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Abstract Microalgae are the principal producers of long-chain polyunsaturated fatty acids

(LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in

marine ecosystems. Algae are used in aquaculture systems as direct or indirect feed for

zooplankton, filter-feeding mollusks and larval stages of crustaceans and fish. Therefore, it

is necessary to select nutrient-rich strains, with high levels of EPA and/or DHA, preferably

during the stage of rapid growth. During the course of algal growth (exponential to sta-

tionary phase), many microalgal species accumulate lipids, especially triacylglycerols.

However, relatively little is known about the effect of growth phase on LC-PUFA accu-

mulation. In the present study, absolute and relative EPA and DHA levels of seven rep-

resentative species of marine microalgae were determined during different growth phases

in batch culture. Four species (Phaeodactylum tricornutum, Thalassiosira weissflogii,

Thalassiosira pseudonana and Rhodomonas salina) accumulated fatty acids during growth.

In all these species, intracellular EPA levels were higher during the late stationary growth

phase than during exponential growth. In contrast, an increase in DHA content was not

observed and therefore the DHA-to-EPA ratio was significantly lower in late stationary

phase cultures. These results can be used to improve the nutritional value of microalgae

cultivated for application in marine aquaculture systems.
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Introduction

Due to their high nutritional value, microalgae are important feed sources in aquaculture

systems (Patil et al. 2005). Cultivated marine algae can be used directly, as live feed for

(larval stages of) bivalves and crustaceans, or indirectly, as food for zooplankton such as

rotifers which, in turn, are used to feed crustaceans or small fish larvae (Muller-Feuga

2000; Chauton et al. 2014). Besides this, several microalgal species are currently being

investigated by the aquaculture industry as fish meal or fish oil replacement in the diet of

commercially farmed fish (Kousoulaki et al. 2015; Sprague et al. 2015; Sørensen et al.

2016). Marine algae are key organisms in the production of essential long-chain polyun-

saturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahex-

aenoic acid (DHA). These n-3 PUFAs are necessary for optimal nutrition and stress

tolerance of marine fish, especially at the larval and juvenile stages (Khozin-Goldberg et al.

2011, and references therein). Most fatty acids in algal cells are present as part of mem-

brane lipids (e.g., phospho- or glycosyl-glycerides) or as part of storage lipids, mainly

triacylglycerols (TAGs), in the cytosol (Thompson 1996). LC-PUFA content and com-

position may show significant differences between and within algal classes. Each algal

class has roughly its own fatty acid composition, and the EPA–DHA content between algal

classes is highly variable (Guschina and Harwood 2006; Lv et al. 2010; Boelen et al. 2013).

For a cost-effective production of nutrient-rich marine microalgae, with high levels of EPA

and/or DHA, it is necessary to select highly productive strains while optimizing cultivation

conditions. Besides taxon-specific EPA and DHA variability, intracellular LC-PUFA

content may be influenced by growth conditions, such as temperature, irradiance and CO2

concentration (e.g., Jiang and Gao 2004; Pal et al. 2011; Boelen et al. 2013). During the

course of batch growth or when grown under stress, many microalgal species accumulate

lipids, especially TAGs (Hu et al. 2008). For example, when cultured under nitrate or

silicate starvation, TAGs accumulated up to 14–18 % of total dry weight in the marine

diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Yu et al. 2009).

Although most of the LC-PUFAs can be found in structural membrane lipids (Roessler

1990), LC-PUFAs could be partitioned to or deposited in TAGs during the stationary phase

of growth (Khozin-Goldberg et al. 2002; Tonon et al. 2002; Guihéneuf and Stengel 2013).

In three of the four species investigated by Tonon et al. (2002) (Nannochloropsis oculata,

T. pseudonana and Pavlova lutheri), this resulted in a higher cellular EPA content. Tonon

et al. (2002) also reported accumulation of DHA in T. pseudonana and P. lutheri, although

the incorporation into TAGs was significantly lower and accumulation started later during

the course of batch growth. In other studies, EPA or DHA content per algal biomass was

reduced or not significantly affected by culture age or nutrient limitation (Klein Breteler

et al. 2005; Hsiao and Blanch 2006; Gong et al. 2013; Nalder et al. 2015).

