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Abstract

The main result of this paper is a bijective proof showing that the generating function
for partitions with bounded differences between largest and smallest part is a rational
function. This result is similar to the closely related case of partitions with fixed
differences between largest and smallest parts which has recently been studied
through analytic methods by Andrews, Beck, and Robbins. Our approach is geometric:
We model partitions with bounded differences as lattice points in an infinite union of
polyhedral cones. Surprisingly, this infinite union tiles a single simplicial cone. This
construction then leads to a bijection that can be interpreted on a purely
combinatorial level.

1 Introduction
A partition of a non-negative integer n is a weakly non-increasing finite sequence of
positive whole numbers λ1 � λ2 � · · · � λk > 0 such that

n = λ1 + λ2 + · · · + λk .

The integers λ1, λ2, · · · , λk are called the parts of the partition. We write |λ| = n to
denote the particular non-negative integer n that λ partitions. For 0 � t ∈ Z, we say a
partition λ has bounded difference t if the difference between the largest and smallest part
of λ is at most t. We use Pt to denote the set of all (non-empty) partitions with bounded
difference t and let Pt(n) := Pt ∩ {λ | |λ| = n}. Furthermore, we let p(n,t) := #Pt(n) and
Pt(q) :=∑n�1 p(n,t)qn =∑λ∈Pt q

|λ| denote the corresponding counting and generating
functions, respectively.
The natural expression for Pt(q) is the infinite sum of rational functions

Pt(q) =
∑
m�1

qm

(1 − qm) · (1 − qm+1) · . . . · (1 − qm+t) . (1)

This can be seen by classifying the partitions λ ∈ Pt by the size m of its smallest part.
For fixedm, the partition λ has to contain the partm at least once and can contain any of
the partsm + 1, . . . ,m + t any non-negative number of times. In short

Pt =
⋃
m�1

{
(m + t)kt + . . . + mk0

∣∣∣ k0 � 1 and k1, . . . , kt � 0
}

(2)
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where we use the exponent notation to denote the multiplicity with which a part appears.
This yields (1) immediately. We will refer to (2) later in this paper.
Our point of departure for this paper is the surprising fact that the infinite sum of

rational functions (1) simplifies to the rational function (3) given in Theorem 1 below.
Theorem 1 is analogous to and motivated by a recent result of Andrews, Beck, and Rob-
bins [3] in which an infinite sum of rational functions very similar to (1) is reduced to
a single rational function by way of q-series manipulations. The Andrews, Beck, and
Robbins result is discussed in detail in Section 6.
Theorem 1. For all t � 1,

Pt(q) =
(

1
(1 − q)

(
1 − q2

) · . . . · (1 − qt
) − 1

)
· 1
1 − qt

. (3)

Our goal in this paper is to achieve a combinatorial and geometric understanding of this
formula. In particular, a striking feature of all the rational functions appearing in (1) and
(3) is that they have a form typically obtained from polyhedral cones [7]. This begs three
questions:

i) Is there a polyhedral model of Pt that makes the fact that Pt(q) is rational readily
apparent?

ii) Is there a geometric reason why the infinite sum of rational functions (1) simplifies
to a single rational function (3)?

iii) Is there a bijective proof of Theorem 1?

Our contribution in this paper is that we provide affirmative answers to each of these
questions and explain the constructions involved from geometric and combinatorial
points of view; thereby providing an answer for question (1 put to the authors by George
Andrews. In particular, we develop a polyhedral model of partitions with bounded dif-
ferences that allows us to interpret the identity of (1) and (3) in terms of a tiling of a
polyhedral cone in Theorem 3. This geometric result immediately implies Theorem 1
using different methods than the q-series manipulations employed in [3]. More impor-
tantly, the geometric approach then leads us to a bijective proof of Theorem 4, which is a
combinatorial restatement of Theorem 1. Even though our motivation for Theorem 4 is
geometric, our bijective proof is entirely combinatorial.
In this paper we draw freely on notions from both partition theory and polyhe-

dral geometry. For references on these subjects we refer the reader to the textbooks
[1, 7, 9, 13, 16].

2 P0(q) is not a rational function
For t = 0 we have P0(q) =∑m�1

qm
1−qm . In contrast to the cases where t is one or greater,

P0(q) is not a rational function. In fact, p(n, 0) = d(n) for n � 1 where d(n) counts the
divisors of n. As a warm-up for the constructions below we will now show this fact via a
simple polyhedral model.
We take our cue from (2) and write P0 as an infinite union of (open) rays in the plane:

X0 :=
⋃
m�1

{
μ

(
1

m − 1

) ∣∣∣∣ 0 < μ ∈ R

}
.
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Note that the rays
{
μ
(

1
m−1

) ∣∣ 0 < μ ∈ R

}
can be viewed as half-open cones Cm, a

perspective we will make use of below. Given the above definition, an integer point
x ∈ Z

2 ∩ X0 is of the form x =
(

k
k(m−1)

)
. A bijection φ : Z2 ∩ X0 → P0 can be defined

by mapping x =
(

k
k(m−1)

)
to the partition λ = mk . Let Hn = {

x ∈ R
2 ∣∣∑

i xi = n
}

denote the hyperplane of all points with coordinate sum n, or, for short, at height n. Then
p(n, 0) = #Z2 ∩ Hn ∩ X0.
This geometric model X0 is illustrated in Fig. 1. It corresponds to lifting P0(q) to the

multivariate generating function P0(x1, x2) defined by

P0(x1, x2) =
∑
m�1

x11x
m−1
2

1 − x11x
m−1
2

.

