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1 Introduction

Despite impressive progress during the last years [1–11, 13–18], evaluation of colored HOM-

FLY polynomials [19–26] for particular knots and links remains a non-trivial exercise. It

makes use of a variety of advanced methods of modern theoretical physics, however, they

still remain not powerful enough for this task, which in turn helps to further develop these

methods. Knot polynomials are interesting, because they are the simplest possible example

of Wilson-loop averages in gauge (Chern-Simons) theory [27] on one hand and are close

relatives of the holomorphic conformal blocks on the other hand. They depend on variety

of parameters, and the purpose is to study and understand these dependencies, which are

already known to satisfy various interesting equations, generalizing the previously known

ones in simpler (quantum) field theories, [28].
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Figure 1. Torus [m,n] braid.

Especially interesting are results obtained for entire families of knots or links. The

most famous example is the two-parametric set of torus knots and links, formed by a non-

intersecting lines, wrapping around a torus respectively m and n times along its two non-

contractible cycles. The link diagrams for a torus knot/link is just a closure of especially

simple m-strand braid, figure 1.

In this case, the HOMFLY polynomial in arbitrary representation R is given by the

Rosso-Jones formula [29, 30],

H
[m,n]
R (q,A) = q2mnκRA(m−1)n|R| ·

∑
Q∈R⊗m

CRQλ
2n/m
Q χ∗Q(q,A) (1.1)

Here the sum goes over Young diagrams Q of the size |Q| = m|R|, the quantum dimensions

of the corresponding representations of the linear group GL(N) are the values of Schur

functions at the “topological locus” in the space of time-variables, χ∗Q = χQ

{
pk = {Ak}

{qk}

}
where A = qN and {x} = x − x−1, so that the quantum number is [x] = {qx}

{q} and the

“DGR differential” [31] is Di = {Aqi}
{q} . Parameters λQ are associated eigenvalues of the

quantum R-matrix, made from the eigenvalues κQ of the cut-and-join operator [32, 33]

λQ ∼ qκQ , κQ =
∑

(i,j)∈Q

(j − i) (1.2)

where there is an arbitrary factor in λQ that depends on the framing. Finally, the coeffi-

cients CRQ are defined from the expansion of the Adams transform of characters χR:(
χR{pmk/l}

)l
=

∑
Q∈R⊗m

CRQχQ{pk} (1.3)

where l = maximal common divisor(m,n) is the number of components in the torus link.

For coprime n and m one has a knot and l = 1.

When A = qN , eq. (1.1) can be also recast in an N -fold integral [34, 35]

H
[m,n]
R (q, A) ∼

∫ N∏
i=1

dµi exp

{
µ2
i

2mn~

} N∏
i<j

sinh

(
µi − µj

2m

)
sinh

(
µi − µj

2n

)
χR

[
diag(eµi)

]
(1.4)

where the symmetry between m and n is explicitly restored.

– 2 –



J
H
E
P
0
7
(
2
0
1
5
)
0
6
9

Figure 2. Pretzel link or knot of genus g = 3.

Eq. (1.1) can be directly generalized to superpolynomials [36–38], depending on one

extra parameter t, with the Schur functions promoted to the Macdonald polynomials,

though associated deformation of the matrix model (1.4) is still unavailable.

Also a mystery remains what makes the torus links so special: despite numerous

attempts no comparably explicit formulas for all representations R at once were yet found

for any other family. What was done, however, the simple dependence on n (but not on

m) in (1.1) was interpreted in [37] as an evolution in the length of an m-strand braid,

and this fact remains true for any such braid inside any, arbitrarily complicated knot

or link [39]: dependence on its length n will enter only through a linear combination of

λ
2n/m
Q . Still the coefficients CRQχ

∗
Q can be quite sophisticated. To define them, one needs

“initial conditions” for the evolution, i.e. explicit knowledge of knot polynomials for a few

particular values of n. Despite an extreme naiveness of the evolution method it allowed one

to study certain interesting families, in particular, the important family of twist knots [39]

and led to a discovery of a very important “differential structure” [40, 41] of arbitrary

knot polynomials, which seems related to the original ideas in [31], and led to a number

of impressive advances in knot calculus, at least, for symmetric representations [42–51].

(However, attempts to generalize the matrix model (1.4) in [52, 53] and to describe non-

symmetric representations in [54–56] are still only partly successful.)

The goal of the present paper is to extend previous calculations to a much richer family,

which, taken as a total, looks like a straightforward generalization of the torus knots, and

thus provides more chances to guess the relevant way to generalize (1.1) and, perhaps,

even (1.4). These are knots and links formed by wrapping around a surface of genus g

without self-intersections, which can be different from g = 1. The simplest set of this

type has a link diagram (see figure 2), consisting of g + 1 two-strand braids, and thus has

g+1 different evolution parameters n1, . . . , ng+1 (for g = 1 everything depends on the sum

n = n1 + n2). In literature (see [57]) this family is known as the pretzel knots and links.

The family is actually split into subfamilies, differing by mutual orientation of strands in

the braids. For certain orientations the family has a cyclic symmetry nk −→ nk+1. In

fact, if one considers only symmetric representations, the symmetry is actually enhanced

to arbitrary permutations of nk, links/knots related by these permutations are actually

mutants [58] and symmetric HOMFLY polynomials are the same for them.

– 3 –
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Figure 3. Two parallel strands: torus links and knots.

Notations. For the sake of convenience, we repeat here our notations once again:

χ∗Q = χQ

{
pk =

{Ak}
{qk}

}
{x} = x− x−1, [x] =

{qx}
{q}

, Di =
{Aqi}
{q}

(1.5)

λQ ∼ εQqκQ , κQ =
∑

(i,j)∈Q

(i− j)

where εQ is a sign factor, which will be fixed latter (it is always +1 in the Rosso-Jones

case). As soon as throughout the text only the Schur functions at the topological locus,

χ∗Q are used (for the only exception see the third paragraph of section 4), from now on, we

omit the asterisk and use just the notation χQ.

2 Warm-up examples

2.1 Genus g = 1, fundamental representation, two parallel strands

We begin with this simplest example, which is the simplest possible case of the Rosso-Jones

formula (1.1). In our family we should restrict it to two strands, m = 2, so that

H
(n1,n2)
R =

∑
Q`2|R|

λn1+n2
Q χQ (2.1)

and, in the fundamental representation,

H
(n1,n2)
[1] = λn1+n2

[2] χ[2] + λn1+n2

[11] χ[11] (2.2)

with λ[2] = q/A and λ[11] = −1/(qA) in the topological framing, figure 3.

However, if one did not know the answer and looks at the problem from the point of

view of the evolution method, it is necessary to consider the following anzatz:

H
(n1,n2)
[1] = c11λ

n1+n2

[2] + c10λ
n1

[2]λ
n2

[11] + c01λ
n2

[2]λ
n1

[11] + c00λ
n1+n2

[11] (2.3)

with four unknown coefficients. Apparent symmetry between n1 and n2 implies that c10 =

c01, and looking at the picture one understands that the answer depends only on n1 + n2,

thus actually c10 = c01 = 0. The two remaining parameters can be found from the two

– 4 –
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initial conditions: for n1 + n2 = ±1 one gets the unknot, with the HOMFLY polynomial

equal to χ[1], i.e.

c11λ
±1
[2] + c00λ

±1
[11] = χ[1] (2.4)

and

c11 =

1
λ[11]
− λ[11]

λ[2]
λ[11]
− λ[11]

λ[2]

· χ[1] =
{Aq}
{q2}

· χ[1] = χ[2]

c00 =
λ[2] − 1

λ[2]

λ[2]
λ[11]
− λ[11]

λ[2]

· χ[1] =
{A/q}
{q2}

· χ[1] = χ[11] (2.5)

what brings us back to

H
(n1,n2)
[1] = λn0+n1

[2] χ[2] + λn0+n1

[11] χ[11] (2.6)

(one can easily check the third obvious initial condition: for n0 + n1 = 0 one gets a

pair of disconnected unknots with the HOMFLY polynomial χ2
[1] = χ[2] + χ[11]). Since

χ[2] + χ[11] = {Aq}+{A/q}
{q2} · χ[1] = χ2

[1] (the relation is actually valid beyond the topological

locus), one can rewrite this in an identical, but more sophisticated form:

H
(n1,n2)
[1] =

χ2
[2] + χ[2]χ[11]

χ2
[1]

· λn1+n2

[2] +
χ[2]χ[11] − χ[2]χ[11]

χ2
[1]

(
λn1

[2]λ
n2

[11] + λn2

[2] · λ
n1

[11]

)
+
χ2

[11] + χ[2]χ[11]

χ2
[1]

λn1+n2

[11] =

=

2∑
i=0

C i
[1] ·

(
λn1+ni

[2] λ
ni+1+n2

[11] + permutations of n1, n2

)
(2.7)

where

C i
[1] =

1

χ2
[1]

(
χ2−i

[2] χ
i
[11] + (−)iχ[2]χ[11]

)
(2.8)

and the only permutations from the two different groups of indices are included.

