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1 Introduction and outline

N = 4 super-Yang–Mills (sYM) theory is the maximally supersymmetric four-dimensional

gauge theory not including gravity [1, 2]. It is a gauge theory with gauge group SU(Nc);

the spectrum includes a single N = 4 massless multiplet, consisting of one gauge field, four

Weyl fermions and six real scalars, all transforming in the adjoint representation of the

gauge group. One of the most remarkable properties of this theory is that it is supercon-

formally invariant even at the quantum level [3–6] — its symmetry group effectively being

PSU(2, 2|4).

In recent years, the study of scattering amplitudes in N = 4 sYM theory unveiled a

rich underlying structure. One of the most striking discoveries is the hidden dual supercon-

formal symmetry of tree-level amplitudes [7]; the closure of the ordinary superconformal

algebra and this dual superconformal symmetry is the Yangian algebra Y[psu(2, 2|4)] [8].

Although the tree-level S-matrix enjoys this symmetry, Yangian invariance is broken at

loop level due to IR divergences.

An important tool to investigate the rich structure arising from amplitudes in N = 4

sYM theory is the so-called Grassmannian formalism [9–13]. While the original formulation

allowed to express leading singularities of amplitudes in terms of contour integrals over a

suitable Grassmannian manifold, it was subsequently shown that it is possible to identify

the correct contours leading to the Britto–Cachazo-Feng–Witten (BCFW) decomposition

of tree- and loop-level amplitudes. The approach was later generalised to the study of

on-shell graphs (or diagrams) [14], planar bicolored graphs that correspond to Yangian

invariants. These diagrams were studied and generalised in refs. [15, 16] (see also [17]),

where it was shown that it is possible to deform the external helicities to complex values

while preserving Yangian invariance.

Recently, a new method for the study of Yangian invariants related to scattering ampli-

tudes was proposed in refs. [18, 19]. The authors employ an algebraic approach to construct

Yangian invariants by defining a set of operators acting on a suitable vacuum. Their con-

struction is manifestly Yangian invariant at each step and is shown to yield the correct

form of (deformed) tree-level MHV scattering amplitudes. The authors argue that the

same approach can be used to construct all tree-level amplitudes in a manifestly Yangian-

invariant way by building single channels via the inverse-soft-limit construction [20]. A

similar construction arose in the context of the Bethe-ansatz approach in ref. [21].

The aim of this paper is to study the algebraic approach for the construction of Yan-

gian invariants and tree-level scattering amplitudes and relate it to the known formulations

of Yangian invariants in N = 4 sYM theory. In section 2 we review some of the properties

of scattering amplitudes in N = 4 sYM theory, focusing mainly on the symmetries of the

tree-level S-matrix. An important part of the review concerns the Grassmannian formalism

for scattering amplitudes [9–13] in terms of on-shell diagrams [14]. One of the most im-

portant results for the current article is the correspondence between the Yangian-invariant

leading singularities of amplitudes and decorated permutations. We will see that a similar

combinatorial construction arises also in the language of refs. [18, 19].

In section 3 we discuss the algebraic framework underlying the construction of refs. [18,

– 2 –
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Figure 1. Three equivalent ways of describing Yangian invariants.

19]. In these papers the authors show how to construct invariants under the Yangian of

gl(4|4) via some suitable operators. These operators (called R-operators) act on generalised

functions defined on on-shell superspace as

Rab(u)f(λa, λ̃a, η̃a, λb, λ̃b, η̃b) :=

∫
dz

z1+u
f(λa − zλb, λ̃a, η̃a, λb, λ̃b + zλ̃a, η̃b + zη̃a) . (1.1)

The “vacuum state” used as starting point of the construction is a combination of super-

conformally invariant delta functions. The operator Rab is introduced as an intertwiner of

representations of the Yangian algebra. It is evident that its action has a clear “physical”

interpretation: it performs a BCFW shift. A function defined in this way on on-shell su-

perspace is a Yangian invariant if it is an eigenfunction of the monodromy matrix naturally

arising in this context.

We compute and analyse in detail the low-multiplicity Yangian invariants arising from

this construction. We show that it is possible to construct the single channels of the BCFW

decomposition of the six-point NMHV amplitude starting from a single invariant, which

we will subsequently show to be equivalent to the top-cell on-shell diagram of ref. [14].

Analysing the symmetries of the Yangian invariants in detail allows us to associate a

permutation to each of them in a natural way.

Section 4 relates the algebraic construction of Yangian invariants with the on-shell

diagram formalism. We will show that the three ways of encoding a Yangian invariant

discussed — R-operator approach, associated permutation, on-shell diagrams — can be

actually translated one into the other. After showing how to associate an on-shell di-

agram to a Yangian-invariant chain of R-operators, we demonstrate how to associate a

Yangian-invariant R-chain to a permutation and vice versa, thus completing the three-way

correspondence. Parity and dihedral symmetries can be nicely interpreted in terms of per-

mutations. The section is concluded with the discussion of the six- and seven-point NMHV

Yangian invariants. Finally, we summarise the results and consider some possible future

directions of inquiry in the concluding section.

Note. In the process of preparing this article for publication, we learnt about the pa-

per [22], which shares some conclusions with our present project. We thank the authors

for providing us with a draft of their paper.
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2 Superamplitudes in N = 4 super-Yang–Mills theory

In this section we will review the main features of scattering amplitudes in N = 4 sYM

theory and some of the tools available to compute them. We will focus on some more

recent developments in the study of the underlying symmetries of the (planar) S-matrix.

For the study of scattering amplitudes in N = 4 sYM it is convenient to introduce

the so-called on-shell superspace variables (λα, λ̃α̇, η̃
A) [23], which are the supersymmetric

extension of the ordinary spinor-helicity variables. Here, Greek and upper case Latin

indices are indices of the fundamental representation of SL(2) and SU(4), respectively.

Since the N = 4 multiplet is CPT self-conjugate, it can be expressed as a single

superfield defined on the on-shell superspace

Φ(λ, λ̃, η̃) := g+ + η̃AψA +
1

2
η̃Aη̃B φAB +

1

3!
εABCD η̃

Aη̃B η̃C ψ̄D +
1

4!
εABCD η̃

Aη̃B η̃C η̃D g− .

(2.1)

The colour-ordered tree-level scattering amplitudes of the full supermultiplet can be ex-

pressed as functions on n copies of the on-shell superspace as1

A(Φ1, . . . ,Φn) := An;2 Pn , (2.2)

where

An;2 =
δ4
(∑n

i=1 λiλ̃i
)
δ0|8(∑n

i=1 λiη̃i
)

〈12〉〈23〉 . . . 〈n1〉
(2.3)

is the supersymmetric version of the MHV gluon scattering amplitude [23], and our con-

ventions for spinor brackets are

〈ij〉 = λαi λjα , [ij] = λ̃iα̇λ̃
α̇
j ,

λα = εαβλ
β , λβ = εβγλγ , λ̃α̇ = εα̇β̇λ̃

β̇ , λ̃β̇ = εβ̇γ̇ λ̃γ̇

with ε12 = ε1̇2̇ = −1.

The function Pn is the sum

Pn = Pn;0 + Pn;1 + · · ·+ Pn;n−4 , (2.4)

where each Pn;k−2 is a function of homogeneous Grassmann degree 4(k− 2). The quantity

k − 2 determines the MHV level of the amplitude. The n-point Nk−2MHV amplitude is

the term An;k := An;2Pn;k−2; obviously, Pn;0 = 1.

2.1 Symmetries of tree-level scattering amplitudes

Scattering amplitudes in N = 4 sYM are invariant under the action of the generators of

psu(2, 2|4) (the representation of these generators on the space of functions on on-shell

superspace was derived in ref. [24]). The additional requirement of physicality external

legs amounts to imposing the invariance of the amplitude under the action of the central

charge

Ci = λαi
∂

∂λαi
− λ̃α̇i

∂

∂λ̃α̇i
− η̃Ai

∂

∂η̃Ai
+ 2 , (2.5)

1We will refer to superamplitudes simply as “amplitudes” below for convenience.
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Figure 2. BCFW decomposition of the six-point NMHV amplitude.

where the index i = 1, . . . , n labels the external legs. We will henceforth consider invariance

under the centrally extended algebra su(2, 2|4).

A striking property of tree-level amplitudes in N = 4 sYM is that, in addition to

the ordinary invariance under PSU(2, 2|4), they are covariant under a dual superconformal

symmetry, acting on the coordinates of the dual space [7]. In ref. [8] it was shown that

the closure of the realisations of these two copies of psu(2, 2|4) is the Yangian algebra

Y[psu(2, 2|4)].

An n-point tree-level scattering amplitude can be expressed as a sum of Yangian in-

variants. A suitable way to compute such a decomposition is provided by the supersym-

metric version of the Britto–Cachazo-Feng–Witten (BCFW) recursion relations [10, 25–

27]. These relations express a tree-level amplitude as a sum of terms constructed out of

lower-multiplicity on-shell amplitudes. In these terms, the n-point Nk−2MHV superampli-

tude reads

An;k(1, . . . , n) =
∑

nL+nR=n+2
kL+kR=k+1

∫
d4P d4η̃ AL

(
{p1, ˆ̃η1}, . . . , {pnL−1, η̃nL−1}, {p, η̃}

)
×

× 1

P 2
AR
(
{−p, η̃}, {pnR+1, η̃nR+1}, . . . , {pn, ˆ̃ηn}

)
,

(2.6)

where the superamplitudes AL,R include the delta functions, p = P + zPLλ1λ̃n and zPL =

P 2
L/〈1|PL|n]. In this sum each term is Yangian invariant.

2.2 On-shell graphs and permutations

In ref. [14] the authors introduced the formalism of so-called on-shell diagrams (or on-

shell graphs) to analyse the properties of Yangian invariants and scattering amplitudes

in N = 4 sYM . These diagrams are constructed by gluing two basic trivalent vertices

— “black” and “white” vertices, which correspond to the three-point MHV and MHV

amplitudes, respectively.2 The authors show that these diagrams correspond to Yangian

invariants; this correspondence is encoded in the map from on-shell graphs to integrals

2The gluing procedure amounts to the identification of legs shared by vertices and subsequent integration

over the on-shell phase space of that internal leg.
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Figure 3. Trivalent building blocks for on-shell graphs.
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Figure 4. Double-line notation and decorated permutation for the five-point MHV on-shell dia-

gram.

over a suitable Grassmannian manifold G(k, n). This formalism is an extension of the

Grassmannian formulation for scattering amplitudes previously developed in refs. [9, 11–

13]. The pair (k, n) consists of the MHV level k and the multiplicity n of the amplitude

the on-shell graph is related to; they are linked to nw, nb, ni (the number of white vertices,

black vertices and internal lines of the graph, respectively) via

n = 3(nw + nb)− 2ni , k = nw + 2nb − ni . (2.7)

One of the most important results in [14] is the construction of a map between a

subset of on-shell graphs (so-called reduced, related to tree-level amplitudes) and decorated

permutations.3 A decorated permutation is an injective map

σ : {1, . . . , n} → {1, . . . , 2n} (2.8)

such that i ≤ σ(i) ≤ i+n and σ modn is an ordinary permutation. The map is constructed

starting from the on-shell graph as follows: starting from the i-th leg, one follows the

internal lines turning right at each black vertex and left at each white vertex; the external

leg j this path ends on yields σ(i), with the identification4

σ(i) = j if j > i, σ(i) = j + n if j < i . (2.9)

There are different on-shell graphs that correspond to the same decorated permutation;

however, all the on-shell graphs that correspond to a given permutation can be mapped one

into the other via two actions: merger and square move, depicted in figure 5. All diagrams

3To be precise, reduced on-shell graphs correspond to cells in the Grassmannian, and on-shell graphs

related to tree-level amplitudes are always reduced.
4 We will use the “double line” graphical notation to determine the permutation, as in figure 4. Moreover,

for self-identified legs, one should pay particular attention in choosing σ(i) = i or σ(i) = i+ n.

– 6 –
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Figure 5. Square move and merger.
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Figure 6. Construction of a representative on-shell graph for the top-cell of a (k, n) amplitude.

that can be related via these two transformations are associated to the same Yangian

invariant. The authors of [14] therefore conclude that there is a one-to-one map between

Yangian invariants (appearing in the tree-level amplitudes of N = 4 sYM ) and decorated

permutations or that, equivalently, the invariant information of a (reduced) on-shell graph

is encoded in the associated permutation.

It is possible to derive the BCFW recursion relation in terms of on-shell graphs. For

a (k, n) tree-level amplitude An;k (or A(k)
n ), all BCFW channels can be obtained starting

from a single on-shell graph (the top-cell graph5) corresponding to a permutation which is

a cyclic shift by k.

This fact allows to construct a representative on-shell graph for the top-cell easily (as

first shown in ref. [28] and reviewed in ref. [15]). It is done as follows: for the top-cell

graph of a (k, n) amplitude (corresponding to the top-cell of the positive Grassmannian

G+(k, n)) draw k horizontal lines, (n − k) vertical lines so that the leftmost and topmost

are boundaries, then substitute the three-crossings and four-crossings as in figure 6.