The aim of this study was to investigate intracellular accumulation of the essential n-3

LC-PUFAs EPA and DHA during different growth phases. Therefore, absolute and relative

EPA and DHA levels of seven representative species of marine microalgae were deter-

mined during growth in batch culture. The implications of our results for the nutritional

value of marine microalgae and thereby their application in aquaculture systems will be

discussed.
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Materials and methods

Experimental setup

Seven species of marine algae were selected, representing different taxonomic groups

(Table 1). The selected species were known to have a high EPA and/or DHA content and

were often already used in aquaculture. The cultures were obtained from the Roscoff

Culture Collection (RCC, Roscoff, France) and the National Center for Marine Algae and

Microbiota (NCMA, formerly CCMP, Maine, USA). The cultures were grown in a climate

room at 20 �C in f/2 enriched (Guillard and Ryther 1962) filter-sterilized seawater adjusted

to a salinity of 35 %. The species were subjected to a light–dark cycle of 16:8 h (L:D),

with a photon flux density of 90 lmol photons m-2 s-1. Before the start of the experiment,

stock cultures were acclimated for at least 2 weeks to the culture conditions in a semi-

continuous mode. The cultures were cultured in triplicate in Fernbach flasks with a

working volume of approximately 0.5 L. Cell counts and photosystem II (PSII) fluores-

cence parameters were determined regularly to define growth phase and maximum

quantum efficiency of PSII. PSII fluorescence measurements are widely used to recognize

stress conditions of the photosynthetic apparatus. A decline in maximum quantum effi-

ciency of PSII often occurs after the exponential phase of growth, when nutrients become

limited. Samples for fatty acid analysis and algal biovolume were collected during

exponential growth (EXP), at the end of the exponential growth phase or the beginning of

the stationary phase (STAT) and after at least 5 days after the beginning of the stationary

phase, usually after 14 days of batch growth (LATE STAT). To be able to measure true

inter- and intraspecific differences, taking into account differences in total fatty acid

content relative to algal biomass, the absolute amounts of EPA and DHA were determined,

using algal biovolume as biomass unit. Algal biovolume was calculated from cell counts

and cell size measurements. Cell numbers were determined using a Coulter XL-MCL flow

cytometer (Beckman Coulter, Miami, FL, USA) as described by van de Poll et al. (2005).

To calculate the cell volume of the algae, samples of about 1.5 mL of culture were

analyzed using an inverted microscope. The sizes of 50 cells were measured, and cell

volume was calculated according to stereometric formulas as given in Hillebrand et al.

(1999).

PAM fluorometry

PSII fluorescence parameters were measured with a pulse-amplitude-modulated chloro-

phyll fluorometer (Water-PAM; Heinz Walz GmbH, Germany). Samples (5 mL) were

Table 1 Details of the investigated species

Strain Class Strain# Abbreviation

Phaeodactylum tricornutum Bacillariophyceae CCMP2558 PT

Thalassiosira weissflogii Bacillariophyceae CCMP1049 TW

Thalassiosira pseudonana Bacillariophyceae RCC950 TP

Skeletonema costatum Bacillariophyceae RCC70 SC

Emiliania huxleyi Prymnesiophyceae CCMP2112 EH

Isochrysis galbana Prymnesiophyceae RCC179 IG

Rhodomonas salina Cryptophyceae CCMP1319 RS
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dark-adapted for 15 min and placed in a custom-made cuvette (2 9 2 cm). Basal fluo-

rescence (F0) was measured under weak measuring light, and maximal fluorescence (Fm)

was determined after a saturating light pulse (0.8 s, 4000 lmol photons m-2 s-1). The

maximum quantum efficiency of PSII was calculated as Fv/Fm = (Fm - F0)/Fm (Maxwell

and Johnson 2000).

Fatty acid analysis

Lipids were extracted using a modified Bligh and Dyer extraction as described by Guckert

et al. (1988). Subsequently, the lipids were subjected to a mild alkaline methanolic

transesterification (White et al. 1979) to produce fatty acid methyl esters (FAMEs).

