in BigTable transformed
from table 3

Key Value

Row Key Column Key

Family Qualifier

MULTMYEL +
79622

LOG EI24 +
216396_s_at

9.84109256

MULTMYEL +
79622

LOG LDOC1 + 204454_at 6.16791991

MULTMYEL +
79737

LOG GRID1 +
1555267_at

9.24863917

4a. LOG Family StoreFile

Key Value

Row Key Column Key

Family Qualifier

MULTMYEL +
79622

RAW EI24 +
216396_s_at

917.20001

MULTMYEL +
79622

RAW LDOC1 + 204454_at 71.900002

MULTMYEL +
79737

RAW GRID1 +
1555267_at

608.29999

4b. RAW Family StoreFile

Key Value

Row Key Column Key

Family Qualifier

MULTMYEL +
79622

ZSCORE EI24 +
216396_s_at

9.57629541

MULTMYEL +
79622

ZSCORE LDOC1 + 204454_at 8.306973

MULTMYEL +
79737

ZSCORE GRID1 +
1555267_at

8.88386512

4c. ZSCORE Family StoreFile
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In this case, one type of probeset values for a patient
can at most be stored in two StoreFiles. Therefore we
assume each patient data in one type is stored within
two StoreFiles. The time to fetch patients data is less
than:

2pn × logm
(
pn

) × tkv

where the time to find a next node in the tree is one
standard unit, the tree is of order m, the time to fetch a
StoreFile in a key-value system tkv , and patient number
is pn . Thus, for example, if there are 559 patients in a
study and each patient has 54,675 probesets, the total
theoretical query time

∑
tkv is:

2 × 559 × logm (559) × tkv

In order to make a full comparison of time consump-
tion between key-value data model and relational data
model, we assume tr is the time to load 32 KB (MySQL
Cluster’s data page size) data from physical disk into
memory and tkv is the time to load 128 MB data, then
in a common physical server with a SATA disk (X79
series chipset 6-Port SATA AHCI Controller), tr is
approximately 10 milliseconds and tkv is approximately
9,000 milliseconds. In this case:

∑
tr∑
tkv

≈ 82.76
1

Therefore, if cache and query optimizers are not taken
into account, we estimate theoretically that an ideal key-
value data model may be up to about 83 times faster than
an ideal relational data model. The actual observed
speedup is much less than our theoretical estimate since
real-world performance will be vary according to imple-
mentation. However as the basis of our hypothesis, based
on our theoretical calculations we propose that a key-
value will be significantly faster than a relational model
when querying microarray data such as that stored in
tranSMART.

Querying transcriptomic data in tranSMART
Our experiment was performed using a dataset loaded in
an instance of tranSMART running on a cloud computing
test-bed, IC Cloud [19], installed at Imperial College Lon-
don. In our experiment we took a database dump of the
DEAPP schema that tranSMART uses to store patient
microarray data and extracted a public Multiple Myeloma
(MULTMYEL) [20,21] dataset [GEO:GSE24080] [22]. The
reason we chose MULTMYEL as our test dataset was that
it is one of the largest datasets loaded into our tranS-
MART database instance, consisting of 559 samples and
54,675 probesets for each sample, totalling approximately
30.5 million records. We took this dataset and

transformed and loaded it into two different key-value
databases, HBase and MongoDB, and a relational database,
MySQL Cluster, each of which was running on IC Cloud.
HBase was used to implement our key-value model, while
MongoDB and MySQL Cluster both re-implement the
relational model. Each database was configured as follows:

• HBase (Version 0.96.0 on Hadoop 1.0.3): One mas-
ter server node and three slave nodes with HBase con-
figured in fully distributed mode. The master server
was configured as a virtual machine (VM) with 4 CPU
cores and 8 GB memory, while each slave node was
configured as VMs with 2 CPU cores and 4 GB mem-
ory. Each VM used a 100 GB disk. Three copies is the
minimum number for the Hadoop Distributed File
System to guarantee data consistency. We ran queries
in HBase using two read methods, Random Read and
Scan, in order to select the faster method. In the Ran-
dom Read method each patient’s data is retrieved dis-
cretely. In Scan, all patients from the first Row Key to
the last Row Key expected are retrieved sequentially,
including unexpected Row Keys between two expected
ones. However we found Scans over sequential records
are significantly faster than Random Reads.
• MongoDB (Version 2.2.4): Four VMs were used
in our MongoDB cluster (VM A configured with 4
CPU cores and 8 GB memory, VMs B, C and D
with 2 CPU cores and 4 GB memory). Each VM
used a 100 GB disk. VM A and B formed a replica-
tion set (rs0), with C and D forming another (rs1);
rs0 and rs1 formed a two-shard sharding cluster.
VMs B, C and D were also deployed as three config-
uration servers (mongod – configsvr). VM A
hosted the load balancer (mongos), and handled all
the data operation requests. MongoDB requires two
copies to guarantee data consistency. MongoDB
indexes the TRAIL_NAME and PATIENT_ID fields
within JSON objects.
• MySQL Cluster (Version 5.6.11-ndb-7.3.2): Four
VMs, with one as a manager node and three data nodes.
The manager node consists of a MGM, a MySQL and a
NDB using a VM with 4 CPU cores and 8 GB memory.
Each VM used a 100 GB disk. Each data node consisted
of a NDB. Disk-based InnoDB storage engine was used,
where indexed columns and indices are stored in mem-
ory and non-indexed columns are stored in disks. The
TRIAL_NAME and PATIENT_ID were indexed by
BTREE to speed up the query operations. Two data
copies were used to guarantee its data consistency.

Gene data query using a large transcriptomic dataset
In order to assess HBase, MongoDB and MySQL Clus-
ter performances using a gradient of retrieval size
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requests, we devised a series of typical marker selection
queries based on relevant biological questions [23] and
data download requests:

• Test cases A1 and A2: 213 patients who underwent
Therapy 2 and survived longer than 30 months are
compared to 137 patients who undertook the same
therapy and survived less than 30 months, to discover
gene expression patterns affecting the short term
response to therapy 2.
• Test cases B1 and B2: 459 patients who took Ther-
apy 2 and were still alive at the end of the trial were
compared to 100 patients who took Therapy 2 and
did not survive the duration of the study, to discover
gene expression patterns affecting the long term
response to therapy 2.
• Test cases C1 and C2: 308 patients who lived longer
than 26 months were compared to 251 patients who
survived less than 26 months, to discover gene expres-
sion patterns affecting patient survival.
• Test case D1 and D2: 351 patients who took Ther-
apy 2 were compared 208 patients who took Therapy
3. This comparison is used to see the different effect
of the two therapies. D2 is comparable to test case
A1, as it retrieves a similar amount of patients and
thus is not shown on Figure 2.
• Test case E1 and E2: 400 patients who survived
less than 36 months were compared to 159 patients
who survived more than 36 months. E2 is compar-
able to test case A2, as it retrieves a similar amount
of patients and thus is not shown on Figure 2.
• Test case F1 and F2: 496 patients who lived less
than 52 months were compared to 63 patients who
survived beyond 52 months.
• Test case G: A query over the whole clinical trial
consisting of all 559 patients. This last case is used

to download all patient information to perform
further analysis in external tools.

We tested each case three times, where after every test
we shut down the entire cluster to clean all caches to
remove the influence of residual cached data. The
record retrieval times for the HBase, MySQL Cluster
and MongoDB configuration are shown in Figure 2. In
this experiment only RAW data was targeted.
With the number of records increasing, most test

cases in relational model show retrieval times also
increasing.
MySQL Cluster retrieval times are slow when querying

fewer numbers of patient records with query times
increasing slightly as the data queries scale up. Our key-
value based data model demonstrates an average 5.24
times of increase compared to the relational model imple-
mented on MySQL Cluster. In 6/11 of cases, the key-value
data model is more than 5x faster than relational model
on MySQL Cluster. In 10/11 of cases, the key-value data
model is more than 4x faster than the relational model on
MySQL Cluster. In the worst case, A2, the key-value data
model is more than 3.61 times faster than relational model
on MySQL Cluster. As the size of the queried data scales
upwards, MySQL Cluster performs less stable than other
databases as show by the greater average result deviations
in Figure 2.
The relational model on MongoDB performs well with