2.2 Genus g = 1, fundamental representation, antiparallel strands

Before going to higher g and higher representations, we consider the same genus-one two-

strand example, but now with antiparallel strands, figure 4.

This configuration is possible only if n1 + n2 is even, and it is always a link, hence

generically the corresponding HOMFLY polynomials depend on two representations, R1⊗
R2. The two parallel strands, considered in the previous section, correspond to R2 = R1 =

[1], while for the antiparallel strands the fundamental HOMFLY implies that R2 is rather

conjugate of R1, R2 = R1 = [1] = [qN−1]. This is still a particular case of the Rosso-Jones

formula (1.1), since it is valid at any representation.

From the point of view of the evolution method, one has now [1]⊗[1] = Adjoint+singlet,

and according to [39] the two relevant eigenvalues are λ0 = 1 and λadj = −A. As the initial

condition one can take the pair of unknots at n1 +n2 = 0 and the Hopf link at n1 +n2 = 2.

– 5 –
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Figure 4. Two antiparallel strands: torus links.

Figure 5. Mutant knots.

2.3 HOMFLY in the fundamental representation at arbitrary genus

Now we can switch to arbitrary genus. Again there will be different options to choose

orientations of particular strands. While for links the freedom is rather big, for knots the

orientation depends only on the genus. For odd g one can make all the braids parallel,

while for even g exactly one should be antiparallel. Moreover, the corresponding parameter,

which we choose to be ng/2+1, should be even. We also consider the case when all the braids

are antiparallel.

The next question is what happens to the symmetry n1 ↔ n2. For g > 1 the poly-

nomials depend on all ni independently, and there is only a cyclic symmetry when all

nk −→ nk+1. However, as we shall see, the answer in the fundamental representation is

actually symmetric in all nk. In fact this should not come as a surprise, because permuta-

tion of the two adjacent nk’s is just a knot mutation. Indeed, (by definition following [59])

let we have oriented link L1 which contains a marked tangle T (see figure 5). Remove T ,

rotate it by 180◦ about the axe transversal to the plane of the picture and glue it back in

position to form a new link L2. If L1 6= L2 then they are called mutants of each other,

and this operation is called mutation. Since the HOMFLY polynomials in symmetric rep-

resentations do not distinguish the mutant knots [58], with the help of mutation one can

permute nk ↔ nk+1. This enhanced symmetry reduces the number of necessary initial

conditions and, thus, more formulas can be obtained and more are the chances to observe

regularities, leading to discovery of generic expressions. Many are provided, by putting one

of parameters, say ng, equal to zero, then the knot/link reduces to a composite one, which

– 6 –



J
H
E
P
0
7
(
2
0
1
5
)
0
6
9

enjoys the decomposition property

Hcomposite
R

χR
=

∏
components

Hcomponent
R

χR
(2.9)

To these patterns, one can add already known particular examples, like twist knots.

All this makes explicit calculation by the evolution method possible at genera g =

1, 2, 3, 4, at least in the fundamental representation. And this is enough to discover the

structure and obtain the general formulas for the HOMFLY polynomial in the fundamental

representation:

H
(n1,...,ng+1)

[1] =

g+1∑
i=0

C i
[1] ·

(
λn1+...+ni

0 λ
ni+1+···+ng+1

1 + permutations of ni

)
(2.10)

where again only permutations from the two different groups of indices are included and

the coefficients C i
[1] are:

• odd g, all braids parallel:

Ci[1] =
1

χg+1
[1]

(
χi[2]χ

g+1−i
[11] + (−)iχ[2]χ[11]z

g−1
)

(2.11)

λ0 = λ[11], λ1 = λ[2] (2.12)

• even g, all braids antiparallel:

C ī[1] =
1

ziχg+1
[1]

(
χi[2]χ[11] + (−)iχ[2]χ

i
[11]

)
(2.13)

λ0 = 1, λ1 = λadj (2.14)

• even g, all braids parallel, except for one antiparallel, ng/2+1 should be even; in this case

each term in the sum, (2.10) is a product of g factors λni

[11] and λ
nj

[2] and one factor either

λnk
0 = 1 or λnk

adj , in these two different cases the coefficients Ci[1] being

e.v. λ0 = 1 : Ci[1] =
1

χg+1
[1]

(
χi[2]χ

g−i
[11] + (−)iχ[2]χ[11]z

g−2
)

e.v. λadj = A : Ci[1] =
χ[2]χ[11]

z2χg+1
[1]

(
χi[2]χ

g−i
[11] + (−)i+1zg

)
=
{q}g−1{Aq}{A/q}

{A}g+1

(
χi[2]χ

g−i
[11] + (−)i+1zg

)
. (2.15)

Here z = 1
[2]χ[1].

The common factor {Aq}{A/q} in the second formula in (2.15) is required by the

differential expansion.

The structure of these formulas is very simple: there is the “main contribution”, the

first terms in each line, which is in a clear one-to-one correspondence with the combination

– 7 –



J
H
E
P
0
7
(
2
0
1
5
)
0
6
9

of λ-factors, plus “corrections” which look a little less universal. In fact, the same structure

survives in higher representations, at least symmetric.

Formulas (2.12)–(2.15) provide an exhaustive description of the fundamental HOMFLY

for all the pretzel knots.

For N = 2 there is no orientation dependence (except for a simple framing factor),1

and all the four formulas turn into one:

C
(i)
[1]

A=q2
=

[3]

[2]2g+2

(
[3]i−1 + (−)i

)
(2.16)

what gives 1, 0, [3], [3][4]
[2] = [5] + 1, . . . for i = 0, 1, 2, 3, . . . respectively. (Note that at

N = 2 we have z = 1, χ[2] = [3] and χ[11] = 1.) Eq. (2.16) is in perfect accordance with

the result in [60, 61], as well as with those in [62].

3 Main result: arbitrary symmetric representation [r]

Our main result is an explicit combinatorial formula for unreduced HOMFLY of arbitrary

pretzel link in symmetric representation. The formula includes only three ingredients and

looks like

H
n1,...,ng+1

R =
∑
X

dimqX

g+1∏
i=1

∑
Y

AXY λni
Y (3.1)

Now we define the ingredients.

• Eigenvalues. Since we construct the pretzel link with the help of 2-strand braids only,

there are only two possible orientations for such a braid: parallel and

antiparallel. The parallel strands correspond to the product of two symmetric representa-

tions [r]:

[r]⊗ [r] = ⊕rm=0 [ r +m, r −m] (3.2)

The corresponding evolution eigenvalues λ in the topological framing are equal to

λm = (−)m+1 q
κ[r+m,r−m]

Ar · q4κ[r]
= (−)m+1 q

−r2+m2+m

Ar
(3.3)

Similarly, the antiparallel strands correspond to the product of symmetric representation

and its conjugate:

[r]⊗ [r] = ⊕rm=0

[
2m,mN−2

]
(3.4)

and the corresponding evolution eigenvalues λ̄ in the topological framing are equal to

λ̄m =
(
−qm−1A

)m
(3.5)

1This is because the orientation independence is due to a group theory argument: for SU(2) group

the representation coincides with its conjugate. However, this is only the vertical framing that respects

the group theory structures, and in the topological framing there is slight orientation dependence, that is,

additional factors.

– 8 –
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• Dimensions. The quantum dimensions ∆m of representations arising in (3.2) are equal to

∆m = χ[r+m,r−m] =
[2m+ 1]

[r +m+ 1]![r −m]!

2r−1∏
i=0

Dj

r−m−1∏
j=0

Dj−1

Dr+m+j
, (3.6)

while the quantum dimensions ∆̄m of representations arising in (3.4) are

∆̄m = D2m−1 ·

m−2∏
j=0

Dj

[j + 2]

2

·D−1 (3.7)

• Universal matrix. The third constituent is a universal matrix A (we typically use the no-

tation aij for its matrix elements) which ultimately turns out to be related with the matrix

of the quantum Racah coefficients (or, up to a factor, of the 6j-symbols). In fact, in order

to describe all the pretzel links and knots we will need three different universal matrices

A. After some tedious calculations we have found the following explicit formulas for A:

akm = αkm · G (3.8)

ākm = αkm · Ḡ (3.9)

¯̄akm =
∆̄m

∆k
amk (3.10)

where αkm are the coefficients in the SUq(2) case (i.e. A = q2), which does not differ

between the parallel and antiparallel orientations:

αkm = (−1)r+k+m[2m+ 1] ·

(
[k]![m]!

)2
[r − k]! [r −m]!

[r + k + 1]! [r +m+ 1]!
×

×
min(r+k+m,2r)∑
j=max(r+m,r+k)

(−1)j [j + 1]!

[2r − j]!
(

[j − r − k]! [j − r −m]! [r + k +m− j]!
)2 (3.11)

and we introduce the following special functions

G =
G(r −m)G(j + 1)

G(r + k + 1)G(j − r −m)
(3.12)

Ḡ =
D2m−1

[2m+ 1]
· G(m)2G(j + 1)

G(r + k + 1)G(r +m+ 1)G(r + k +m− j)
(3.13)

G(n) =
1

[n]!

n−2∏
i=−1

Di =
(A/q; q)n

(q; q)n
(3.14)

where we used the symmetric q-Pochhammer symbol (A; q)n =
∏n−1
j=0 {Aqj}. At A = qN ,

G(n) becomes the q-binomial

(
N + n− 2

n

)
q

.