Samples of 100 mL of algal culture were centrifuged, and the remaining pellets were

freeze-dried for 48 h. The pellets were extracted for 18 h in a single-phase solvent system

of 3.5 mL chloroform, 7.5 mL methanol and 2.8 mL 50 mM phosphate buffer (pH 7.4),

and a known amount of nonadecanoic methyl ester (Sigma) was added as an internal

standard. The samples were transferred to 50-mL centrifuge tubes, and 3.5 mL of chlo-

roform and 3.5 mL of ultrapure Milli-Q water (Millipore) were added. After centrifugation

for 5 min, the lower chloroform phase was dried under N2 and the remaining lipids were

resuspended in 1 mL of a methanol/toluene mixture (1:1, v/v). One milliliter of 0.2 N

MeOH–KOH was added, and the mixture was incubated for 15 min at 37 �C. After neu-
tralizing to pH 6 with 1 M acetic acid, 2 mL of chloroform and 2 mL of Milli-Q water

were added. After centrifugation, the chloroform phase with the FAMEs was recovered and

the nonpolar FAMEs were separated from the polar compounds over a small Al2O3 column

using dichloromethane (DCM) as eluent. The FAMEs were analyzed on a Hewlett-Packard

5890 gas chromatograph equipped with both a flame ionization detector (FID) and a HP

5972 mass spectrometer detector (MSD). Samples of 5 lL were injected using an HP 6890

autosampler at 60 �C on a Restek RTX 1701 (60 m 9 0.25 mm, film thickness 0.25 lm)

column. The temperature was held at 60 �C for 1 min and then increased at a rate of

10 �C min-1 until 180 �C and then to a final temperature of 250 �C at 5 �C min-1, which

was maintained for 15 min. The injection temperature was 250 �C, and the detector

temperatures were both 280 �C. Long-chain fatty acids (number of carbons C14) were

identified from mass spectra and retention times by comparison with those of PUFA No. 1

standard mixture (Matreya LLC, USA). Quantification of fatty acids was done by inte-

gration of appropriate peak areas calibrated with the known concentration of the added

internal standard.

Statistical analysis

Differences in Fv/Fm, fatty acid content or DHA-to-EPA ratio between growth phases and

species were analyzed by a two-way analysis of variance (ANOVA) followed by a simple

main effects analysis when there was a significant interaction. Significant (p\ 0.05) dif-

ferences among growth phases were further analyzed by pairwise comparisons using the

Šidak adjustment for multiple comparisons. Values of relative EPA and DHA content (%

of total fatty acids) were square-root-transformed prior to analysis. All statistical analyses

were performed using IBM SPSS Statistics (version 22) software (IBM Corporation,

Armonk, NY, USA).
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Results

Relative (% of total fatty acid) and absolute (normalized to biovolume) EPA and DHA

content showed large variability between the tested species (Table 2; Fig. 1). The diatoms

(Bacillariophyceae) showed high EPA and a relatively low DHA percentages. In contrast,

the two prymnesiophytes were characterized by a high DHA and a low EPA content.

Rhodomonas salina, a representative cryptophyte species, showed both high EPA and

DHA percentages compared to the other species. Although EPA percentages in S. costatum

were comparable with the other diatoms (9 % of total fatty acids on average), absolute

levels of EPA normalized to biovolume were low (\1 fg lm-3). DHA percentages were

highest in E. huxleyi (up to 20 % of total fatty acids), while absolute levels were

Table 2 Statistical results of two-way ANOVA for effects of growth phase and algal species on relative (%
of total fatty acids), absolute (normalized to biovolume) EPA and DHA content, total fatty acid content
(fg lm-3), maximum quantum efficiency of PSII (Fv/Fm) and DHA-to-EPA ratio

