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MCA: Multiresolution Correlation Analysis, a
graphical tool for subpopulation identification
in single-cell gene expression data
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Abstract

Background: Biological data often originate from samples containing mixtures of subpopulations, corresponding
e.g. to distinct cellular phenotypes. However, identification of distinct subpopulations may be difficult if biological
measurements yield distributions that are not easily separable.

Results: We present Multiresolution Correlation Analysis (MCA), a method for visually identifying subpopulations
based on the local pairwise correlation between covariates, without needing to define an a priori interaction scale. We
demonstrate that MCA facilitates the identification of differentially regulated subpopulations in simulated data from a
small gene regulatory network, followed by application to previously published single-cell qPCR data from mouse
embryonic stem cells. We show that MCA recovers previously identified subpopulations, provides additional insight
into the underlying correlation structure, reveals potentially spurious compartmentalizations, and provides insight
into novel subpopulations.

Conclusions: MCA is a useful method for the identification of subpopulations in low-dimensional expression data, as
emerging from qPCR or FACS measurements. With MCA it is possible to investigate the robustness of covariate
correlations with respect subpopulations, graphically identify outliers, and identify factors contributing to differential
regulation between pairs of covariates. MCA thus provides a framework for investigation of expression correlations for
genes of interests and biological hypothesis generation.
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Background
Heterogeneity in cellular populations has been the focus
of many recent publications in areas such as embryonic
stem cells [1], induced pluripotency [2], transcriptomics
[3], and metabolomics [4]. In biological experiments, data
often originate from a mixture of qualitatively differing
subpopulations corresponding to e.g. distinct phenotypes
in assays of cellular populations. For example, whole
blood samples contain a mixture of distinct cell lineages
which can be identified based on the presence of lineage-
specific cell surface markers [5]. Embryonic stem cells
have also been shown to exhibit heterogeneous expres-
sion of pluripotency factors critical for the maintenance
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of pluripotency in culture [1,6]. Indeed, there is increas-
ing evidence for the existence of cellular subpopulations
with possible noise-induced transitions between pheno-
typic attractors [7]. Thus it is clear that traditional tech-
niques, which provide only population averages, may fail
to resolve the true population heterogeneity.
Technologies such as flow cytometry, single-cell qPCR,

mass cytometry and time lapse fluorescent microscopy
are uniquely positioned to answer questions regarding the
makeup of cellular populations. Each is able to yield quan-
titative measurements of cellular state, i.e. mRNA expres-
sion or protein copy number, which may be representative
of the underlying subpopulations.
If the subpopulations are not already known, various

methods exist to attempt to learn them on the basis
of the data distribution. Classical techniques such as
clustering may be useful for subpopulation identification
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if the subpopulations are readily separable in terms
of expression levels [8]. Alternatively, more sophisti-
catedmachine-learning based approaches such asmixture
models, (fuzzy) k-means clustering, multilayer percep-
trons, self organizing maps, support vector machines,
regression trees, and many others have also been applied
to subpopulation identification (see Lugli et al. [9] and
Bashashati et al. [10] for a review of subpopulation identi-
fication approaches applied to flow cytometry).
However, existing methods for subpopulation identi-

fication predominantly rely on heterogenous expression
levels. If the distributions overlap, identification of indi-
vidual subpopulations based on expression alone may be
difficult. In the case where subpopulations exhibit differ-
ential regulation motifs, they may be identifiable based
on their distinctive correlations. Examining the local,
state-dependent correlation of covariates provides addi-
tional information regarding the underlying distributions
attributable to distinct subpopulations. In particular, we
expect correlations to change for regions of state space
(i.e. the space of possible gene expression levels) contain-
ing predominantly samples from a single subpopulation.
Correlation analysis in subspaces of high dimensional data
have gained attention over the past several years, par-
ticularly in the context of data mining e.g. in databases.
For instance, algorithms such as MAFIA [11], CURLER
[12], δ-Clusters [13], ENCLUS [14], etc. have been pro-
posed for automatic identification of clusters using lower-
dimensional subspaces. However, automatically identified
clusters may be difficult to interpret biologically, and it
may be difficult to assess their relative robustness.
We introduce a complementary method, Multiresolu-