– 9 –
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Let us note that G and Ḡ are equal to 1 when A = q2, thus reducing (3.8) and (3.9)

to (3.11). Particular examples of these matrices are given in appendix B.

Matrix (3.8) satisfies the weighted orthogonality relation

r∑
k=0

∆̄k · akmakm′ = ∆m δm,m′ . (3.15)

The dual relation is

r∑
m=0

akmak′m
∆m

=
δk,k′

∆̄k
. (3.16)

Matrix (3.9) also satisfies the orthogonality conditions:

r∑
k=0

∆̄k · ākmākm′ = ∆̄m · δm,m′ ,

r∑
m=0

ākmāk′m
∆̄m

=
δk,k′

∆̄k
(3.17)

and matrix (3.10) satisfies the orthogonality conditions:

r∑
k=0

∆k · akmakm′ = ∆̄m δm,m′

r∑
m=0

akmak′m

∆̄m
=
δk,k′

∆k
(3.18)

The 0th rows of matrices (3.8) and (3.9) are equal to the quantum dimensions of the

corresponding representations (3.2) and (3.4):

a0m = ∆m (3.19)

ā0m = ∆̄m (3.20)

Now we specify formula (3.1) for three possible cases of pretzel knots/links.

Antiparallel odd case. Let us consider the case when all parameters n1, . . . , ng are

odd and all strand into constituent braids are antiparallel. This case is stand-alone and

does not mix with any others, i.e. it is impossible to represent knot or link with n1, . . . , ni
odd antiparallel 2-strand braids and ni, . . . , ng odd parallel or even (anti)parallel 2-strand

braids. Since for all qualities standing for the antiparallel case we use “bar”, we denote

parameters in this case as n1, . . . , ng. Concerning topological classification of this case we

can point out the following: if the genus g is odd then the result is a 2-component link, if

the genus g is even, the result is a knot. Now let us specify (3.1) for this particular case:

dimqX = ∆k

AXY = ¯̄akm (3.21)

λni
Y = λ̄n̄i

m

– 10 –



J
H
E
P
0
7
(
2
0
1
5
)
0
6
9

so that formula (3.1) takes the form

H
n1,...,ng+1

R =
r∑

k=0

∆k

g+1∏
i=1

r∑
m=0

¯̄akmλ̄
n̄i
m (3.22)

Other cases. All other possible configurations of the pretzel links can be unified into

one family with n1, . . . , n2g|| arbitrary integers associated with the parallel braids and

n2g||+1, . . . , ng+1 even integers associated with the antiparallel braids. Then, the con-

stituents of (3.1) are:

dimqX = ∆̄k

AXY = akm
λni
Y = λni

m

}
for n1, . . . , n2g|| (3.23)

AXY = ākm
λni
Y = λ̄n̄i

m

}
for n2g||+1, . . . , ng+1,

so that the answer takes the form:

H
n1,...,n2g|| ,n2g||+1,...,ng+1

[r] =

r∑
k=0

∆̄k ·


2g||∏
i=1

(
r∑

m=0

akm λ
ni
m

)
·

g+1∏
j=2g||+1

(
r∑

m=0

ākm λ̄
n̄j
m

). (3.24)

Thus, our formulas (3.22) and (3.24) provide the explicit answer for arbitrary pretzel

link in arbitrary symmetric representation. These formulas (3.1) are perfectly consistent

with (and, in fact, partly inspired by) the arbitrary genus results of [61] for the Jones poly-

nomials. They can also be directly obtained within the framework of [63] (see section 5.5).

The HOMFLY polynomials in the totally antisymmetric representations are obtained

by the usual transposition rule [37, 42]:

H[1r](A, q) = H[r](A, q
−1) . (3.25)

4 Comments on the main result (3.1)

Pretzel family. The pretzel links and knots provide us with an ample set of exam-

ples of the HOMFLY polynomials in all (anti)symmetric representations. The only exam-

ples available so far were: the Whitehead and Borromean rings links [51], the two-strand

torus [39, 43] and twist [44, 46] knots parameterized by one integer each and the double

braid unifying these two families and parameterized by two integer numbers [39]. These

families are a tiny part of the whole pretzel family (see section 6). One of the essential

points is that the pretzel family includes both thin and think [31] knots, while the two-

strand torus and twist knots are all thin. The simplest example of the thick pretzel knot

is 10139 = (4,−1, 3, 3) (see [31, eq. (49)]) in accordance with the Rolfsen tables [64]. This

knot can be also obtained from knot 52 by involving a triple braid (see [37] for details).

In section 6 we list more patterns from the pretzel family.
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Torus in the t-channel = (1, 1, 1, 1, 1, . . .). The key to understanding the structure of

eq. (3.22) is to note that in the particular case, when all ni = 1, we actually obtain “in the

t-channel” the ordinary two-strand torus link/knot: Pretzel(1̄, . . . , 1̄) = Torus[2, g+ 1], i.e.

H
(1,...,1)
[r] = cg+1

r H
[2,g+1]
[r] = cg+1

r

r∑
k=0

∆kλ
−g−1
k (4.1)

where cr is a framing factor, taking into account the difference between vertical and topo-

logical framings. The “s-channel” decomposition formula in this case is

H
(1,...,1)
[r] =

r∑
k=0

∆k

g+1∏
j=1

(
r∑

m=0

akmµm

)
(4.2)

which implies

r∑
m=0

akmµm = crλ
−1
k (4.3)

This is, indeed, the case:

1 +D1µ1

D0

∣∣∣∣
µ=−A

= −Aq = c1,
1−D−1µ1

D0

∣∣∣∣
µ=−A

=
1

Aq
= c1 · (−q−2) = c1λ

−1
1 (4.4)

In fact, along with the orthogonality conditions (3.10), this requirement allows one to

restore the whole matrix A in this case.

In the next paragraph we consider time-dependent quantities, thus the label ∗, referring

to restriction to topological locus, which was omitted throughout the main text, is restored.

Generalizing the Rosso-Jones formula. Let us return to the Rosso-Jones for-

mula (1.1). In the case of symmetric representations R = [r], it can be written in the form

H[m,n]
[r] {p} = q

2n
m
Ŵ[2] π̂ χ[r]{p}m (4.5)

with the operator π̂ changing sign of the odd character χm

π̂ χm{p} = (−)mχm{p} (4.6)

where m labels representations Qm arising in the two decompositions

[r]⊗ [r] = ⊕rm=0[r +m, r −m] (4.7)

and

[r]⊗ [r] = ⊕rm=0[2m,mN−2] (4.8)

– 12 –
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Clearly, our (3.24) implies an extension of (4.5) to arbitrary pretzel links/knots:

H
n1,...,n2g|| ,n2g||+1,...,ng+1

[r] {p} = (4.9)

=
(
⊗g+1
I=1q

nIŴ[2](p
(I))
) r∑
k=0

∆̄k ·


2g||∏
i=1

(
r∑

m=0

akm
χ∗m

χm

(
p(i)
))
·

g+1∏
j=2g||+1

(
r∑

m=0

ākm
χ̄∗m

χ̄m

(
p(j+2g||)

)).
A similar extension exists for (3.22).

Significant difference from (4.5) is that the rotation matrices akm and ākm depend on

the representation [r], and it is a challenging problem to encode this dependence into the

action of some operator.

Also note that beyond the topological locus

H(n1,n2){p(1), p(2)} 6= H(n1+n2){p} (4.10)

— the two sides even depend on different sets of time-variables.

Extension to superpolynomials and to non-symmetric representations.

As known since [40], generalization of formulas like (3.22) and (3.24) to (anti)symmetric

superpolynomials is straightforward. However, constructing the superpolynomials and

another problem that can be solved by an immediate extension of these formulas, that

is, constructing the HOMFLY polynomials in other representations will be considered

elsewhere. Presently the best, what is known beyond arbitrary torus knots (where

Rosso-Jones formula [29, 30, 38] provides generic answer in arbitrary representation) are

twist knots in representation [21], see [54, 55] and, finally, [56], see also [65] for a family

of torus descendants. It is (3.1) that allowed us to make a far-going conjecture [60]

about a generalization of Rosso-Jones formula to all representations of genus-g knots; it,

however, remains to be checked. An even more challenging question is about associated

generalization of the eigenvalue matrix model (1.4), currently it is available only for twist

knots [52, 53].