Effect on Source of variation df MS F p

EPA % Species 6 12.221 190.2 <0.001

Growth phase 2 0.444 6.9 0.003

Species 9 growth phase 12 0.577 9.0 <0.001

Residual 42 0.064

DHA % Species 6 18.798 97.9 <0.001

Growth phase 2 0.180 0.9 0.400

Species 9 growth phase 12 0.542 2.8 0.006

Residual 42 0.192

EPA Species 6 61.606 69.3 <0.001

Growth phase 2 19.174 21.6 <0.001

Species 9 growth phase 12 4.245 4.8 <0.001

Residual 42 0.89

DHA Species 6 30.479 58.8 <0.001

Growth phase 2 1.158 2.2 0.120

Species 9 growth phase 12 0.799 1.5 0.148

Residual 42 0.519

Total fatty acids Species 6 6924.594 67.9 <0.001

Growth phase 2 5849.409 57.3 <0.001

Species 9 growth phase 12 840.981 8.2 <0.001

Residual 42 101.932

Fv/Fm Species 6 0.026 15.5 <0.001

Growth phase 2 0.230 138.6 <0.001

Species 9 growth phase 12 0.018 10.6 <0.001

Residual 42 0.002

DHA-to-EPA ratio Species 2 0.321 67.7 <0.001

Growth phase 2 0.158 33.3 <0.001

Species 9 growth phase 4 0.014 3.0 0.052

Residual 16 0.005

Statistically significant p values (p\ 0.05) are printed in bold
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comparable with I. galbana and R. salina (between 3 and 6 fg lm-3). Also, the total fatty

acid content varied significantly between species (Table 2; Fig. 2a). The lowest amounts

(between 1.6 and 8.2 fg lm-3) were found in S. costatum, while the highest total fatty acid

content (122.6 ± 29.8 fg lm-3) was measured in T. pseudonana during the late stationary

phase of growth. For all species, the maximum quantum efficiency of PSII (Fv/Fm)

decreased during growth (Fig. 2b), indicating that the cultures were subjected to stress

during the late stationary phase. The interactive effects of species 9 growth phase were

highly significant (Table 2), indicating that the effect of growth phase on total fatty acid

content was not the same for all species. Out of the seven species tested, four species (P.

tricornutum, T. weissflogii, T. pseudonana and R. salina) showed a significantly enhanced

total fatty acid content in the late stationary phase as compared to the exponential growth

phase (Fig. 2a). Also, the absolute amount of EPA in these species was higher during the

late stationary growth phase than during exponential growth, although this effect was not

statistically significant for P. tricornutum (Fig. 1b). In P. tricornutum, absolute EPA and

total fatty acid content initially decreased with growth, but both levels were significantly

higher at the late stationary growth phase as compared to the stationary growth phase.

Highest absolute EPA levels were found in T. pseudonana and R. salina (8.9 and

7.5 fg lm-3, respectively). The highest increase in EPA during batch growth was found in

T. weissflogii. In this species, the absolute EPA content was 3.4 times higher during the late
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stationary growth phase than during exponential growth. On the other hand, absolute levels

of DHA during the late stationary phase were not significantly higher than levels in

exponentially growing cultures (Table 2; Fig. 1d). DHA-to-EPA ratios were calculated for

species with initial EPA and DHA levels both higher than 1 % (Table 3). In all these

species, the DHA-to-EPA ratio decreased significantly during growth. The highest DHA-
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to-EPA ratio was measured in R. salina during exponential growth (0.72 ± 0.02). The

highest decrease was observed in P. tricornutum. In this species, the DHA-to-EPA ratio

was almost four times lower during the late stationary growth phase than during expo-

nential growth.

Discussion

In this study, we focused on the accumulation of the essential n-3 LC-PUFAs EPA and

DHA in batch cultures of marine algae. Although many studies have demonstrated

accumulation of (neutral) lipids in starved cultures of microalgae, relatively little was

known about the effect of growth phase on EPA and DHA accumulation. Our study

confirms previous results that the absolute amounts of EPA and DHA, but also the total

fatty acid content varies considerably between species (Volkman et al. 1989; Viso and

Marty 1993; Tonon et al. 2002; Mansour et al. 2005; Patil et al. 2007; Boelen et al. 2013).

Consequently, high interspecific variability in their nutritional value exists.

Four out of the seven investigated microalgal species accumulated fatty acids during

batch growth. For E. huxleyi, I. galbana and S. costatum, no significant accumulation of

lipid compounds could be demonstrated. Possibly, other photosynthetic products (e.g.,

carbohydrates) accumulated in these species when entering the nutrient-depleted stage

(Harrison et al. 1990; Granum et al. 2002).