tion Correlation Analysis (MCA) for systematically exam-
ining the dependence of local correlation upon location in
state space. Using MCA, the correlations of pairs of vari-
ables are examined for regions of state space subdivided
with varying granularity. The analysis can be summarized
using MCA plots, which provide a visual representation
of the pairwise correlation as a function of expression of a
third variable.
MCA plots simultaneously visualize the correlations of

data subsets of all sizes, centered at all locations in the
distribution of a sorting variable, making it possible to
distinguish regions with robust correlations which may be
indicative of distinct subpopulations. Lastly, they provide
the ability to identify observations which contribute dis-
proportionately to the overall correlation structure, and
hence skew the estimated correlation of the entire population.

Results
MCA reveals differential regulation of subpopulations in
simulated gene expression data
To evaluate the MCA approach, we simulated gene
expression data using a simple three species gene

regulatory motif, given by Eq. 6 as described in Methods.
In this system, Z activates X and X activates Y (Figure 1A,
left) via Hill-type activation functions, and population-
level heterogeneity is introduced via the use of stochas-
tic differential equations which approximate the intrinsic
noisiness of gene expression [15-17].
The steady state distribution resulting from a typical

simulation (Figure 1A, center) shows a significant posi-
tive Pearson correlation (p < 0.05) between Z and X, and
between X and Y (Figure 1A, right), and no significant
correlation between Z and Y , as would be expected from
the underlying regulatory motif.
Similarly, we simulated a biological system for which Z

activates X, but where X inhibits Y (see Figure 1B, left)
and Eq. 7 of Methods). The resulting steady state distri-
bution (Figure 1B, center) appears similar to that of the
activation model. However, correlation analysis reveals
that Z and X show significant positive correlation, and X
and Y significant negative correlation (Figure 1B, right),
in accordance with the underlying biological motif. The
Pearson correlation also indicates significant negative
correlation between Y and Z in the inhibition model, an
indirect effect.
When combining the steady state distributions from

activation and inhibition models (Figure 1C), the net
Pearson correlation between X and Y is significantly neg-
ative (Figure 1C, I). Absent of subpopulation analysis, we
would conclude that the relationship between expression
levels of X and Y is antagonistic, implying an inhibitory
motif.
In contrast, performing the same analysis on the sub-

population with Z expression levels in the lowest 30%
of the Z-distribution (Figure 1C, II) yields a significant
positive correlation between X and Y . Likewise, perform-
ing correlation analysis on the samples in the top 30% of
the Z-distribution shows just the opposite, a significant
negative correlation between X and Y (Figure 1C, III).
We can combine all of the Z-sorted subpopulations of

varying size together using the MCA plot (Figure 1D),
constructed as described in Methods. Briefly, the MCA
plot shows the correlation of a pair of factors, for sub-
populations defined by a sorting variable. The abscissa
indicates the median value of the sorting variable for
that subpopulation and the ordinate indicates the fraction
of the population included in that subpopulation. Thus,
higher points indicate larger subpopulations, points to the
left indicate low er overall expression of the sorting vari-
able, points to the right higher overall expression, etc. The
regions where the computed correlation is statistically
significant (p < 0.05) are indicated.
By systematic inspection via the MCA plot, we can

conclude that subpopulations with low Z values indeed
show significant positive correlation between X and Y
(Figure 1D, blue region), and subpopulations with high
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Figure 1MCA reveals the presence of subpopulations with differential regulation. A. A three species activation motif (left), its steady state
distribution (center) from an SDE simulation, and the resultant correlation network (right), showing positive correlation for species with an activating
interaction. B. A three species activation/inhibition motif induces positive correlation corresponding to activation and negative correlation
corresponding to inhibition. C. I. Mixture of the activation and inhibition steady state data depicted in A and B. II. Correlation analysis of the subset
from the lowest 30% of the Z-distribution shows significant positive X , Y correlation. III. Correlation analysis of the subset from the highest 30% of
the Z-distribution shows significant negative X , Y correlation. D. Combining all subpopulations sorted by median Z value and subpopulation size
into an MCA plot reveals robust separation of positive and negative correlations for subpopulations with low or high Z values, respectively.