In the following we will use multi index notation and write xv := xv11 · . . . ·xvdd for a vector
v ∈ Z

d so that the above equation reads

P0(x) =
∑
m�1

x
(

1
m−1

)

1 − x
(

1
m−1

) .
Note that P0(x) does indeed specialize to P0(q) by substituting x1 = x2 = q. To see that

p(n, 0) = d(n) we observe that the ray
{
μ
( 1
m−1

) ∣∣ 0 < μ ∈ R

}
contains a lattice point at

height n if and only if there exists an integer k such that n = mk, i.e., if and only if m|n.
Since we sum over allm � 1 it follows that p(n, 0) = d(n).

3 P1(q) is a rational function
In contrast to P0(q), the generating functions Pt(q) are rational functions for all t � 1. To
build intuition before tackling the general case, we first show this for t = 1 via a geometric

Fig. 1 The polyhedral model for case t = 0 is the union of relatively open rays (not including the origin)
passing through the lattice points

( 1
i

)
for i ∈ Z�0. The number of lattice points contained in the union of

these rays at different heights is given at the bottom of the figure. Dashed diagonal lines indicate lattice
points at the same height



Breuer and Kronholm Research in Number Theory  (2016) 2:2 Page 4 of 15

argument illustrated in Fig. 2. Our strategy is this: Just as in the case t = 0, we identify
each set in the infinite union (2) as the set of lattice points in a half-open polyhedral cone
Cm. However, in contrast to the case t = 0, these cones Cm are now 2-dimensional and
they tile the half-open quadrant R>0 × R�0, which is itself a single half-open simplicial
cone. This immediately allows us to read off the desired rational function expression (3)
for P1(q).
We now introduce some notation to make this argument precise. Given o ∈ {0, 1}d and

a matrix V ∈ Z
d×d with linearly independent columns v1, . . . , vd, we use

coneo(V ) :=
⎧⎨
⎩

d∑
i=1

μivi

∣∣∣∣∣∣ 0 � μi ∈ R and if oi = 1 then 0 < μi

⎫⎬
⎭

to denote the half-open simplicial cone generated by the columns of V and where the
facet opposite vi is open if and only if oi = 1. With this notation we define

X1 :=
⋃
m�1

Cm, and Cm := cone(1,0) (( 1 1
m−1 m

))
(4)

The generating function of the lattice points in Cm satisfies

∑
z∈Z2∩Cm

xz = x
(

1
m−1

)
(
1 − x

(
1

m−1

))(
1 − x

(
1
m

)) .

Substituting x1 = x2 = q we obtain precisely the m-th summand in P1(q). This shows
that (4) is a polyhedral model of the expressions (1) and (2). It follows that p(n, 1) =
#Z2 ∩ Hn ∩ X1.

Fig. 2 The polyhedral model for the case t = 1 is the entire non-negative quadrant without the vertical axis.
It is given as a union over all i ∈ Z�0 of the half-open cones with generators

( 1
i

)
and

( 1
i+l

)
whose top edge is

open. This construction immediately shows that the lattice point count at different heights is a linear function
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As we can see in Fig. 2, the cones Cm tile the positive quadrant, excluding the vertical
axis, i.e.,

X1 = R>0 × R�0 = cone(1,0) (( 1 0
0 1
))
. (5)

We have thus observed that the infinite union of cones (4) is in fact a single simplicial
cone (5). This allows us to read off the generating function immediately, namely

∑
v∈Z2∩cone(1,0)

((
1 0
0 1
)) xv = x

(
1
0

)
(
1 − x

(
1
0

))(
1 − x

(
0
1

))

from which, by substituting x1 = x2 = q, we obtain

P1(q) = q
(1 − q)2

which implies in particular

p(n, 1) = #Z2 ∩ Hn ∩ cone(1,0) (( 1 0
0 1
)) = n.

In this way, (5) can be viewed as a polyhedral model of (3). We have thus shown
Theorem 1 in the case t = 1 via the geometric tiling argument shown in Fig. 2. It turns out
that this works for all t � 1, as we will see in Section 4. Interestingly, the bijection between
Z
2 ∩ X1 and P1 implicit in this construction is non-trivial, as we discuss in Section 5.

