
J
H
E
P
0
2
(
2
0
1
6
)
1
0
0

Published for SISSA by Springer

Received: December 21, 2015

Accepted: January 30, 2016

Published: February 16, 2016

Supersymmetric solutions to Euclidean Romans

supergravity

Luis F. Alday, Martin Fluder, Carolina Matte Gregory, Paul Richmond

and James Sparks

Mathematical Institute, University of Oxford, Andrew Wiles Building,

Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, U.K.

E-mail: luis.alday@maths.ox.ac.uk, fluder@caltech.edu,

mattegregory@maths.ox.ac.uk, paul.richmond@maths.ox.ac.uk,

james.sparks@maths.ox.ac.uk

Abstract: We study Euclidean Romans supergravity in six dimensions with a non-trivial

Abelian R-symmetry gauge field. We show that supersymmetric solutions are in one-to-one

correspondence with solutions to a set of differential constraints on an SU(2) structure. As

an application of our results we (i) show that this structure reduces at a conformal boundary

to the five-dimensional rigid supersymmetric geometry previously studied by the authors,

(ii) find a general expression for the holographic dual of the VEV of a BPS Wilson loop,

matching an exact field theory computation, (iii) construct holographic duals to squashed

Sasaki-Einstein backgrounds, again matching to a field theory computation, and (iv) find

new analytic solutions.

Keywords: Supersymmetric gauge theory, Gauge-gravity correspondence, Supergravity

Models

ArXiv ePrint: 1505.04641

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2016)100

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81898975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:luis.alday@maths.ox.ac.uk
mailto:fluder@caltech.edu
mailto:mattegregory@maths.ox.ac.uk
mailto:paul.richmond@maths.ox.ac.uk
mailto:james.sparks@maths.ox.ac.uk
http://arxiv.org/abs/1505.04641
http://dx.doi.org/10.1007/JHEP02(2016)100


J
H
E
P
0
2
(
2
0
1
6
)
1
0
0

Contents

1 Introduction 1

2 Conditions for supersymmetry 2

2.1 Euclidean Romans supergravity 2

2.2 SU(2) structure 3

2.3 Differential constraints 4

2.4 Sufficiency 6

2.5 Summary 7

3 Applications 8

3.1 Expansion at a conformal boundary 8

3.2 BPS Wilson loops 9

3.3 Squashed Sasaki-Einstein solutions 12

3.4 Analytic 3/4 BPS solution 16

4 Discussion 19

A Useful identities 19

B Differential conditions for bilinears 20

C More on the dilatino equation 23

D Integrability conditions 24

E Supersymmetry of the fundamental string 25

1 Introduction

Advances in localization techniques applied to gauge theories have led to exact results for

supersymmetric observables on general backgrounds. In three and four dimensions it turns

out that such observables depend on only a small number of parameters of the full parame-

ter space of the background [1, 2]. Rigid supersymmetric gauge theories in five-dimensional

curved backgrounds have been constructed and studied in a series of papers [3–17]. In the

approach of [15] these rigid backgrounds are equipped with a transversely holomorphic

foliation. Inspired by the lower-dimensional results of [1, 2] it was conjectured that super-

symmetric observables depend only on this foliation. In this paper we systematically study

supersymmetric solutions to Euclidean Romans supergravity in six dimensions. Our aim is
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to compute observables of interest for gauge/gravity duality, and in particular understand

the conjecture of [15] from a holographic perspective.

Our starting point is to show that real Euclidean supersymmetric solutions to Ro-

mans F (4) gauged supergravity, with a non-trivial Abelian R-symmetry gauge field, have

a canonical SU(2) structure determined by the Killing spinor. More precisely we show that

supersymmetry together with the equations of motion are equivalent to a set of differential

constraints on this SU(2) structure. This geometric formulation then leads to a number of

interesting applications. First, we show that this structure extends into the bulk the con-

formal boundary SU(2) structure studied in [15]. This allows for the construction of gravity

duals to families of five-dimensional gauge theories on rigid backgrounds. As another appli-

cation we extend several of the results in [18, 19]. In the latter we constructed supergravity

solutions with squashed five-sphere boundaries, and computed the holographic free energy

and certain BPS Wilson loops. In the present paper we extend these results to new fam-

ilies of solutions, in general with different topology. In particular this includes squashed

Sasaki-Einstein conformal boundaries, together with new analytic solutions. Furthermore,

in [18, 19] we conjectured a general formula for the VEV of a BPS Wilson loop, both in

field theory and in supergravity. In this paper the supergravity conjecture is proven.

The outline of the paper is as follows. Section 2 contains a general analysis of Euclidean

supersymmetric solutions to Romans supergravity, recasting the conditions in terms of a

canonical local SU(2) structure. In section 3 we present a number of applications of our

formalism. Our conclusions are presented in section 4. A number of technical details have

been included in five appendices.

2 Conditions for supersymmetry

2.1 Euclidean Romans supergravity

The bosonic fields of the six-dimensional Romans supergravity theory [20] consist of the

metric, a scalar field X = exp(− φ

2
√

2
) where φ is the dilaton, a two-form potential B,

together with an SO(3)R ∼ SU(2)R R-symmetry gauge field Ai with field strength F i =

dAi − 1
2εijkA

j ∧ Ak, where i = 1, 2, 3. Here we are working in a gauge in which the

Stueckelberg one-form is zero, and we set the gauge coupling constant to 1. The Euclidean

signature equations of motion are [19]

d
(
X−1 ∗ dX

)
= −

(
1

6
X−6 − 2

3
X−2 +

1

2
X2

)
∗ 1

−1

8
X−2

(
4

9
B ∧ ∗B + F i ∧ ∗F i

)
+

1

4
X4H ∧ ∗H ,

d
(
X4 ∗H

)
=

2 i

9
B ∧B +

i

2
F i ∧ F i +

4

9
X−2 ∗B ,

D(X−2 ∗ F i) = −iF i ∧H . (2.1)

Here H = dB and Dωi = dωi − εijkA
j ∧ ωk is the SO(3) covariant derivative. Notice

that the theory contains Chern-Simons-type couplings, that become purely imaginary in
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Euclidean signature. The Einstein equation is

Rµν = 4X−2∂µX∂νX +

(
1

18
X−6 − 2

3
X−2 − 1

2
X2

)
gµν +

1

4
X4

(
H2
µν −

1

6
H2gµν

)
+

2

9
X−2

(
B2
µν −

1

8
B2gµν

)
+

1

2
X−2

(
(F i)2

µν −
1

8
(F i)2gµν

)
, (2.2)

where B2
µν = BµρBν

ρ, H2
µν = HµρσH

ρσ
ν .

A solution is supersymmetric provided there exists a non-trivial SU(2)R doublet of

Dirac spinors εI , I = 1, 2, satisfying the following Killing spinor and dilatino equations

DµεI =
i

4
√

2

(
X +

1

3
X−3

)
ΓµΓ7εI −

i

24
√

2
X−1Bνρ(Γµ

νρ − 6δµ
νΓρ)εI

− 1

48
X2HνρσΓνρσΓµΓ7εI +

1

16
√

2
X−1F iνρ(Γµ

νρ − 6δµ
νΓρ)Γ7(σi)I

JεJ , (2.3)

0 = −iX−1∂µXΓµεI +
1

2
√

2

(
X −X−3

)
Γ7εI +

i

24
X2HµνρΓ

µνρΓ7εI

− 1

12
√

2
X−1BµνΓµνεI −

i

8
√

2
X−1F iµνΓµνΓ7(σi)I

JεJ . (2.4)

Here Γµ, µ = 1, . . . , 6, are taken to be Hermitian and generate the Clifford algebra Cliff(6, 0)

in an orthonormal frame. We have defined the chirality operator Γ7 = iΓ123456, which

satisfies (Γ7)2 = 1. The covariant derivative acting on the spinor is DµεI = ∇µεI +
i
2A

i
µ(σi)I

JεJ , where ∇µ = ∂µ+ 1
4Ω νρ

µ Γνρ denotes the Levi-Civita spin connection while σi,

i = 1, 2, 3, are the Pauli matrices.