Z values show significant negative correlation between
X and Y (Figure 1D, red region, see Methods for
details).

MCA plots as a diagnostic tool for transcriptomic analysis
MCA plots can be used to provide a multiresolution view
of the correlation structure of real transcriptomic data.
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This allows us to confirm previous conclusions regard-
ing heterogeneous subpopulations, detect potential novel
subpopulations, and provides insight into the origin of the
observed correlations.
We used MCA to analyze previously published single-

cell transcriptomic data obtained from mouse embryonic
stem cells (mESCs) [18,19]. There, microfluidic single-
cell qPCR was used to obtain the relative expression
of mRNAs for eight transcription factors known to be
involved in regulation of pluripotency in mESCs: Fgf5,
Nanog, Oct4, Sox2, Rex1, Pecam1, Stella and Gbx2, and
Gapdh, a housekeeping gene against which all other tran-
script copy numbers were normalized. Analysis of sub-
populations showed difference in the correlation networks
of Nanog+/- and Fgf5+/- subpopulations, as well as clear
separation of subpopulations using principal component
analysis.
After data cleaning and normalization according to the

method of Trott et al. [18], we generated the MCA plots
for all pairs of genes, for all possible sortings, using
Pearson correlation and a significance cutoff of p < 0.05.
All points with p > 0.05 are colored white in the MCA
plot.

Detection of robust correlations
In an MCA plot, correlations that are globally robust
with respect to changes in the sorting variable are easily
distinguished by uniform coloration. For example, the cor-
relation of Rex1 and Sox2 is robust with respect to changes
in Pecam1 expression (Figure 2A, top). The scatter plot of
Rex1 and Sox2 is shown for reference (Figure 2A, bottom).
The robust positive correlation of Rex1 and Sox2 is con-
sistent with current models of transactivation of Sox2 by
Rex1 [20].

Outlier detection
Correlation analysis can be sensitive to one or a few sam-
ples which substantially alter the estimated correlation of
the entire population. In such a case, all subpopulations
including these samples show a significant correlation,
whereas their exclusion results in no significant correla-
tion or potentially correlation of the opposite sign. MCA
plots are able to detect such samples and identify them
as sources of the detected correlation. For example, when
sorting by Sox2, all subpopulations which do not con-
tain the sample with the highest Sox2 expression do not
show statistically significant correlation between Rex1

Figure 2MCA plots reveal important features of the correlation structure in single-cell transcriptomics data. A. MCA plots with uniform
appearance (top) reveal robust correlations amongst pairs of variables (scatter plot, bottom) like Rex1 and Sox2, sorted by Pecam1. B. Outliers can
easily be detected via characteristic diagonal stripe patterns. Here a single sample with the highest value in the Sox2 distribution is enough to
induce an overall positive Gbx2, Rex1 correlation (bottom, arrow). C. Robust subpopulations can be identified. The presence of a large triangular
region with uniform correlation or lack of correlation between Rex1 and Nanog may indicate a subpopulation, seen here for cells from the highest
40% of the Stella distribution (top). The cells from the high Stella compartment (open boxes) are not significantly correlated for Rex1 and Nanog, in
contrast to those from the low Stella compartment (filled boxes, bottom).
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and Gbx2, whereas all subpopulations that do include
this point show significant positive correlation (Figure 2B,
top). Upon inspection of the data (Figure 2B, bottom) it
is obvious that this single point, indicated by the arrow, is
an outlier. Exclusion of this point renders the Rex1, Gbx2
correlation insignificant.