A-polynomials. One can study the dependence of the constructed HOMFLY polyno-

mials (3.22) and (3.24) on spin of the representation (or representations in the case of

links). One of the ways to describe this dependence is to derive difference equations with

respect to the spin variables. There are various types of these relations [28], some of them

are very easy to observe, other ones are usually much more complicated but instead they

can be related to the volume conjecture [66–69] and their “quasiclassical” limit is given

by the A-polynomial [70–73] (the so-called AJ-conjecture) and, for this reason, the equa-

tions are called “quantum A-polynomials”. They can be found with the help of computer

programs implementing Zeilberger’s algorithm for the hypergeometric sums [74, 75]. Since

the HOMFLY polynomials in any symmetric representations were known so far only for a

few cases (see above), only in those cases the quantum A-polynomial was calculated. Our

results (3.22) and (3.24) open a road for obtaining many more A-polynomials, though these

expressions literally are not suitable and still have to be reshuffled: they have no form of a q-

hypergeometric polynomial and the existing software implementing Zeilberger’s algorithm

for the hypergeometric sums [74, 75] can not be immediately used.
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5 Matrices akm and ākm as universal Racah matrix

In the case of Jones polynomials (i.e., for A = q2), the simplest matrix A turns into

A1 =

(
1 [3]

1 −1

)
(5.1)

and an immediate desire is to compare it with the celebrated fusion (mixing) matrix

S =
1

[2]

(
1

√
[3]√

[3] −1

)
(5.2)

which recently appeared in many places, from modular transformation of the simplest

Virasoro conformal block in [76] to elementary three-strand knot calculations in [12]. This

similarity turned out to be not a simple coincidence, but a manifestation of general fact: in

full generality the matrices A in our formulas for the genus-g knot polynomials are nothing

but a simple rescaling of the Racah matrices from representation theory of quantum groups,

of which S is just the simplest example. This fact, what came for us as a result of tedious

calculations, was announced in a separate paper [60]. Though this is nearly obvious after

being discovered and is spectacularly confirmed by the derivation of eqs. (3.8)–(3.10), in

this section we provide a little more details and comments.

First of all, in variance with the Jones case, where the relevant group is SUq(2) and

the Racah matrices are long known from [77–79], in the HOMFLY case one needs generic

SUq(N) matrices A which depend on A. Therefore, they are universal objects, interpolat-

ing between the Racah matrices for particular SUq(N) at A = qN . Not much was known

about such quantities until recently, fortunately, the very recent [80] provides the needed

information. Second, in the HOMFLY case the set of allowed representations is wider than

that in the Jones case: even if one restricts considerations to symmetric representations,

their conjugates unavoidably enter the game, and they are no longer the same, as they

were for SUq(2).

Having this said, let us return to our main formula (3.1) which was conjectured

in [60] yet

H
n1,...,ng+1

R =
∑
X

dimq X
g+1∏
i=1

∑
Y
AXYλni

Y (5.3)

and comment on it in a little more detail. In fact, this formula naturally generalizes to l

different representations in the case of l-component link [60] (see figure 6).

1. In this formula, one can understand under the calligraphic index either X or X̄ and

similarly for Y so that ∆̄X ≡ ∆X̄ , λ̄X ≡ λX̄ etc. Then, there are three possibilities:

when in (5.3) enter X and Ȳ , X̄ and Ȳ , X̄ and Y . Accordingly, there are three

different matrices AXȲ , AX̄Ȳ and AX̄Y which correspond to (3.8), (3.9) and (3.10).

2. The three orthogonality conditions (3.15)–(3.18) satisfied by the matrices A can be

rewritten in these terms as the single equation∑
X

dimqX · AXY · AXY ′ = dimqY δY,Y ′ (5.4)
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and similarly for the dual one (3.16). This means that the relation to the orthonormal

Racah matrix S is

AXY =

√
dimqY
dimqX

SXY (5.5)

After such a rescaling our formulas (3.8) and (3.9) seem to be in a perfect agreement

with the conjectures of [80], thus justifying/supporting our suggested identification

of A as the rescaled Racah matrices.

3. Note that there are exactly three possible Racah matrices when all the representations

are either R or R̄: S

(
R R

R R

)
, S

(
R R

R R

)
and S

(
R R

R R

)
.

These three cases correspond to the three types of the matrices A discussed above:

AXȲ , AX̄Y and AX̄Ȳ . The first two are transposed to each other (by the general

properties of the Racah matrices) and the third one is symmetric. This also explains

why the factor Ḡ in (3.14) is symmetric in k and m, while G is not: in the latter case

k and m label different representations, k ∈ [r]⊗ [r], m ∈ [r]⊗ [r], while in the former

case both k,m ∈ [r]⊗ [r].

4. One can make use of the additional fact that the first line of the matrices AXY , asso-

ciated with the singlet representation X = ∅, consists just of the quantum dimensions

χY = dimqY, (3.19), (3.20) and rewrite (5.3) through the orthonormal Racah matrix

S in another form:

H
n1,...,ng+1

R =
∑
X

(dimqX )
1−g
2

g+1∏
i=1

(∑
Y
SXYS∅Yλ

ni
Y

)
(5.6)

In result, the contributions of parallel, even antiparallel and odd antiparallel braids

are respectively SX̄Y S∅Y , SX̄Ȳ S∅Ȳ and SXȲ S∅Ȳ . In the case of g = 1 (torus

knots/links) the factor dimqX is absent and one can sum over X , using the or-

thonormality condition
∑
X SXYSXY ′ = δYY ′ , to get just the Rosso-Jones formula in

the form of [61]

H(n1,n2) =
∑
Y
S2
∅Yλ

n1+n2
Y (5.7)

The structure of (5.6), involving a sum with a weight, which is the power 2− 2g (the

Euler characteristics of the genus g Riemann surface) of representation dependent

quantity resembles the Frobenius formula [81], typical for topological (cohomological)

models.

5. Note that formula (5.6) can be immediately obtained from the conjectural representa-

tion proposed in [63], which generalizes the approach due to E.Witten [27]. E.Witten

interpreted the averages of Wilson lines in Chern-Simons theory within the framework

of a Hamiltonian dynamics on the space of conformal blocks in the WZWN model
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Figure 6. Conformal block representation of formula (5.6). Here the generic case of differ-

ent representations Ri (in the case of link) is drawn, it corresponds to
∑

X̄ ∈
⋂

i Ri⊗R̄i
dimqX̄ ·∏g

i=0

(∑
Ȳi∈Ri⊗R̄i+1

AX̄Ȳi

(
R̄i Ri+1

Ri R̄i+1

)
· λni

Ȳi

)
, or other two matrices A depending on the direction of

arrows in the picture.

with evolution given by permutations of points of these conformal blocks. One can

calculate in this way knot invariants in terms of matrices of modular transformations

of conformal blocks [13–18]. In [63] (see also earlier paper [82]), the authors proposed

to generalize this case describing the Hamiltonian evolution of a conformal block as

an “in”-state to another conformal block as an “out”-state to the case of a few sets

of states “at infinity”, i.e. to the case of a few boundaries in terms of Chern-Simons

theory. However, their conjecture could be checked so far only in the fundamental

representation for many knots with less than 11 intersections in the Rolfsen tables [64]

and for some knots in first few symmetric representations [63] (very recently it was

further checked in representation [21], see [83]). Now note that the pretzel knots can

be drawn by gluing of v5 and v6 (or v7 and v8) repeatedly in figure 3 of [63], which

will naturally provide the formula (62). Hence, to put our results for the pretzel

knots here differently, being obtained basically within the absolutely different and

well established group theory approach [1–11] they can be considered as a first con-

firmation of the conjecture [63] for the infinite series of knots and infinite series of

representations.

6. At a deeper level, the relation of (5.6) to the conformal block calculus of [13–18]

and [61] remains a mystery. It can be schematically realized with a toric conformal

block picture, see figure 6. The occurrence of the toric blocks can seem natural for

the pretzel family, but exact appearance, and the very possibility to derive (5.6) from

consideration of the spherical blocks, as done in [61] implies some interrelation in the

style of Verlinde formulas, which needs to be put in a more precise form.

7. For generic representations one has: R1⊗R2 = ⊕ X⊗VX . When the multiplicities of

all X are unities, as in the case of a product of two symmetric representations and/or

of their conjugates, dimqX is just a number, dimension of the representation X. In

this case, (5.6) is symmetric under arbitrary permutations of ni (if all Ri are the

same), i.e. there is the enhanced symmetry. However, when multiplicity of X is non-

trivial, i.e. VX is a vector space of non-unit dimension, then the matrix AXY is a vector

in VX and dimqX in (5.6) is rather a multi-linear operation V
⊗(g+1)
X −→ 1, which
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does not need to be totally symmetric: only the cyclic symmetry is needed. This is

in accordance with the fact that a non-cyclic permutation of ni converts a knot/link

into a mutant, undistinguishable by symmetrically-colored knot polynomials, but

separable by those in non-(anti)symmetric representations.

6 Checks of the main conjecture (3.1)

So far there were just two families of knots with explicitly known (anti)symmetric HOM-

FLY polynomials: torus knots [29, 30, 37] and double braids [39] (and also a family of

links [51]). It is this second family that we enormously extend in the present paper. The

double braids are Pretzel : (−1, 2k, n) = (n, 1, . . . , 1︸ ︷︷ ︸
2k

) and contain twist knots (n = −1), in

particular the figure-eight knot 41, which was the first example beyond torus knots, stud-

ied in [40]. Our formulas are of course consistent with the results of [29, 30, 37] and [39],

but [39] and [41] contains more: differential expansions, which still needs to be studied in

generic pretzel case.