For simplicity we shall consider Abelian solutions in which A1
µ = A2

µ = 0, and A3
µ ≡ Aµ,

with field strength F ≡ dA. Also, as in [19], we consider a “real” class of solutions for

which εI satisfies the symplectic Majorana condition ε J
I εJ = Cε∗I ≡ εcI , where C denotes

the charge conjugation matrix, satisfying ΓT
µ = C−1ΓµC. The bosonic fields are all taken

to be real, with the exception of the B-field which is purely imaginary. With these reality

properties one can show that the Killing spinor equation (2.3) and dilatino equation (2.4)

for ε2 are simply the charge conjugates of the corresponding equations for ε1. In this way

we effectively reduce to a single Killing spinor ε ≡ ε1, with SU(2)R doublet (ε1, ε2) = (ε, εc).

2.2 SU(2) structure

Consider a Dirac spinor ε in six dimensions, such that (ε1, ε2) = (ε, εc) solves (2.3) and (2.4)

above. We may construct the following scalar bilinears

S ≡ ε†ε , S̃ ≡ ε†Γ7ε , f ≡ εTε . (2.5)

Here we have chosen a basis for the gamma matrices in which they are purely imaginary

and anti-symmetric, with charge conjugation matrix C = −iΓ7. A short computation

reveals that

d(Xf) = −i(Xf)A . (2.6)
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The integrability condition for this equation immediately implies F = dA = 0 unless f ≡ 0

(notice that X is nowhere zero). We will henceforth restrict our analysis to the case f ≡ 0,

which is necessary for a non-trivial R-symmetry gauge field.1

We may then write

ε = ε+ + ε− , (2.7)

where −Γ7ε± = ±ε±, and furthermore the condition f ≡ 0 allows us to introduce [21]

ε+ =
√
S cosϑ η1 , ε− =

√
S sinϑ η∗2 . (2.8)

Here η1, η2 are two orthogonal unit norm chiral spinors, so that η†1η1 = η†2η2 = 1 and η†2η1 =

0. These each define a canonical SU(3) structure, and together determine a canonical SU(2)

structure. Concretely, in six dimensions such a structure is specified by two one-forms K1,

K2 and a triplet of two-forms Ji, i = 1, 2, 3, given by

K1 − iK2 ≡ −
1

2
εαβηT

αΓ(1)ηβ ,

Ji ≡ −
i

2
σαβi η†αΓ(2)ηβ . (2.9)

Here we have introduced the notation Γ(n) ≡ 1
n!Γµ1···µndxµ1 ∧· · ·∧dxµn , where xµ are local

coordinates. We also define

Ω ≡ J2 + iJ1 , J ≡ J3 . (2.10)

The canonical SU(2) structure is thus determined by (K1,K2, J, Ω). We note that K1 and

K2 are orthonormal one-forms, and both are orthogonal to J and Ω, with J ∧ Ω = 0 and

2J ∧ J = Ω ∧ Ω̄.

The SU(2) structure (S, ϑ,K1,K2, J, Ω) that arises naturally from a supersymmetric

solution is thus related to the canonical SU(2) structure by the square norm S and angle

ϑ, via (2.8). For completeness we note that S̃ = −S cos 2ϑ.

Before proceeding, let us remark that the spinor ε is charged under the Abelian R-

symmetry gauge field A, and thus it is rotated by a phase under gauge transformations.

The two-form Ω is then rotated by the square of this phase. As a consequence we more

precisely have a U(2) structure, as explained in [15]. Nevertheless, in this paper we will

continue to refer to this as an SU(2) structure.

2.3 Differential constraints

We begin by introducing the one-form bilinear

K ≡ ε†Γ(1)ε = S sin 2ϑK1 . (2.11)

Using the Killing spinor equation (2.3) and dilatino equation (2.4) one can show that K

is a Killing one-form, so that the dual vector field ξ ≡ K# is a Killing vector. We may

1There are nevertheless interesting solutions for which f 6= 0. In particular the 1/2 BPS solution

constructed in [19] lies in this class.
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hence introduce a local coordinate ψ, so that ξ = ∂ψ and the metric is independent of ψ.

From (2.11) it follows that we may write

K1 = S sin 2ϑ (dψ + σ) , (2.12)

where Lξσ = 0 = iξσ. In fact, as shown in appendix B, all of the supergravity fields

and SU(2) structure are annihilated by Lξ, with the exception of the complex two-form Ω.

The spinor ε is a spinc spinor, charged under the Abelian R-symmetry gauge field A, and

provided one makes the gauge choice (2.15) below then also LξΩ = 0. Thus the vector field

ξ = ∂ψ generates a symmetry of the full solution.

The spinor equations (2.3), (2.4) impose further constraints on the supergravity fields

and SU(2) structure. A more detailed analysis may be found in appendix B, while here we

simply summarize the results. The B-field and R-symmetry gauge field strength F = dA
may be written as

B = iK1 ∧
[

3√
2S sin 2ϑ

d(XS) +X−2K2

]
+B⊥ , (2.13)

F = K1 ∧
√

2

S sin 2ϑ
d(XS cos 2ϑ) + F⊥ , (2.14)

where B⊥ and F⊥ have zero interior contraction with ξ. In particular (2.14) allows us to

write

A = −
√

2X cot 2ϑK1 +A⊥ , (2.15)

where iξA⊥ = 0 and we have made a partial gauge choice for A. We note that

F⊥ = −
√

2XS cos 2ϑ dσ + dA⊥ . (2.16)

We may similarly write the component of H = dB perpendicular to ξ as

H⊥ ≡ i

[
3√
2

d(XS) +X−2S sin 2ϑK2

]
∧ dσ + dB⊥ . (2.17)

Given these definitions, the spinor equations (2.3), (2.4) imply the following set of

differential constraints on the SU(2) structure (S, ϑ,K1,K2, J, Ω):

X2S2 sin2 2ϑ dσ = −2
√

2

3
X−1S cos 2ϑJ − iX4S sin 2ϑK1 ∗H⊥

+
√

2XS

(
cos 2ϑF⊥ +

2

3
iB⊥

)
,

d(X−1S cos 2ϑJ) = − 3

2
√

2
d[(XS)2dσ] + iXS dB⊥

+

√
2

3
iX−2S sin 2ϑ [K1 ∗B⊥ −K2 ∧B⊥] ,

d(X−1SJ) = −
√

2S sin 2ϑJ ∧K2 −
3

2
√

2
cos 2ϑ d[(XS)2dσ]

+iXS cos 2ϑ dB⊥ −
1√
2
X−2S sin 2ϑ [K1 ∗F⊥ −K2 ∧ F⊥] ,
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d(S sin 2ϑJ ∧K2) = 0 ,

D⊥(X−1S sin 2ϑΩ) = −
√

2SΩ ∧K2 ,

S2J ∧ dσ = −
√

2S cos 2ϑ

(
X +

2

3
X−3

)
1

2
J ∧ J + 2SK1 ∗dϑ

+
1√
2
X−1SJ ∧

(
cos 2ϑ dA⊥ +

2

3
iB⊥

)
,

S2Ω ∧ dσ = −2iSdϑ ∧K2 ∧ Ω +
1√
2
X−1SΩ ∧

(
cos 2ϑ dA⊥ +

2

3
iB⊥

)
,

0 = X4K2 d(X−3S sin 2ϑ) +
√

2S

(
X2 − 2

3
X−2

)
+

1√
2
SJ

(
F⊥ +

2

3
i cos 2ϑB⊥

)
. (2.18)

Here the covariant derivative is D⊥ = d + iA⊥∧, and the interior contraction of a p-form

ρ into a q-form λ (with q ≥ p) is the (q − p)-form (ρ λ)µ1···µq−p ≡ 1
p!ρ

ν1···νpλν1···νpµ1···µq−p .

Notice that the one-form σ effectively determines K1 via (2.12), while the supergravity

fields enter the equations via X, A⊥ and B⊥.

2.4 Sufficiency

In this section we shall argue that (2.18) are in fact equivalent to the original spinor

equations (2.3), (2.4), and moreover as shown in appendix D these imply all but one

component of the equations of motion (2.1), (2.2).

As in equation (2.7), we may decompose the Killing spinor as ε = ε+ + ε−, where ε±
have definite chirality under Γ7. Each of these defines an SU(3) structure in six dimensions,

which is equivalent to specifying the real two-forms J± ≡ −iε†±Γ(2)ε± and complex three-

forms Ω± ≡ εT±Γ(3)ε±. For each choice of ±, there exists a generalized connection with

torsion ∇(T )
± which preserves the corresponding structure, i.e. ∇(T )

± ε± = 0. One then

defines the intrinsic torsion as τ± ≡ ∇(T )
± − ∇, where ∇ is the Levi-Civita connection.