Subpopulation identification
MCA plots are useful for identification of interesting
subpopulations as shown for synthetic data (Figure 1C).
Regions exhibiting a robust correlation may indicate the
presence of differential regulation or a distinct cellular
phenotype. For instance, sorting by Stella reveals the pres-
ence of a large region (the highest 40% of the population)
for which the correlation between Nanog and Oct4 is
not statistically significant (Figure 2C, top). Conversely,
including the cells from the lowest 60% of the Stella
distribution is sufficient to induce a significant positive
correlation (Figure 2C, top). Inspection of the scatter plot
of Nanog and Oct4 (Figure 2C, bottom) confirms that
the lower 60% is noticeably more correlated than the top
40%. Hayashi et al. [19] note that mESCs with low or
absent Stella expression may be more representative of
epiblast-derived stem cells, and thus are expected to show
differential regulation from the high Stella cells, which are
more embryonic stem cell-like. Interestingly, the possibil-
ity of antagonistic regulation between Oct4 and Nanog in
mESCs has recently also been raised [21].

MCA provides additional insight into previously described
subpopulations
In order to identify subpopulations with different co-
expression networks, Trott et al. [18] grouped cells

according to normalized pluripotency gene expression.
Networks are constructed on the basis of significant
Pearson correlation between nodes, and subdivided into
groups based on the presence of two heterogeneously
expressed transcription factors, Nanog and Fgf5. The high
Nanog (Nanog+) compartment was defined such that Fgf5
expression is absent for all cells with Nanog expression at
or above the minimum level of this compartment.

MCA plots confirm differential Gbx2, Sox2 correlation for
high Nanog cells
As in their study, we find that the Nanog+ subpopula-
tion indeed has a significant positive Pearson correlation
between Gbx2 and Sox2 (Figure 3A, I). Also in agree-
ment, the remaining cells (Nanog-, 0th − 74th percentile),
show no significant correlation between Gbx2 and Sox2
(Figure 3A, II). However, we learn from the MCA plot
that in fact only the top 10% contribute to the observed
positive correlation; the subset of the high Nanog subpop-
ulation between the 74th and 93rd percentile (Figure 3A,
III) is not significantly correlated (p = 0.57).

MCA plots show that Gbx2, Sox2 correlations are not robust
for Fgf5- cells
The authors found that the 15 of 83 cells (18%) expressing
Fgf5 (Fgf5+ compartment) do not correlate for Gbx2 and
Sox2, whereas the remaining 68 Fgf5- cells (82%) show a
significant positive correlation [18]. Using an MCA plot
we see that this indeed true (Figure 3B, I and II for Fgf5+,
Fgf5-, respectively). However it is also evident that the
Fgf5+ cells with Fgf5 expression between the 90th and
100th percentile of the distribution are in fact positively
correlated for Gbx2 and Sox2 (Figure 3B, III). Likewise,

Figure 3MCA plots identify interesting biological subpopulations in mouse embryonic stem cells. A. MCA analysis reveals insight into the
influence of Nanog on the Gbx2, Sox2 interaction. Gbx2 and Sox2 are significantly positively correlated when considering the entire Nanog+
compartment (quantiles 74% to 100% of Nanog, I). When considering the remaining Nanog- cells, the correlation is no longer significant (quantiles
0% to 74%, II). MCA plots reveal that the positive correlation in the Nanog+ compartment is due to just half of the compartment; the rest is
uncorrelated (III). B. Gbx2 and Sox2 are uncorrelated when considering the whole Fgf5+ compartment (quantiles 82% to 100%, I). However, the top
10% are significantly positively correlated when considered alone (II). The Fgf5- compartment is significantly positively correlated (III), however, the
majority of subpopulations in the Fgf5- compartment are not significantly correlated. See main text for a comparison of our findings with the
previous report of Trott et al. [18].