4 Polyhedral model in the general case t � 1
To handle the general case t � 1 we will need to add an additional twist to the construc-
tion, which we will illustrate by using t = 2 as a running example. As before, the m-th
summand in (1) will correspond to a half-open (t + 1)-dimensional simplicial cone Cm
in R

t+1. The cones Cm are pairwise disjoint. Their union tiles a single simplicial cone
Xt ⊂ R

t+1, which has one extreme ray removed.
We begin this construction by defining vectors b0, . . . , bt−1 ∈ R

t as follows: bj is the
vector that contains j+1 leading ones and after that only zeros. We then define an infinite
sequence of vectors v1, v2, . . . ∈ Z

t+1 by

vi :=
(

bi−1 mod t
(i − 1 div t)t

)
,

where for any integers a, b the expressions amod b and a div b denote the unique integers
with the property

a = (a div b) · b + (a mod b)

and (amod b) ∈ {0, . . . , b − 1}. In the case t = 2, this gives

v1=
( 1
0
0

)
, v2=

( 1
1
0

)
, v3=

( 1
0
2

)
, v4=

( 1
1
2

)
, v5=

( 1
0
4

)
, . . . , v2k+1=

( 1
0
2k

)
, v2k+2=

( 1
1
2k

)
, . . . , (6)

as shown in Fig. 3. For each i the sum of coordinates of vi is |vi| = i. Let Vm denote the
matrix consisting of columns vm, vm+1, . . . , vm+t and define cones Cm := cone(1,0,...,0) Vm,
that is, the columns of Vm are the generators of the cone Cm and the facet opposite to
the first generator is open. For allm � 1, the columns of Vm generate the same lattice �,
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Fig. 3 The polyhedral model for the case t = 2. The generators vi and the extreme rays through the vi are
shown in a). The cones Ci are generated by vectors vi , vi+1, vi+2. The triangles in b) indicate which faces of the
Ci are open: each triangle is the intersection of the corresponding cone with the hyperplane given by x1 = 1.
The union of all Ci is the closed cone generated by v1 = e1, v2 and e3, with the vertical axis removed. The ei
are the standard unit vectors

which consists of all integer points where the last coordinate is divisible by t, i.e., � :=
Z
t × tZ = VmZt+1 for allm. Let

Xt :=
⋃
m�1

Cm =
⋃
m�1

cone(1,0,...,0) Vm =
⋃
m�1

{ t∑
i=0

αivm+i

∣∣∣∣∣ αi � 0,α0 > 0
}

(7)

denote the (disjoint) union of these cones. By construction

∑
z∈�∩Xt

xz =
∑
m�1

⎛
⎝ ∑

z∈�∩Cm

xz
⎞
⎠ =

∑
m�1

xvm
(1 − xvm) · . . . · (1 − xvm+t )

.

Specializing xi = q we obtain precisely them-th summand of Pt(q). Therefore

p(n, t) = #� ∩ Xt ∩ {x ∈ R
t+1 ∣∣ ∑ xi = n

}
, (8)

which means in particular that if we specialize
∑

z∈�∩Xt x
z at x0 = x1 = . . . = xt = q we

obtain Pt(q).
For the case t = 2, this construction is illustrated in Fig. 3. As we can see, the Cm tile the

simplicial cone with generators
( 1
0
0

)
,
( 1
1
0

)
and

( 0
0
1

)
, excluding the ray cone0

(( 0
0
1

))
, i.e.,

X2 = cone0

⎛
⎜⎝
⎛
⎜⎝ 1 1 0

0 1 0
0 0 1

⎞
⎟⎠
⎞
⎟⎠ \ cone0

(( 0
0
1

))
. (9)

To obtain such a description of Xt for all t � 1, we provide an inequality description of
the cones Cm in the following Lemma.
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Lemma 2. For all m � 1, j ∈ {0, . . . , t − 1}, and k ∈ Z

Cm = {x ∈ R
t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈um−1, x〉 � 0, 〈um, x〉 < 0

}
(10)

where e0, . . . et are the standard basis vectors forRt+1 and we define uj,k := −kte0+tej+et
and um := u(m mod t),(i div t)+1. For all m, the inequality xm � xm+1 found in (10) is
redundant and can be omitted without changing the set Cm. The (t + 1)-dimensional cone
Cm is therefore given by (t + 1) inequalities. Alternatively, the cones can also be defined by
the infinite system of inequalities

Ci = {x ∈ R
t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈ul, x〉 � 0 for all l =

0, . . . , i − 1, and 〈ul, x〉 < 0 for all l � i
}
.

(11)

Proof. For j ∈ {0, . . . , t − 1} and k ∈ Z we define the matrix

Mj,k =
(
bj ··· bt−1 b0 ··· bj
kt ··· kt (k+1)t ··· (k+1)t

)
.

Every matrix Vm is of the formMj,k for suitable j and k. In fact, recalling (6) we have

Vm = M(m−1 mod t),(m−1 div t).

Each Vm contains exactly t+1 linearly independent columns. To see that a given system
S of homogeneous linear inequalities is an inequality description of Cm, we must satisfy
the following two conditions:

i) The columns of Vm must satisfy the inequalities in S .
ii) For every subset F of t columns from Vm there is an inequality that is satisfied at

equality by all v ∈ F . Such an inequality is called facet-defining.