The on-shell graphs corresponding to the BCFW channels are then obtained by remov-

ing (k−2)(n−k−2) edges from the top-cell graph. Note that not all edges are removable,

and the removable ones can be identified with a purely combinatorial procedure. The re-

moval of an edge can be interpreted in terms of the Grassmannian integral as the residue

around a singularity of the integrand.

The choice of which on-shell graphs obtained this way correspond to a BCFW de-

composition of the amplitude relies on the imposition of the correct unitarity constraint

and collinear limits; one of the recursive diagrammatic solution to the BFCW recursion

relations in terms of on-shell graphs is depicted in figure 7.

From the above discussion, we can infer that for MHV amplitudes there is one single

on-shell graph that corresponds to the amplitude — the top-cell graph — and the cor-

responding permutation is just a cyclic shift by two. The first nontrivial example of a

5It corresponds to the top-cell in the positive Grassmannian.
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Figure 7. Diagrammatic solution to the BCFW recursion relations in terms of on-shell graphs.
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Figure 8. BCFW decomposition of the six-point NMHV amplitude, with the decorated permuta-

tions corresponding to the on-shell graphs.

BCFW decomposition is the six-point NMHV amplitude, which is obtained as a sum of

three on-shell graphs corresponding to the permutations reported in figure 8.

2.3 Deformed on-shell graphs and Yangian invariants

In refs. [15, 16], the authors studied a generalisation of on-shell graphs (and related Yangian

invariants). This generalisation relaxes the condition of physicality of the external legs of

the on-shell graph. Stated explicitly, the deformed n-point Yangian invariant Y associated

with a given on-shell graph will satisfy6

Ci · Y(1, . . . , n) = ci Y(1, . . . , n) (2.10)

with ci 6= 0, in general.7 A deformed on-shell graph can be built by gluing together two

trivalent building blocks, that correspond just to the deformation of the three-point MHV

and MHV amplitudes. As this deformation is switched on, one must pay attention to

what happens to the Yangian generators: in fact the representation that annihilates this

deformed objects is the evaluation representation with evaluation parameters ui different

6We follow the sign conventions for central charges of ref. [17].
7Superconformal invariance still implies that

∑n
i=1 ci = 0.
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at each site. The level-one generators annihilating an n-point invariant will then read [29]

∆n−1(Ĵa) = 1
2f

a
b c

∑
1≤i<j≤n

Jbi J
c
j +

n∑
i=1

(1
2ci − ui) J

a
i . (2.11)

A deformed Yangian invariant would then naively depend on 2n additional variables

(ci, ui), but this is not true, as studied in ref. [17]. Particular attention must be paid for

the gluing procedure to preserve Yangian invariance. In order for this to be true, one must

match the parameters u, c of the legs a, b that are being glued as

ca = −cb , ua − 1
2ca = ub − 1

2cb . (2.12)

These gluing conditions impose a system of linear constraints on the parameters (ui, ci)

attached to the legs of the diagram, and these constraints imply that there are only n

independent ones. It is possible to choose the n independent parameters to be the u’s.

Yangian invariance then implies the simple identification

ci = ui − uσ(i) , (2.13)

where σ is the permutation associated with the graph. Note that in subsection 3.7 we will

find the same condition arising from the algebraic point of view. Therefore, a deformed

on-shell graph can be associated with a deformed Yangian invariant depending on n sets

of external data (λi, λ̃i, η̃i, ui).

Notice that our present conventions differ from the ones used in ref. [17], where the

iterated coproduct is defined as

∆n−1(Ĵa) = fab c
∑

1≤i<j≤n
Jbi J

c
j +

n∑
i=1

wi J
a
i . (2.14)

without the factor of 1
2 . The evaluation parameters in the two different conventions (w’s

in ref. [17], u’s in this article) are identified as

wi = −2ui + ci . (2.15)

If we solve for ui and substitute in (2.13), we find that

wσ(i) − cσ(i) = wi + ci , (2.16)

which is the condition for Yangian invariance found in ref. [17].

3 Algebraic approach

After we have introduced scattering amplitudes and on-shell diagrams we will take a dif-

ferent point of view on amplitudes. In this section we will discuss an algebraic approach

to amplitudes along the lines of refs. [18] and [19] to describe Yangian invariants.

The symmetry algebra that underlies this construction will be the Yangian of gl(4|4)

even though the amplitudes in N = 4 sYM theory exhibit Y[psu(2, 2|4)] symmetry. The

– 9 –
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reason for this is simple: we can extend psu(2, 2|4) to su(2, 2|4) by adding the central

element C. Moreover, although not being a symmetry of the amplitudes, the hypercharge

B can also be used as a further extension. Actually, the hypercharge is a symmetry at the

Yangian level [30]. At this point we are effectively considering the algebra u(2, 2|4), which

is equal to gl(4|4) for our purposes, since we ignore issues related to reality conditions. We

will follow ref. [31] closely.

3.1 The Yangian algebra of gl(M |N)

Consider the Z2-graded vector space CM |N spanned by M even and N odd basis vectors

EA with indices A,B, . . . = 1, . . . ,M +N . We define their Z2-grading by

|EA| = |A| :=

{
0 for A ≤M ,

1 for A > M .
(3.1)

Correspondingly, we introduce a basis of canonical covectors EA of grading |EA| = |A| as

follows

EAE
B := (−1)|A|δBA . (3.2)

A basis for the endomorphisms End(CM |N ) is given by the matrices EAB

EAB := EAEB , (3.3)

whose elements are defined to be zero except for a (−1)|B| in row A and column B. These

matrices obey the algebra

EABE
C
D = (−1)|B|δCB E

A
D , |EAB| = |A|+ |B| . (3.4)

For future reference, let us also introduce the supertransposition

(EAB)t := (−1)|A|(|B|+1)EBA , (3.5)

such that applying the supertranspose four times is the identity (EAB)t,t,t,t = EAB.

The Lie superalgebra gl(M |N) is equivalent to End(CM |N ) as a vector space. It is gen-

erated by generators {JAB}A,B=1,...,M+N that satisfy the following commutation relations

[JAB, J
C
D} = (−1)|B|δAD JCB − (−1)|B||C|+|B||D|+|C||D|δBC JAD , (3.6)

where [A,B} := AB− (−1)|A||B|BA is the usual graded commutator. Let us point out the

central element C and the hypercharge B that extend psu(2, 2|4) to gl(4|4) for M = N = 4:

C = (−1)|A|JAA , B = JAA . (3.7)

In what follows, we will make use of two different representation of this algebra, namely

the fundamental and a functional (or oscillator) representation.

– 10 –
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Representations. The fundamental representation ρF has dimension M + N and the

generators JAB are simply represented by the matrices EAB introduced above

ρF(JAB) := EAB . (3.8)

The fact that this forms a representation is a direct consequence of (3.4). In this paper

we will use the convention that algebra generators are denoted by the fraktur font, while

generators evaluated in an explicit representation are represented by Roman letters.

In order to introduce the functional representation, we consider a set of canonical

conjugate (super)variables x := xA and p := pA, where A = 1, . . . ,M +N , such that

[xA, pB} = −δAB . (3.9)

These variables generate another representation ρx of the gl(M |N) Lie superalgebra if we

identify the generators as

ρx(JAB) = xApB . (3.10)

The functional representation is infinite dimensional since x and p act on the space of

functions in the corresponding variables. Finally, let us introduce the operators

C := (−1)|A|xApA , B := xApA , (3.11)

corresponding to the central element and hypercharge (3.7).

Yangian. The Yangian of a Lie (super)algebra is a Hopf algebra that is a deformation

of the universal enveloping algebra of the loop algebra. We will discuss the Yangian of

gl(M |N) in the Drinfeld realisation [32, 33].

By definition, the Yangian is generated by two sets of generators JAB and ĴAB that

satisfy the following commutation relations

[JAB, J
C
D} = (−1)|B|δCB JAD − (−1)|B||C|+|B||D|+|C||D|δAD JCB , (3.12)

[JAB, Ĵ
C
D} = (−1)|B|δCB ĴAD − (−1)|B||C|+|B||D|+|C||D|δAD ĴCD . (3.13)

They must be supplemented by the Serre relations, which are the analogue of the Ja-

cobi identity in the Yangian. The coalgebra structure is determined by the coproducts

(cf. (2.11))

∆(JAB) = JAB ⊗ 1 + 1⊗ JAB , (3.14)

∆(ĴAB) = ĴAB ⊗ 1 + 1⊗ ĴAB + 1
2

(
JAC ⊗ JCB − (−1)(|A|+|C|)(|B|+|C|)JCB ⊗ JAC

)
.

As usual, the Yangian can also be equipped with an opposite coproduct defined as P ◦∆

where P is the (graded) permutation operator.

There is a special class of representations of Yangian algebras that is related to rep-

resentations of the underlying Lie algebra: the evaluation representations. The evaluation

representation ρu corresponding to a particular representation ρ of the algebra gl(M |N) is

defined as

ρu(JAB) := ρ(JAB) , ρu(ĴAB) := u ρ(JAB) , (3.15)
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where the complex parameter u is called the spectral parameter. We will be particularly in-

terested in the evaluation representations corresponding to the fundamental representation

ρF
u and the functional representation ρxu.

Quasi-triangular Hopf algebras. On the level of representations, Yangian algebras

behave like quasi-triangular Hopf algebras.8 Quasi-triangular Hopf algebras constitute a

special class of Hopf algebras for which the coproduct and opposite coproduct are related

by a similarity transformation. Let H be a quasi-triangular Hopf algebra, then there is

an invertible element S ∈ H ⊗ H, which is called the universal R-matrix. It intertwines

between the coproduct and the opposite coproduct in the following way

∆op(X)S = S∆(X) . (3.16)

In the remainder of this paper we shall use the term ‘R-matrix’ for some other object, and

henceforth we will refer to the universal R-matrix S as the ‘S-matrix’. The S-matrix must

obey the so-called fusion relations

∆1(S) = S13S23 , ∆2(S) = S13S12 . (3.17)

The two axioms above directly imply the Yang-Baxter equation

S12S13S23 = S23S13S12 . (3.18)

which is of central importance within integrable systems.

Furthermore, let us introduce the R-matrix as the S-matrix combined with the per-

mutation operator

R12 := S12P12 . (3.19)

The R-matrix is clearly equivalent to the S-matrix, but satisfies a permuted Yang-Baxter

equation

R12R23R12 = R23R12R23 . (3.20)

Even though our Yangian algebra is not quasi-triangular, on the level of representations

it behaves as if it were, thus on that level there exists S-matrices satisfying the above

properties (3.16) and (3.18).

RLL-realisation. An alternative realisation of a Yangian algebra inspired by quasi-

triangular algebras is given by the so-called RLL realisation [33, 35–37].9 The starting

point for this realisation is the Yang-Baxter equation (3.18) together with an explicit eval-

uation representation ρu (usually corresponding to the fundamental representation).

The idea is to evaluate (3.18) partially in this distinguished representation. Defining

Sρ(u, v) := (ρu ⊗ ρv)(S) , Lρ(u) := (ρu ⊗ 1)(L) , (3.21)

8To really achieve quasi-triangularity of the Yangian algebra, it has to be extended to a so-called Yangian

double [34].
9Also called RTT-realisation since sometimes the notation T is used rather than L.
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Representation S-matrix

ρF
u ⊗ ρF

v S(u− v)

ρxu ⊗ ρF
v L(u− v)

ρF
u ⊗ ρxv L(v − u)

ρxu+c/2 ⊗ ρ
x
v+c/2 R(u− v)P

Table 1. S-matrices intertwining the coproduct and the opposite coproduct in different represen-

tations. P is the graded permutation operator and c is the value of the central operator C. It turns

out to be convenient to consider the spectral parameters shifted by the central element for R. The

explicit formulas are provided in eqs. (3.25), (3.26) and (3.27).

and evaluating (3.18) in the representation ρu ⊗ ρv ⊗ 1 yields

Sρ12(u, v)Lρ1(u)Lρ2(v) = Lρ2(v)Lρ1(u)Sρ12(u, v) . (3.22)

Since one leg of Lρ lives in the Yangian algebra, the above relation can be used as a defining

relation for the algebra generated by the elements of Lρ. The Hopf algebra structure follows

from eq. (3.17)

∆2Lρ12(u) = Lρ13(u)Lρ12(u) . (3.23)

The Yangian generators in the Drinfeld realisation are encoded in Lρ(u) and can be ex-

tracted by expanding around u = ∞. For instance, for gl(M |N) in the fundamental

representation this relation looks like

LρF(u) = exp
[
(−1)|B|EBA JABu

−1 + (−1)|B|EBA ĴABu
−2 + . . .