The exterior derivatives of J± and Ω± determine completely the corresponding intrinsic

torsions. One can thus regard the Killing spinor equation as an equation that relates the

exterior derivatives of J± and Ω±, on the left hand side of (2.3), to the supergravity fields

on the right hand side. Since

J± =
1

2
S(1± cos 2ϑ)(J ∓K1 ∧K2) ,

Ω± =
1

2
S(1± cos 2ϑ) Ω ∧ (∓K1 + iK2) , (2.19)

our equations (2.18) certainly contain this information, as they imply the exterior deriva-

tives of all k-form bilinears, for k ≤ 3 (this is clear from the analysis in appendix B). In fact

they contain more than this information, as we have also used the dilatino constraint (2.4)

to further simplify the equations.

It thus remains to show that (2.18) imply the dilatino equation (2.4). First we note that

neither ε+ nor ε− can be identically zero. For if ε± = 0, respectively, then we in fact have

– 6 –
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an SU(3) structure, rather than SU(2) structure, and the bilinear W ≡ εTΓ(3)ε = Ω∓ is the

corresponding complex three-form. However, since the left hand side of equation (B.8) of

appendix B is identically zero, we would deduce that Ω∓ = 0 and hence ε∓ = 0. Thus on an

open dense subset where ε± are both non-zero, we have that {ε±,Γµε∗±} span the positive

and negative chirality spin bundles S±, respectively. In order for the dilatino equation to

hold, it is therefore sufficient to check that the contraction of the right hand side of (2.4)

with ε†± and εT±Γµ is zero. These are equivalent to two scalar and two one-form equations,

respectively, that may be expressed in terms of bilinears. The corresponding equations

may be found in appendix C. It is straightforward, but somewhat tedious, to show that

these are indeed implied by (2.18).

We thus conclude that (2.18) are in fact necessary and sufficient for the original spinor

equations (2.3), (2.4) to hold.

2.5 Summary

We have shown that a real supersymmetric solution to Euclidean Romans supergravity,

with non-trivial Abelian R-symmetry gauge field A, is described by an SU(2) structure

(S, ϑ,K1 = S sin 2ϑ(dψ + σ),K2, J, Ω) with corresponding metric

ds2 = S2 sin2 2ϑ(dψ + σ)2 +K2
2 + gSU(2) . (2.20)

Here we may complete K1,K2 to an orthonormal frame {ea, e5 ≡ K1, e
6 ≡ K2}, a =

1, . . . , 4, where

gSU(2) =

4∑
a=1

(ea)2 , J = e1 ∧ e2 + e3 ∧ e4 , Ω = (e1 + ie2) ∧ (e3 + ie4) . (2.21)

The vector field ξ = ∂ψ is a Killing vector, and all supergravity fields and the SU(2)

structure are annihilated by Lξ in the gauge for which

A = −
√

2X cot 2ϑK1 +A⊥ . (2.22)

The Killing spinor equation (2.3) and dilatino equation (2.4) are then equivalent to impos-

ing the differential constraints (2.18) on this structure, where B⊥ is the component of the

B-field with zero interior contraction with ξ. Moreover, these imply all of the equations of

motion (2.1), (2.2) provided we also impose

0 = X4S sin 2ϑ dσ ∧ (K1 ∗ iH⊥) + d

[
X4

S sin 2ϑ
K1 ∗d(X−2S sin 2ϑK2)

]
+

2

9
B⊥ ∧B⊥ +

1

2
F⊥ ∧ F⊥ −

4

9
X−2K1 ∗

[
3√

2S sin 2ϑ
d(XS) +X−2K2

]
. (2.23)

This is the component of the B-field equation of motion in (2.1) that has zero interior

contraction with ξ, where recall that H⊥ is defined by (2.17).
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3 Applications

3.1 Expansion at a conformal boundary

In this section we determine the asymptotic form of the SU(2) structure at a conformal

boundary. The aim is to make contact with the results of [15]. A similar holographic ap-

proach to constructing rigid supersymmetric backgrounds in lower dimensions was followed

in [22–24].

Given an asymptotically locally AdS solution we may introduce a radial coordinate r

with the conformal boundary located at r =∞. The bosonic fields then admit an expansion

of the form

ds2 =
9

2

dr2

r2
+ r2

[
g(0)
mn +

1

r2
g(2)
mn + · · ·

]
dxmdxn ,

X = 1 +
1

r2
X2 + · · · ,

B = rb− 1

r2
dr ∧A(0) + · · · ,

A = a+ · · · , (3.1)

where recall H = dB and F = dA. The five-dimensional coordinates on the conformal

boundary are denoted xm, with m = 1, 2, 3, 4, 5. Some of the terms a priori present in

these expansions are set to zero by the equations of motion.

In order to determine the corresponding expansion of the SU(2) structure, for this

subsection we introduce the following explicit basis for Cliff(6, 0):

Γm =

(
0 iγm
−iγm 0

)
, Γ6 =

(
0 −14

−14 0

)
, Γ7 =

(
−14 0

0 14

)
, (3.2)

where γm are a Hermitian basis of Cliff(5, 0). Notice that (3.2) is different to the basis

used in the rest of the paper (where Γµ are purely imaginary), but instead coincides with

the basis used in [15]. The asymptotic form of the metric implies the radial expansion of

an orthonormal frame is

E6 = − 3√
2

dr

r
, Em = rem + · · · . (3.3)

The Killing spinor then has the following asymptotic expansion

ε =
√
r

(
χ

−iχ

)
+

1√
r

(
ϕ

iϕ

)
+ · · · . (3.4)

From this, together with S ≡ ε†ε and the definitions in (B.1), we deduce the following

asymptotic expansion for the SU(2) structure:

S = 2S(0)(x) r + · · · ,

ϑ =
π

4
+
ϑ(0)(x)

r
+ · · · ,

– 8 –
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K1 = K
(0)
1 (x) r + · · · ,

K2 = K
(0)
2 (x)− 3√

2

dr

r
+ · · · ,

J = J (0)(x) r2 + · · · ,

Ω = Ω(0)(x) r2 + · · · , (3.5)

where the ellipses denote subleading terms. Inserting these expansions into (2.18) reduces

to the following independent equations, at leading order in r:

dS(0) = −
√

2

3

(
S(0)K

(0)
2 + iS(0)K

(0)
1 b

)
,

d(S(0)ϑ(0)) = − 1

2
√

2
S(0)K

(0)
1 da ,

d(S(0)K
(0)
1 ) =

2
√

2

3

[
2ϑ(0)S(0)J (0) + S(0)K

(0)
1 ∧K(0)

2 + iS(0)b− i

2
S(0)K

(0)
1 (∗b)

]
,

d(S(0)K
(0)
2 ) = iS(0)K

(0)
1 db− iS(0)K

(0)
1 d(logS(0))b ,

d(S(0)J (0)) = −
√

2K
(0)
2 ∧ (S(0)J (0)) ,

d(S(0)Ω(0)) = −i
(
a− 2

√
2ϑ(0)K

(0)
1 − i

√
2K

(0)
2

)
∧ (S(0)Ω(0)) . (3.6)

Here ∗ denotes the Hodge duality operator for the boundary metric g(0). We also note that

the flux equation of motion (2.23) does not impose an independent constraint at leading

order. The set of equations (3.6) is precisely the starting point for the purely field theory

analysis of rigid supersymmetric five-manifold backgrounds carried out in [15].

3.2 BPS Wilson loops

The expectation value of Wilson loops in USp(2N) SCFTs have been computed when

the gauge theory is placed on the round five-sphere [25] or SU(3) × U(1) squashed fives-

spheres [19]. Romans supergravity solutions dual to these backgrounds have also been

constructed and successfully compared with the large N gauge theory results. In this

section we compute the regularised string action dual to the Wilson loops for any Romans

solution with ball topology and U(1)3 symmetry, confirming one of the conjectures made

by the authors in [19].