To see that the inequality system given in the statement of the lemma satisfies these
conditions, we proceed as follows.
First, all columns appearing in any of the matrices satisfy the inequality system x0 �

. . . � xt−1 � 0. Moreover, any vector of the form
(
bl
c

)
, for any value c, satisfies xi = xi+1

for every i �= l. This means that the inequality xi � xi+1 is facet-defining for Mj,k for all
i �= j. In other words, for every t-subset F of the columns ofMj,k that contains both

(
bj
kt

)
and

(
bj

(k+1)t

)
, we have found a facet-defining inequality.

Next we show that the remaining two inequalities are facet-defining for the two t-
subsets F where exactly one of these two columns is omitted. To this end we compute, for
k, r ∈ Z, j, l ∈ {0, . . . , t − 1},〈

uj,k ,
(
bl
rt

)〉
=
{

(r − k)t if l < j,
(r − k + 1)t if l � j,

so that in particular 〈
uj,k+1,

(
bl
kt

)〉
=
{

−t if l < j,
0 if l � j,〈

uj,k+1,
(

bl
(k + 1)t

)〉
=
{
0 if l < j,
t if l � j,

which implies, for j ∈ {0, . . . , t − 1},
u	
j,(k+1)Mj,k = ( 0 ··· 0 t ) (12)
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as well as, for j ∈ {0, . . . , t − 2},

u	
j+1,(k+1)Mj,k = ( −t 0 ··· 0 ) (13)

u	
0,(k+2)Mj,k = ( −t 0 ··· 0 ) . (14)

Equation (12) shows that, for all m � 1, the inequality
〈
um−1mod t,(m−1 div t)+1, x

〉
� 0

defines the facet of the cone generated by Vm = Mm−1mod t,m−1 div t corresponding
to the set F consisting of all columns but the last. Similarly, (13) and (14) show that〈
um mod t,(m div t)+1, x

〉
< 0 defines the (open) facet of the cone generated by Vm =

Mm−1 mod t,m−1 div t corresponding to the set F consisting of all columns but the first.
Thus conditions 1 and 1 are satisfied for the system of inequalities (10).
Finally, we see from (12) that

〈
um,

( bl
rt
)〉

�
〈
um′ ,

( bl
rt
)〉

when m � m′. Therefore, Cm
satisfies all of the inequalities 〈ul, x〉 � 0 for l � m−1 and all of the inequalities 〈ul, x〉 < 0
for l � m. This shows that the additional inequalities given in the infinite system (11) are
redundant and therefore (11) is correct as well.

From this inequality description of the cones Cm, we can now derive a simple descrip-
tion of their union Xt .
Theorem 3. For all t � 1,

Xt = {x ∈ R
t+1 ∣∣ x0 � . . . � xt−1 � 0, xt � 0

}\{x ∈ R
t+1 ∣∣ x0 = . . . = xt−1 = 0, xt � 0

}
= cone0

⎛
⎜⎝
⎛
⎜⎝

1 1 ··· 1 0
1 1 0
. . .

...
...

1 0
1

⎞
⎟⎠
⎞
⎟⎠ \ cone0

⎛
⎝
⎛
⎝ 0

...
0
1

⎞
⎠
⎞
⎠ .

Proof. Clearly, the difference of cones given in the theorem has the inequality descrip-
tion stated in the theorem. It remains to show the first equality asserted in the theorem.
This follows from Lemma 2 by observing that consecutive cones Cm and Cm+1 are “glued
together” along the shared facet defined by 〈um, x〉 = 0, which is open in the former cone
and closed in the latter, with opposite orientations 〈um, x〉 < 0 and 〈um, x〉 � 0.
Formally, we proceed by induction on k. For every k � 1 we have

k⋃
m=1

Cm = {x ∈ R
t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈u0, x〉 � 0, 〈uk , x〉 < 0

}
.

For k = 1, this is the statement of Lemma 2. Suppose the induction hypothesis holds
true for some k � 1, it follows for k + 1 by computing

k+1⋃
m=1

Cm =
k⋃

m=1
Cm ∪ Ck+1

= {
x ∈ R

t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈u0, x〉 � 0, 〈uk , x〉 < 0
}

∪ {x ∈ R
t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈uk , x〉 � 0,

〈
uk+1, x

〉
< 0
}

= {
x ∈ R

t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈u0, x〉 � 0, 〈uk , x〉 < 0,
〈
uk+1, x

〉
< 0
}

∪ {x ∈ R
t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈u0, x〉 � 0, 〈uk , x〉 � 0,

〈
uk+1, x

〉
< 0
}

= {
x ∈ R

t+1 ∣∣ x0 � . . . � xt−1 � 0, 〈u0, x〉 � 0,
〈
uk+1, x

〉
< 0
}

where we use both the induction hypothesis and Lemma 2.
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Next, we observe that the conditions 〈u0, x〉 � 0 and 〈uk , x〉 < 0 reduce to

xt � 0 and txkmod t + xt < ((k div t) + 1)tx0.