Below we list some tests which we did to examine our main conjecture (3.1). Also we

tabulate some knots and links which belong to the pretzel family.

6.1 Jones polynomials

Technically, the simplest way of checking/deriving the main conjecture is to use the phys-

ically motivated calculations via conformal blocks of either WZWN theory [13–18] or of

the minimal models [76]. The case of Jones polynomials, which are obtained from (3.1) at

specialization of A = q2, is much easier to study technically, it was done in [60, 61] and the

obtained result for an arbitrary pretzel knot/link completely agrees with (3.1) at A = q2.

6.2 Comparing with families of knots/links

For some particular examples we have checked that our formula (3.1) reproduces the HOM-

FLY polynomials in symmetric representations:

Knots:

• twist knots [39, 40, 44, 46]: T (k) = (1̄, 1̄, 2k − 1) = (−1,−1, 2k) (we remind that

T (−k) = (2k + 2)1 for k > 0, T 0 = unknot, T (1) = 31, T (k) = (2k + 1)2 for k > 1);

• torus knots and links [39, 43]: [2, n] = (n, 0) = (1, n − 1), [3, 4] = 819 = (3, 3,−2),

[3, 5] = (5, 3,−2), all other are not pretzel knots.

These examples all belong to the larger family:

• double braid [39]: (−1, 2k, n) = (n, 1, . . . , 1︸ ︷︷ ︸
2k

).

In this case, the HOMFLY polynomials are known for all symmetric representations, and

it completely describes the knots in the parallel-anti-parallel case in genus two.
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Links:

• Whitehead link [51] (in this case two different representations are allowed on the two

different components of the link): L5a1 = (2, 2, 1).

This link is also a member of a whole family of

• links [51]: (2, 2m, 1): Hopf, Whitehead, L7a6, L9a36, L11a360.

The HOMFLY polynomials for the family are known only when one of the representations

is arbitrary symmetric. We checked the Whitehead link with two coinciding representations

on each component of link being any symmetric representation, and the whole family with

the fundamental representations only.

The answers in these case, both for knots and links coincide with the prediction of

formula (3.1).

6.3 Comparing with arbitrary pretzels at concrete representations

We also checked the main conjecture at comparing the answers obtained by the evolution

method [39] for arbitrary pretzel knots: of genus 2 and representations [1], [2], [3]; of genus

3, 4 and representations [1], [2]; of genus up to 9 and the fundamental representation. The

formulas are quite tedious, some part of them can be found in appendix A.

6.4 Reduction and expansion tests

There are a few tests that the answers for the HOMFLY polynomials should pass, which

allowed us to additionally test our main conjecture (3.1).

1. Special polynomials HKR (A, q = 1) provided a very good test due to the factorization

property [37, 84]:

σR(A) = lim
q−→1

HR(q, A)

χR(q, A)
=
(
σ[1](A)

)|R|
(6.1)

2. Alexander polynomials HKR (A = 1, q) also have a simple representation dependence for

hook diagrams which include symmetric representations [40]

HR

χR
(A = 1, q) =

H[1]

χ[1]
(A = 1, q|R|) (6.2)

and also provided a very good test for our results.

3. Another powerful tool to test the HOMFLY polynomials in any representation, which

we used here, is expansion through the Vassiliev invariants and trivalent diagrams. We

shall not explain this expansion here and refer our readers to the literature [85–87].
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6.5 Table: Rolfsen and Thistlethwaite vs. pretzel [64]

We checked that our main conjecture gives the correct results for all fundamental HOMFLY

polynomials for the pretzel knots with up to 10 crossings (plus mutant pairs with 11

crossings). Note that our conjecture was recently tested even in a more general than

pretzel set of knots in representations up to the first mixed one [21], [83].

Understanding if the given knot/link belongs to the pretzel family is not quite a trivial

exercise. However, since we now possess generic expression for pretzel symmetric HOMFLY,

this can be done systematically, by comparing our results with the polynomials in [64] (note

that there is just one coincidence between fundamental HOMFLY for up-to-ten-crossings

knots — for 51 and 10132). Result of this analysis is the following list. We use condensed

notation 15 = 1, 1, 1, 1, 1 and also do not distinguish between knots and their mirrors, when

the signs in all crossings are reversed. Symbol “!” stands for knot mutation.

Knots, #crossings = 3. . . 8

31 (3, 0) 71 (7, 0) 81 (1, 6̄, 1) 88 (2,−3, 1, 1, 1, 1) 815 (2, 3, 3,−1,−1,−1)

41 (1, 2̄, 1) 72 (5̄, 1̄, 1̄) 82 (5, 2̄, 1) 89 (4,−3,−1,−1) 816

51 (5, 0) 73 (4, 1, 1, 1) 83 (1, 1, 4̄, 1, 1) 810 (2,−3, 1, 3) 817

52 (3̄, 1̄, 1̄) 74 (3̄, 3̄, 1̄) 84 (3, 4̄, 1) 811 (−3̄, 1̄, 1̄, 3̄, 1̄) 818

61 (5̄,−1̄,−1̄) 75 (3, 2, 1, 1) 85 (3, 2̄, 3) 812 819 (3,−2̄, 3)

62 (3, 2̄, 1) 76 (−3, 1, 2̄, 1, 1) 86 (1, 3, 2̄, 1, 1) 813 (−4̄,−3, 1, 1, 1) 820 (3, 2̄,−3)

63 (2,−3, 1, 1) 77 (−3̄, 1̄,−3̄, 1̄, 1̄) 87 (4,−3, 1, 1) 814 821 (2,−3, 1,−3)

Links

L2a1 (2, 0) L6a1 (2, 1, 1, 2) L6a4 ?

L4a1 (4, 0) L6a2 (3, 1, 1, 1) L6a5 (2, 2̄, 2)

L5a1 (2, 2̄, 1) L6a3 (6, 0) L6n1 (−2,−2̄, 2)

Knots, #crossings = 9

91 (9, 0) 911 (−5,−2, 14) 921 931 941

92 (1̄, 7̄, 1̄) 912 (−3, 1, 1, 1, 4̄) 922 932 942

93 (6, 1, 1, 1) 913 (1, 3, 1, 1,−4̄) 923 933 943

94 (4, 15) 914 (−5̄,−3̄, 1̄, 1̄, 1̄) 924 (−2,−3, 3, 13) 934 944

95 (−1̄,−3̄,−5̄) 915 925 935 (3̄, 3̄, 3̄) 945

96 (2, 1, 5, 1) 916 (2̄, 1, 3, 3) 926 936 946 (3̄,−3̄, 3̄)

97 (2, 3, 14) 917 (3̄, 3̄,−1̄5) 927 937 (−3̄,−3̄, 3̄, 1̄, 1̄) 947

98 (−2,−3, 16) 918 928 (2,−3,−3, 13) 938 948 (−3̄,−3̄,−3̄, 1̄, 1̄)

99 (−4, 1,−5, 1) 919 929 939 949

910 (3̄, 3̄, 1̄, 1̄, 1̄) 920 (4, 3,−14) 930 940
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Knots, #crossings = 10

101 (1̄, 7̄,−3̄) 1016 (3̄, 1̄,−5̄, 1̄, 1̄) 1061 (3, 3, 4̄) 10126 (2̄,−5, 3)
∨

(−2, 3,−5, 1)

102 (2,−7,−1,−1) 1017 (4,−5, 1, 1) 1062 (4,−3, 1, 3) 10127 (2̄, 5, 3)
∨

(2,−5,−3, 1)

103 (1̄, 5̄,−5̄) 1019 (4̄, 5,−1,−1,−1) 1063 (4̄,−3,−3, 1, 1) 10129 (2, 1, 1,−3, 1, 1)

104 (−7̄, 1̄, 1̄, 1̄, 1̄) 1020 (−2, 1, 3, 15) 1064 (−4, 3, 3, 1) 10139 (4,−1, 3, 3)

105 (−2, 7,−1,−1) 1021 (−3̄, 3̄, 1̄5) 1065 (4̄, 3,−3,−1,−1) 10140 (−3, 3, 4̄)

106 (−2̄,−5,−13) 1022 (−4, 1, 1, 3, 1, 1) 1069 (4, 3, 3,−1,−1,−1) 10141 (4,−3,−3, 1)

107 (−3̄, 1̄, 5̄, 1̄, 1̄) 1028 (4̄, 3,−15) 1074 (−3̄, 1̄, 3̄, 3̄, 1̄) 10142 (3, 3,−4̄)

108 (−6, 15) 1034 (2,−3, 16) 1076 (1, 3, 3, 1, 2̄) 10143 (−4, 3, 1,−3)

109 (6,−3,−1,−1) 1046 (−2, 3, 5, 1) 1077 (2,−3, 1, 3, 1, 1) 10144 (4̄, 3, 3,−1,−1)

1011 (3, 1, 1, 1, 4̄) 1047 (2,−3, 5, 1) 1078 (2̄,−3,−3, 1, 1, 1, 1)