]
. (3.24)

This realisation offers a compact formulation of the Yangian algebra as the object LρF(u)

encompasses all the Yangian levels.

S-matrices and R-matrices As mentioned above, Yangian algebras behave as quasi-

triangular Hopf algebras on the level of representations. In other words, there should

be S-matrices satisfying the Yang-Baxter eq. (3.18) and the symmetry property (3.16) in

the representations that we introduced in the beginning of this section. All the S- and

R-matrices that we will introduce in this section are summarised in table 1.

First, let us consider the fundamental S-matrix S that corresponds to the intertwining

operator in the tensor product of two fundamental representations ρF
u ⊗ ρF

v . It is easy to

show that the usual rational S-matrix

S(u) := u (−1)|A|+|B|EAA ⊗ EBB + (−1)|A|EAB ⊗ EBA (3.25)

satisfies all the required relations, that is, it obeys the Yang-Baxter equation and it inter-

twines the coproduct and opposite coproduct in the fundamental representation.

More interesting is the mixed representation ρxv ⊗ρF
u ' ρF

u ⊗ρxv . Consider the operator

L(u) := (u+ 1
2(1− C)) (−1)|A|EAA + (−1)|A|xApB E

B
A . (3.26)

– 13 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
0

It can be shown that this operator intertwines the coproduct and the opposite coproduct

generators in the ρxv ⊗ ρF
u ' ρF

u ⊗ ρxv representation according to (3.16).

In order to finish the discussion we would need the S-matrix in the functional repre-

sentation. However, for the remainder of this paper it turns out to be more convenient

to work with the R-matrix. It will satisfy the required symmetry properties if we shift

its arguments with the central charges of the representations involved. This is exactly the

type of twist that appears when a Yangian is extended by a central element [38, 39]. We

denote the R-matrix in this representation by R and since it is an operator rather than a

matrix we will refer to it as the R-operator.

The R-operator reads10

Rab(u) := Γ(−u) (pa · xb)u =

∫
dz

z1+u
e−z(pa·xb) . (3.27)

Since the symmetry properties of R are non-trivial, let us spell out the analogue of (3.16)

which is of satisfied. It is straightforward to show that[
(ρx ⊗ ρx) ∆op(JAB)

]
R12(u12) = R12(u12)

[
(ρx ⊗ ρx) ∆op(JAB)

]
, (3.28)[(

ρx
u2+

c1
2
⊗ ρx

u1+
c2
2

)
∆op(ĴAB)

]
R12(u12) = R12(u12)

[(
ρx
u1+

c1
2
⊗ ρx

u2+
c2
2

)
∆op(ĴAB)

]
,

where the coproducts are evaluated in the tensor product of two functional evaluation

representations with the indicated parameters. Explicitly, from eq. (3.14) we obtain(
ρx
u1+

c1
2
⊗ ρx

u2+
c2
2

)
∆op(ĴAB) = (u1 + c1

2 )(x1)A(p1)B + (u2 + c2
2 )(x2)A(p2)B−

−1
2

[
(x1)A(p1)C(x2)C(p2)B − (−1)(|A|+|C|)(|B|+|C|)(x1)C(p1)B(x2)A(p2)C

]
. (3.29)

The permutation in the u’s in the second line of eq. (3.28) is due to the fact that we are

working with R-operator rather than the S-matrix.

What remains to be shown are the different versions of the Yang-Baxter equation

that all these objects should satisfy. They are obtained by evaluating (3.18) in different

representations. For simplicity, let us introduce the short-hand notation uij := ui − uj .
On the one hand, there are two Yang-Baxter equations that do not involve the R-

operator. While the first one is purely in the fundamental representation, the second one

has the third leg in the functional representation

S12(u12)S13(u13)S23(u23) = S23(u23)S13(u13)S12(u12), (3.30)

S12(u12)L1(u13)L2(u23) = L2(u23)L1(u13)S12(u12) . (3.31)

On the other hand, there are two Yang-Baxter relations that involve the R-operator. Con-

sequently, those are permuted

R21(u1 − u2)L1(u1 + 1
2C1)L2(u2 + 1

2C2) = L1(u2 + 1
2C1)L2(u1 + 1

2C2)R21(u1 − u2) ,

(3.32)

R12(u12)R23(u13)R12(u23) = R23(u23)R12(u13)R23(u12) . (3.33)

10Notice that we have a different sign of u compared to [18].
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Remarkably, all these different instances of the Yang-Baxter equation can be shown to hold

directly from the relevant commutation relations (3.4) and (3.10). The last equation (3.33)

can be verified using the integral representation in (3.27).

Relations. We finish this section by deriving a few useful relations between the operators

R, L and S introduced above.

To begin, let us look at some commutation relations. In particular, we can observe

that the operators R and L clearly commute if their indices do not coincide. Similarly, it

follows for the R-operators that

Rab(u)Rcd(v) = Rcd(v)Rab(u) , if a 6= d and b 6= c . (3.34)

Furthermore, the central element (3.11) commutes with the Lax operator by definition

[La(u), Ca] = 0 , (3.35)

but has a non-trivial commutation relation with the R-operator

[Ca,Rab(u)] = −uRab(u), [Cb,Rab(u)] = uRab(u) . (3.36)

Notice, however, that as required by symmetry, Rab commutes with Ca + Cb.

In what follows, we will employ a representation of gl(M |N) in which x and p are

identified with the spinor-helicity variables introduced in section 2. In such a representation

the element C is central and its value c characterises the representation. We can use C to

invert the Lax operator at the level of representations. Indeed (3.9) yields (if L-operators

act in the same space we suppress the indices)

L(u+ α
2 C)L(−u− α

2 C) = L(−u− α
2 C)L(u+ α

2 C) = [1
2 + 1+α

2 C + u][1
2 + 1−α

2 C − u] ,

(3.37)

for any complex parameter α. By using (3.37) on spaces 1 and 2 in (3.32) we derive

R12(u12)L1(u1 − 1
2C1)L2(u2 − 1

2C2) = L1(u2 − 1
2C1)L2(u1 − 1

2C2)R12(u12) , (3.38)

Moreover, we can define the transpose of L by acting with the supertranspose (3.5) in

the fundamental representation

Lt(u) = u(−1)|A|EAA + (−1)|A||B|xApBE
A
B , (3.39)

It is easy to show that the inversion (3.37) and transposition almost commute. In particular,

we find

Lt(u+ α
2 C)Lt(−u− α

2 C) = [1+α
2 C + u− 1

2 ][1−α
2 C − u− 1

2 ] , (3.40)

such that (we identify C with c on the right-hand side)

Lt,−1(u+ α
2 C) =

[1+α
2 c+ u− 1

2 ][1−α
2 c− u− 1

2 ]

[1+α
2 c+ u+ 1

2 ][1−α
2 c− u+ 1

2 ]
L−1,t(u+ α

2 C) . (3.41)

– 15 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
0

Finally, let us consider how the Yangian symmetry is generated in the functional rep-

resentation by the Lax-operator L. Similar to the RLL realisation, we should be able

to derive the Yangian symmetry generators in the functional representation from L. Ex-

plicitly, the generators in the fundamental representation can be obtained by expanding

L according to (3.24). We consider L in a fundamental evaluation representation with

spectral parameter u0 and in a the functional representation with spectral parameter u.

Consequently we need to expand around u0 = ∞. Notice that the normalisation of

L clearly plays a role in the explicit expansion. If we pick a convenient normalisation

L→ L0L and write11

L0 =
1

u0
+
u− 1

2

u2
0

+
c
2 + (u− 1

2)2

u2
0

+ . . .

L(u0 − u+ 1
2c) =

∞∑
n=−1

(−1)|A|LA(n)B E
B
A u
−n−1
0 , (3.42)

we find the usual relations that follow from (3.24)

δAB = LA(−1)B, ρx(JAB) = LA(0)B , (3.43)

and where the Yangian generator is shifted by the central element

(u− c
2)ρx(JAB) = LA(1)B −

1
2(−1)(|A|+|C|)(|B|+|C|)LC(0)BLA(0)C . (3.44)

Applying the fusion relations (3.17) to the operator L gives rise to the correct Yangian

coproduct. In other words, the coproduct directly follows by expanding (3.23) around

u0 =∞.

3.2 Yangian invariants

In this section we will explain how the L- and R-operators considered above can be used

to define Yangian invariants and scattering amplitudes.

3.2.1 Representation

We work in a representation where we identify the spinor variables λ, λ̃ and Grassmann

variables η̃ introduced in subsection 2 with the canonical variables as

x = (λ, ∂λ̃, ∂η̃), p = (∂λ, −λ̃, −η̃) . (3.45)

It is easy to check that they satisfy the fundamental commutation relations (3.9) and

thus provide a functional representation of gl(4|4). The variables x and p act on the

infinite- dimensional vector space Va of (generalised) functions in the spinor-helicity vari-

ables (λα, λ̃α̇, η̃
A).

11A different choice of normalisation simply rescales the generators and acts as the usual Yangian auto-

morphism Ĵ→ Ĵ + σJ.
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An n-point amplitude is a function in the n-fold tensor product12

V = V1 ⊗ . . .⊗ Vn . (3.46)

In this representation, the L-operator (3.26) is an eight-by-eight matrix whose entries are

differential operators, while the R-operator is a scalar operator.

From the form of the R-operator (3.27), we see that it can be identified with a shift

operator. Explicitly, the action of the R-operator in spinor-helicity variables is given by

Rab(u)f(λa, λ̃a, η̃a, λb, λ̃b, η̃b) :=

∫
dz

z1+u
f(λa − zλb, λ̃a, η̃a, λb, λ̃b + zλ̃a, η̃b + zη̃a) . (3.47)

and precisely corresponds to the BCFW-shift eq. (2.6).

Let us consider a specific subset of Va generated by the delta functions

δa := δ2(λa), δ-a := δ2|4(λ̃a) := δ2(λ̃a)δ
4(η̃a) . (3.48)

For those, the central operator C is identified with the helicity operator h = 1 − 1
2C.

The action of C on the basis elements is trivial, while B is only trivial on the negative

δ-functions

Caδ±a = 0 , Baδ±a = −(4± 4) . (3.49)

On the other hand, the L-operator acts non-trivially on all δ-functions

La(u)δ±b = (u∓ 1
2) δab δ±b , (3.50)

where the right-hand side is proportional to the unit matrix. From the explicit form of the

R-operator it is readily seen that

Rab δc = δcRab for c 6= a , Rab δ-c = δ-cRab for c 6= b . (3.51)

On the other δ-functions the operator R has a non-trivial action according to (3.47).

3.2.2 Invariants

Let us now employ the above objects to define Yangian invariants. We saw in (3.44) that the

operator L generates the Yangian symmetry in the functional representation (with a shifted

spectral parameter). Using the fusion relations (3.17) and (3.23) we find that the Yangian

representation corresponding to n particles is generated by the so-called monodromy matrix

Tn := L1(u1 − C1
2 ) . . .Ln(un − Cn

2 ) . (3.52)

A function Y on V is called a Yangian invariant if it is an eigenfunction of the monodromy

matrix Tn:

T({ui})Y = Λ({ui})Y . (3.53)

12An amplitude is a function of the spinor-helicity variables of n particles that generically will not be of

a factorised form. Thus, strictly speaking, we can only see it as an element of V if we express it via power

series.
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It is worthwhile to note that this immediately implies that all generators from gl(4|4) apart

from B annihilate the Yangian invariant. In fact, the eigenvalue of B is directly related to

the large-u expansion of Λ as can be seen from (3.43).

The δ-functions introduced in (3.48) provide a natural eigenfunction of the monodromy

matrix. Indeed, it is easy to show that

Tn Ωs1,...,sn := Tn δs11 . . . δsnn =
n∏
i=1

(ui − si
2 )Ωs1,...,sn , (3.54)

where si = ±. If there are k negative s’s, then we can interpret this function as the trivial

An;k superamplitude where all particles are soft and there is no interaction. This state has

all central charges ci = 0 has total hypercharge
∑

iBiΩ = −4(
∑

i 1− si)Ω.

We can use the reference state Ω as a starting point for constructing non-trivial

Yangian-invariant functions. From the discussion on the Yangian symmetry-algebra we

can identify a natural candidate for building Yangian invariants: the R-operator. By

construction it commutes with T up to a permutation of the spectral parameters. Further-

more, Ω contains 2n bosonic δ-functions. The Yangian invariant should be proportional

to δ4(
∑

i pi) and each R-operator will remove one δ-function. Consequently, we postulate

that the n-point amplitude An;k with degree 4k is a linear combination of functions of the

form

Y = Ra1b1(v1) . . .Ra2n−4b2n−4(v2n−4)Ω , (3.55)

where Ω is a product of (n − k) δai ’s and k δ-ai ’s such that it is an eigenfunction of the

monodromy matrix.

We would like to point out that any function of the form (3.55) automatically has zero

total central charge, as is required subsection 2.3∑
i

CiY = 0 , (3.56)

by the commutation relations (3.36). However, the individual central charges CiY are

clearly non-zero.