As shown in [19], the relevant string action is

Sstring =

∫
Σ2

X−2vol2 + iB − 3√
2

length(∂Σ2) , (3.7)

where the boundary counterterm regularizes the divergence arising from the infinite bound-

ary length. We begin by writing

B ≡ B1 ∧K1 +B⊥ . (3.8)
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Comparing to (2.13) we see that

X−2K2 = − 3√
2S sin 2ϑ

d(XS) + iB1 . (3.9)

It is natural to define the radial coordinate

ρ ≡ XS . (3.10)

Then

X−2K2 = − 3X√
2 sin 2ϑ

dρ

ρ
+ iB1 . (3.11)

Notice that in general B1 has a component in the dρ direction, and also dρ is not orthogonal

to J and Ω. However, we may still consider substituting (3.11) into the bilinears, at the

expense of introducing the unknown B1. From the point of view of asymptotically locally

AdS solutions this is natural, since to leading order at large ρ we see from (3.5) that K2 is

in the dρ direction. Let us next wedge (3.11) with K1. This reads

X−2K1 ∧K2 + i(B −B⊥) =
3√
2

dρ ∧ (dψ + σ) . (3.12)

The left hand side is precisely the (unregularized) action of a string wrapping the K1–K2

direction, while the right hand side is exact on the string worldsheet. In appendix E we

show that such a string is supersymmetric. Notice that

‖∂ψ‖ = S sin 2ϑ = ρX−1 sin 2ϑ = ρ+O(1/ρ) . (3.13)

Here we have used the asymptotic expansions in section 3.1. Since the string wraps the ∂ψ
direction, the boundary length is

length(∂Σ2) = ‖∂ψ‖
∫
S1

dψ . (3.14)

Integrating by parts the bulk action in (3.7), we see that the boundary counterterm simply

cancels against the bulk contribution at infinity, leaving

Sstring = − 3√
2
ρorigin

∫
S1

dψ , (3.15)

where

ρorigin = (XS) |origin . (3.16)

Here ρ ∈ [ρorigin,∞). We next claim that for a solution with ball topology and U(1)3

isometry

(XS) |origin =
b1 + b2 + b3√

2
. (3.17)
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Here we write the supersymmetric Killing vector as

∂ψ =

3∑
i=1

bi∂ϕi , (3.18)

where ϕi, i = 1, 2, 3, have period 2π, and the orientations (and hence signs) will be fixed

shortly. Combining (3.17) with (3.15) for a Wilson loop wrapping the ϕi circle we obtain

Sstring = −9π
b1 + b2 + b3

3bi
, (3.19)

where
∫
S1 dψ = 2π/bi. This is precisely the Wilson loop conjecture made by the au-

thors in [19].

Thus it remains to prove (3.17). Geometrically, the bi arise as the skew eigenvalues of

the two-form dK at the origin (recall that K = S sin 2ϑK1 is a Killing one-form). That is,

raising an index of dK to obtain a skew-symmetric 6× 6 matrix in an orthonormal frame,

at the origin we have

(dK) |origin =

R1 0 0

0 R2 0

0 0 R3

 , Ri =

(
0 −bi
bi 0

)
. (3.20)

This follows from a simple local calculation. Specifically, at the origin we may introduce

three sets of polar coordinates (ρi, ϕi), i = 1, 2, 3, and write the leading order flat metric as

ds2
flat =

3∑
i=1

dρ2
i + ρ2

i dϕ
2
i . (3.21)

One can then compute dK at the origin using this local metric, where K =
∑3

i=1 biρ
2
i dϕi

is the dual one-form to ∂ψ. In the orthonormal frame

e2i−1 = dρi , e2i = ρidϕi , i = 1, 2, 3 , (3.22)

at the origin this gives precisely (3.20). Our solution is also equipped with a six-dimensional

almost complex structure, which as a two-form reads

J = K1 ∧K2 + J . (3.23)

In the same frame this reads

J =

 ε 0 0

0 ε 0

0 0 ε

 , ε =

(
0 −1

1 0

)
. (3.24)

Thus J (e1) = e2, etc. Notice this fixes the orientations of the ϕi. Then

J dK |origin = 2(b1 + b2 + b3) . (3.25)
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Let us now look at computing the same quantity using the bilinear equations. We have

K1 dK =
1

X2

[
− 1

S sin 2ϑ
d(X2S2 sin2 2ϑ) + 2XS sin 2ϑ dX

]
. (3.26)

K has norm S sin 2ϑ, which by definition is zero at the origin. Contracting K2 into (3.26)

and restricting to the origin we hence find

(K1 ∧K2) dK |origin = −2K2 d(S sin 2ϑ) |origin , (3.27)

where we have assumed that X is regular at the origin (and we shall make similar regularity

assumptions for other fields in what follows). We next compute

J dK = (S sin 2ϑ)2J dσ , (3.28)

which thus tends to zero at the origin. Finally contracting K2 into (B.24), and restricting

to the origin, we find

K2 d(S sin 2ϑ) |origin = −
√

2(XS) |origin . (3.29)

Combined with (3.27), this shows that

J dK |origin = 2
√

2(XS) |origin , (3.30)

which together with (3.25) proves (3.17).

3.3 Squashed Sasaki-Einstein solutions

The system of equations for the SU(2) structure in section 2 is too complicated to solve in

general; to find solutions one needs to make some additional assumptions. In this section

we consider an ansatz that naturally generalizes the 1/4 BPS solutions (and their 1/2 BPS

limit) found in [19].

We begin by making the following ansatz for the supergravity fields2

ds2 = α2(r)dr2 + γ2(r)(dψ + σ)2 + β2(r)ds2
KE ,

B = p(r)dr ∧ (dψ + σ) +
1

2
q(r)dσ ,

A = f(r)(dψ + σ)− 3dψ ,

X = X(r) . (3.31)

Here we take ds2
KE to be a four-dimensional positively curved Kähler-Einstein metric, so

that a constant r hypersurface is a squashed Sasaki-Einstein five-manifold. Concretely, this

means that dψ + σ is a global contact one-form on such a hypersurface, with

dσ = 2ωKE . (3.32)

2Recall that the formula (2.22) for the gauge field A requires a specific gauge choice. However, in [19]

this was presented in a different gauge. This accounts for the factor of −3dψ in (3.31).
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The ansatz (3.31) reduces to that in [19] on taking the Kähler-Einstein metric to be the

Fubini-Study metric on CP2. Notice also that in writing (3.31) we have taken the su-

persymmetric Killing vector ∂ψ to coincide with the Reeb vector field of the squashed

Sasaki-Einstein manifold.

Comparing to section 2, and identifying the four-dimensional SU(2) structure metric

in (2.20) with β2(r)ds2
KE, allows us to identify

S sin 2ϑ = γ(r) , K2 = −α(r)dr , Ω = β2(r)ΩKE , J = −β2(r)ωKE , (3.33)

where ΩKE satisfies3

dΩKE = −3iσ ∧ ΩKE . (3.34)

We take S = S(r), ϑ = ϑ(r). From the remaning supergravity fields, we similarly read off

f(r) = 3−
√

2XS cos 2ϑ , F⊥ = 2f(r)ωKE , B⊥ = q(r)ωKE . (3.35)

Substituting these into the differential constraints (2.18) and flux equation of motion (2.23)

then reduces to the following independent ODEs:

0 = iX3
(
2p− q′

)
sin 2ϑ+

2
√

2

3
α
[
iq + (9 + β2X−2) cos 2ϑ

]
− αXS(3 + cos 4ϑ) ,

0 =
d

dr
(X−1Sβ2 cos 2ϑ)− 3

√
2XS

d

dr
(XS) + iXSq′ ,

0 =
d

dr
(X−1Sβ2 sin 2ϑ)−

√
2Sαβ2 ,

0 = − 2XS + 3
√

2 cos 2ϑ+ i

√
2

3
q +

1√
2

(
2

3
X−2 +X2

)
β2 cos 2ϑ− β2Xα−1ϑ′ ,

0 = −
√

2αS
[(

3X4 + 1
)
β2 + 18X2

]
sin 2ϑ+X2

(
12XSβ′ +

√
2ipβ

)
β ,

0 = − pβ4 csc 2ϑ

αX2S
+ 6
√

2qXS − iq2 − 6
√

2iSβ2 cos 2ϑ

X
+ 18iX2S2 − 81i . (3.36)

Notice that as a consequence of parametrization invariance one is free to specify the func-

tion β = β(r). Hence (3.36) are six coupled ODEs for the six functions (X,S, ϑ, α, p, q).