1012 (4,−3, 1, 1, 1, 1) 1048 (2,−5, 1, 3) 10124 (2̄,−5,−3)
∨

(2,−1, 5, 3)

1015 (−2,−1, 5,−13) 1049 (2̄,−5,−3, 1, 1) 10125 (2̄, 5,−3)
∨

(2,−5,−1, 3)

(2, 5, 3,−13)

Mutants, #crossings = 11

11a
44 (−3, 3, 2, 1, 1,−3) ! 11a

47 (3,−3, 2, 1, 1,−3)

11a
57 (2̄, 1, 3, 3,−3) ! 11a

231 (2̄, 1, 3,−3, 3)

11n
71 (2̄,−3, 3,−3, 1) ! 11n

75 (2̄, 3,−3,−3, 1)

11n
73 (2, 3,−3,−3) ! 11n

74 (2,−3, 3,−3)

11n
76 (2, 3, 3,−3) ! 11n

78 (2, 3,−3, 3)

6.6 Generalizations

As already mentioned, the results of the present paper were recently extended in [83] in

two directions: to a wide class of non-pretzel knots and to the first non-(anti)symmetric

representation [21]. This provides a lot of additional tests, from matching with increased

number of previously known HOMFLY polynomials to comparing with the celebrated re-

sults due to H. Morton, P. Cromwell [88] and J. Murakami [89] for the mutant pairs of

knots. We consider this new development as one more, and very convincing confirmation

of the main conjecture (3.1).

7 Conclusion

In this paper we reported the results about the HOMFLY polynomials for the pretzel knots,

which are a natural generalization of the torus knots from g = 1 to arbitrary genus g, for

which an exhaustive answer like the Rosso-Jones formula can presumably be found.

Indeed, we found a well-structured exhaustively explicit answer for arbitrary g in all

(anti)symmetric representations, and indeed the Rosso-Jones formula arises as its very

special case. Not surprisingly, this general answer involves more than just quantum dimen-

sions, but also the Racah matrices, however, in the absolutely minimal way which agrees

with the approach proposed in [63]. As a byproduct of our calculation, an explicit for-

mula for Racah matrices was found in symmetric representations, which is completely in
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accord with the recent result in [80]. A stronger conjecture about generic representations,

formulated in [60] on the base of the present paper, needs more work to be checked. In

an accompanying paper [61] some parallel evidence is obtained by different method for

the Jones polynomials: that work served as a major inspiration for some of the above

calculations.

Further work in this direction seems to be very promising and can lead to considerable

extension of the set of known knot polynomials. An absolutely new kind of decomposition

of knot polynomials into the Racah rotated elementary HOMFLY, as well as emerging a

partly expected connection to the (modular transformations of the) toric conformal blocks

requires better understanding, perhaps, as a kind of monopole/brane duality, and suggests

various generalizations and implications. All this can open a new intriguing chapter in the

theory of knot polynomials.

There are five obvious exercises to do, once the full evolution induced answer is known:

(i) to derive differential expansions a la [40, 41],

(ii) to find equations w.r.t. the r-parameter [28, 70–73],

(iii) to study the large-r (Kashaev or volume conjecture) limit [66–69],

(iv) to use it to built a matrix model a la [52, 53],

(v) to perform β-deformation [90] a la [37], [91] and [40, 43, 44, 46], i.e. to promote HOM-

FLY to superpolynomials without explicit application of the sophisticated Khovanov-

Rozansky construction [92–94] and even of its simplified modern substitutes [95, 96].

Also straightforward should be generalization to various extensions of the pretzel family, like

combinations of multi-strand braids and their “iterations” a la [65]. These considerations

will be reported elsewhere.

A really difficult task is going from (anti)symmetric to generic representations. If

one believes that the conjecture (5.3) or something similar holds for them, the problem is

actually about the generic Racah matrices, which is a kind of a classical hard problems

in group theory. Still, as the results in the present paper demonstrate once again, study

of the knot polynomials can provide a new powerful tool to attack such old problems:

after the answer for the generic symmetric Racah coefficients appeared very easily in this

way, one can anticipate insights about other representations as well. For some yet-non-

systematic considerations of non-symmetric colored knot polynomials beyond the torus

links see [45, 54–56].2
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A Symmetrically colored HOMFLY for generalized pretzel knots

Here we present a few sample results, obtained by direct application of evolution method

of [37] (see [39] for the detailed explanation). They are the origin and justification of all the

results in the main text. Other numerous explicit formulas of this kind are too big to be

included here, still these examples are sufficient — but only for illustrative purposes. When

some properties, like enhanced symmetry w.r.t. arbitrary permutations of ni among parallel

or antiparallel braids, are mentioned in the main text, they were actually obtained from

explicit evolution-method calculations — not actually represented in this appendix. After

established in simpler examples, these properties were used as input assumption in more

complicated ones, thus allowing to decrease the number of requested “initial conditions”

— still some random checks of these assumptions were also performed at these next levels

of complexity.

Summary, genus 2, n2 even. In this case there is one obvious structure: for n2 = 0

we obtain a composite knot made from two 2-strand torus knots.

Unreduced colored HOMFLY in the lowest symmetric representations are:

χ[1]H
(n1,n2,n3)
[1] = λn1+n3

[2] · χ[2]

{
1 +

D2D−1

[2]
·An2

}
+ (A.1)

+ λn1+n3

[11] · χ[11]

{
1+

D1D−2

[2]
·An2

}
+
(
λn1

[2]λ
n3

[11]+λ
n3

[2]λ
n1

[11]

)
· [3]χ22 ·An2 =

=
1

χ2
[1]

{
H

(n1)
[1] H

(n2)
[1] H

(n3)
[1] + χ[2]χ[11]

(
λn1

[11] − λ
n1

[2]

)(
1−An2

)(
λn3

[11] − λ
n3

[2]

)}
χ[2]H

(n1,n2,n3)
[2] = λn1+n3

[4]

{
χ[4] +

χ[21]D3D4

[4]2

(
D1 ·An2 +

D2
0D5

[2]2[3]
· (qA)2n2

)}
+

+ λn1+n3

[31]

{
χ[31] +

[3]χ[21]

[2][4]2

(
D1 · U[31] ·An2 +

χ2
[1]D3

[2]
· V[31] · (qA)2n2

)}
+

+ λn1+n3

[22] · χ[22]

{
1 +

D1D−2

[2]
·An2 +

χ[11]D3D−2

[2][3]
· (qA)2n2

}
+

+
(
λn1

[4]λ
n3

[31] + λn3

[4]λ
n1

[31]

) [2]χ[21]χ[2]D3

[4]2

(
An2 +

D0D4

[2]2
· (qA)2n2

)
+

+
(
λn1

[31]λ
n3

[22] + λn3

[31]λ
n1

[22]

)
· χ[22]χ[2]

(
An2 +

D3D−2

[4]
· (qA)2n2

)
+

+
(
λn1

[4]λ
n3

[22] + λn3

[4]λ
n1

[22]

)
· χ[4]χ[22] · (qA)2n2 (A.2)
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χ[3]H
(n1,n2,n3)
[3] =

λn1+n3

[6]

{
χ[6] +

χ[31]D5D6

[2][3]2[4][5]2[6]2

(
An2 · [2][3]2[4][5]D1D4+

(qA)2n2 · [3]2[4]χ2
[1]D3D7 + (q2A)3n2 · [2]2χ2

[2]D7D8

)}
+

λn1+n3

[51]

{
χ[51] +

χ[31]

[2][3]2[4][6]2

(
An2 · [2][3]2D1D4 · U[51] + (qA)2n2 · [3]χ2

[1]D3D5 · V[51]+

(q2A)3n2 · [2]2χ2
[2]D5D6 ·W[51]

)}
+

λn1+n3

[42]

{
χ[42] +

χ[31]χ[1]

[2]2[3][4][5]2

(
An2 · [2][5]D1 · U[42] + (qA)2n2 · [2]χ[1]D3 · V[42]+

(q2A)3n2 · χ[2]D−2D1D5 ·W[42]

)}
+

λn1+n3

[33] · χ33

{
1 +

D1D−2

[2]
·An2 +

χ[11]D3D−2

[2][3]
· (qA)2n2 +

χ[22]D5D−2

[3][4]
· (q2A)3n2

}
+(

λn1

[6]λ
n3

[51] + λn3

[51]λ
n1

[6]

) [2]χ[31]χ[2]D5

[3][4][5][6]2

(
An2 · [3][4]D4 + (qA)2n2 · [3]χ[1]D3D6+

(q2A)3n2 · χ[3]D6D7

)
+(

λn1

[6]λ
n3

[42] + λn3

[42]λ
n1

[6]

)χ[4]χ[31]χ[1]D5

[2][5]2[6]

(
(qA)2n2 · [2][3] + (q2A)3n2D1D6

)
+(

λn1

[6]λ
n3

[33] + λn3

[33]λ
n1

[6]

)(
(q2A)3n2

χ[6]χ[31]χ[2]

[3]2

)
+(

λn1

[51]λ
n3

[42] + λn3

[42]λ
n1

[51]

) χ[31]χ[2]χ[1]

[2][3]2[4][5][6]