smaller queries but slows significantly when the amount of
data retrieved is scaled up. Our key-value based data
model demonstrates an average 6.47 times increase in
query performance compared to the relational model
implemented on MongoDB. In 6/11 of cases, key-value
retrieval is more than 6x faster than that on MongoDB,
especially in cases with large retrieval data. In 10/11 of
cases, the key-value retrieval speed is more than 4x faster
than that on MongoDB. In the worst case, B2, the key-
value data model is more than 2.68 times faster than the
relational model on MongoDB.
The data retrieval time in the key-value model varies

more widely due to the different read operations, Random
Read and Scan, and also the Scan range in different cases,
as shown in Figure 3. In most test cases in our experiment,
Scans are quicker than Random Reads. For Scans, the
worst case is when the expected patient count is small and
the patient record distribution within the database is very
sparse. In this situation, the Scan operation degrades to
sequentially read all patient data. For example, in case B2,
63 patient records are expected and distributed over a
range of 481 patients. However, a whole dataset Scan only
needs about half of the time to perform a Random Read.
The situation is similar when retrieving other types of

data, such as LOG or ZSCORE, as shown in Figure 4 and
5. In these two figures, the performance trend observed

Figure 2 Performance of key-value vs. relational data model.
The bar chart shows the query retrieval times for each of the test
cases over varying numbers of patient record queries. The NoSQL
model implementation on HBase performs the best with an
approximately 3.06~7.42-fold increase in query performance than
relational model on MySQL Cluster and 2.68~10.50-fold increase
than the relational model on MongoDB.
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for each Family is similar. Only the deviation values
vary. Thus, compared to the other databases, the same
conclusion will be generated for every Family.

Discussion
Our results show that in general our key-value imple-
mentation of the tranSMART DEAPP schema using
HBase outperforms the relational model on both
MySQL Cluster and MongoDB, as we originally
hypothesized. HBase’s increased performance in com-
parison to MySQL Cluster comes from the new key-
value data model. This new key-value data model is
however currently not efficient enough for discrete data
queries. A possible solution is the use of the HBase fea-
ture, CCIndex [24]. Discrete query operations are

generated by WHERE conditions in SQL queries, where
CCIndex can index columns that are frequently used in
those conditions and transform these discrete queries
into large range scans. As future work, we plan to inte-
grate CCIndex to further improve the performance in
our key-value model for high-dimensional data in
tranSMART.
Queries in HBase are optimized manually by choosing

to perform either a pure Scan or pure Random Read
operation. Ideally there should be a query optimizer
built into the HBase system, like in MySQL Cluster or
MongoDB, to automatically generate query plans for
high-dimensional data retrieval. Pure Scans or Random
Reads may not be the best choice for certain cases,
where a mixed, dynamically selected query method may
perform better than statically choosing one or the other.
Our results also show that performance in different

Families differ slightly. Family LOG performs best in
almost all cases. This phenomenon may result from the
LOG StoreFile location in HBase system.
We also observed that the relational model implemen-

tation consumes a lot of memory. Although MySQL
Cluster supports disk based storage, all indexed columns
and indices are still stored in memory. This feature may
influence its scalability.

Conclusions
Our work is aimed at solving the performance issues
faced in translational research data storage databases,
due to the increasing volume of data being produced. In
this paper we have demonstrated that a key-value pair
schema leads to an increase in performance when
querying high-dimensional biological data, over the rela-
tional model currently implemented in tranSMART.
Our results show that, in general, our key-value imple-
mentation of the tranSMART DEAPP schema using
HBase outperforms the relational model on both
MySQL Cluster and MongoDB. We aim to further opti-
mise the schema design to achieve a better performance
and use this schema as the prototype for developing a
next generation sequencing storage data model for the
tranSMART data warehouse.
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Figure 4 Performance of Random Read in different Families.
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