Feigelman et al. BMC Bioinformatics 2014, 15:240 Page 6 of 10
http://www.biomedcentral.com/1471-2105/15/240

the majority of the cells in the Fgf5- compartment are
not significantly correlated for Gbx2 and Sox2. Indeed
most subpopulations consisting of cells with expression
between the 0th and 75th percentile of the Fgf5 distribu-
tion are not significantly correlated for Gbx2 and Sox2
(p > 0.05). Thus, MCA provides the means for a detailed
and robust subpopulation identification, superior to ad
hoc compartmentalization.

Discussion
Fueled by newly developed single-cell technologies such
as single-cell transcriptomic [22,23], genomic [24] and
proteomic [25] analysis, many newmethods have emerged
which attempt to shed light on cellular heterogeneity
[26-29].
Previous methods for the detection of heterogeneous

subpopulations in biological data have largely focused on
grouping observations according to expression level, and
thus requires that subpopulations be readily separable. For
instance, in FACS cellular subpopulations are often iden-
tified with manually determined compartments [30-32]. If
the data are easily separated, clustering methods such as
Gaussian mixture modeling and k-means clustering have
proven well suited to this task [8].
Alternatively, methods such as principal component

analysis attempts to identify the principal directions,
along which the data are maximally separated [33]. Data
which cluster together in the reduced dimensional sub-
space spanned by the first few principal components are
thought to be representative of subpopulations. A simi-
lar method was employed by Trott et al. when analyzing
the Fgf5+/- andNanog +/- compartments [18]. Non-linear
alternatives to PCA including Gaussian Process Latent
Variable Modeling have also recently been shown to be
useful for the identification of cellular subpopulations
[29,34].
None of the previously mentioned methods utilize

correlation information in the identification of cellular
subpopulations, with the exception of Gaussian mixture
modeling which attempts to learn the correlation matri-
ces of Gaussian distributions thought to have generated
the data. However, as shown here, the local correlation
structure provides additional insight into the existence of
differentially regulated subpopulations and hence should
not be disregarded.
To date, relatively few methods have addressed the

possibility of local, state-dependent correlations. Chen
et al. [35] developed a method for analyzing the effect of
local non-linear correlations in gene expression data, and
applied it to a microarray dataset; a similar method was
recently developed by Tjøstheim et al. [36] for estimating
local Gaussian correlation in the context of economet-
ric data. However, these methods required the defini-
tion of a interaction scale for the computation of local

correlations or consider only the relative distance between
data points and not their absolute levels when computing
local correlations.
Recently Cordeiro et al. [37], developed a sophisticated

algorithm for identifying clusters of arbitrary orientation,
also in a multiresolution context. MCA is not as gen-
eral in that it does not consider clusters aligned along
arbitrary projections of the data but provides instead a
comprehensive, multiresolution view of the correlation
structure according to the measured covariates, preserv-
ing expression-level dependencies while not requiring any
predefined bandwidth or interaction distance, and thus
may provide more biological insight into the role of indi-
vidual factors in differential regulation motifs.
MCA has the advantage of being easy to compute and

intuitively interpretable; it is in effect a moving win-
dow correlation analysis simultaneously over many win-
dow sizes. The MCA plot provides a graphical diagnostic
for detection of subpopulations points that contribute
inordinately to the overall correlation, or outliers, and
may provide biological insights that serve as hypothe-
ses for further experimentation. Finally, although we have
focused on biological data and in particular cellular sub-
populations in single-cell transcriptional data, the method
is more general and applicable to any multivariate data.
While the simplicity of MCA plots makes them easy to

interpret, there are nonetheless shortcomings that must
be mentioned. MCA plots are a graphical representation
of the interaction of only two factors, sorted by a third.
If there are many covariates, many such plots are possi-
ble, and it becomes increasingly more difficult to generate
and search through all possible plots as the dimension
increases. In such cases it is helpful to consider only those
plots which may be of biological interest such as sorting
variables thought to have a regulatory role, or pairs of
factors that are suspected to interact. However, one may
also use alternative sorting variables, such as products
of covariates representing potential interactions, princi-
pal directions as determined by PCA, or even arbitrary
non-linear functions of the covariates.
In the case of many variables, one may wish to sort