Finally let us remark that functions of the form (3.55) are simply integrals of delta

functions according to (3.47). Clearly not all possible combinations of the form (3.55)

will result in a well-defined integral and we will have to restrict to the ones that can be

computed. There is a further subtlety regarding the overall sign. We will always compute

the integral of δ-functions by applying a coordinate transformation that trivialises them.

However, we will not take the absolute values of the associated Jacobian and consequently

we can only define the Yangian invariants up to a sign.

3.2.3 Symmetries of amplitudes

Apart from Yangian symmetry, scattering amplitudes have an additional ‘global’ symmetry:

dihedral symmetry. Dihedral symmetry is generated by a reflection and a shift operation

{1, 2, . . . , n} r−→ {n, n− 1, . . . , 1} , {1, 2, . . . , n} s−→ {n, 1, . . . , n− 1} . (3.57)
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This simply corresponds to a relabelling of the scattered particles. Note that individual

Yangian invariants do not necessarily exhibit this symmetry. Both the reflection and the

shift operation have a natural action on the level of the monodromy matrix T.

Reflection. The reflection operation can be deduced from equation (3.37). Let Y be an

eigenfunction of the monodromy matrix with eigenvalue Λ, then

L1(u1 − c1
2 ) . . .Ln(un − cn

2 )Y(ui) = ΛY(ui) , (3.58)

which implies that

Λ−1
∏
i

(1
2 + ui)(

1
2 + ci − ui)Y = Ln( cn2 − un) . . .L1( c12 − u1)Y . (3.59)

We apply a relabelling using the reflection operation to obtain

L1(u1 − c1
2 ) . . .Ln(un − cn

2 )Yr = Λ̃Yr , (3.60)

where Yr corresponds to Y where all indices and spectral parameters have been reflected

according to

Rab → Rr(a)r(b), ui → −ur(i) + cr(i) . (3.61)

The eigenvalue Λ̃ can be read off directly from (3.59). This shows that if Y is an eigenstate

of the monodromy matrix, its reflected version is an eigenstate as well. Clearly, for generic

Yangian invariants Y and Yr need not coincide. However, full scattering amplitudes should

have this property.

Shifts. The effect of a shift operation follows from the transposition properties of L in

eq. (3.39). In particular we find that for an eigenstate Y

L1(u1 − c1
2 ) . . .Ln(un − cn

2 )Y = ΛY , (3.62)

implies

L2(u2 − c2
2 ) . . .Ln(un − cn

2 )L−1,t,−1,t,t,t
1 (u1 − c1

2 )Y = ΛY . (3.63)

Then we can deduce from eq. (3.41) that

L2(u2 − c2
2 ) . . .L1(u1 − c1

2 )A =
[u1 − 1

2 ][c1 − u1 − 1
2 ]

[u1 + 1
2 ][c1 − u1 + 1

2 ]
ΛY . (3.64)

Hence, after relabelling the indices we find

L1(u1) . . .Ln(un)Ys = Λ′ Ys , (3.65)

where Ys is Y with all indices shifted according to the shift s in eq. (3.57). The eigenvalue

Λ′ is obtained by relabelling the right-hand side of eq. (3.64).
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Parity flip. Finally there is the parity flip operation. Comparing eqs. (3.32) and (3.38)

we see that Rab and Rba have similar commutation relations with respect to the monodromy

matrix. In particular, for eigenstates of the form eq. (3.55) the transformation

Rab → Rba , δa ↔ δ-a , ui → ui − ci , (3.66)

is a map between eigenstates. Notice that the central charges in the above transformation

are the ones of the parity-flipped function. The central charges are not invariant under

a parity flip. As described in subsection 4.3 below, a parity flip corresponds to swapping

white and black dots in an on-shell diagram.

In view of (3.61) it is very natural to combine a parity flip with a reflection. Indeed,

the combined transformation takes the simple form

Rab → Rr(b)r(a) , δa ↔ δ-r(a) , ui → −ur(i) . (3.67)

In terms of on-shell diagrams we will demonstrate that this transformation simply corre-

sponds to interchanging black and white dots and a simultaneous flip in the orientation of

the external legs (see subsection 4.3).

3.3 Three-point amplitudes

We are now ready to compute Yangian invariants explicitly. Let us start by considering

the three-point MHV and MHV amplitudes A3;2 and A3;1, respectively. These scattering

amplitudes are generated by two R-operators acting on a product of three δ-functions. By

direct computation one can readily find all states of the form (3.55) that satisfy the criteria

outlined above.

The amplitude A3;2 In this case, the vacuum is a product of two negative and one

positive δ-function. We fix it to be

Ω+−− := δ1δ-2δ-3 . (3.68)

From the fundamental commutation relations (3.32) and (3.50) it is easy to see that

A3;2 := R23(u32)R12(u31) Ω++− (3.69)

is an eigenfunction of T3 with eigenvalue (u1 + 1
2)(u2 + 1

2)(u3 − 1
2). The expression (3.69)

can be straightforwardly evaluated to

A3;2 =
δ4(
∑

i pi)δ
8(
∑

i λiηi)

〈12〉1+u32〈23〉1+u13〈13〉1+u21
. (3.70)

Upon setting all evaluation parameters equal, i.e. uij = 0, this reduces to the usual three-

point MHV amplitude (2.3).

Notice furthermore that (3.70) is almost invariant under the dihedral symmetry group.

Under shifts and reflections it picks up overall numerical factors of the form (−1)uij . These

factors vanish in the undeformed limit and do not generate a new eigenstate anyway. As
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such, we will actually identify states that differ by such factors and loosely refer to (3.70)

as being invariant under dihedral symmetry.

However, apparently eq. (3.69) is not the only eigenfunction of the monodromy matrix.

Furthermore, starting with a different vacuum will also a priori lead to different solutions.

We will discuss their relation at the end of this section.

The amplitude A3;1 The vacuum for this state is a product of two positive and one

negative δ-functions. We choose

Ω++− := δ1δ2δ-3 . (3.71)

This time we find that

A3;1 := R12(u21)R23(u31) Ω++− (3.72)

is an eigenfunction of the monodromy matrix with eigenvalue (u1 + 1
2)(u2 − 1

2)(u3 − 1
2). It

yields a well-defined integral that can be evaluated to

A3;1 =
δ4(
∑

i pi)δ([12]η3 + [23]η1 + [31]η2)

[12]1+u13 [23]1+u32 [31]1+u21
, (3.73)

This expression reduces to the usual three-point MHV amplitude when all evaluation pa-

rameters are equal.

Classifying all eigenstates. Thus far we were able to derive eigenfunctions of the mon-

odromy matrix that correspond to deformed versions of the MHV and MHV amplitudes.

However, the explicit expressions we found are not the only eigenfunctions of the mon-

odromy matrix.

In order to completely classify all eigenstates, let us take a more general approach and

consider all states of the form

RabRcdΩs1s2s3 (3.74)

and investigate which ones are eigenstates of the monodromy matrix. Since a, b, c, d can

only take values between one and three, we quickly find that there are 24 possible non-trivial

combinations.13 These are listed in table 2.

All permutations of {1, 2, 3} can be generated by cyclic shifts and reflections. From the

discussion in subsection 3.2, we know we can relate eigenstates via dihedral transforma-

tions. In other words, this implies that the 24 states split into four classes under dihedral

symmetry.

Since the products of R-operators multiply a product of δ-functions it can be readily

seen that any of the products from table 2 commutes with the monodromy matrix for

appropriate arguments. For instance,

T R12(u21)R13(u32)Ωs1s2s3 = R12(u21)T(u2, u1, u3)R13(u32)Ωs1s2s3

= (u1 − s2
2 )R12(u21)L1(u2)L3(u3)R13(u32)Ωs1s2s3 (3.75)

= (u1 − s2
2 )(u2 − s3

2 )(u3 − s1
2 )R12(u21)R13(u32)Ωs1s2s3 ,

13Clearly operators of the form R12R12 commute with the monodromy matrix as well, but we will discard

these types of solutions for obvious reasons.
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Class 1 Class 2 Class 3 Class 4

R12R23 R23R12 R12R13 R23R13

R31R12 R12R31 R31R32 R12R32

R23R31 R31R23 R23R21 R31R21

R32R21 R21R32 R32R31 R21R31

R21R13 R13R21 R21R23 R13R23

R13R32 R32R13 R13R12 R32R12

Table 2. The equivalence classes of R-operators generating three-point amplitudes with the argu-

ments left unspecified. Notice that the first three states of classes 3 and 4 can be identified with

the last three by using (3.34).

where in the second step we used that δ2 commutes with R13 and (3.50). In other words,

this function is only an eigenstate in this explicit representation. Notice that the property

of being an eigenstate of T does not depend on the explicit choice of the vacuum.

The next criterion is whether the eigenstate gives rise to a well-defined integral. It can

be checked that this is the case for a unique vacuum state for each of the products from

table 2. This indicates that there is a map that determines the vacuum corresponding to

a given sequence of R-operators. We will come back to this shortly in subsection 4.1.

The operators belonging to the classes 2 and 3 correspond to MHV amplitudes, while

the operators from classes 1 and 4 yield MHV amplitudes. It is not difficult to show

that all states from classes 2 and 3 evaluate to (3.70) and states from classes 1 and 4

result in (3.73). In other words, the eigenfunctions (3.70) and (3.73) exhaust the space of

eigenfunctions. Summarising, there is a unique Yangian-invariant deformation of the MHV

and MHV amplitude each of which can be written in the 12 different ways listed in table 3.

Accordingly, table 3 provides us with an additional set of relations that our R-matrices

satisfy. We will refer to them as RRδ-relations in order to indicate that they are representation-

dependent — in particular, they depend on the vacuum. They are generated by shift-,

reflection- and representation-dependent relations. Let us spell the generating relations out

Rab(u)Rbc(v)δaδbδ-c = Rbc(v − u)Rca(−u)δ-aδbδc (3.76a)

Rab(u)Rbc(v)δaδbδ-c = Rcb(−v)Rba(−u)δ-aδbδc (3.76b)

Rab(u)Rbc(v)δaδbδ-c = Rbc(v − u)Rac(u)δaδbδ-c , (3.76c)

together with the parity flipped versions.

In addition, we can relate the MHV and MHV by the flip operation. Thus, these

operations generate all eigenstates in table 3 starting from any single choice of eigenstate.
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MHV MHV

R12(u21)R23(u31)Ω++− R23(u32)R12(u31)Ω+−−

R13(u21)R23(u32)Ω++− R12(u21)R13(u32)Ω+−−

R21(u32)R13(u31)Ω++− R13(u32)R12(u21)Ω+−−

R23(u32)R12(u21)Ω++− R32(u21)R13(u31)Ω+−−

R21(u32)R31(u13)Ω−++ R21(u13)R32(u23)Ω−−+

R23(u32)R31(u12)Ω−++ R32(u21)R31(u13)Ω−−+

R31(u13)R21(u32)Ω−++ R31(u13)R32(u21)Ω−−+

R32(u13)R21(u12)Ω−++ R12(u21)R31(u23)Ω−−+

R12(u21)R32(u13)Ω+−+ R13(u32)R21(u12)Ω−+−

R13(u21)R32(u23)Ω+−+ R21(u13)R23(u32)Ω−+−

R31(u13)R12(u23)Ω+−+ R23(u32)R21(u13)Ω−+−

R32(u13)R12(u21)Ω+−+ R31(u13)R23(u12)Ω−+−

Table 3. All possible ways to write the three-point amplitudes. The amplitudes in the same column

are related via the RRδ-relations. The expressions between the two columns are related via the flip

operation.

3.4 Four-point amplitude

Next we turn to the four-point MHV amplitude. Let us again provide a convenient ansatz

that gives an eigenstate of the monodromy matrix

R23(u32)R34(u42)R12(u31)R23(u41)Ω++−− . (3.77)

It evaluates to

A4;2 =
δ4(
∑

i pi)δ
8(
∑

i λiηi)

〈12〉1+u32〈23〉1+u43〈34〉1+u14〈14〉1+u21
, (3.78)

which for uij = 0 reduces to the MHV amplitude (2.3). This function again respects

dihedral symmetry. Furthermore, we can as well apply the parity-flip operation, which

leaves (3.78) invariant.

It is interesting to ask, whether eq. (3.78) is the unique Yangian invariant for four

points. In order to perform a complete search of Yangian invariants we assume that the

only rules that we are allowed to apply in order to show that a state is an eigenstate are:

1. The commutation relations between R and L (3.32) and (3.38).

2. The Yang-Baxter equation (3.33) and the trivial permutation (3.34).

3. Dihedral symmetry of the invariant and of subinvariants. For example, the above

expression for the four-point Yangian invariant contains the three-point invariant as

a subinvariant. This subinvariant can then be rewritten using the symmetries of the

three-point amplitude summarised in the RRδ rules (3.76).
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4. The commutation relation of R with δ according to (3.51). This can be used similar

to (3.75) to deal with R-operators with non-adjacent legs.