Furthermore, notice that they are independent of the choice of Kähler-Einstein metric, and

are thus equivalent to the equations studied in [19]. In the latter reference we constructed

a two-parameter family of 1/4 BPS solutions, as a series expansion both around the con-

formal boundary at r = ∞, and as an expansion around Euclidean AdS. Specifically, the

parameters are

f0 ≡ f(r)|boundary , s−1 ≡ γ(r)

β(r)

∣∣∣∣
boundary

. (3.37)

We hence automatically construct new solutions, with an arbitrary squashed Sasaki-

Einstein five-manifold, with squashing parameter s, as conformal boundary. Setting

3We have chosen sign conventions so as to agree with those of [19].
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s = 1 and f0 = 0, the conformal boundary is a Sasaki-Einstein manifold with metric

ds2
SE = (dψ + σ)2 + ds2

KE, and in the bulk the only non-trivial field is the metric, which is

a “hyperbolic cone”

ds2
6 =

dr2

1 + 2
9r

2
+ r2ds2

SE . (3.38)

When ds2
SE is the round five-sphere this is simply Euclidean AdS6, while more gener-

ally (3.38) has an isolated Calabi-Yau cone singularity at r = 0. The solutions with gen-

eral s and f0 have the same behaviour near the tip of the cone/origin, and thus in general

these supergravity solutions have a Calabi-Yau singularity. Nevertheless, this singularity

does not lead to any UV divergences in the holographic free energy or Wilson loop VEVs.

Although we were unable to solve the system (3.36) analytically, see the end of section 3.4

for further discussion.

Any solution to Romans F (4) supergravity uplifts to a solution of massive type IIA

supergravity, as a warped product M6×S4 [27]. For an asymptotically locally AdS solution

M6, these are expected to be the gravity duals to a certain family of USp(2N) gauge

theories, defined on the conformal boundary of M6. The gauge theories arise from a

system of N D4-branes, Nf of D8-branes and an orientifold plane. This data is captured

in the six-dimensional effective Newton constant [26]

GN =
15π

√
8−Nf

4
√

2N5/2
. (3.39)

Recall that the two-parameter family of solutions constructed in this section reduce to the

1/4 BPS family in [19] when the Kähler-Einstein metric is taken to be the Fubini-Study

metric on CP2. The computation of the holographic free energy then very closely follows

that in [19]. The upshot is that

Fgravity = Irenormalized = − 27

4πGN
· vol(SE) , (3.40)

is independent of the two parameters s and f0. Notice that the volume vol(SE) appearing

in (3.40) is that of the Sasaki-Einstein metric, which is the conformal boundary metric

when s = 1, even though (3.40) holds for all s.

Comparison to field theory. We would like to compare (3.40) with the corresponding

large N field theory calculation. This involves computing the localized partition function

of the USp(2N) gauge theories on a squashed Sasaki-Einstein background, and taking

the N → ∞ limit. In [28] the perturbative partition function of an arbitrary N = 1

supersymmetric gauge theory was computed on a general U(1)3-invariant Sasaki-Einstein

five-manifold. For a gauge theory with gauge group G and a matter hypermultiplet in an

arbitrary representation R, the localized perturbative partition function is

ZSE
pert =

∫
t
da e−Scl

∏
α S

SE
3 [ iα(a) ; ~ξ ]∏

ρ S
SE
3 [ iρ(a) + 3

2 ; ~ξ ]
. (3.41)
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The integration in a is over the Cartan t of the gauge group. The products are over roots

α of G and weights ρ of the representation R, and we have denoted by Scl the classical

action evaluated on the localization locus. Furthermore SSE
3 [x ; ~ξ ] is a generalized version

of the triple-sine function

SSE
3 [x ; ~ξ ] ≡

∏
~m

(~m · ~ξ + x)(~m · ~ξ + ~ξ · ~ξ − x) . (3.42)

Here ~m = (m1,m2,m3) runs over the charge lattice of holomorphic functions on the Calabi-

Yau cone over the Sasaki-Einstein five-manifold, where mi is the charge under the ith U(1)

symmetry. Furthermore, we have written the supersymmetric (Reeb) vector field as

ξ =
3∑
i=1

ξi∂ϕi , (3.43)

where ~ξ = (ξ1, ξ2, ξ3) and ∂ϕi generate the U(1)3 isometry. For example, for the round S5

the Calabi-Yau cone is simply C3, with a basis of holomorphic functions zm1
1 zm2

2 zm3
3 , where

mi ∈ Z≥0. In this case, (3.42) reduces to the standard triple-sine function.

We are interested in evaluating (3.41) for the USp(2N) gauge theories, in the large N

limit. This involves the asymptotics of the hypermultiplet and vectormultiplet contribu-

tions computed in [28]:

logSSE
3 [x ; ~ξ ] ∼ −iπ sgn(Imx)

[(
x3

6
+

3x

4

)
vol(SE)

π3
+

x

24π

∑
I

βI

]
,

logSSE
3 [x+

3

2
; ~ξ ] ∼ iπ sgn(Imx)

[(
x3

6
− 3x

8

)
vol(SE)

π3
+

x

24π

∑
I

βI

]
. (3.44)

Here βI are certain parameters defined in [28], which will not enter the final result.4 We

may then compute the leading contribution to the partition function at large N using a

saddle point method. One specifies an element of the Cartan subalgebra of USp(2N) by

its eigenvalues {λ1, . . . , λN}. In the large N saddle point these behave as λn ∼ N1/2xn.

One then introduces an eigenvalue density

ρ(x) =
1

N

∑
n

δ(x− xn) , (3.45)

which has support on a finite interval [0, x?]. Solving the saddle point approximation to

the above matrix model, we find

ρ(x) =
4(8−Nf )x

9
, and x? =

3√
2
√

8−Nf

, (3.46)

which leads to the final result for the large N free energy

Fgauge theory = − 9
√

2

5π2
√

8−Nf

vol(SE)N5/2 + o(N5/2) . (3.47)

This precisely agrees with (3.40).

4βI is the length of the Ith closed Reeb orbit.
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The field theory computation above is for the Sasaki-Einstein conformal boundary,

with s = 1 and f0 = 0. On the other hand, in [15] we conjectured that the partition

function should depend only on the holomorphic foliation generated by the Killing vector

ξ. Since this is independent of s and f0, this conjecture implies that (3.47) holds for the

entire two-parameter family of 1/4 BPS backgrounds. Since (3.47) agrees with (3.40), this

lends credence to the conjecture. We also regard this as evidence that the 1/4 BPS family

of supergravity backgrounds is the correct holographic dual, in spite of the Calabi-Yau

singularity at the origin.

BPS Wilson loops. Finally, let us discuss the computation of the VEV of BPS Wilson

loops on both sides of the correspondence. Following a similar computation to that in [19],

in the large N matrix model for the gauge theory this is given by

〈W 〉 =

∫ x?

0
eλ(x)βI ρ(x)dx , (3.48)

where βI is the length of the closed Reeb orbit wrapped by the Wilson loop.5 At large N

one hence obtains

log 〈W 〉 = x?βIN
1/2 + o(N1/2) . (3.49)

On the other hand, in the dual supergravity solution this corresponds to a fundamental

string wrapping the circle of length βI , together with the radial direction r. We find that

the regularized action is

Sstring = − 3√
2
√

8−Nf

βIN
1/2 . (3.50)

This should be identified with − log 〈W 〉 in field theory, and we find perfect agreement.

3.4 Analytic 3/4 BPS solution

In this section we give some details of a new analytic supersymmetric solution to Euclidean

six-dimensional Romans supergravity. This corresponds to the 3/4 BPS squashed sphere,

constructed as a perturbation expansion in [19]. As shown in [19] an interesting family

of solutions arises by considering the following SU(3) × U(1) symmetric ansatz for the

supergravity fields

ds2
6 = α2(r)dr2 + γ2(r)(dτ + C)2 + β2(r)

[
dσ2 +

1

4
sin2 σ(dθ2 + sin2 θdϕ2)

+
1

4
cos2 σ sin2 σ(dβ + cos θdϕ)2

]
,

B = p(r)dr ∧ (dτ + C) +
1

2
q(r)dC ,

Ai = f i(r)(dτ + C) , (3.51)

5Recall that the computation of [28] is valid for a U(1)3-invariant Sasaki-Einstein manifold, for which

the index I runs over the rays of the corresponding polyhedral cone.
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where

C ≡ −1

2
sin2 σ(dβ + cos θdϕ) , (3.52)

together with X = X(r). The equations of motion for the background SU(2)R gauge

field imply

f i(r) = κif(r) . (3.53)

The equations for the other fields then depend only on the SU(2) ∼ SO(3) invariant

κ2
1 + κ2

2 + κ2
3, which we can set to one by rescaling f(r). The set of equations for the fields

involved in the ansatz have been listed in the appendix B to [19]. In addition, if the solution

is supersymmetric there exists a Killing spinor. For the case of the 3/4 BPS solution the

Killing spinor depends on four extra functions, denoted ki(r), i = 1, 2, 3, 4 in [19], which,

together with the fields above, satisfy first order constraints as a result of supersymmetry.