the resultant plots according to arbitrary functions of the
estimated correlation structures; i.e. one could filter for
only those plots showing large significant regions or for
plots for which a significant region of both positive and
negative correlation are present. Although preliminary
tests with such methods are successful in identifying such
interesting plots, the results are not shown here as they
are unnecessary when the number of dimensions is still
manageable via manual inspection.
The correlation becomes difficult to estimate when the

number of samples is small, or when the number of
variables is relatively large compared to the number of
observations. If the resolution is fine, then the MCA plot
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will containmany points for which the corresponding sub-
population only contains one or a few observations. Such
points are omitted from the plot since the correlation can-
not be robustly computed. This can sometimes give rise to
small regions near the bottom of the MCA plots for which
there are too few observations to compute the subpop-
ulation correlation. These regions do not have biological
significance.
Similarly, the stochastic nature of the data may give rise

to “noise” in small subpopulations, leading to interspersed
points on the MCA plot which are not part of a large,
significant region. These points typically do not indicate
robust subpopulations since a small perturbation away
from them leads to a different correlation structure, and
can safely be ignored. This “noise” also gives rise to the
slight inhomogeneities in the regions identified in Figures
2 and 3.
Lastly, in the case of relatively many variables compared

to the number of observations, correlations can be com-
puted using shrinkage-based estimators [38], although
this results in a different estimation of statistical signifi-
cance, and increases computational complexity.

Conclusion
We have presented a method for the analysis of local cor-
relation structures in subpopulations of multivariate data.
MCA provides a multiresolution summary of correlations
between pairs of variables as ordered by a third sort-
ing variable. Using MCA, it is possible to detect robust
correlations, identify outliers which can bias correlation
estimates, and potentially discover new subpopulations or
interactions giving rise to novel biological hypotheses.
Future work will focus on the development of methods

to automatically identify variable pairs showing differ-
ential regulation in conjunction with a sorting variable,
alleviating the need to manually search through plots for
interesting behaviors.

Methods
We introduce Multiresolution Correlation Analysis
(MCA) as a means for visually analyzing the local corre-
lation structure of pairs of covariates, sorted by a sorting
variable.

Estimation of correlations
The empirical estimation of the Pearson correlations of
a pair of random variables is computed in the usual way,
such that for a pair of random variables X, Y :

ĉor(X,Y ) =
∑M

i=1
(
Xi − X̄

) (
Yi − Ȳ

)
√∑M

i=1
(
Xi − X̄

)2√∑M
i=1

(
Yi − Ȳ

)2 (1)

for a set of realizations i = 1, . . . ,M of X and Y .

If the data are not multivariate normally distributed, it is
preferable to use a more robust measure of statistical cor-
relation. For instance, Spearman’s rank correlation coeffi-
cient is defined as in (1), but using the rank-transformed
data [39]; it provides a non-parametric measure of corre-
lation between a pair of covariates.

Multiresolution correlation analysis
We define the matrix

D =
⎡
⎢⎣

d11 . . . d1N
...

...
...

d1M . . . dMN

⎤
⎥⎦ =

[ �d1 �d2 . . . �dN
]

as thematrix of observed data, where the rows correspond
to individual observations, and columns tomeasured vari-
ables. Note that the data matrix is defined as the transpose
of the data matrix employed in some other transcriptomic
analysis methods.
Given D, we can compute the sample correlation

between any pair of variables, for any subset of the total
observations. In particular we examine subpopulations
defined by different intervals within the distribution of �ds,
the sth column of D, for any desired sorting variable s. For
example, we can examine subpopulations for which the
value of s is in the highest or lowest 30% of its distribution.
For a subpopulation centered on the αth quantile of the

sorting variable �ds, and containing β × 100%, of the total
observations, such that