In what follows, we will assume that there are no additional relations and that eigenstates

can be permuted with the monodromy matrix using these relations only.

Constructing all eigenfunctions of the monodromy matrix that satisfy these criteria,

we find that there are about a thousand different of those states. However, the ones that

are well-defined all evaluate to the four-point amplitude (3.78). In other words, there is a

unique four-point deformed amplitude.

3.5 Six-point invariants

Since the five-point scattering amplitude will be used as an example in great detail in the

next section, let us continue with the six-point Yangian invariants. For six points there are

three possible situations depending on the number of negative δ-functions. While there are

Yangian invariants related to the MHV and MHV amplitudes, which have two and four

negative δ-functions, there are several Yangian invariants belonging to the NMHV sector.

Those are built starting from a product of three negative and three positive δ-functions.

We have again constructed eigenfunctions using the set of rules discussed in subsection 3.4.

MHV and MHV In parallel to the results in subsection 3.4, we find that the MHV and

MHV amplitudes admit a unique deformation. A particular representation of the deformed

MHV amplitude reads

A6;2 = R23(u32)R34(u42)R45(u52)R56(u62)R12(u31)R23(u41)R34(u51)R45(u61)δ1δ2δ3δ4δ-5δ-6 ,

(3.79)

while the MHV is given by

A6;4 = R45(u54)R34(u53)R23(u52)R12(u51)R56(u64)R45(u63)R34(u62)R23(u61)δ1δ2δ-3δ-4δ-5δ-6 .

(3.80)

These eigenstates are related by a combination of parity-flip and reflection. It is again not

difficult to show that both expressions reduce to the corresponding N = 4 sYM amplitudes

when all spectral parameters are equal.

NMHV sector For the six-point NMHV channels we find that all possible eigenstates

reduce to exactly six different Yangian invariants. They can be represented by the following

expressions

Y(6)
1 = R34(u43)R45(u53)R23(u42)R34(u52)R21(u54)R31(u51)R65(u32)R64(u62)δ-1δ2δ3δ-4δ-5δ6 ,

Y(6)
2 = R34(u43)R45(u53)R23(u42)R34(u52)R21(u54)R31(u56)R65(u31)R16(u61)δ1δ2δ3δ-4δ-5δ-6 ,

Y(6)
3 = R34(u43)R45(u53)R23(u42)R34(u52)R21(u54)R31(u56)R64(u21)R16(u61)δ1δ2δ3δ-4δ-5δ-6 ,

Y(6)
4 = R34(u43)R45(u53)R23(u42)R34(u52)R21(u54)R65(u32)R64(u21)R16(u61)δ1δ2δ3δ-4δ-5δ-6 ,

Y(6)
5 = R34(u43)R45(u53)R23(u42)R34(u52)R31(u65)R65(u32)R64(u21)R16(u61)δ1δ2δ3δ-4δ-5δ-6 ,

Y(6)
6 = R45(u54)R23(u32)R34(u52)R21(u53)R31(u65)R65(u42)R64(u21)R16(u61)δ1δ2δ3δ-4δ-5δ-6 .

(3.81)
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All these invariants Y(6)
i can be related by the shift operation from the dihedral group.

Contrary to the situation for MHV amplitudes that we encountered so far, we see that the

dihedral symmetry does not leave the individual Yangian invariants unaltered, but rather

relates them.

This is also the first occurrence where we do not have a unique Yangian invariant

corresponding to a scattering amplitude. Thus the question arises, whether the invariants

from (3.81) belong to the same eigenspace. The first thing to check are the eigenvalues

with respect to the monodromy matrix. A direct computation shows that

TY(6)
1,2,3,4,5 = (u1 + 1

2)(u2 + 1
2)(u3 + 1

2)(u4 − 1
2)(u5 − 1

2)(u6 − 1
2)Y(6)

1,2,3,4,5 , (3.82a)

TY(6)
6 = (u1 + 1

2)(u2 + 1
2)(u3 − 1

2)(u4 + 1
2)(u5 − 1

2)(u6 − 1
2)Y(6)

6 . (3.82b)

Obviously, Y(6)
6 has a different eigenvalue. From the discussion on dihedral symmetry in

subsection 3.2 we know that each of the eigenstates should as well be an eigenstate of the

monodromy matrices with cyclically shifted L-operators. For instance, it can be shown that

L2L3L4L5L6L1 Y(6)
6 = (u1 − 1

2)(u2 + 1
2)(u3 + 1

2)(u4 + 1
2)(u5 − 1

2)(u6 − 1
2)Y(6)

6 ,

L3L4L5L6L1L2 Y(6)
6 = (u1 − 1

2)(u2 − 1
2)(u3 + 1

2)(u4 + 1
2)(u5 + 1

2)(u6 − 1
2)Y(6)

6 ,

L4L5L6L1L2L3 Y(6)
6 = (u1 − 1

2)(u2 + 1
2)(u3 − 1

2)(u4 + 1
2)(u5 + 1

2)(u6 + 1
2)Y(6)

6 ,

L5L6L1L2L3L4 Y(6)
6 = (u1 + 1

2)(u2 − 1
2)(u3 − 1

2)(u4 − 1
2)(u5 + 1

2)(u6 + 1
2)Y(6)

6 ,

L6L1L2L3L4L5 Y(6)
6 = (u1 + 1

2)(u2 + 1
2)(u3 − 1

2)(u4 − 1
2)(u5 − 1

2)(u6 + 1
2)Y(6)

6 .

(3.83)

We see that all eigenvalues, apart from one distinct instance, are simply related by shifts.

For Y(6)
6 the unusual eigenvalue is the eigenvalue of the canonical monodromy matrix

eq. (3.82b). A similar computation for the other Yangian invariants reveals that they do

not belong to the same eigenspace of the rotated monodromy matrices. For each pair there

is always a monodromy matrix for which they have different eigenvalues.

From our explicit construction of the shift operation of Yangian invariants (3.64), we

see that the eigenvalues can be expressed in terms of the central charges. Thus, we can

also simply compute the central charges and compare those. The vector of central charges

{ci} for the six Yangian invariants reads

CiY(6)
1 = {u14, u25, u31, u46, u52, u63} , CiY(6)

2 = {u14, u25, u36, u42, u51, u63} ,

CiY(6)
3 = {u14, u25, u36, u41, u53, u62} , CiY(6)

4 = {u14, u26, u35, u41, u52, u63} ,

CiY(6)
5 = {u15, u24, u36, u41, u52, u63} , CiY(6)

6 = {u13, u25, u36, u41, u52, u64} .

(3.84)

Thus, all Yangian invariants have different central charges and, consequently, belong to dif-

ferent eigenspaces. The six-point NMHV amplitude in N = 4 sYM is obtained by combin-

ing three Yangian invariants. Since our Yangian invariants belong to different eigenspaces,

we can add them only after identifying spectral parameters in a way such that the eigen-

values coincide. In particular, the linear combination

A6;3 = Y(6)
1 + Y(6)

3 + Y(6)
5 , (3.85)
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reduces to the correct undeformed amplitude. This linear combination is a Yangian invari-

ant only if we set

u1 = u6 , u2 = u3 , u4 = u5 . (3.86)

Similarly, one can combine Y(6)
2,4,6 and find a different deformation which only is well-

defined if

u1 = u2 , u3 = u4 , u5 = u6 . (3.87)

This is in complete agreement with [17]. If we want all six channels to belong to the same

eigenspace we would have to set all spectral parameters equal, which corresponds to the

undeformed situation. We would furthermore like to point out that A6;3 (3.85) is invariant

under dihedral symmetry as well as the parity-flip operation.

3.6 The top-cell

Apart from the Yangian invariants computed so far, there are other eigenfunctions of the

monodromy matrix. For instance it is natural to consider Yangian invariants for which the

number of R-operators is not equal to 2n− 4, for example

R34(u43)R45(u53)R23(u42)R34(u52)R21(u54)R31(u65)R65(u32)R64(u21)R16(u61)Ω+++−−− .

(3.88)

This function corresponds to the so-called top-cell. For now, we remark that the six different

invariants from the six-point NMHV amplitude are elegantly packaged in (3.88). Indeed,

it can be seen that by removing the R-operators at positions {1, 5, 6, 7, 8, 9} (from the left)

we exactly reproduce the channels (3.81) discussed in the previous subsection.

On the other hand, eq. (3.88) can be evaluated in a more direct way. Performing

all the integrals apart from one yields a rational function (with the standard momentum

conserving δ-functions) which has six poles in the complex plane. Unsurprisingly, the

residues at each of those poles again produce the Yangian invariants Y(6)
i .

While of course the same function can be expressed in multiple ways by using the

symmetries and relations derived earlier, there is one particular representation that we

would like to mention (see also subsection 4.3)

R34(u43)R45(u53)R56(u63)R23(u42)R34(u52)R45(u62)R12(u41)R23(u51)R34(u61)Ω+++−−− .

(3.89)

Performing the integrations again yields a rational function whose poles give rise to NMHV

channels. However in contradistinction to (3.88), the channels can not be obtained by

simply removing R-operators from eq. (3.89).

3.7 Symmetries and central charges

Let us summarise the results from this section: so far we found that each undeformed

Yangian invariant arising in N = 4 sYM theory is associated to a unique deformed Yangian
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invariant. These Yangian invariants can be expressed in different ways in terms of R-

operators. For instance, the Yang-Baxter equation (3.33), the permutation (3.34) and

dihedral symmetries of (sub)invariants can be used to find equivalent ways of expressing

the same Yangian invariant.

In order to get a well-defined deformed scattering amplitude beyond the MHV sector,

however, one needs to combine several Yangian invariants. Due to the fact that they

belong to different eigenspaces, we find that we can only combine them if we identify

spectral parameters in accordance with [17].

In all the examples that we considered so far, the central elements turn out to be

a difference of u’s. This is actually a general feature. To be more precise, there is a

permutation σ such that

ci = ui − uσ(i) . (3.90)

This can be readily seen by commuting the monodromy matrix through the sequence of

R-operators using (3.32) and (3.38). The effect of such a single commutation is a swap

of spectral parameters. The permutation σ can be extracted from the distribution of

spectral parameters in the monodromy matrix after commuting it through the R-operators

in the eigenstate. From this result we see that to each eigenstate we can assign a unique

permutation σ via the central charges.

Using the relation between central charges and permutations, we can consider the

transformation of the central charges under dihedral symmetry. Acting with the shift

operation on (3.90) results in

ci → ui − uσ(i+1)−1 , (3.91)

while reflection yields

ci → ui − ur(σ(r(i)) . (3.92)

In particular if the permutation σ corresponds to a translation, the central charges remain

invariant.

The map between central charges of Yangian invariants and permutations is clearly

injective.14 However, we can actually prove that this map is surjective as well. Recall

that every permutation can be written as a sequence of minimal length of swaps of neigh-

bouring sites. However such swaps can be trivially realised in terms of R-operators, which

manifestly commute with the monodromy matrix. This means that there is a bijection

between eigenstates of the monodromy matrix and permutations. Moreover, via (3.90) this

also means that Yangian invariants are in one-to-one correspondence with a choice of cen-

tral charges.

4 Relations to on-shell graphs and amplitudes

Let us now relate the representation of Yangian invariants in terms of R-operators to the

previously known ways to describe them: the on-shell graphs and permutations discussed in

14Obviously, injectivity applies to nontrivial cycles only.
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subsection 2.2. All of those descriptions are valid ways of representing Yangian invariants

in N = 4 sYM theory, each of which with its advantages and disadvantages.

Naturally, one can translate between those three descriptions. While the permutation

associated to an on-shell graph can be readily deduced by using the double-line formalism

described in subsection 2.2, relating the other formulations depicted in figure 1 requires

more care.

In the discussion to follow, we will usually not note the argument of the R-operator

as those are uniquely fixed by demanding Yangian invariance: in the same way the as the

linear system eq. (2.13) determines the parameters ci in terms of the evaluation parameters

ui, requiring an R-chain to be an eigenstate of the monodromy matrix (cf. eq. (3.55)) will

identify the arguments of the R-operators yielding a Yangian invariant.

All translational rules described below, preserve Yangian invariance: starting from an

on-shell diagram with parameters ci and ui satisfying the linear system of equations ensur-

ing Yangian invariance (see subsection 2.3) one will obtain an eigenstate of the monodromy

matrix and vice versa. Nicely, the third way of describing a Yangian invariant, the permu-

tation, already incorporates these conditions naturally: only Yangian-invariant R-chains

and on-shell graphs can be translated into permutations.

4.1 Which vacuum for which R-chain?

As already mentioned in subsection 3.3, there is a unique vacuum associated to any chain

of R-operators. This can be understood easily as follows. As spelled out in eq. (3.47), Rab

acts as

Rab(u)F(λa, λ̃a, η̃a;λb, λ̃b, η̃b) =

∫
dz

z1+u
F(λa − zλb, λ̃a, η̃a;λb, λ̃b + zλ̃a, η̃b + zη̃a) ,

that is, it performs a BCFW shift on the spinor-helicity variables. The single-particle

vacuum states are the superconformal invariant delta functions δa, δ-a defined in eq. (3.48).