Allowing k → ∞, the second constraint is reduced to the condition that x0 > 0. Notice
that given x0 � . . . � xt−1 � 0 the condition x0 � 0 implies x0 = . . . = xt−1 = 0.

5 Enumerative and combinatorial consequences
In the case t = 2, our description (9) of X2 allows us to write the generating function of
all �-lattice points in X2 simply as∑
z∈�∩X2

xz = 1
(1 − x1x2)(1 − x2)

(
1 − x23

)− 1(
1 − x23

) =
(

1
(1 − x1x2)(1 − x2)

− 1
)

1(
1 − x23

)
where we use the factor

(
1 − x23

)
instead of (1 − x3) since � contains only those integer

points with even last coordinate. Specializing xi = q we obtain

P2(q) = 1(
1 − q2

)2
(1 − q)

− 1(
1 − q2

) = (1 + q) − (1 − q2
)2(

1 − q2
)3 = q + 2q2 − q4(

1 − q2
)3

which yields

p(2k, 2) = 0
(
k + 2
2

)
+ 2
(
k + 1
2

)
− 1
(
k
2

)
(15)

p(2k + 1, 2) = 1
(
k + 2
2

)
+ 0
(
k + 1
2

)
+ 0
(
k
2

)
. (16)

In just the same way, we can obtain Theorem 1 as an immediate corollary of Theorem 3.

Proof of Theorem 1. The generating function of

S1 := � ∩ cone0

⎛
⎜⎝
⎛
⎜⎝

1 1 ··· 1 0
1 1 0
. . .

...
...

1 0
1

⎞
⎟⎠
⎞
⎟⎠ is

∑
v∈S1

xv = 1
(1 − xb0) · . . . · (1 − xbt−1)(1 − xtt)

and the generating function of

S2 := � ∩ cone0

⎛
⎝
⎛
⎝ 0

...
0
1

⎞
⎠
⎞
⎠ is

∑
v∈S1 x

v = 1
1−xtt

.

Applying Theorem 3 we find∑
z∈�∩Xt

xz = 1(
1 − xb0

) · . . . · (1 − xbt−1
) (
1 − xtt

) − 1
1 − xtt

.

Due to (8) we can specialize x0 = x1 = . . . = xt = q to obtain the desired identity

Pt(q) = 1
(1 − q)(1 − q2) · . . . · (1 − qt

)2 − 1
1 − qt

.

Theorem 3 not only implies this arithmetic corollary, but it moreover leads to a bijective
proof of Theorem 1:We can interpret (1) as counting partitions with bounded differences
and (3) as counting pairs (λ, �)where λ is a non-empty partition with largest part at most t
and � is a non-negative multiple of t. Our geometric construction of Xt then leads directly
to combinatorial bijection between these two classes.
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Theorem 4. For fixed t � 1 and any n ∈ Z�1, the number p(n, t) of partitions of n with
difference between largest and smallest part at most t equals the number of pairs (λ, �)
where � ∈ Z�0 is divisible by t and λ is a non-empty partition of n− � with largest part at
most t. Moreover, there is an explicit bijection between these sets.
Just as both the sum in (1) and our geometric tiling in Theorem 3 of Xt with cones Cm

suggest, our proof of this result will proceed by constructing a bijection piece-by-piece.
On one hand, for each m � 1 the corresponding summand in (1) is readily interpreted
as the generating function of the set C̃m of partitions λ with smallest part m and dif-
ference between smallest and largest part at most t. On the other hand, we can infer a
combinatorial interpretation of Cm ∩ � from the polyhedral model Cm = conee1 Vm.
Let x = (x0, . . . , xt−1, xt) ∈ � ∩ Cm. From the inequality description of Cm we know
that (x0, . . . , xt−1) is a weakly decreasing vector of non-negative integers. This we can
interpret as a partition μ = (x0, . . . , xt−1) with at most t parts. Its conjugate μ̄ is then a
partition with largest part at most t. Moreover, xt is a non-negative integer divisible by t.
While any non-empty partition μ̄ with largest part at most t can appear, we will have to
work some more to understand which integers xt can be paired with this partition. Let
j = m − 1mod t and j̃ = t

(⌊m−1
t
⌋+ 1

)
and write

x = αjvm + . . . + αt−1vj̃ + α∗
0vj̃+1 + . . . + α∗

j vm+t .

In particular, focusing on the first t rows of this system of equations, we get

μ = α∗
0b0 + . . . + α∗

j−1bj−1 +
(
α∗
j + αj

)
bj + αj+1bj+1 + . . . + αt−1bt−1

which means that ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α∗
0
...