(
An2 · [2]4[6]D4 + (qA)2n2 · [2][3]D3 · V51|42+

(q2A)3n2 · [3]D1D2D5 ·W51|42

)
+(

λn1

[51]λ
n3

[33] + λn3

[33]λ
n1

[51]

) [5]χ[41]χ[3]χ[2]

[3][4]2[6]

(
(qA)2n2 · [6] + (q2A)3n2 ·D5D−2

)
+

(
λn1

[42]λ
n3

[33] + λn3

[33]λ
n1

[42]

) χ[31]χ
2
[2]

[2][3]2[4][5]

(
An2 · [2][4][5] + (qA)2n2 · [2][5]D3D−2+

(q2A)3n2 ·D5D2D−1D−2

)
(A.3)

Here

U[31] = [2]D3D−2 + (D2 −D0)2

V[31] = D3D−2 +D1D0 −D2D−1 = D3D−2 + [2] = D1D0 − [4] (A.4)

U[51] = [4]D5D−2 + (D4 −D0)2

V[51] = U[51] −D2D1[2]{q}2 −D2(D3 −D1)[2]

W[51] = D5D−2 + [4] + [2] = D5D−2 + [2][3] = D2D1 − [6]

U[42] = D3D4 + [2]2D1D0 +D0D−1 − [2]2[3][4]

V[42] = [6]D2D
2
0 +D2

0D−1 − [2]2
(

(q7 + q3 + 2q + 2q−1 + q−3 + q−7)D0 +D−5

)
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W[42] = [3]D2D1 − [2][5]

V51|42 = D5D4 + [2]D2D0 +D1D0 − [2]3[5]

W51|42 = D2D1 − [2][5] (A.5)

The reduced Jones polynomials (A = q2):

J[1] = 1 +
[3][4]

[2]
q2(n1+n2+n3) + [3]

(
q2(n1+n2) + q2(n1+n3) + q2(n2+n3)

)
(A.6)

J[2] = 1 +
[6]2

[4]2
q2(n1+n2+n3) +

[2][5][6][7]

[3][4]2
q6(n1+n2+n3)+ (A.7)

+
[2][3][5][6]

[4]2

(
q6(n1+n2)+2n3) + q6(n1+n3)+2n2) + q6(n2+n3)+2n1)

)
+

+
[2]2[3][5]

[4]2

(
q6n1+2(n2+n3) + q6n2+2(n1+n3) + q6n3+2(n1+n2)

)
+

+ [5]
(
q6(n1+n2) + q6(n1+n3) + q6(n2+n3)

)
+ [3]

(
q2(n1+n2) + q2(n1+n3) + q2(n2+n3)

)
J[3] = 1 +

[2][3][8]2

[4]3[5]
q2(n1+n2+n3)+

+
[2]3[3]2[5][7]

[4][6]2
{q}4 q6(n1+n2+n3) +

[2][3][7][8][9][10]

[4][5]2[6]2
q12(n1+n2+n3)+

+
[2][3][7][8][9]

[5][6]2

(
q12(n1+n2)+6n3 + q12(n1+n3)+6n2 + q12(n2+n3)+6n1

)
+

+
[3]2[7][8]

[5][6]

(
q12(n1+n2)+2n3 + q12(n1+n3)+2n2 + q12(n2+n3)+2n1

)
+

+
[2]2[3]2[7][8]

[4][6]2

(
q6(n1+n2)+12n3 + q6(n1+n3)+12n2 + q6(n2+n3)+12n1

)
+

+
[2]2[3]2[8]2

[4]3[6]

(
q6(n1+n2)+2n3 + q6(n1+n3)+2n2 + q6(n2+n3)+2n1

)
+

+
[2]4[6]

[4][5]

(
q2(n1+n2)+6n3 + q2(n1+n3)+6n2 + q2(n2+n3)+6n1

)
+

+ [3]
(
q2(n1+n2) + q2(n1+n3) + q2(n2+n3)

)
+

+ [5]
(
q6(n1+n2) + q6(n1+n3) + q6(n2+n3)

)
+

+ [7]
(
q12(n1+n2) + q12(n1+n3) + q12(n2+n3)

)
+

+
[2][3]2[7]

[5][6]

(
q12n1+6n2+2n3 + q12n1+6n3+2n2 + q12n2+6n1+2n3 + q12n2+6n3+2n1

+ q12n3+6n1+2n2 + q12n3+6n2+2n1

)
(A.8)

Genus g = 3, the first symmetric representation [2].

χ2
[2]H

(n1,n2,n3,n4)
[2] = (A.9)

λn1+n2+n3+n4

[4] ·

(
χ4

[4]

χ2
[2]

+
[2]

[3]2[4]3
χ[4]χ[21]

(
[3]{Aq4}2{A}+{Aq3}2{Aq2}

{q}3
+

[3][4]{Aq3}
{q}

))
+
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(
λn1+n2+n3

[4] λn4

[22] + perms
)(χ3

[4]χ[22]

χ2
[2]

− [2]2

[3]2[4]2
χ[4]χ[22]

{Aq3}2 + {Aq4}{A}
{q}2

)
+

(
λn1+n2

[4] λn3+n4

[22] + perms
)(χ2

[4]χ
2
[22]

χ2
[2]

+
χ[4]χ[32]χ[1]

[3]2

)
+

(
λn1

[4]λ
n2+n3+n4

[22] + perms
)(χ[4]χ

3
[22]

χ2
[2]

−
χ[4]χ[22]χ[11]

[3]2

)
+

(
λn1+n2+n3+n4

[22] + perms
)(χ4

[22]

χ2
[2]

+
χ[22](χ[4] + χ[31])

[2]2[3]2

(
χ[11] + [3]

))
+ (A.10)

(
λn1+n2+n3

[4] λn4

[31]+perms
)(χ3

[4]χ[31]

χ2
[2]

− [2]

[3][4]3
χ[4]χ[21]

(
[2]
q3A2−q−3A−2

q−q−1

{q3A}
{q}

+[3]χ[1]

))
+

(
λn1+n2

[4] λn3+n4

[31] + perms
)(χ2

[4]χ
2
[31]

χ2
[2]

+
[2]

[4]3
χ[4]χ[21]

(
q4A3 − q−4A−3

q − q−1
+ [2]

{qA}
{q}

))
+

(
λn1

[4]λ
n2+n3+n4

[31] +perms
)(χ[4]χ

3
[31]

χ2
[2]

− [3]

[4]3
χ[4]χ[21]

(
(q2A3+q−2A−3)+2

{qA}
{q}

))
+ (A.11)

λn1+n2+n3+n4

[31]

χ4
[31]

χ2
[2]

+
1

[4]3
χ[31]χ[2]

(q3A4+
1

q3A4

)
+ (A.12)

(
4q3−3q+2

q+ 1
q3

)
A2−2[4]+

(
4
q3
−3
q+2q+q3

)
1
A2

(q − q−1)2

+

(
λn1+n2+n3

[31] λn4

[22] + perms
)(χ[22]χ

3
[31]

χ2
[2]

+
[3]

[4]3
χ[22]χ[3]

(
(q2A3 + q−2A−3)−

2
{A/q}
{q}

− (q3 + q−3)χ[1]

))
+

(
λn1+n2

[31] λn3+n4

[22] + perms
)(χ2

[22]χ
2
[31]

χ2
[2]

+
1

[2][4]2
χ[22]χ[3]χ[1]

(
(qA2 + q−1A−2) + [2][3]

))
+

(
λn1

[31]λ
n2+n3+n4

[22] + perms
)(χ3

[22]χ[31]

χ2
[2]

+
1

[2]2[3][4]
χ22]χ[3]χ[1]

(
(A+A−1)χ[1] − [2][3]

))
+

(A.13)(
λn1+n2

[4] λn3

[31]λ
n4

[22] + perms
)(χ2

[4]χ[31]χ[22]

χ2
[2]

+
[2]2

[3][4]2
χ[4]χ[22]

q3A2 − q−3A−2

q − q−1

)
+

(
λn1

[4]λ
n2+n3

[31] λn4

[22] + perms
)(χ[4]χ

2
[31]χ[22]

χ2
[2]

− [2]

[4]2
χ[4]χ[22] (qA2 + q−1A−2)

)
+

(
λn1

[4]λ
n2

[31]λ
n3+n4

[22] + perms
)(χ[4]χ[31]χ

2
[22]

χ2
[2]

− 1

[3][4]
χ[4]χ[22]χ[1] (A+A−1)

)
(A.14)
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The result (3.1) of the present paper is that this long and strangely-looking expression

is nothing else but

H
(n1,n2,n3,n4)
[2] =

3∑
k=0

∆̄k ·
4∏
i=1

(
3∑

m=0

akmλ
ni
m

)
(B.1)
=

4∏
i=1

(
D0D−1

[2][3]
+
D2D−1

[4]
· (−q2)ni +

D3D2

[3][4]
· q6ni

)
+

+D1D−1 ·
4∏
i=1

(
D0

[2][3]
+
D2 −D0

[4]
· (−q2)ni − [2]D3

[3][4]
· q6ni

)

+
D3D

2
0D−1

[2]2
·

4∏
i=1

(
1

[3]
− [2]

[4]
· (−q2)ni +

[2]

[3][4]
· q6ni

)
which is not only shorter, but also a much better structured expression, moreover, gener-

alizable to arbitrary genus and representation.

