
Shen et al. BMC Medical Genomics 2012, 5:51
http://www.biomedcentral.com/1755-8794/5/51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
RESEARCH ARTICLE Open Access
Cell Line Derived Multi-Gene Predictor of
Pathologic Response to Neoadjuvant
Chemotherapy in Breast Cancer: A Validation
Study on US Oncology 02-103 Clinical Trial
Kui Shen1, Yuan Qi2, Nan Song1*, Chunqiao Tian1, Shara D Rice1, Michael J Gabrin1, Stacey L Brower1,
William Fraser Symmans3, Joyce A O’Shaughnessy4, Frankie A Holmes5, Lina Asmar6 and Lajos Pusztai7
Abstract

Background: The purpose of this study is to assess the predictive accuracy of a multi-gene predictor of response
to docetaxel, 5-fluorouracil, epirubicin and cyclophosphamide combination chemotherapy on gene expression data
from patients who received these drugs as neoadjuvant treatment.

Methods: Tumor samples were obtained from patients with stage II-III breast cancer before starting neoadjuvant
chemotherapy with four cycles of 5-fluorouracil/epirubicin/cyclophosphamide (FEC) followed by four cycles of
docetaxel/capecitabine (TX) on US Oncology clinical trial 02-103. Most patients with HER-2-positive cancer also
received trastuzumab (H). The chemotherapy predictor (TFEC-MGP) was developed from publicly available gene
expression data of 42 breast cancer cell-lines with corresponding in vitro chemotherapy sensitivity results for the
four chemotherapy drugs. No predictor was developed for treatment with trastuzumab. The predictive performance
of TFEC-MGP in distinguishing cases with pathologic complete response from those with residual disease was
evaluated for the FEC/TX and FEC/TX plus H group separately. The area under the receiver-operating characteristic
curve (AU-ROC) was used as the metric of predictive performance. Genomic predictions were performed blinded to
clinical outcome.

Results: The AU-ROC was 0.70 (95% CI: 0.57-0.82) for the FEC/TX group (n=66) and 0.43 (95% CI: 0.20-0.66) for the
FEC/TX plus H group (n=25). Among the patients treated with FEC/TX, the AU-ROC was 0.69 (95% CI: 0.52-0.86) for
estrogen receptor (ER)-negative (n=28) and it was 0.59 (95% CI: 0.36-0.82) for ER-positive cancers (n=37). ER status
was not reported for one patient.

Conclusions: Our results indicate that the cell line derived 291-probeset genomic predictor of response to FEC/TX
combination chemotherapy shows good performance in a blinded validation study, particularly in ER-negative
patients.
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Background
Neoadjuvant (pre-operative) chemotherapy is increas-
ingly used in the treatment of early stage breast can-
cer; however, the extent of clinical and pathologic
response varies widely among patients. Identifying indi-
viduals that are most responsive to standard chemo-
therapy regimens would be clinically useful since it
could maximize the benefit among responders and
minimize unnecessary side effects from ineffective
therapy for those who are predicted to be less sensi-
tive. The latter could be encouraged to participate in
clinical trials with newer regimens.
Gene expression profiling has shown that breast can-

cer is a heterogeneous disease at the molecular level
[1,2], which underlies its variable responses to therapy.
Several investigators have attempted to develop multi-
gene predictors (MGP) of response by correlating base-
line, pretreatment tumor gene expression profiles with
observed clinical responses to specific treatments [3-5].
While attractive, this approach has its limitations. Dis-
covery sample size is usually small due to the necessity
to prospectively collect tissue for analysis, and treatment
sensitivity is not distributed equally among various
phenotypic subtypes of breast cancer.
Several investigators suggested that MGPs less biased

by phenotype may be developed from cell line models.
This approach relies on selecting probe sets that are
associated with response from cell lines exposed to
drugs in vitro and using these informative probe sets to
train an MGP model on the cell line data. Several differ-
ent cell line-derived drug response predictors were
developed using the NCI-60 cell lines (http://dtp.nci.nih.
gov/docs/cancer/cancer_data.html); however, when these
predictors were applied to human data to predict re-
sponse, the results were mixed [6,7]. Generally, it is
believed that predictors developed from cell lines that
represent a single histological type of cancer may per-
form better when applied to the corresponding human
cancer type than predictors derived from cell lines of
mixed origin [8]. Validation results in human data re-
main controversial. For example, an MGP derived from
melanoma cell lines was shown to successfully predict
response to temozolomide in melanoma patients [9],
whereas an MGP derived from breast cancer cell lines
was unable to predict clinical outcomes for breast cancer
patients treated by paclitaxel followed by 5-FU, doxo-
rubicin, and cyclophosphamide [10]. Therefore, it is of
interest to continue investigating the feasibility of devel-
oping MGPs using cell lines of the same tumor type.
In this study, we developed an MGP from a panel of