α∗
j−1

α∗
j +αj
αj+1

...
αt−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ̂1
...
μ̂j

μ̂j+1
μ̂j+2

...
μ̂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where μ̂i denotes the multiplicity of the part of size i in μ̄.
This is best illustrated with an example, see Fig. 4a). Let t = 5 andm = 12 so that j = 1

and j̃ = 15. Let x = (21, 16, 6, 3, 1, 53·5) so that μ̄ = 1·5+2·4+3·3+9·2+6·1 (where we
use the term 2 · 4 to denote the part 4 with multiplicity 2) and thus μ̂ = (6, 9, 3, 2, 1). Here

x = ( μ
xt
) = 4︸︷︷︸

α1

( b1
2·5
)︸ ︷︷ ︸

v12

+ 3︸︷︷︸
α2

( b2
2·5
)︸ ︷︷ ︸

v13

+ 2︸︷︷︸
α3

( b3
2·5
)︸ ︷︷ ︸

v14

+ 1︸︷︷︸
α4

( b4
2·5
)︸ ︷︷ ︸

v15

+ 6︸︷︷︸
α∗
0

( b0
3·5
)︸ ︷︷ ︸

v16

+ 5︸︷︷︸
α∗
1

( b1
3·5
)︸ ︷︷ ︸

v17

.

This can be visualized, as in Fig. 4a), by an augmented Ferrers diagram. On the right
of the vertical line we have the Ferrers diagram of μ̄. The α

(∗)
i give the multiplicity with

which the part of size i + 1 (i.e., the row of length i + 1) appears. The part of size (j + 1)
plays a special role in that its multiplicity is given by αj + α∗

j . Attached to each row of
μ̄, we have a certain multiple of t which we represent by rows of additional boxes which
extend to the left of the vertical line.
Returning to the question which xt are possible for a givenμ, we observe that for a fixed

μ the only choice we have for xt arises from α∗
j + αj = μ̂j+1 given α∗

j � 0 and αj > 0.
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Fig. 4 a) The pair (μ̄, xt) represented as an augmented Ferrers diagram. b) The corresponding partition
f (μ̄, xt) = λ represented as a Ferrers diagram

Thus, given a fixed μ the values of xt that can appear for
( μ
xt
) ∈ Cm are determined by

xt
t

−
⌊m
t

⌋( t∑
i=1

μ̂i

)
−
⎛
⎝ t∑

i=j+2
μ̂i

⎞
⎠ ∈ {0, . . . , μ̂j+1 − 1}. (17)

Thus, the set � ∩ Cm can be interpreted combinatorially as the set of pairs (μ̄, xt) of a
non-empty partition μ̄ with largest part at most t and a number xt that satisfies (17).
Now that we have extracted this non-obvious definition from the geometric construc-

tion it is a straightforward matter to give a bijection f between � ∩ Cm and C̃m, as
illustrated in Fig. 4.
The Bijection: Given a pair (μ̄, xt) in � ∩Cm, consider its augmented Ferrers diagram.

In Fig. 4a), the augmentations to the right of the vertical line come in two different sizes.
Between these two sections we make a horizontal cut in the augmented Ferrers diagram
and place the bottom part on top so that all rows are flush left, as shown in Fig. 4b). The
result is the Ferrers diagram of a partition f (μ̄, xt) = λ where the difference between
smallest and largest part is at most t and the smallest part is exactly m. In the example,
f (μ̄, xt) = λ = 5 · 17 + 6 · 16 + 1 · 15 + 2 · 14 + 3 · 13 + 4 · 12.
Formally, f maps (μ̄, xt) to the partition

λ = α∗
j ·
[
j + 1 + t

(⌊m
t

⌋
+ 1
)]

+ . . . + α∗
0 ·
[
1 + t

(⌊m
t

⌋
+ 1
)]

+ αt−1 ·
[
t + t

⌊m
t

⌋]
+ . . . + αj ·

[
j + 1 + t

⌊m
t

⌋]
,

where the part sizes are enclosed in square brackets.
The inverse operation can be performed simply by “cutting” the Ferrers diagram of λ

horizontally between parts of size at least 1 + t
(⌊m

t
⌋+ 1

)
and parts of size at most t +

t
⌊m

t
⌋
. Rearranging the (augmented) Ferrers diagram in this fashion preserves the sum of

coordinates in the vectors x and λ, i.e., it is height-preserving. We summarize this result in
the following lemma.
Lemma 5. The map f defined above is a height-preserving bijection between � ∩ Cm
and C̃m.
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We now prove Theorem 4.

Proof of Theorem 4. By construction, we have Pt = ⋃
m�1 C̃m. From Theorem 3 we

know � ∩ Xt = ⋃
m�1 � ∩ Cm where this union is disjoint. Using Lemma 5, we obtain a

height-preserving bijection betweenPt and�∩Xt that is given piecewise between�∩Cm
and C̃m for allm � 1.

Note that it is not necessary to invoke Theorem 3 to prove Theorem 4. Let (μ̄, xt) be a
pair consisting of a non-empty partition μ̄ with largest part at most t and a non-negative
integer xt divisible by t. To show that each such pair (μ̄, xt) lies in a unique � ∩ Cm it
suffices to observe that for every such pair there is a uniquem such that (17) holds. Intu-
itively, given xt , we augment the Ferrers diagram of μ̄ by adding rows of boxes on the left
which are subject to the following constraints:

i) The number of boxes in each row has to be a multiple of t.
ii) Only two different multiples of t may appear.
iii) The long rows always have to be at the bottom.