B List of coefficients akm, ākm and ¯̄akm

We list in this appendix both the coefficients of all three matrices A, Ā and ¯̄A and the two

Racah matrices corresponding to A, Ā, since the third Racah matrix is obtained from that

for A just by transposing.

Coefficients akm. Coefficients akm entering contributions of the parallel braid:

A[1] =
1

χ[1]


χ[11] χ[2]

χ[1]

[2]
−
χ[1]

[2]

 =
1

[2]

D−1 D1

1 −1



A[2] =
1

χ[2]



χ[22] χ[31] χ[4]

χ[2] ·D0

[2][3]

χ[2] · (D2−D0)

[4]
−

[2]χ[2] ·D3

[3][4]

χ[2]

[3]
−

[2]χ[2]·
[4]

[2]χ[2]·
[3][4]


=

1

[3]



1

[2]
D0D−1

[3]

[4]
D2D−1

1

[4]
D3D2

1

[2]
D0

[3]

[4]
(D2−D0) −

[2]

[4]
D3

1 −
[2][3]

[4]

[2]

[4]



A[3] =
1

[4]



1

[2][3]
D1D0D−1

[3]

[2][5]
D3D0D−1

1

[6]
D4D3D−1

1

[5][6]
D5D4D3

1

[2][3]
D1D0

1

[2][5]

(
[2]D4−D−1

)
D0

1

[3][6]
D4

(
D5 − [2]2D−1

)
−

[3]

[5][6]
D5D4

1

[3]
D1

1

[5]

(
D5 − [2]D0

) [2]

[3][6]

(
− [2]2D5 +D−1

) [2][3]

[5][6]
D5

1 −
[3]2

[5]

[2][3]

[6]
−

[2][3]

[5][6]
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A[4] =
1

[5]



D2D1D0D−1

[2][3][4]

1

[2][6]
D4D1D0D−1

[5]
[2][6][7]

D5D4D0D−1

1

[6][8]
D6D5D4D−1

D7D6D5D4

[6][7][8]

D2D1D0
[2][3][4]

D1D0

[2][4][6]

(
[3]D5−D−1

) [5]

[4][6][7]
·D5

(
D6−[2]D−1

)
D0

D6D5

[4][6][8]

(
D7−[3]2D−1

)
−

[4]

[6][7][8]
D7D6D5

1
[3][4]

D2D1

[2]

[4][6]

(
D6−D0

)
D1

[2][5]

[3][4][6][7]

(
D7D6−[2]3D6D0+D0D−1

)
[2]2[3]
[4][6][8]

D6

(
−D7+D−1

) [3][4]

[6][7][8]
D7D6

1

[4]
D2

[3]

[4][6]

(
D7−[3]D1

) [2][3][5]

[4][6][7]

(
−[2]D7+D0

) [2][3]

[4][6][8]

(
[3]2D7−D−1

)
−

[2][3][4]

[6][7][8]
D7

1 −
[3][4]

[6]

[3][4][5]

[6][7]
−

[2][3][4]

[6][8]

[2][3][4]

[6][7][8]



The Racah matrix associated with akm are

S[1] =
1√

[2]D0

(√
D−1

√
D1√

D1 −
√
D−1

)

S[2] =
1

[3]



√
1

∆0
·

1

[2]
D0D−1

√
1

∆1
·

[3]

[4]
D2D−1

√
1

∆2
·

1

[4]
D3D2

√
∆̄1

∆0
·

1

[2]
D0

√
∆̄1

∆1
·

[3]

[4]
(D2 −D0) −

√
∆̄1

∆2
·

[2]

[4]
D3

√
∆̄2

∆0
−

√
∆̄2

∆1
·

[2][3]

[4]

√
∆̄2

∆2
·

[2]

[4]


(B.2)

Coefficients ākm. Coefficients ākm entering contributions of the antiparallel braid with

even crossings:

Ā1 =
1

D0

 1 D1D−1

1 −1

 =
1

χ[1]

 1 ∆̄1

1 −1

 ,

Ā2 =
1

χ[2]



1 ∆̄1 ∆̄2

1
D1

[2]D2

(
D3D−1 − 1

)
−
D2

0D3

[2]D2

1 −[2]
D1

D2

D0

D2


,
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Ā3 =
1

χ[3]



1 ∆̄1 ∆̄2 ∆̄3

1
D1

[3]D3

(
[2]D3D0 − [3]2

) D2
0

[2]2[3]

(
D4D0 − [3]2

)
−
D5D

2
1D

2
0

[2]2[3]D3

1
D1

[3]D3

(
D4D0 − [3]2

)
−

D0

[3]D4

(
[2]D4D1 − [3]2

) D5D
2
1D0

[3]D4D3

1 −
[3]D1

D3

[3]D0

D4
−
D1D0

D4D3


, (B.3)

Ā4 =
1

χ[4]



1 ∆̄1 ∆̄2 ∆̄3 ∆̄4

1
D1

[4]D4

(
[3]D4D0−[4]2

) D3D
2
0

[2][4]D4

(
D5D0− [4]2

[2]

) D5D
2
1D

2
0

[2]2[3]2[4]D4

(
D6D0−[4]2

)
−
D7D

2
2D

2
1D

2
0

[2]2[3]2[4]D4

1
[2]D1

[4]D4

(
D5D0− [4]2

[2]

) D3D0

[2][3][4]D5D4

(
D2

6D
2
0−
(
[7]+[2]4

)
D6D0+[2]2

)
−

D2
1D0

[3][4]D4

(
D7D0−[2]

) D7D
2
2D

2
1D0

[2][3][4]D5D4

1
D1

[4]D4

(
D6D0 − [4]2

)
−

[3]D3D0

[4]D5D4

(
D7D0−[2]

) D1D0

[4]D6D4

(
[3]D8D0+[2][8]+ [2][6]

[3]

)
−
D7D

2
2D1D0

[4]D6D5D4

1 −
[4]D1

D4

[3][4]D3D0

[2]D5D4
−

[4]D1D0

D6D4

D2D1D0

D6D5D4


The Racah matrix associated with ākm are

S̄1 =
1

χ[1]

 1
√

∆̄1√
∆̄1 −1

 ,

S̄2 =
1

χ[2]



1
√

∆̄1

√
∆̄2

√
∆̄1

D1

[2]D2

(
D3D−1 − 1

)
−
D0

D2

√
D3D1

√
∆̄2 −

D0

D2

√
D3D1

D0

D2


(B.4)

Coefficients ¯̄akm. Coefficients ¯̄akm entering contributions of the antiparallel braid with
odd crossings:

A[1] =
1

D0

(
1 D1

1 −D−1

)

A[2] =
1

[3]



1

[2]χ[22]

D0D−1

∆1

[2]χ[22]

D0

∆2

χ[22]

[3]

[4]χ[31]

D2D−1

[3]∆1

[4]χ[31]

(D2−D0) −
[2][3]∆2

[4]χ[31]

1

[4]χ[4]

D3D2 −
[2]∆1

[4]χ[4]

D3

[2]∆2

[4]χ[4]


=

1

D0D1D2


[2]D2 [2]D2D1 D3D2D0

[2]D2 [2]D1

(
D2−D0

)
−D3D

2
0

[2]D2 −[2]2D1D−1 D2
0D−1
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A[3] =
1

[4]



1

[2][3]χ[33]

D1D0D−1

∆1

[2][3]χ[33]

D1D0

∆2

[3]χ[33]

D1

∆3

χ[33]

[3]

[2][5]χ[42]

D3D0D−1

∆1

[2][5]χ[42]

(
[2]D4−D−1

)
D0

∆2

[5]χ[42]

(
D5−[2]D0

)
−

[3]2∆3

[5]χ[42]

1

[6]χ[51]

D4D3D−1

∆1

[3][6]χ[51]

D4

(
D5−[2]2D−1

) [2]∆2

[3][6]χ[51]

(
− [2]2D5 +D−1

) [2][3]∆3

[6]χ[51]

1

[5][6]χ[6]

D5D4D3 −
[3]∆1

[5][6]χ[6]

D5D4

[2][3]∆2

[5][6]χ[6]

D5 −
[2][3]∆3

[5][6]χ[6]



=

=
1

D4D3D2D1D0



[2][3]D4D3 [2][3]D4D3D1 [3]D4D
2
3D0 D5D4D3D1D0

[2][3]D3D4 [2]D4D1

(
[2]D4−D−1

)
D4D3D0

(
D5−[2]D0

)
−D5D4D

2
1D0

[2][3]D4D3 [2]D4D1

(
D5−[2]2D−1

)
D3D

2
0

(
− [2]2D5+D−1

)
D5D

2
1D

2
0

[2][3]D4D3 −[2][3]2D4D1D−1 [3]2D3D
2
0D−1 −D2

1D
2
0D−1


(B.5)
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