breast cancer cell lines treated with the 4-drug combin-
ation in vitro and validated its predictive ability on pa-
tient samples obtained during a prospective neoadjuvant
clinical trial. We tested 42 breast cancer cell lines for
their sensitivity to the combination of docetaxel, epirubi-
cin, 5-fluorouracil and cyclophosphamide using an
in vitro cell viability assay and used publicly available
gene expression data that match these cell lines to
develop a multi-gene predictor. The predictive perform-
ance of this MGP was validated independently by MD
Anderson Cancer Center on patients from the US On-
cology 02-103 clinical trial. Clinical results of US Oncol-
ogy 02-103 have been previously presented [11,12].
Methods
Patients and Samples
US Oncology 02-103 was a single arm neoadjuvant trial
involving women with stage II/III breast cancer. Patients
with Human Epidermal Growth Factor Receptor 2
(HER2)-negative cancer received FEC 100, which con-
sisted of 5-fluorouracil (Adrucil [5-FU], 500 mg/m2) +
epirubicin (Ellence, 100 mg/m2) + cyclophosphamide
(Cytoxan, 500 mg/m2) IV on Day 1 every 21 days
(x 4 cycles, 12 weeks total) followed by wTX, Taxo-
tere (35 mg/m2) weekly Days 1 and 8 every 21 days
(x 4 cycles, 12 weeks total), (FEX/TX group). Patients
with HER2-positive tumors received FEC 75, which con-
sisted of 5-fluorouracil (Adrucil [5-FU], 500 mg/m2) +
epirubicin (Ellence, 75 mg/m2) + cyclophosphamide
(Cytoxan, 500 mg/m2) IV on Day 1 every 21 days with
trastuzumab (Herceptin) 4 mg/kg IVx1 as initial loading
dose on Day 1 followed by 2 mg/kg IV weekly x12
(x4 cycles, 12 weeks total), followed by wTX, Taxotere
(35 mg/m2) weekly Days 1 and 8 every 21 days (x 4 cycles,
12 weeks total) and Herceptin 2 mg/kg weekly x12,
(FEC/TX plus H group). HER2 status was assessed by
immunohistochemistry (IHC) or fluorescent in situ
hybridization (FISH). IHC ≥3+ was considered positive
and IHC 1+ or 2+ was confirmed by FISH. The primary
study endpoint was pathologic complete response (pCR)
rate defined as no viable invasive cancer in the breast and
lymph nodes after completion of neoadjuvant chemother-
apy. The US Oncology 02-103 clinical trial was approved
by the institutional review board of the practice group
and all patients provided written informed consent to par-
ticipate in the therapeutic trial and to provide a specimen
for genomic analysis of the cancer. Pre-treatment fine-
needle aspiration (FNA) specimens were obtained and
immediately placed in RNAlater (Ambion, Austin, TX),
and shipped to the University of Texas MD Anderson
Cancer Center (UTMDACC) for RNA extraction and
gene expression profiling with Affymetrix HU133A gene
chips (Affymetrix, Santa Clara, CA) as described previ-
ously [4]. Tissue analysis was approved by the Institu-
tional Review Board of UT MDACC. Full gene expression
132 data is available at Gene Expression Omnibus under
accession number GSE42822.