0 < β ≤ 1
β

2
< α < 1 − β

2
(2)

we can compute the sample correlation matrix �̂(α,β ; s)

�̂(α,β ; s) = {
σ̂ij

}
i,j=1...N (3)

with

σ̂ij = ĉor( �di(α,β ; s), �dj(α,β ; s)) (4)

and

�dq(α,β ; s) = {
dpq

∣∣Q(α − β ; s) ≤ dpq ≤ Q(α + β ; s)
}
(5)

where Q is the quantile function, i.e. Q(x; s) is the xth
quantile of the distribution of �ds, and �dq(α,β ; s) is the sub-
set of the qth column of D for which the sorting variable
falls between the (α − β)th and (α + β)th quantile of its
distribution.
We define � to be the set of all pairs (α,β) for which

Eq. 2 is satisfied; for all (α,β) /∈ �, �̂(α,β ; s) is undefined.
Intuitively, Eq. 2 constrains α and β such that the subpop-
ulation can extend no lower than the minimum, and no
higher than the maximum of the sorting variable.
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Although any function could be computed for the sub-
populations, we restrict ourselves to Pearson correlation.
If there are relatively many variables compared to the
number of observations, i.e. N > M, estimation of the
correlation matrix becomes numerically infeasible. In this
case, estimation of the correlation can be computed using
shrinkage-based approaches such as implemented in the
GeneNet R-package [38].

Construction of MCA plots
We systematically investigate the correlation of the sub-
populations defined by (α,β) ∈ �. This information
can be condensed into a MCA plot for any pair of vari-
ables (i, j) by plotting the magnitude of the (i, j)th entry
of �̂(α,β ; s), with a color scale mapped to the interval
[−1, 1].
While �̂(α,β ; s) is in principle defined for all (α,β) ∈ �,

in practice we choose β = 1/R, . . . , 0.5 and α = β ,β +
1/R, . . . , 1−β for some positive odd integer R ≤ M which
determines the resolution of the MCA plot, i.e. the num-
ber of subpopulations examined: the larger R, the finer the
resolution of the MCA plot.
For each computed subpopulation, a p-value is

computed that depends on both subpopulation size
and magnitude of the estimated correlation coefficient.
Thresholding to retain only small p-values may reveal
large subpopulations with strong correlations. However,
due to the interdependence of the subpopulations (i.e.
the estimated correlation coefficient of a subpopulation
is determined by the correlation coefficients of the points
below), it is not possibly to directly interpret the p-values
as the probability of non-zero correlation.
Lastly, the number of possible MCA plots N increases

cubically with the number of variables k, i.e. N = k(k −
1)(k−2)/6, rendering fully-automatic analysis difficult. In
this case, it is recommended to consider sorting variables
which are of potential biological interest, such as those
that are known to be heterogeneously expressed.

Implementation
MCA and the MCA plots were implemented using the
R programming language. The routine allows the user
to pass a data frame containing observations, select a
sorting variable, and a subset of factors whose pairwise
correlations are to be analyzed; choose color options, and
the number of subpopulations (resolution); specify cor-
relation method (Pearson, partial, or Spearman), enable
significance cutoffs with user-specified p-value thresh-
old, and optionally to save resulting plots. The algorithm
works by iterating through all subpopulations defined
by median quantile of the sorting variable and size of
the subpopulation, and computing the corresponding
correlations using the built-in routines for correlation

Table 1 Model parameters used for activationmodel
(Figure 1A)

Parameter Value Description

nx 2 Hill coefficient of X activation

ny 2 Hill coefficient of Y activation

Kzx 900 Equilibrium constant of X activation

Kxy 1000 Equilibrium constant of Y activation

Vx 600 Velocity of X production

Vy 600 Velocity of Y production

kz 450 Basal production of Z

βx 0.3 Death rate of X

βy 0.3 Death rate of Y

βz 0.5 Death rate of Z

X0 100 Initial X

Y0 100 Initial Y

Z0 100 Initial Z

�t 0.1 Time step

and significance estimation. Code is available upon
request.