Although, as shown in this paper, these constraints are equivalent to the original equations

of motions (upon supplementing them with one extra second order equation), we found

them more convenient in order to find an analytic form for the solution.

The solution depends on a single parameter s, the squashing parameter, but it is

convenient to parametrize it in terms of b1 = 1+
√

1− s2 and b2 = 1−
√

1− s2, introduced

in [19]. The high amount of supersymmetry implies a large number of constraints (many of

them algebraic) which can be used to eliminate all the fields in favour of k2(r), k3(r), X(r)

and β(r). For instance

k1(r) = b2(b1 + b2)
k2(r)β(r)

b2k2
2(r) + b1k2

3(r)
,

k4(r) = b1(b1 + b2)
k3(r)β(r)

b2k2
2(r) + b1k2

3(r)
,

γ(r) = (b1 + b2)
k2(r)k3(r)β(r)

b2k2
2(r) + b1k2

3(r)
, (3.54)

while the expressions for the remaining fields are more complicated. As a consequence of

reparametrization invariance we can demand that k2, k3 and X depend on r only through

β(r). It is then convenient to introduce a new variable ζ:

(b1 + b2)
√
b1b2 β(r) ≡ ζ . (3.55)

The remaining equations can be used to eliminate further fields and we end up with a

single equation for v(ζ) ≡ ζ2X2(ζ):

v′(ζ) = 4ζ3 (b1 + b2)2(b1 + 2b2)2 + 2v(ζ)

ζ4 + 3(b1 + b2)3(b1 + 2b2)v(ζ) + 3v2(ζ)
, (3.56)

which can be simply solved, for instance, with Mathematica. Equation (3.56) has two

inequivalent solutions, each of them depending on a constant of integration. Of those

only one has the correct boundary condition at infinity v(ζ) = ζ2 + · · · . The constant of

integration can then be fixed by requiring regularity at the origin for X(ζ), which implies
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v(0) = 0. This fixes the solution uniquely. Although the explicit solution is too cumbersome

to be written here, we give the expansion of X(ζ) for small and large values of ζ:

X(ζ) =

(
2(b1 + 2b2)

3(b1 + b2)

)1/4

+ · · · , ζ � 1 , (3.57)

X(ζ) = 1− (b1 − b2)(b1 + b2)2(b1 + 2b2)

4

1

ζ2

+
(b1 − b2)(b1 + b2)3(b1 + 2b2)2

2
√

2

1

ζ3
+ · · · , ζ � 1 . (3.58)

For instance, these expansions allow us to fix the parameter κ introduced in [19]. We obtain

κ =
2
√

2(3−
√

1− s2)2(1− s2 +
√

1− s2)

27
√

3s5
. (3.59)

Finally, let us remark that although cumbersome, the solution contains only roots and

rational functions.

Comments on the 1/4 and 1/2 BPS solutions. The 1/4 BPS squashed sphere

solution considered in [19] is much harder to obtain, the reason being the smaller degree of

supersymmetry. More precisely, the Killing spinor now depends on only two new functions

k1(r) and k2(r), but the number of constraints is much smaller. A related issue is that now

there are no natural “constants of motion” such as b1 and b2 to parametrize the solution

with. Proceeding as before one can write two (third order and very cumbersome!) equations

for two of the fields, for instance X(ζ) and f(ζ). After requiring regularity at the origin

this should lead to a two-parameter family of solutions (s and f0 introduced in (3.37)).

These equations, however, are very complicated and we haven’t managed to solve them

exactly. Before proceeding, two comments are in order: first, these two equations can

be solved in different limits, and reproduce the 1/4 BPS solution in the limits studied

in [19]. Furthermore, in order to obtain these two equations it is necessary to supplement

the bilinear equations with (2.23). Otherwise, we would obtain only one equation for two

fields. This example shows that the differential constraints (2.18) do indeed need to be

supplemented by equation (2.23).

We can also consider the special case f(ζ) = 0. In this case the 1/4 BPS solution

reduces to the 1/2 BPS solution studied in [19]. Although not covered by our analysis

in this paper because the bilinear εTε 6= 0, the 1/2 BPS solution is a limit of the 1/4

BPS solution, where one of the two parameters, namely f0, vanishes. The final equation

for X(ζ), with β(r) ≡ ζ is still rather involved, but it can be solved analytically in an

interesting limit. Denoting X(0) = x0 one can explicitly check the solution takes the

following form

v(ζ) = v0(x0ζ) +
1

x4
0

v1(x0ζ) + · · · , (3.60)

where recall v(ζ) ≡ ζ2X2(ζ) and v0(y) satisfies a simple equation

v′′0(y) = 3
v′0(y)

y
− (6 + v0(y))v′0(y)2

6v0(y)
, (3.61)
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whose solution with correct boundary conditions is

v0(y) = 1 +W
(
y4 − 72 e

72 e

)
. (3.62)

Here W(z) is the Lambert W function or product logarithm, namely W(z)eW(z) = z.

Hence, as opposed to the 3/4 BPS solution, this solution contains special functions.

4 Discussion

In this paper we have presented a systematic study of supersymmetric solutions to six-

dimensional Euclidean Romans supergravity. These are characterized by an SU(2) struc-

ture. We then used these results to study a number of different applications.

Our results raise a number of interesting questions and directions for future work.

Firstly, the gravity duals to (squashed) Sasaki-Einstein backgrounds we constructed have

isolated Calabi-Yau singularities. However, as we have seen, the singularity does not con-

tribute additional (UV) divergences to the free energy and Wilson loop, and moreover the

supergravity computations agree with the gauge theory results. It is thus natural to con-

jecture that these are the correct gravity duals. More precisely, although one expects some

stringy degrees of freedom to be supported at the singularity, we expect that these should

not contribute to leading order at large N . Notice in any case that the uplift to massive

IIA is also singular (along the internal S4), even for Euclidean AdS6 [29, 30].

Using the technology developed in the paper, we have computed the VEV of the

holographic dual of a supersymmetric Wilson loop for a general class of solutions, thus

proving one of the conjectures of [19]. Another conjecture made in that paper makes a

specific prediction for the holographic free energy for the same class of backgrounds. It

would be interesting to prove this conjecture. Note that this computation is more involved

than that for the Wilson loop; in particular the structure of the counterterms is much more

complicated.

Finally, it would be interesting to construct further analytic solutions, including solu-

tions with different topology.

Acknowledgments

The work of L. F. A., M. F. and P. R. is supported by ERC STG grant 306260. L. F. A. is

a Wolfson Royal Society Research Merit Award holder. C. M. G. is supported by a CNPq

scholarship. J. F. S. is supported by the Royal Society.

A Useful identities

From the dilatino equation (2.4) one can derive the following useful identities

(∂µX)ε†[A,Γµ]∓ε = − i

2
√

2

(
X2 −X−2

)
ε†[A,Γ7]±ε+

1

24
X3Hµνρε†[A,ΓµνρΓ7]±ε

+
i

12
√

2
Bµνε†[A,Γµν ]±ε−

1

8
√

2
Fµνε†[A,ΓµνΓ7]±ε , (A.1)
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(∂µX)εT[A,Γµ]∓ε = − i

2
√

2

(
X2 −X−2

)
εT[A,Γ7]∓ε+

1

24
X3HµνρεT[A,ΓµνρΓ7]±ε

+
i

12
√

2
BµνεT[A,Γµν ]∓ε−

1

8
√

2
FµνεT[A,ΓµνΓ7]±ε . (A.2)

Here A ∈ Cliff(6, 0) is an arbitrary element of the Clifford algebra, while [ · , · ]− denotes a

commutator and [ · , · ]+ denotes an anti-commutator.