The operator Rab acts nontrivially only on δa and δ-b. The sequence of δa’s and δ-a’s

associated with a R-chain is such that the rightmost R’s act nontrivially on the vacuum.

In practice, reading the R-chain from the right-hand side, one has to note whether the first

occurrence of an index is at position a or b in Rab. For an index appearing in position

a first, the vacuum has to be δa while an index appearing first at position b requires a

vacuum state δ-b.

Notice that a given R-chain acting on the correct vacuum can give rise to an invariant

with constrained kinematics, for example if the number of R’s does not match (2n − 4).

This is not surprising, an easy example being the invariant given by15

R12 R13 R34 · δ1 δ-2 δ3 δ-4 . (4.1)

It is easily checked that this is indeed an eigenfunction of the monodromy matrix.

The R-operators in eq. (4.1) give rise to three integrals, whereas the total number of

bosonic delta functions is eight. If we take into account the momentum-conserving delta

15Another important example are the top-cell representatives discussed in subsection 3.6.
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functions, we should be left with an additional bosonic delta constraining the kinematics.

A straightforward computation shows that

R12 R13 R34 · δ1 δ-2 δ3 δ-4 ∝ δ4(p) δ(〈34〉) , (4.2)

where the proportionality factor involves eight fermionic delta functions and a ratio of

spinor brackets. This actually will not come as a surprise as soon as the correspondence

with on-shell graphs is spelled out, since the above invariant corresponds to the following

on-shell graph

1

2 3

4

(4.3)

which is easily seen to be proportional to δ(〈34〉), thus a factorisation channel where the

internal propagator is on-shell.

As an aside note, notice that it is possible to obtain invariants with constrained kine-

matics also by acting with a given chain of R’s on the wrong vacuum.

4.2 Translating between R-operators on-shell graphs

In order to create a representative for the class of on-shell diagrams corresponding to an

R-chain, there is a nice graphical method which — in a different language — was already

described in [14]. Let us start from a chain of R-operators acting on a vacuum which allows

for a general kinematical situation as described in subsection 4.1.

• R-operators need to be applied in the succession of their appearance in the R-chain,

starting from the rightmost R-operator.

• if none of the indices a and b of an operator Rab has appeared as an index in an

operator to the right, these particles are still in their vacuum state and are not

yet connected. In this case, the R-operator will connect them by a propagator.

Simultaneously, this requires the vacuum state to be δa for the first index and δ-b for

the second index as discussed in subsection 4.1

Rabδaδ-b → a b . (4.4)

• if only the first (second) index has appeared before, that is, there is already an

external line with that label, connect the other (vacuum)-index to this line by a

black (white) dot. In doing so, lines need to be attached as to yield the correct

clockwise cyclical ordering of the external legs of the on-shell graph:

RcbRabδaδ-bδc = RcaRabδaδ-bδc → a b

c

. (4.5)

The clockwise ordering is a choice which agrees with the convention in [14]. It will

become essential in interpreting the R-operators in terms of permutations in subsec-

tion 4.3 below.
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• if both indices are already connected, acting with an operator Rab amounts to con-

necting the two external lines a and b by an BCFW-bridge [18]:

Rab

ba

→
ba

. (4.6)

Here, the line labelled by the first index, a, will be equipped with a black dot and

the line of the second index, b, will gain a white dot. The assignment of black and

white dots to the indices does not depend on whether they appear in ascending or

descending order.

Let us test this for the example of the five-point MHV amplitude:

R54R43R51R41R23R21 δ-1δ2δ-3δ4δ5 . (4.7)

While R21 acting on the vacuum leads to a line connecting particles 2 and 1

R21δ-1δ2 → 2 1 , (4.8)

the following three operators attach all other external particles to this line:

R51R41R23

(
2 1

)
δ-3δ4δ5 →

2

3 4 5

1

. (4.9)

The next two operators, R43 and R54 connect the external lines 3, 4 and 5 by BCFW-

bridges:

R54R43

2

3 4 5

1

→ R54

43

2

5

1

→

1

5

4
3

2

(4.10)

yielding the expected diagram.

While the method described above assigns a particular on-shell diagram to a chain of R-

operators unambiguously, the reverse operation can not be formulated as straightforwardly.

Nevertheless, here are some guidelines for finding a chain of R’s corresponding to an on-shell

graph:

• find a tree-level subgraph of the on-shell graph, which connects all particles. For the

five-point example above, the graph is the result of eq. (4.9). In order to represent

this graph in terms of R’s, select a baseline to start with (R21 in the above example)

and attach the other particles in the correct clockwise cyclical ordering using (4.5).

• successively add BCFW-bridges to the tree-level subgraph as in eq. (4.6) leading to

the complete on-shell graph as depicted in eq. (4.10).
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The R-chains thus obtained are by no means unique: choosing a different tree-level sub-

graph will lead to another R-chain. Nevertheless, all representations are related by the

relations between R-operators, like eq. (3.76) and their higher-point analogues.

Although the method above allows to translate an on-shell diagram into a chain of

R’s, it is usually easier to first deduce the permutation and then follow the directions

for converting a permutation into a chain of R-operators above as described in the next

subsection.

4.2.1 Inverse soft limit construction of tree amplitudes

Finally, let us note the on-shell diagrams corresponding to the inverse soft limits used in

ref. [18]. Adding a particle with vacuum δb via inverse soft limits is represented by

RbaRbc

ca

δb →
ca b

(4.11)

while adding a particle with vacuum δ-b with an inverse soft limit is pictured by

RabRcb

ca

δ-b →
ca b

. (4.12)

One can infer from eq. (2.7) that in both cases the number of particles is raised by one,

while the MHV level k remains constant in the first case and is increased by one for

adding a particle with vacuum δ-b. However, restricting the formalism just to R-chains

constructible using inverse soft limits would exclude many classes of R-chains and thus

Yangian invariants.

4.3 Permutations

4.3.1 From R-chains to permutations

In subsection 2.2 we described how to translate an on-shell graph into a permutation by

following the double lines (see figure 4 for a five-point example). Let us now discuss how

to relate R-chains to permutations.

Finding the permutation encoded by a chain of R-operators starts with recognising

the vacuum as the trivial permutation. In the vacuum state, particles are not connected

by BCFW bridges: they do not interact and thus their evaluation parameters and central

charges are mapped onto themselves.

The action of an operator Rab on a permutation becomes obvious after equipping

eq. (4.6) with double-lines:

Rab

ba

→

ba

. (4.13)
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Following the double-lines, one can immediately see that the operator Rab in eq. (4.13)

modifies the flow of the parameters u defined in subsection 2.3 by swapping the lines

ending at particles a and b. On the contrary, the lines originating in the external points a

and b remain untouched. Applying the operator Rba as in eq. (4.14), however, will build

another BCFW-bridge:

Rba

ba

→

ba

. (4.14)

this times the lines originating at external legs a and b are swapped, while those ending

there are unaltered.

Both of the above identifications eqs. (4.13) and (4.14), however, are true only if

the system of equations ensuring Yangian invariance for the complete on-shell graph is

satisfied (see subsection 2.3). This condition is equivalent to ensuring that the RLL-relation

eq. (3.32) can be applied.

In order to translate the swaps of lines into a modification of the permutation, one has

to distinguish, which type of R-operator is considered:

• for the operator Rab in eq. (4.13) the image of the permutation is changed. This is

the case if the indices of the operator are in the same succession as the clockwise

ordered external legs:

R34

(
1 2 3 4
↓ ↓ ↓ ↓
4 3 1 2

)
→

(
1 2 3 4
↓ ↓ ↓ ↓
3 4 1 2

)
. (4.15)

Conveniently, one can write this as the left action of a cycle (ab) on a permutation:16

(34) .
(

1 2 3 4
↓ ↓ ↓ ↓
4 3 1 2

)
=
(

1 2 3 4
↓ ↓ ↓ ↓
3 4 1 2

)
. (4.16)

• in the situation in eq. (4.14) the indices of the operator Rba are not ordered clockwise.

Thus the swap has to be applied to the preimage of the permutation. However,

swapping numbers a and b in the preimage is equivalent to swapping the entries at

positions a and b in the image, which we will note by ((ab)). The example below is

the last step in eq. (4.10):

R54

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 2 1

)
→

(
1 2 3 5 4
↓ ↓ ↓ ↓ ↓
3 4 5 2 1

)
=
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
. (4.17)

However, the left action of ((ab)) is equivalent to the right action of (ab) on the

permutation:

((ab)) .
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 2 1

)
=
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 2 1

)
/ (45) =

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
. (4.18)

Thus, a swap in terms of positions applied from the left is equivalent to a swap in

terms of actual numbers applied from the right.

16In [14], the notation (ab) is used for swapping the particles at positions a and b in the image of the

permutation. Here we will use this notation to denote cycles (ab) and refer to the swap of particles at

positions a and b by ((ab)).
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Let us illustrate the step-by-step construction by translating the five-point tree-level

amplitude (the representation is related to eq. (4.7) by square moves and mergers) into a

permutation.

R45R43R15R12R52R35 δ1δ-2δ3δ4δ-5 . (4.19)

The indices of the first operator, R35, are canonically ordered. Therefore this swap is of

the kind depicted in eq. (4.13), and translates into

(35) .
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 2 3 4 5

)
=
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 2 5 4 3

)
. (4.20)

The next operator, R52, is in canonical ordering as well: although it does not seem so

initially, one has to take into account that the legs 2 and 4 are not yet connected. Thus

the corresponding permutation is acting from the left:

(52) .
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 2 5 4 3

)
=
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 5 2 4 3

)
. (4.21)

While R12 is clearly in canonical order, R51 is clearly not. Note that the succession of these

two operators is not significant: this will be discussed in subsection 4.3.3 below:

(12) .
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 5 2 4 3

)
/ (15) =

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 5 1 4 2

)
. (4.22)

The last two operators act again from the left and the right

(45) .
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 5 1 4 2

)
/ (34) =

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
. (4.23)

and finally yield the expected permutation.

The construction here relates the double-line formalism from section 2.2 to the alge-

braic considerations in section 3. A line originating at the external leg i depicts the flow

of the evaluation parameter ui in the on-shell diagram. The endpoint of the line is uσ(i),

where σ(i) is the image of i under the permutation encoded in the on-shell diagram. This

nicely connects to eq. (3.90): given a set of u’s and a permutation allows to infer the set of

central charges ci or vice versa. Starting from a set of central charges, one can determine

the permutation.

There are a couple of strings attached to the above method. The first one is the

fact that it works for planar on-shell graphs only. In other words, BCFW-bridges can be

built only between neighbouring external legs. In practice this is actually no restriction as

long as we deal with tree amplitudes exclusively. The second fact to consider is that the

definition of “neighbouring” involves omitting states which are not yet connected, that is,

those whose indices have not been appearing and which therefore are still in their vacuum

configuration. Keeping these constraints in mind, starting from the vacuum and applying

the operators in reverse order as compared to their appearance in the R-chain will yield

the encoded permutation in general.
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4.3.2 From permutations to R-chains

In order to translate a given permutation into a chain of R-operators, one will have to

decompose the permutation into successive pairwise swaps. As pointed out above, swaps

can be applied either to the image or the preimage of a permutation, which corresponds to

a different ordering of indices in the R-operator.

In the same way as a whole class of on-shell graphs related by square moves and

mergers in figure 5 represent the same permutation and thus the same Yangian invariant,

the description of a permutation in terms of successive swaps is not unique. It is this

freedom, which will be used to explain the different rules eqs. (3.34) and (3.76) for rewriting

R-chains in subsection 4.3.3.

The freedom can as well be used to represent a permutation as a series of swaps to be

applied from the right. The construction was suggested in [14] and employs a lexicographic

ordering prescription of pairs ensuring that one obtains the kind of swaps in eq. (4.14)

exclusively:

• promote the permutation to the decorated permutation described in subsection 2.2.

• starting from the decorated permutation, swap the lexicographically first pair ((ab)) of

the permutation σ for which σ(a) < σ(b) and which is — if at all — only separated by

positions c = σ(c). Repeat this step until reaching the trivial permutation. Reading

the necessary swaps in reverse order will bring you from the trivial permutation to

the desired one.

Here is a short example of the method (a more elaborate one can be found in [14]): the five-

point tree amplitude is MHV and thus the corresponding permutation and its decorated

version read (
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
and

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 6 7

)
. (4.24)

The first swap to be applied to the decorated permutation is ((12)) as σ(1) < σ(2) and leads

to {4, 3, 5, 6, 7}. In the next step, positions 2 and 3 are swapped yielding {4, 5, 3, 6, 7}. After

again swapping the first two positions obtaining {5, 4, 3, 6, 7} in the next step one has to

consider that particle 3 is already at the correct position. Thus the next swap is ((24)),

which is then followed by ((12)) and ((25)). Thus we end up with the following succession

of swaps of positions:(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
= ((12)) . ((23)) . ((12)) . ((24)) . ((12)) . ((25)) .