This has a unique solution due to the convention αj > 0. Using this argument, it is pos-
sible to make the bijective proof entirely combinatorial. The strength of the polyhedral
geometry approach is that it provided the intuition necessary to define the Cm and thus
led us to this combinatorial insight.

6 Bounded differences vs. fixed differences
A partition λ has fixed difference t if the difference between the largest part and small-
est part of λ is exactly equal to t. Let p̃(n, t) denote the number of partitions of n with
fixed difference t and let P̃t(q) = ∑

n�1 p̃(n, t)qn denote the corresponding generating
function. A recent paper by Andrews, Beck, and Robbins [3] proves the following result:
Theorem 6 (Andrews–Beck–Robbins [3]). For all t > 1,

P̃t(q) = qt
∑
m�1

q2m(q)m−1
(q)m+t

= qt−1(1 − q)
(1 − qt−1)(1 − qt)

− qt−1(1 − q)
(1 − qt−1)(1 − qt)(q)t

+ qt

(1 − qt−1)(q)t
.

(18)

Just as in the case of partitions with bounded differences, this formula has the surprising
feature that an infinite sum of rational functions is reduced to a single rational function.
The methods used to obtain this reduction are q-series arguments that include the use
of q-binomial coefficients and an application of Heine’s transformation. Because P̃t(q) is
a rational function, it follows for t > 1 that p̃(n, t) is a quasipolynomial and closed term
formulas for fixed t are easily obtained similarly to (15) and (16) in this paper.
Partitions with bounded differences and partition with fixed differences are related

quite simply. If t = 0, then these two notions are equivalent and, in particular, p̃(n, 0) =
p(n, 0). If t � 1, then it follows directly from the respective definitions that

P̃t(q) = Pt(q) − Pt−1(q) and p̃(n, t) = p(n, t) − p(n, t − 1). (19)

The inclusion-exclusion formulas (19) can be visualized on the geometric level, as
shown in Fig. 5. Following the same construction as in Section 4 we obtain a polyhedral
model X̃t for P̃t(q) as an infinite union of (t + 1)-dimensional cones that each have two
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Fig. 5 Fixed differences for t = 2. a) The basic construction is identical to the case of bounded differences.
b) In the case of fixed difference, the constituent cones have two open faces. The geometric model X̃2 can
thus be viewed as X2 with a piecewise linear transformation of X1 removed

open facets. In contrast to the bounded differences case, X̃t is not itself a simplicial cone
with some open faces. Instead,

X̃t = Xt \ f (Xt−1)

where f is a piecewise linear map of the form

f (Xt−1) =
⋃
m�0

fm
(
Ct−1
m
)

where the Ct−1
m are the constituent simplicial cones of the model Xt−1 and the fm are

unimodular linear maps that preserve the height of each lattice point, as can be seen in
Fig. 5 for t = 2. Xt−1 is a polyhedral cone as we have seen in Theorem 3 and there-
fore has a rational generating function. The piecewise unimodular linear transformation
f induces a bijection Xt−1 ∩ Z

t → f (Xt−1) ∩ Z
t+1 that preserves the height of all lattice

points. Therefore, it follows that f (Xt−1) and X̃t have rational generating functions as well.
This construction shows that P̃t(q) is a rational function via a geometric argument, thus
answering a question posed to the authors by George Andrews. At the same time Fig. 5
makes clear that from the geometric perspective the bounded difference setting is more
natural to work with.
With the identities (19) in hand, results about bounded differences can be easily

converted into results about fixed differences and vice versa. In particular, only elemen-
tary arithmetic is needed to show the direct correspondence between Theorem 1 and
Theorem 6.

7 Conclusion
Recalling the advances of J.J. Sylvester and others, Theorem 1, hence, Theorem 6, can
be obtained constructively, without the aid of analysis [14]. In this article we have mod-
eled the set of partitions with difference between largest and smallest part bounded by t
as the set of integer points in a half-open simplicial cone in (t + 1)-dimensional space.
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This is remarkable because it is not immediate from the definition of these partitions
that they have a linear model in a fixed-dimensional space at all. Yet, the geometric
model is surprisingly natural, given how neatly the cones Cm fit together to form the
simplicial cone Xt . In particular, this explains geometrically why Pt(q) is a rational func-
tion and, more specifically, why the infinite sum of rational functions (1) simplifies to
the single rational function (3). Moreover, the geometric construction leads naturally
to a bijective proof of this identity. From a combinatorial perspective, this bijection is
interesting because it is not obvious combinatorially and yet arises directly from the
polyhedral model. From a geometric perspective, this bijection underlines the impor-
tance of piecewise linear transformations of polyhedral models of combinatorial counting
functions.
At least three questions for future research present themselves:

1. The geometric methods developed in this article can also be applied to counting
partitions with specified distances as introduced in [3]. However, just as discussed
in Section 6 the resulting polyhedral models will involve inclusion-exclusion, which
makes a geometric treatment of specified distances a priori unwieldy. What is a
good analogue of specified distances in the bounded differences setting that leads
to a convex polyhedral model?