B Differential conditions for bilinears

We may introduce the following bilinears in the spinor ε:

K ≡ ε†Γ(1)ε = S sin 2ϑK1 ,

K̃ ≡ iε†Γ(1)Γ7ε = −S sin 2ϑK2 ,

Y ≡ iε†Γ(2)ε = S(cos 2ϑK1 ∧K2 − J) ,

Ỹ ≡ iε†Γ(2)Γ7ε = S(−K1 ∧K2 + cos 2ϑJ) ,

Z ≡ εTΓ(2)Γ7ε = −S sin 2ϑΩ ,

V ≡ iε†Γ(3)ε = −S sin 2ϑK1 ∧ J ,
Ṽ ≡ ε†Γ(3)Γ7ε = −S sin 2ϑK2 ∧ J ,
W ≡ εTΓ(3)ε = S(− cos 2ϑK1 + iK2) ∧ Ω ,

W̃ ≡ εTΓ(3)Γ7ε = S(K1 − i cos 2ϑK2) ∧ Ω . (B.1)

Here (K1,K2, J, Ω ) is the canonical SU(2) structure defined in section 2.2.

A straightforward but lengthy calculation shows that the Killing spinor equation (2.3)

and dilatino equation (2.4) imply the following differential constraints on the bilinears

in (B.1):

d(XS) =

√
2

3
(X−2K̃ − iK B) , (B.2)

d(XS̃) = − 1√
2
K F , (B.3)

d(X2K) = −2
√

2

3
X−1Ỹ − iX4K ∗H −

√
2X

(
S̃F − i

2

3
SB

)
, (B.4)

d(X−2K̃) = −iK H , (B.5)

d(X−1Y ) = −
√

2Ṽ + i(XS̃)H +
1√
2
X−2(K ∗F + F ∧ K̃) , (B.6)

d(X−1Ỹ ) = i(XS)H + i

√
2

3
X−2(K ∗B +B ∧ K̃) , (B.7)

D(X−1Z) = −i
√

2W , (B.8)

dV =
√

2

(
X +

1

3
X−3

)
∗ Y + i

√
2

3
X−1(S̃ ∗B +B ∧ Y )

− 1√
2
X−1(S ∗ F + F ∧ Ỹ ) , (B.9)
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dṼ = 0 , (B.10)

DW = − 1√
2
X−1F ∧ Z , (B.11)

DW̃ = −
√

2

(
X +

1

3
X−3

)
∗ Z − i

√
2

3
X−1B ∧ Z , (B.12)

d

[(
X +

1

3
X−3

)
∗ Y
]

=

√
2

3
iB ∧ Ṽ − i

3
X−1H ∧ Y +

1

3
√

2
X−4(∗F) ∧ K̃ . (B.13)

Here the covariant derivatives are D = d + iA∧, and the contraction of a p-form ρ into a

q-form λ (with q ≥ p) is the (q − p)-form (ρ λ)µ1···µq−p ≡ 1
p!ρ

ν1···νpλν1···νpµ1···µq−p .

In addition to (B.2)–(B.13) it is also straightforward to show that K is a Killing one-

form, so that the dual vector field ξ ≡ K# is a Killing vector. We may hence introduce

a local coordinate ψ, so that ξ = ∂ψ and the metric is independent of ψ. Since K =

S sin 2ϑK1, where K1 has unit length, we may thus write

K1 = S sin 2ϑ (dψ + σ) , (B.14)

where Lξσ = 0 = iξσ and Lξ(S sin 2ϑ) = 0.

In order to analyse the equations (B.2)–(B.13) further we write

B = B1 ∧K1 +B⊥ , F = F1 ∧K1 + F⊥ , (B.15)

where B1, B⊥,F1,F⊥ are chosen to have zero contraction with K1. The bilinear (B.2) then

determines

B1 = − 3i√
2S sin 2ϑ

d(XS)− iX−2K2 . (B.16)

Similarly the bilinear (B.3) is equivalent to

F1 = −
√

2

S sin 2ϑ
d(XS cos 2ϑ) . (B.17)

Contracting these last two equations with K1, one concludes that Lξ(XS) = 0 = Lξϑ.

Notice also that setting A = 18 in (A.1) and taking the anti-commutator leads immediately

to LξX = 0. Having imposed (B.2), a short computation shows that equation (B.5) is

equivalent to LξB = 0. One can also deduce from (B.5) that LξK2 = 0, and similarly

from (B.3) it follows that LξF = 0. We may then write

A = −
√

2X cot 2ϑK1 +A⊥ . (B.18)

Notice here we have made a partial gauge choice for A. Then

F⊥ = −
√

2XS cos 2ϑ dσ + dA⊥ . (B.19)

Next one can show that equation (B.4) is equivalent to

X2S2 sin2 2ϑ dσ = −2
√

2

3
X−1S cos 2ϑJ − iX4S sin 2ϑK1 ∗H⊥

+
√

2XS

(
cos 2ϑF⊥ +

2

3
iB⊥

)
. (B.20)
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Here we have defined

H⊥ ≡ i

[
3√
2

d(XS) +X−2S sin 2ϑK2

]
∧ dσ + dB⊥ . (B.21)

The contractions of (B.6) and (B.7) with K1 imply that LξJ = 0. Equation (B.6) is

then equivalent to

d(X−1SJ) = −
√

2S sin 2ϑJ ∧K2 −
3

2
√

2
cos 2ϑ d[(XS)2dσ] + iXS cos 2ϑ dB⊥

− 1√
2
X−2S sin 2ϑ [K1 ∗F⊥ −K2 ∧ F⊥] . (B.22)

Similarly, one can show that (B.7) is equivalent to

d(X−1S cos 2ϑJ) = − 3

2
√

2
d[(XS)2dσ] + iXS dB⊥

+

√
2

3
iX−2S sin 2ϑ [K1 ∗B⊥ −K2 ∧B⊥] . (B.23)

The contraction of equation (B.8) with K1, in the gauge in which A is given by (B.18),

simply gives LξΩ = 0. Equation (B.8) is then equivalent to

D⊥(X−1S sin 2ϑΩ) = −
√

2SΩ ∧K2 , (B.24)

where D⊥ ≡ d + iA⊥∧.

Finally we move onto the three-form bilinears. Equation (B.10) states

d(S sin 2ϑJ ∧K2) = 0 . (B.25)

The contraction of K1 into (B.11) is equivalent to (B.24), while the remainder of this

equation turns out to be the integrability condition for (B.24). Next one can show that K1

contracted into (B.9) is implied by (B.22) and (B.23), while the remainder of this equation

reads

−S2 sin2 2ϑJ ∧ dσ =
√

2S cos 2ϑ

(
X +

2

3
X−3

)
1

2
J ∧ J − 2SK1 ∗dϑ

− 1√
2
X−1SJ ∧

(
cos 2ϑF⊥ +

2

3
iB⊥

)
. (B.26)

Next we find that K1 contracted into (B.12) is implied by (B.24). Using (B.24) the re-

mainder of this equation reads

S2 sin2 2ϑΩ ∧ dσ = −2iSdϑ ∧K2 ∧ Ω +
1√
2
X−1SΩ ∧

(
cos 2ϑF⊥ +

2

3
iB⊥

)
. (B.27)

The contraction of K1 into (B.13) can again be shown to follow from equations derived

so far, while the remaining content of this equation is (on using various other equations)

equivalent to

X4K2 d(X−3S sin 2ϑ)+
√

2S

(
X2− 2

3
X−2

)
+

1√
2
SJ

(
F⊥+

2

3
i cos 2ϑB⊥

)
= 0 . (B.28)
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C More on the dilatino equation

In the Abelian case of interest, the dilatino equation (2.4) may be written as δχ = 0, where

we have introduced

δχ ≡ −iX−1∂µXΓµε+
1

2
√

2

(
X −X−3

)
Γ7ε+

i

24
X2HµνρΓ

µνρΓ7ε

− 1

12
√

2
X−1BµνΓµνε− i

8
√

2
X−1FµνΓµνΓ7ε . (C.1)

Recall here that A1
µ = A2

µ = 0, while Aµ ≡ A3
µ, with curvature F = dA. The right hand

side of (C.1) is an 8-component spinor, and thus δχ = 0 comprise 8 algebraic equations for

ε = ε+ + ε−.

We begin by noting that neither of the definite chirality projections ε+ nor ε− can be

identically zero. For if ε± = 0, respectively, then we in fact have an SU(3) structure, rather

than SU(2) structure, and the bilinear W ≡ εTΓ(3)ε = Ω∓ is the corresponding complex

three-form. However, since the left hand side of equation (B.8) of appendix B is identically

zero in this case, we would deduce that Ω∓ = 0 and hence ε∓ = 0.