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 2 3 4 5

)
(4.25)(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
=
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 2 3 4 5

)
/ (25) / (12) / (24) / (12) / (23) / (12) . (4.26)

As explained near eq. (4.14), a swap of positions can be identified with an R-operator via

((ij))→ Rji. (4.27)

Thus one finally obtains

R21R32R21R42R21R52 δ-1δ-2δ3δ4δ5 , (4.28)

where we have restored the vacuum according to the discussion in subsection 4.1.
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4.3.3 Relations between different R-chains in terms of permutations

Having mapped the action of an R-chain on the vacuum to swaps acting from the left and

from the right onto permutations in the last subsection, let us now reexamine the relations

between different combinations of R’s which have been explored in section 3 and interpret

them in terms of permutations.

R-swaps. Let us start with the relations connecting different representations of the same

Yangian invariant. The most basic one is eq. (3.34), which we repeat here for convenience:

Rab(u)Rcd(v) = Rcd(v)Rab(u) if a 6= d and b 6= c . (4.29)

If all four indices a, b, c, d are different, the interpretation in terms of permutations depends

on whether the corresponding cycles act from the right or the left. If both R-operators

act from the same side, i.e. their indices a, b and c, d are in the same order, one can freely

exchange the permutations, as they do not effect each other:

(ab) . (cd) .
( · · ··· ·
↓ ↓ ↓
· · ··· ·

)
= (cd) . (ab) .

( · · ··· ·
↓ ↓ ↓
· · ··· ·

)
(4.30)( · · ··· ·

↓ ↓ ↓
· · ··· ·

)
/ (ab) / (cd) =

( · · ··· ·
↓ ↓ ↓
· · ··· ·

)
/ (cd) / (ab) . (4.31)

If the cycles corresponding to the operators act from different sides, that is, the indices in

Rab and Rcd are ordered differently, the succession of the two neighbouring operators in

the R-chain does not play a rôle. The cycles will end up on the two sides in any case:

R12R43

R43R12

}
→ (12) .

( · · ··· ·
↓ ↓ ↓
· · ··· ·

)
/ (34) . (4.32)

Considering eq. (3.34) again, RabRac and RacRbc are the only allowed configurations where

the two index pairs of the operators share an index. As BCFW-bridges are allowed between

neighbouring legs only, it is clear that the cycles corresponding to the two operators act

from different sides. Thus, their succession is irrelevant. Here is an example:

R12R13

R13R12

}
→ (12) .

( · · ··· ·
↓ ↓ ↓
· · ··· ·

)
/ (13) . (4.33)

Dihedral symmetries for the three-point invariants. Similarly, one can convince

oneself that the rules in eq. (3.76) have a nice interpretation in terms of permutations. Let

us repeat them here for convenience choosing a, b, c = 1, 2, 3 as an example:

R12(u)R23(v)δ1δ2δ-3 = R23(v − u)R31(−u)δ-1δ2δ3 , (4.34a)

R12(u)R23(v)δ1δ2δ-3 = R32(−v)R21(−u)δ-1δ2δ3 , (4.34b)

R12(u)R23(v)δ1δ2δ-3 = R23(v − u)R13(u)δ1δ2δ-3 , (4.34c)

The left-hand side of eq. (4.34) reads

R12R23δ1δ2δ-3 → (12) . (23) .
(

1 2 3
↓ ↓ ↓
1 2 3

)
=
(

1 2 3
↓ ↓ ↓
2 3 1

)
(4.35)

– 35 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
0

in terms of permutations. The first equality, eq. (4.34a), is just a cyclical shift of the

external labels. Indeed, the corresponding permutation agrees:

R23R31δ-1δ2δ3 → (23) . (31) .
(

1 2 3
↓ ↓ ↓
1 2 3

)
=
(

1 2 3
↓ ↓ ↓
2 3 1

)
. (4.36)

The second equality, eq. (4.34b), is the simplest example of a reflection: in comparison to

the left-hand side (eq. (4.35)) it just swaps right and left action and reverses the succession

of operators as well as the position of indices in each R-operator:

R32R21δ-1δ2δ3 →
(

1 2 3
↓ ↓ ↓
1 2 3

)
/ (12) / (23) =

(
1 2 3
↓ ↓ ↓
2 3 1

)
. (4.37)

Finally, the last equality eq. (4.34c) does not change the vacuum: it realises the desired

permutation by a different combination of swaps compared to eq. (4.35). Instead of acting

with the cycle (13) from the left, one acts with the same cycle from the right, which is the

same for the trivial permutation:

R23R13δ1δ2δ-3 → (23) .
(

1 2 3
↓ ↓ ↓
1 2 3

)
/ (13) =

(
1 2 3
↓ ↓ ↓
2 3 1

)
. (4.38)

Similar relations for higher-point invariants encoding the dihedral symmetries can be trans-

lated into permutations with equal ease.

Reflection and Parity While the relations considered above refer to the possibility

to replace certain subchains of R-chains without changing the Yangian invariant which is

represented, the operations described in eqs. (3.61) and (3.66) act on all R-operators in

the chain and implement reflection and parity-flip, which together with the shift operation

discussed in subsection 3.2.3 constitute the dihedral symmetry of the amplitudes. Those

operations map an eigenstate of the monodromy matrix onto another eigenstate, which,

however, represents another Yangian invariant. Both parity-flip and reflection do as well

have a natural interpretation in terms of permutations:

• Reflection — as described in eq. (3.61) corresponds to writing the labels of the

external legs in opposite direction. In terms of translating an on-shell graph into

R-operators one will now have to replace “clockwise” by “counterclockwise” and vice

versa where appropriate. Analogously this is true for translating a R-chain into

permutations: in deciding, whether a cycle corresponding to an operator acts from

the left or from the right, one has to swap the notions.

3

2

1
5

4
3

4

5
1

2

R21R32R21R42R21R52 δ-1δ-2δ3δ4δ5 R45R34R45R24R45R14 δ1δ2δ3δ-4δ-51 2 3 4 5

↓ ↓ ↓ ↓ ↓
3 4 5 1 2


1 2 3 4 5

↓ ↓ ↓ ↓ ↓
4 5 1 2 3



(4.39)
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The diagrams on the right-hand side are still the ones corresponding to a five-point

MHV amplitude. Thus, deducing the MHV sector from the permutation — which

is a cyclic shift by k = 3 here — is possible only for the clockwise ordering of the

legs. Translating the R-chain on the right-hand side back into an on-shell diagram

taking care for the different orientation will not lead to the first diagram on the

right-hand side, which is, however, equal to the (expected) second diagram after a

merger operation (see figure 5).

• Shift While shifting labels of external legs is a rather involved operation in terms of R-

chains (see the discussion in subsection 3.2.3), it has a straightforward interpretation

in terms of on-shell graphs. One can easily check that the permutations encoded in

the following two on-shell graphs are equivalent:

3

2

1
5

4
4

3

2
1

5

R21R32R21R42R21R52 δ-1δ-2δ3δ4δ5 R32R43R32R53R32R13 δ1δ-2δ-3δ4δ51 2 3 4 5

↓ ↓ ↓ ↓ ↓
3 4 5 1 2


1 2 3 4 5

↓ ↓ ↓ ↓ ↓
3 4 5 1 2



(4.40)

• As discussed in subsection 3.2.3, the parity-flip operation consists of the following

map:

Rab → Rba, δa ↔ δ-a . (4.41)

Considering the identifications eqs. (4.5) as well as (4.6), it is clear that parity swaps

the rôle of black and white dots in an on-shell diagram. If one keeps the cyclical

ordering of the external legs, this amounts to inverting the permutation, because one

will now have to turn left (right) instead of right (left) at each vertex. Naturally, we

could have been arriving at the same conclusion from the considering the R-chain.

Swapping the positions of the indices for each R-operator converts the a left into

right action and vice versa, which immediately leads to a permutation describing a

cyclic shift in the opposite direction.

Let us see, how this works in terms of the five-point tree-level amplitude:
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3

2

1
5

4 3

2

1
5

4

≡

3

2

1
5

4

R21R32R21R42R21R52 δ-1δ-2δ3δ4δ5 R12R23R12R24R12R25 δ1δ2δ-3δ-4δ-51 2 3 4 5

↓ ↓ ↓ ↓ ↓
3 4 5 1 2


1 2 3 4 5

↓ ↓ ↓ ↓ ↓
4 5 1 2 3



(4.42)

Employing eq. (2.7), one finds k = 3 and can thus identify the diagrams on the

right-hand side as the ones corresponding to the five-point MHV amplitude.

The combination of reflection and parity transformation described in eq. (3.67) can

be investigated in a similar fashion. Combining the findings from the individual

transformations above, one can easily predict the result: one will obtain an on-shell

graph with four black dots, three white dots and counterclockwise ordering of legs,

which encodes the permutation for a MHV amplitude.

4.3.4 A simple way to construct R-chains for top-cells

As discussed in section subsection 2.2, so called top-graphs (or top-cells) correspond to

cyclic shifts by the variable k labelling the MHV sector. Using for example R-operators of

the form in eq. (4.13) one can immediately construct a representative R-chain by succes-

sively commuting particles to the right. For the permutations corresponding the five-point

MHV amplitude (k = 2) one finds:(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
= (23) . (34) . (45) . (12) . (23) . (34) .

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 2 3 4 5

)
, (4.43)

while the general version for the top-cell for an amplitude An;k reads

Rk k+1 . . .Rn−1 n︸ ︷︷ ︸ Rk−1 k . . .Rn−2 n−1︸ ︷︷ ︸ . . . R12 . . .Rn−k n−k+1︸ ︷︷ ︸ δ1 . . . δ(n−k)δ-(n−k+1) . . . δ-n .

(4.44)

The above state is a manifest eigenstate of the monodromy matrix because applying the

relations eq. (3.32) is trivial: the indices of all R-operators are in the succession suitable

for permuting the monodromy matrix T through all R’s.

4.4 Yangian invariance of the deformed six-point NMHV amplitude?

In [17] it was pointed out that the only amplitude outside the MHV sector which can be

deformed in a Yangian-invariant way is the six-point NMHV amplitude. Can one reproduce

this result using the R-operator formulation?

The undeformed six-point NMHV amplitude is composed from three BCFW-channels,

which can be chosen to be represented by the permutations (cf. figure 8):(
1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
4 5 6 7 9 8

)
,
(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
3 5 6 7 8 10

)
, and

(
1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
5 4 6 7 8 9

)
. (4.45)
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Figure 9. Decaying the six-point NMHV top-cell into three BCFW-channels.

In terms of R-chains, a suitable representation reads

R34R45R23R34R21R31R64R16 · δ1δ2δ3δ-4δ-5δ-6 (4.46a)

R34R45R23R34R21R31R65R64 · δ-1δ2δ3δ-4δ-5δ6 (4.46b)

R34R45R23R34R31R65R64R16 · δ1δ2δ3δ-4δ-5δ-6 . (4.46c)

These three channels can be inferred from the following top-cell

R34R45R23R34R21R31R65R64R16 · δ1δ2δ3δ-4δ-5δ-6 (4.47)

by omitting the R-operators R65, R16 and R21 at positions 7, 9 and 5 respectively. While

the omissions lead to the subchains corresponding to the singularities of the top-cell in

the particular representation here, this is not true for other representations. For the unde-

formed amplitude, it was pointed out in ref. [17] that the conditions for Yangian invariance

of the top-cell eq. (4.47) are equivalent to imposing Yangian invariance on the three chan-

nels eqs. (4.46). Thus, Yangian invariance is compatible with decaying the top-cell into

individual BCFW channels as long as no deformation is present.

Considering a deformed amplitude, there seems to be an apparent clash: while impos-

ing Yangian invariance on the top-cell leaves six free deformation parameters, demanding

Yangian invariance for the three BCFW channels simultaneously leads to only three free

deformation parameters:

u5 = u4 , u2 = u3 , u1 = u6 . (4.48)

The resolution is simple: taking a residue of the top-cell, that is “removing a line from the

graph in figure 9” is possible only if there is no flow of central charge along the line to be

removed. The three conditions for the simultaneous vanishing of the central charges along

the red lines delivers the three additional conditions leading to eq. (4.48).
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What is the analogue of this construction in the R-operator language? In subsection 3.5

it was discussed that there are exactly six different NMHV Yangian invariants with six

external legs, which are listed in eq. (3.81). As pointed out after eq. (3.84), the three

eigenfunctions corresponding to the BCFW channels in eq. (4.46), Y(6)
1 , Y(6)

3 and Y(6)
5 , have

different central charges, and thus different eigenvalues. Since a sum of Yangian invariants

is only well-defined if all of them belong to the same eigenspace of the monodromy matrix,

one has to identify the spectral parameters as in eq. (3.86). This is exactly the condition

in eq. (4.48).