Stochastic simulation
Synthetic data were generated via simulation of a gene reg-
ulatory network, the dynamics of which obey a stochastic
differential equation. Two cases were simulated: a three
species activation model where of Z activates X, and X
activates Y (Figure 1A, top); and an inhibition model for
which Z activates X and X inhibits Y (Figure 1B, top).

Table 2 Model parameters used for inhibitionmodel
(Figure 1B)

Parameter Value Description

nx 2 Hill coefficient of X activation

ny 2 Hill coefficient of Y activation

Kzx 4000 Equilibrium constant of X activation

Kxy 1000 Equilibrium constant of Y inhibition

Vx 10000 Velocity of X production

Vy 70 Velocity of Y production

kz 110 Basal production of Z

ay 70 Basal production of Y

βx 0.5 Death rate of X

βy 0.1 Death rate of Y

βz 0.1 Death rate of Z

X0 100 Initial X

Y0 1500 Initial Y

Z0 1000 Initial Z

�t 0.1 Time step
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The activation model obeys

dX
dt

= Znx

Znx + Kzx
nx Vx − βx · X + σξX(t)

dY
dt

= Xny

Xny + Kxy
ny Vy − βy · Y + σξY (t)

dZ
dt

= kz − βz · Z + σξZ(t)

(6)

and the inhibition model obeys

dX
dt

= Znx

Znx + Kzx
nx Vx − βx · X + σξX(t)

dY
dt

= αy + Vy
Xny + Kxy

ny − βy · Y + σξY (t)

dZ
dt

= kz − βz · Z + σξZ(t)

(7)

where model parameters are not necessarily the same
between the activation and inhibition models.
In both cases, the drift of X is a sigmoidal function of Z

and Z is an unregulated birth-death process. Each species
is subject to linear decay and stochasticity enters through
the homogeneousWiener processes ξX(t), ξY (t), and ξZ(t)
which are independent, with unit variance, and scaled by
the factor σ .
The two systems were constructed in such a way that

the steady state distributions do not fully overlap, but
are instead displaced with respect to one another such
that the inhibition model shows an approximately 40%
increase in X, and 20% increase in Z with respect to the
activation model.
Parameters and initial conditions used for the activa-

tion model are given in Table 1, and in Table 2 for the
inhibition model. Simulations were performed using a
Euler-Maruyama SDE integration scheme [40] with time
step �t = 0.1, implemented in MATLAB. The resulting
simulations were allowed to converge to the steady state
distribution by discarding the first 300 data points, and
subsequently thinned by a factor of 20. Pearson correla-
tions were computed using the corr built-in function of
MATLAB.

Analysis of transcriptomic data
Single-cell transcriptomic data from 87 mouse embryonic
stem cells were obtained from Trott, et al. [18] as an Excel
spreadsheet containing qPCR readouts for eight pluripo-
tency factors and one housekeeping gene. The expression
of each gene was first adjusted by adding the minimum
expression over all genes, 0.0217, and subsequently nor-
malized by dividing by the expression of the gene Gapdh
on a cell-wise basis.
Two cells were excluded due to the presence of miss-

ing data for some factors, and two additional cells were
removed because they were thought to be outliers. The

remaining 83 cells were subdivided into a Nanog+ com-
partment (N = 20), defined as the 20 cells with the high-
est Nanog expression, and for which no Fgf5 expression
was detected, and the complementary Nanog- compart-
ment (N = 63). The cells were separately divided into a
Fgf5+ (N = 15) compartment, for which Fgf5 expression
was detected, and a Fgf5- (N = 68) compartment with no
Fgf5 expression.
Correlation networks were computed using Pearson

correlation of the normalized data without any log trans-
formation, and with a significance cutoff of 0.05.
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