On an open dense subset where ε± are both non-zero, we then have that {ε±,Γµε∗±}
span the positive and negative chirality spin bundles S±, respectively. Recall from (2.8)

that ε+ =
√
S cosϑ η1, ε− =

√
S sinϑ η∗2, where η1 and η2 have unit norm. In an orthonor-

mal frame (e1, . . . , e4, e5 ≡ K1, e
6 ≡ K2) in which the canonical SU(2) structure defined by

η1 and η2 is given by (2.21), one can easily check that {ε+,Γ1ε
∗
+,Γ3ε

∗
+,Γ5ε

∗
+} form a basis

for S+, while {ε−,Γ1ε
∗
−,Γ3ε

∗
−,Γ5ε

∗
−} form a basis for S−. Thus in order for the dilatino

equation δχ = 0 to hold, it is sufficient to check that the contraction of (C.1) with ε†± and

εT±Γµ is zero. These are equivalent to two scalar and two one-form equations, respectively,

that may be expressed in terms of the bilinears (B.1). Specifically, we may take the two

scalar contractions to be

ε†δχ = −iX−1∂µXK
µ +

1

2
√

2

(
X −X−3

)
S̃ +

i

24
X2HµνρṼ

µνρ

+
i

12
√

2
X−1BµνY

µν − 1

8
√

2
X−1Fµν Ỹ µν ,

ε†Γ7δχ = X−1∂µXK̃
µ +

1

2
√

2

(
X −X−3

)
S − 1

24
X2HµνρV

µνρ

+
i

12
√

2
X−1Bµν Ỹ

µν − 1

8
√

2
X−1FµνY µν , (C.2)

while the two one-form contractions are

εTΓσδχ =
i

8
X2HµνσZ

µν − 1

12
√

2
X−1BµνWµνσ −

i

8
√

2
X−1FµνW̃µνσ ,

εTΓσΓ7δχ = −iX−1∂µXZµσ −
1

8
X2(∗H)µνσZ

µν

− 1

12
√

2
X−1BµνW̃µνσ −

i

8
√

2
X−1FµνWµνσ . (C.3)

The dilatino equation δχ = 0 is thus equivalent to the the right hand sides of (C.2) and (C.3)

being zero. A tedious, but straightforward, calculation shows that δχ = 0 is implied by

the differential constraints (2.18).
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D Integrability conditions

For what follows it will be convenient to record the component form of the Romans field

equations in (2.1) and (2.2):

(Eg)µν ≡ Rµν − 4X−2∂µX∂νX −
(

1

18
X−6 − 1

2
X2 − 2

3
X−2

)
gµν

−1

4
X4

(
Hµ

ρσHνρσ −
1

6
gµνH

ρστHρστ

)
− 2

9
X−2

(
Bµ

ρBνρ −
1

8
gµνB

ρσBρσ

)
−1

2
X−2

(
F i ρµ F iνρ −

1

8
gµνF

iρσF iρσ

)
,

(EX) ≡ ∇µ(X−1∂µX) +

(
1

2
X2 − 2

3
X−2 +

1

6
X−6

)
− 1

24
X4HµνρHµνρ

+
1

16
X−2

(
4

9
BµνBµν + F iµνF iµν

)
,

(EA)µ ≡ ∇ν(X−2Bνµ)− i

12
εµνρστκBνρHστκ ,

(EAi)µ ≡ Dν(X−2F iνµ)− i

12
εµνρστκF iνρHστκ ,

(EB)µν ≡ ∇ρ(X4Hρµν)− 4

9
X−2Bµν − i

8
εµνρστκ

(
4

9
BρσBτκ + F iρσF

i
τκ

)
. (D.1)

The equations of motion are then E field = 0. The field A is the Stueckelberg one-form,

that we set to zero using the gauge symmetry of the theory. Its equation of motion EA = 0

follows from taking the divergence of the B-field equation of motion EB = 0. We also

introduce

(BF )µνρ ≡ ∇[µBνρ] −
1

3
Hµνρ ,

(BF i)µνρ ≡ D[µF
i
νρ] ,

(BH)µνρσ ≡ ∇[µHνρσ] . (D.2)

Note that B field vanish automatically as a consequence of the Bianchi identities. For the

Abelian case studied in the main text recall that F 1
µν = F 2

µν = 0 while Fµν ≡ F 3
µν .

In what follows we will show that supersymmetry together with (EB)⊥ = 0 imply the

equations of motion for all the fields. We begin by taking the exterior derivative of (B.4)

to obtain

0 = −2
√

2

3
d(X−1Ỹ )− i d(X4K ∗H) +

2
√

2

3
i d[XSB]−

√
2F ∧ d(XS̃) . (D.3)

Using (B.2), (B.3) and (B.7) then gives

0 = −i d(X4K ∗H))− 4

9
iK ∗B +

4

9
B ∧ (K B) + F ∧ (K F) . (D.4)

Since Lξ(X4 ∗H) = 0 it hence follows that K1 EB = 0. Recall that

EB = K1 ∧ (K1 EB) + (EB)⊥ . (D.5)
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In general it is not true that supersymmetry implies (EB)⊥ = 0. We henceforth impose

this equation, and continue our analysis by taking the exterior derivative of (B.13). After

a computation we find this implies

2

3
i
[
d(X−2 ∗B) + iB ∧H

]
(XS̃)−

[
d(X−2 ∗ F) + iF ∧H

]
(XS) = 0 . (D.6)

Since EB = 0 implies EA = 0, (D.6) implies EA = 0.

To obtain the remaining equations of motion, we may use the integrability conditions

for the dilatino equation (2.4) and Killing spinor equation (2.3) derived in [19]:

0 = i (EX) εI −
1

6
√

2
X (EA)µ ΓµεI −

i

4
√

2
X (EAi)µ ΓµΓ7(σi)I

JεJ +
i

8
X−2 (EB)µν ΓµνΓ7εI

− 1

12
√

2
X−1 (BF )µνρ ΓµνρεI −

i

8
√

2
X−1 (BF i)µνρ ΓµνρΓ7(σi)I

JεJ

+
i

24
X2 (BH)µνρσ ΓµνρσΓ7εI , (D.7)

0 =
1

2
(EX) ΓµεI −

1

2
(Eg)µν ΓνεI −

1

8
X−2 (EB)νρ ΓµνρΓ7εI

− i

3
√

2
X (EA)µ εI +

1

2
√

2
X (EAi)µ Γ7(σi)I

JεJ −
1

24
X2 (BH)νρστ ΓµνρστΓ7εI

− i

2
√

2
X−1 (BF )µνρ ΓνρεI +

3

4
√

2
X−1 (BF i)µνρ ΓνρΓ7(σi)I

JεJ . (D.8)

Since B field = 0, and given the results above, (D.7) immediately implies EX = 0. Using

this, and contracting (D.8) with ε†Γυ, we deduce the Einstein equation Eg = 0.

E Supersymmetry of the fundamental string

In this appendix we show that the fundamental string considered in section 3.2 is super-

symmetric.

As explained in [25] and [15], BPS Wilson loops in the fundamental representation are

dual to fundamental strings in the massive type IIA background M6 × S4. More precisely

the string sits at the “north pole” of the four-sphere and wraps the K1–K2 direction

of the SU(2) structure on M6. Since the dual vector field to K1 is proportional to the

supersymmetric Killing vector ξ, this means that the dual Wilson loop on the conformal

boundary of M6 wraps an orbit of ξ, as expected from supersymmetry. It then remains

to show that the fundamental string is itself supersymmetric. This amounts to a certain

projection condition on the ten-dimensional Killing spinor in massive IIA. Following a

similar computation to [25], one can show this reduces to the following projection condition

on the six-dimensional spinor ε on M6:

(1 + iΓ7Γ56)ε = 0 . (E.1)

Here recall that the orthonormal frame components are e5 = K1 and e6 = K2. Recall also

from section 2.2 that ε = ε+ + ε−, where

ε+ =
√
S cosϑ η1 , ε− =

√
S sinϑ η∗2 . (E.2)
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The projection conditions [21]

Γ7η1 = −η1 , Γ7η
∗
2 = η∗2 , −Γ56η1 = iη1 , −Γ56η2 = iη2 , (E.3)

together with the fact that the Cliff(6, 0) matrices are purely imaginary then immediately

imply that (E.1) is indeed satisfied. Consequently the fundamental string wrapping the

K1–K2 direction, at the north pole of the internal S4, is indeed supersymmetric.
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