Thus ensuring Yangian invariance by demanding the BCFW channels to be eigenstates

of the monodromy matrix is not sufficient: if a deformed amplitude is composed from several

deformed Yangian invariants, one has to ensure that they all are in the same eigenspace.

4.5 A peek at the seven-point NMHV amplitude

In order to show the validity of the R-operator formalism, let us consider a more difficult

example: the seven-point NMHV amplitude. The on-shell graphs derived from a standard

BCFW-decomposition employing a shift of legs 1 and 7 correspond to the following strings

of R-operators:

R76 R71 R32 R12 R21 R23 R61 R34 R53 R36 · δ-1δ2δ3δ-4δ5δ-6δ7 ,

R76 R71 R16 R12 R21 R23 R61 R34 R53 R36 · δ-1δ2δ3δ-4δ5δ-6δ7 ,

R76 R71 R16 R32 R21 R23 R61 R34 R53 R36 · δ-1δ2δ3δ-4δ5δ-6δ7 ,

R43 R65 R54 R43 R56 R67 R16 R23 R42 R26 · δ1δ2δ-3δ4δ5δ-6δ-7 ,

R23 R45 R34 R54 R56 R64 R67 R16 R32 R26 · δ1δ2δ3δ-4δ5δ-6δ-7 ,

R45 R56 R71 R76 R43 R53 R36 R73 R31 R32 · δ-1δ-2δ3δ4δ5δ-6δ7 .

(4.49)

We have checked that the combination of the above channels does indeed yield the seven-

point NMHV superamplitude by comparing with the explicit expressions in [25]. In ad-

dition, we performed automated tests and found complete agreement with the results ob-

tained from the Mathematica package GGT described in ref. [40].

While the tree-amplitude is a nontrivial check, one can ask, whether it is possible to

obtain all box coefficients for the one-loop seven-point NMHV spelled out in ref. [41] from

the top-cell in the R-formalism. Finding the BCFW-channels refers to determining all

codimension-two boundaries of the top-cell which — in turn — amounts to omitting two

R’s in a suitable representation of the top-cell. A suitable representation reads

R65 R76 R71 R54 R65 R43 R45 R61 R15 R41 R13 R21 · δ-1 δ2 δ-3 δ4 δ-5 δ6 δ7 (4.50)

and leads to 66 R-chains of length 10. While some of them do not contain all seven indices,

and thus do not connect all particles, others do not allow to solve the integral for general

kinematics (see subsection 4.1 for a discussion). Discarding those, one is left with 20 valid

channels, which turn out to deliver a spanning set for all box coefficients calculated in

ref. [41].
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5 Conclusions

In this article we have explored the R-operator formalism introduced in ref. [18]. We have

elucidated the underlying algebraic structures that are related to the Yangian algebra of

gl(4|4). In particular, considering the S- and R-matrix in the fundamental and functional

representation implies the forms of the Lax-operator L and the R-operator R in eqs. (3.26)

and (3.27), respectively. Via the monodromy matrix T (3.52), the Lax operator then

generates the generators of the Yangian symmetry of n-particle states. In this language,

Yangian invariants are defined to be eigenfunctions of the monodromy matrix.

One simple eigenfunction of the monodromy matrix is given by a product of δ-functions

in the spinor-helicity variables (3.54). From this ground state we can generate Yangian

invariants by acting on it with a sequence of R-operators. From the Yang-Baxter equa-

tion (3.32) relating R and L, we see that functions of this form naturally give rise to

eigenfunctions.

It would be extremely interesting to derive the explicit expressions of the L- and R-

operator from the universal R-matrix. Our discussion in section 3 indicates that there is a

universal R-matrix underlying this construction of Yangian invariants. It would already be

useful to explicitly work out the constructions for gl(2) or gl(1|1) to gain deeper insights

in the algebraic structures that are involved.

We have classified all eigenstates up to six particles and we found that to each Yangian

invariant in N = 4 sYM there corresponds a unique eigenfunction of the monodromy

matrix. Furthermore, each Yangian invariant is determined by its central charges, which

are of the form of a difference between spectral parameters (3.90). Using this identity,

the central charges can be related to permutations, which establishes a bijection between

permutations and Yangian invariants.

Subsequently, we have been identifying the maps between the R-operator formulation

of Yangian invariants and their formulations in terms on on-shell graphs and permutations.

All properties of Yangian invariants as well as those of the amplitudes built thereof can

be given an immediate interpretation: while cyclicity, reflection and flip of parity are very

natural in the R-operator language, constraints on possible deformation parameters are

realised by demanding an Yangian-invariant object to be an eigenstate of the monodromy

matrix, which is built from Lax-operators. The result for building amplitudes with Yangian-

invariant deformations is in agreement with [17]: Yangian-invariant deformations are not

compatible with the BCFW-construction of amplitudes.

The R-operator language bridges the gap between the common formulations of scatter-

ing amplitudes and the formalism employed in integrable systems. The relation becomes

even more evident in ref. [22].

There is, however, a drawback of the R-operator formalism: the construction is based

on evaluating integrals on the support of delta functions. Since one can perform the

integrals in any succession, and the arguments of the delta functions can be reversed

without modifying the physical situation, there is a sign ambiguity related to each Yangian

invariant. Although the formalism delivers the Yangian invariants, it is not clear, in which

way they need to be combined. Naturally, this can be fixed by demanding the vanishing of
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spurious poles, nevertheless, one would rather like to have a purely constructional method.

One way to realise this could be an algebraic condition singling out BCFW-channels.

While the current article deals with tree amplitudes exclusively, there is hope for

extending the formalism to loop amplitudes. Similar to the forward-limit construction

in [14], one will have to identify two legs in order to build the R-chain corresponding to a

loop-amplitude. Nevertheless, the integration procedure will not be as straightforward as

in the tree-level case, because infrared divergences will appear.
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A Momentum twistors and algebraic approach

In ref. [18], the authors proposed an extension of their algebraic approach to scattering

amplitudes to the momentum twistor formulation. They define the Rij-operator acting on

the space of functions on momentum twistor space as17

Rij(u) · F
(
Wi,Wj

)
:=

∫
dz

z1+u
F
(
Wi − zWj ,Wj

)
; (A.1)

in the following we will always consider R-operators whose spectral parameter u is set to

zero. Subsequently, the authors show that the following identity holds:

I = R34R23R12R∗1δ
4|4(W∗) = [∗, 1, 2, 3, 4] . (A.2)

An important remark is due here: this is not the formulation one obtains from translating

the on-shell superspace approach directly into momentum twistor variables. While a first

proof of this is the non-locality of the BCFW shift in momentum twistor space (whereas

this R-operator acts on two sites only), another proof is the fact that the vacuum of the on-

shell superspace approach does not translate into anything nice in momentum twistor space.

While this could be a formulation equivalent to the Grassmannian formula in momentum

twistor space, the dictionary is not direct.

The explicit computation of (A.2) is straightforward. From

I =

∫ [ 4∏
i=1

dzi
zi

]
δ4|4(W∗ − z1W1 + z1z2W2 − z1z2z3W3 + z1z2z3z4W4) (A.3)

we can change variables to

ai := (−1)i+1
i∏

k=1

zk (A.4)

17We thank Cristian Vergu and James Drummond for suggesting the investigation of this point to us.
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and the (inverse) Jacobian is |det J−1| = a1a2a3. This leads to

I =

∫ [ 4∏
i=1

dai
ai

]
δ4|4(W∗ −

∑
i

aiWi) . (A.5)

We can now solve the integrals by localising them on the support of the bosonic delta

functions. In order to do so, we rewrite the bosonic delta functions by dotting into the

arguments18 εα(1, 2, 3, •), εα(1, 2, 4, •), εα(1, 3, 4, •), εα(2, 3, 4, •):

δ4(W∗−
∑
i

Wi) =
1

〈1234〉
δ

(
a1−

〈∗234〉
〈1234〉

)
δ

(
a2−

〈∗134〉
〈1234〉

)
δ

(
a3−

〈∗124〉
〈1234〉

)
δ

(
a4−

〈∗123〉
〈1234〉

)
.

(A.6)

The result reads

I =
δ0|4(〈1234〉χ∗ + 〈234 ∗ 〉χ1 + 〈34 ∗ 1〉χ2 + 〈4 ∗ 12〉χ3 + 〈∗123〉χ4

)
〈1234〉〈234∗〉〈34 ∗ 1〉〈4 ∗ 12〉〈∗123〉

≡ [∗, 1, 2, 3, 4] .

(A.7)

This result is not unexpected, because the expression in eq. (A.5) is — if we allow ourselves

to be not too rigorous with the integration measure — the form of the NMHV R-invariants

as an integral over CP5 first introduced by Mason and Skinner in ref. [42]. The construction

of eq. (A.2) therefore leads “trivially” to the correct NMHV R-invariant.

An interesting problem is to understand whether it is possible to extend this con-

struction to higher-level R-invariants. It is possible in fact to express dual superconformal

invariants in terms of residue integrals over suitable Grassmannian manifolds (as shown in

ref. [42] and then exploited in ref. [12] to show the equivalence between the ordinary Grass-

mannian formulation and the dual Grassmannian formulation). However, the problem is

that there is no interpretation of the shift in eq. (A.1), neither in BCFW nor in Risager

form. It would be interesting to analyse whether it is possible to find a map from MHV di-

agrams in momentum-twistor space to these R-operators, analogous to the correspondence

to on-shell graphs (and BCFW channels) described in the main part of the article.

Nevertheless, it is possible to “engineer” a set of R-operators that lead to the expression

for k = 4 R-invariants19 (eq. (55) in ref. [42])

Rk,n :=
1

(2πi)(k−2)(n−k−2)

∮
Γ⊂G(k−2,n)

dµ
k−2∏
i=1

δ4|4
( n∑
j=1

CijWj

)
, (A.8)

where Clj is the (k− 2)× n matrix representing a point on G(k− 2, n) and the measure is

the “usual” measure for amplitude-related Grassmannian integrals, that is

dµ =
dk×ncab

Vol[GL(k)]

1

(12 . . . k)(23 . . . k + 1) . . . (n . . . k − 1)
. (A.9)

18Here, εα(i, j, k, •) := εβγδαW
β
i W

γ
j W

δ
k and 〈ijkl〉 = εαβγδW

α
i W

β
j W

γ
kW

δ
l .

19Here, k is the MHV level, that is the amplitude has Grassmann weight 4k; in ref. [42] the k is the

“reduced” level, equal to our k−2. In our language, the R-invariants thus have Grassmann weight 4(k−2).
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The easiest example with k = 4 is the 6-point R-invariant, since the corresponding

integral is completely localised on the support of the delta functions, and should lead to

the N2MHV (or .MHV) 6-point amplitude. We can show that the correct expression is

R
(8)
34 R

(7)
23 R

(6)
16 R

(5)
34 R

(4)
63 R

(3)
56 R

(2)
25 R

(1)
15 δ

4|4(W1) δ4|4(W2) , (A.10)

where the superscript (i) indicates that the integral associated to this R-operator is over

the variable zi. It corresponds to the integral

I =

∫ [ 8∏
i=1

dzi
zi

]
δ4|4
[
W1 − z1W5 − z1z3z4W3 + (z1z3 − z6)W6 + z1z3z4(z5 + z8)W4

]
×

δ4|4
[
W2 − z2W5 + z2z3W6 + (−z2z3z4 − z7)W3 + [z2z3z4(z5 + z8) + z7z8]W4

]
.

(A.11)

With the obvious change of variables

cij := (coefficient of Wj in the i-th delta function)

one obtains

I =

∫
d2×4cab

c13c26(c13c24 − c14c23)(c15c24 − c14c25)(c15c26 − c16c25)

∏
i=1,2

δ4|4(
6∑
j=1

cijWj) ,

(A.12)

which is exactly eq. (A.8) with the GL(2) freedom used to fix the first two columns of cab
to the identity, that is

cab =

(
1 0 c13 c14 c15 c16

0 1 c23 c24 c25 c26

)
. (A.13)

This is, however, an ad hoc construction, engineered to qualitatively match the integral

description of R-invariants of ref. [42]. What conclusions can thus be drawn from here?

First of all, it is not clear in this momentum-twistor approach what the vacuum state

δ4|4(W) is, even though it is pretty clear that one such state should be associated to each

off-shell leg in a given MHV diagram. It also seems that the specific choice of a vacuum

corresponds to a particular way of fixing the GL(k) redundancy in the integral over the

Grassmannian.

Secondly, it would be nice to have a map from MHV diagrams (which have a very natu-

ral description in momentum twistor space [43]) to R-chains acting on momentum-twistor

space, but it is currently not clear, whether this map exists. Moreover, the translation

seems to get rather complicated starting from the NNMHV level, since the MHV diagrams

in the expansion have an increasingly complicated topology.
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