In all lipid-accumulating species, absolute cellular EPA levels were higher during the

late stationary growth phase than during exponential growth. The relative abundances (%

of total fatty acids) of EPA in these algae remained relatively constant during the stage of

growth, while total cellular fatty acid content was significantly increased. This could be an

indication that at least part of the EPA is transferred into or present in TAGs, since in most

algae stress-induced lipids are predominantly in the form of TAGs (Hu et al. 2008). It is

hypothesized that microalgal TAG can serve as a depot for LC-PUFAs, which could be

mobilized for the construction of chloroplastic membranes under sudden changes in

environmental conditions (Cohen et al. 2000; Khozin-Goldberg et al. 2005). High pro-

portions of LC-PUFAs present in TAGs could be an advantage when culturing microalgae

to produce an alternative for fish oil (Tonon et al. 2002; Leu and Boussiba 2014).

The absolute amount of DHA, however, was not affected, and therefore, the DHA-to-

EPA ratio in species containing DHA as well as EPA decreased significantly during

growth. This implies that in these species, the accumulation of EPA and DHA seems to be

regulated by two different mechanisms. This effect could have consequences for the

nutritional quality, since the nutritional value of algae is dependent not only on the total

Table 3 Effect of growth phase on DHA-to-EPA ratio in three species of marine microalgae. DHA-to-EPA
ratios were calculated for species with initial EPA and DHA levels both higher than 1 % (relative to total
fatty acids)

Strain EXP STAT LATE STAT

Phaeodactylum tricornutum 0.43 ± 0.14a 0.41 ± 0.17a 0.11 ± 0.01b

Thalassiosira weissflogii 0.35 ± 0.00a 0.13 ± 0.01b 0.11 ± 0.01b

Rhodomonas salina 0.72 ± 0.02a 0.56 ± 0.05b 0.46 ± 0.02b

Values represent averages (±SD) of three replicate cultures. Different letters per row (species) represent
significant differences at p\ 0.05 among growth phases according to the analysis of simple main effects.
EXP = exponential phase, STAT = stationary phase, LATE STAT = late stationary phase
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amount of EPA and/or DHA but also on the relative proportion of these LC-PUFAs

(Brown 2002; Spolaore et al. 2006). For fish larval nutrition, DHA-to-EPA ratios of

between 1 and 2 are advised (Rodrı́guez et al. 1998). For R. salina, which contains

significant percentages of both DHA and EPA and is used as aquaculture feed (e.g., Gagné

et al. 2010), this would imply that although the total cellular amount of fatty acids is

higher, the nutritional value of this species is lower at the end of the growth phase.

Currently, several microalgal species are being investigated by the aquaculture industry

as fish meal or fish oil replacement in the diet of commercially farmed fish (Kousoulaki

et al. 2015; Sprague et al. 2015; Sørensen et al. 2016). Replacing the traditional EPA- and

DHA-rich, but finite, marine ingredients, fishmeal and fish oil present a significant chal-

lenge for the aquaculture industry (Sprague et al. 2016). Promising fish oil alternatives are

lipids from microalgae which can potentially grow at high growth rates and which can

reach high maximum cell densities with high levels of EPA and/or DHA. Much research

has been focused on heterotrophic DHA-producing species such as Schizochytrium

(Kousoulaki et al. 2015; Sprague et al. 2015). However, Sprague et al. (2015) showed that

the absence of EPA in Schizochytrium-based fish diet significantly impairs the overall

nutritional value. Sørensen et al. (2016) investigated the potential use of the phototrophic

EPA-rich P. tricornutum as a fish meal replacement in diet for Atlantic salmon. They

showed that P. tricornutum can replace up to 6 % of the fish meal without adverse effects

on nutrient digestibility, utilization of the feed and growth performance. In future studies, it

would be useful to test mixtures of DHA-rich Schizochytrium and EPA-rich phototrophic

algal species as alternative sources of EPA and DHA in aquafeeds. In our study, we

showed that intracellular EPA levels in P. tricornutum and three other marine algal species

can be further enhanced by optimizing the harvest time.

We conclude that in some marine algal species EPA accumulates during batch growth.

The highest increase in EPA was measured in T. weissflogii, while highest levels were

measured in T. pseudonana and R. salina. Absolute levels of DHA were not affected,

which can have consequences for the nutritional value of these algae. This effect has to be

taken into account when batch culturing microalgae as a food source in aquaculture

systems.
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Aquacult Int (2017) 25:577–587 585

123

http://creativecommons.org/licenses/by/4.0/
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