2. The inductive proof of Theorem 3 can be translated into an inductive
simplification of the infinite sum (1) to the rational function (3). What is the
relation of this polyhedral construction to (anti-)telescoping methods in partition
theory such as [2]?

3. The proof of Theorem 6 in [3] utilizes the Heine transformation. Is there a
polyhedral construction that would provide a multivariate generalization of the
Heine transformation?

Polyhedral models have proven to be a useful tool in combinatorics [6, 8, 10] and
in partition theory [4, 12]. In particular, they can help in the construction of bijective
proofs for partition identities [5, 15] and even in the construction of combinatorial
witnesses for partition congruences [11]. Polyhedral methods have great potential for
further applications in this area and we look forward to more such applications in future
research.
Acknowledgments
The authors wish to thank George Andrews and Peter Paule for suggesting the topic of fixed differences and asking if
polyhedral methods can show that the generating function for partitions with fixed differences is a rational function.
Both authors were supported by Austrian Science Fund (FWF) special research group Algorithmic and Enumerative
Combinatorics SFB F50, project number F5006-N15.

Received: 29 July 2015 Accepted: 14 December 2015

References
1. Andrews, GE: The theory of partitions. Addison-Wesley, reading, MA, 1976; reissued: Cambridge university Press,

Cambridge (1998)
2. Andrews, GE: Differences of Partition Functions: The Anti-telescoping Method. In: Farkas, HM, Gunning, RC, Knopp,

MI, Taylor, BA (eds.) From Fourier Analysis and Number Theory to Radon Transforms and Geometry: In Memory of
Leon Ehrenpreis, volume 28 of Developments in Mathematics, pp. 1–20. Springer, New York, (2013)

3. Andrews, GE, Beck, M, Robbins, N: Partitions with fixed differences between largest and smallest parts. Proceedings
of the American mathematical society. 143(10), 4283–4289 (2015)

4. Beck, M, Braun, B, Koeppe, M, Savage, C, Zafeirakopoulos, Z: s-Lecture Hall Partitions, Self-Reciprocal Polynomials, and
Gorenstein Cones. Ramanujan J. 36(1–2), 123–147 (2015)

5. Beck, M, Braun, B, Le, N: Mahonian partition identities via polyhedral geometry. From fourier analysis and number
theory to radon transforms and geometry: In Memory of Leon Ehrenpreis. 28, 41–54 (2013). Springer New York



Breuer and Kronholm Research in Number Theory  (2016) 2:2 Page 15 of 15

6. Beck, M, Breuer, F, Godkin, L, Martin, JL: Enumerating Colorings, Tensions and Flows in Cell Complexes. J.
Combinatorial Theory Series A. 122, 82–106 (2014)

7. Beck, M, Robins, S: Computing the continuous discretely. Undergraduate Texts in Mathematics. Springer, New York
(2007)

8. Beck, M, Zaslavsky, T: Inside-out Polytopes. Adv. Math. 205(1), 134–162 (2006)
9. Berndt, BC: Number theory in the spirit of Ramanujan. American Mathematical Soc., Providence, Rhode Island (2006)
10. Breuer, F: An Invitation to Ehrhart Theory: Polyhedral Geometry and its Applications in Enumerative Combinatorics.

In: Gutierrez, J, Schicho, J, Weimann, M (eds.) Computer Algebra and Polynomials, volume 8942 of Lecture Notes in
Computer Science, pp. 1–29. Springer, Cham, Switzerland, (2015)

11. Breuer, F, Eichhorn, D, Kronholm, B: Polyhedral geometry, supercranks, and combinatorial witnesses of congruence
properties of partitions into three parts (2015). Submitted, pre-print available at http://arxiv.org/abs/1508.00397

12. Breuer, F, Zafeirakopoulos, Z: Polyhedral Omega: a new algorithm for solving linear diophantine systems. To appear
in Annals of Combinatorics (2015). http://arxiv.org/abs/1501.07773

13. De Loera, JA, Hemmecke, R, Köppe, M: Algebraic and Geometric Ideas in the Theory of Discrete Optimization,
volume 14 of MPS-SIAM Series on Optimization. SIAM, Philadelphia, PA (2013)

14. Dickson, LE: History of the Theory of Numbers, volume 2. Dover Publications Inc., Mineola, NY (2005)
15. Pak, I: Partition identities and geometric bijections. Proc. Am. Math. Soc. 132(12), 3457–3462 (2004)
16. Ziegler, GM: Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York (1995)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://arxiv.org/abs/1508.00397
http://arxiv.org/abs/1501.07773

	Abstract
	1 Introduction
	2 P0(q) is not a rational function
	3 P1(q) is a rational function
	4 Polyhedral model in the general case t 1
	5 Enumerative and combinatorial consequences
	6 Bounded differences vs. fixed differences
	7 Conclusion
	Acknowledgments
	References