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
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In vitro chemosensitivity testing of breast cancer cell lines
Forty-two breast cancer cell lines were obtained from
ATCC (Manassas, VA) or DSMZ (Braunschweig,
Germany). Cell lines were selected primarily based on
the availability of publicly available expression data,
availability for commercial purchase, and the compatibil-
ity with use in an in vitro chemosensitivity assay. All cell
lines were maintained in RPMI 1640 (Mediatech,
Herndon, VA) containing 10% FBS (HyClone, Logan,
UT) at 37°C in 5% CO2. Upon reaching approximately
80% confluence, each cell line was trypsinized and
seeded into 384-well microtiter plates (Corning, Lowell,
MA) for in vitro chemotherapy sensitivity testing.
Cell lines were treated with the combination of doce-

taxel (0.1nM – 25nM), 5-fluorouracil (0.1 μM - 50 μM),
epirubicin (0.7nM – 13.5 μM) and preactivated cyclophos-
phamide (4-hydroperoxycyclophosphamide) (0.2 μM –
13.6 μM) (TFEC) to simulate the treatment protocol of
FEC followed by TX in the US Oncology 02-103 clinical
trial [13]. Ten serial dilutions prepared in 10% RPMI
1640 media, along with a media control that did not con-
tain drugs, were added in triplicate to each cell line. The
combination treatment was composed of equal volumes
of each drug at each dose number, i.e. combination treat-
ment dose 1 contained equal volumes of the dose 1 con-
centration of each component drug, combination
treatment dose 2 contained equal volumes of the dose 2
concentrations of each component drug, and so on. The
clinical formulation of docetaxel was used, which was
supplied as a concentrated solution of docetaxel in poly-
sorbate 80 plus a vial of diluent (13% w/w ethanol in
water for injection). Cells were incubated for 72 hours at
37°C in 5% CO2. Non-adherent cells and medium were
then removed from each well. The remaining adherent cells
were fixed in 95% ethanol and stained with DAPI (Molecu-
lar Probes, Eugene, OR). A proprietary automated micro-
scope was used to count the number of stained cells
remaining after drug treatment [14]. A survival fraction (SF)

at dose i (i = 1, 2, . . ., 10) was calculated as SFi ¼ mean ið Þ
drug

meancontrol
,

where meandrug
(i) is the average of the number of surviving

cells in the drug treated wells at dose i, and meancontrol is the
average number of living cells in the control wells. The area
under the dose–response curve, which is the summation of
SF values over 10 doses, AUC=ΣSFi, was used to quantify
the sensitivity of each cell line to the treatment of TFEC,
with lower AUC score indicating greater sensitivity.

Statistical Analysis
Development of the TFEC-MGP
Gene expression profiles for the 42 breast cancer cell
lines [15] generated with Affymetrix HG-U133 Plus 2.0
Array (Affymetrix, Santa Clara, CA), were downloaded
from the Gene Expression Omnibus database (Accession
number GSE12777). The RMAExpress V1.05 software
package (http://rmaexpress.bmbolstad.com) [16] was
used to generate probe level intensities by setting the
operating parameters as: Background adjust: Yes;
Normalization: Quantile; Summarization method: Probe
level model. The probe level intensities were log2-trans-
formed before further analyses. Non-specific filtering
was applied to remove probe sets having small variation
(interquartile range < 0.5) or low expression values (me-
dian < log2(100)) across all cell lines. The expression
values were then standardized to mean zero and stand-
ard deviation one for each cell line.
The MGP was developed based on supervised princi-

pal components regression [17,18] and implemented by
using Superpc V1.05 software package (http://www-stat.
stanford.edu/~tibs/superpc) under the programming en-
vironment R 2.11.1 (http://www.r-project.org). Code is
provided in the Additional file 1. Briefly, univariate lin-
ear regression analysis was first conducted to calculate
the association between the cell lines’ AUC scores
derived from the dose response curves and the expres-
sion values for each probe set. Probe sets with a regres-
sion coefficient larger than the threshold (1.8) estimated
by 10-fold cross-validation were selected and their ex-
pression values were used for principle component ana-
lysis. The first principal component was then chosen as
an independent variable in a linear regression model to
predict the patient’s chemotherapy response. A lower
prediction score corresponds to a greater chemotherapy
sensitivity and therefore higher likelihood of achieving
pCR. CEL files from cancer biopsies were provided to PTI
by UTMDACC without any accompanying clinical infor-
mation. These array data were processed by RMA using
the same procedure as the one used for cell lines. Predic-
tion scores were calculated by investigators at PTI and
returned to collaborators at UTMDACC to calculate AU-
ROC curves and compare scores between patients with
pCR versus residual disease (RD) response outcome.
To understand the functions of these probe sets, gene

set enrichment analysis was performed based on the c2
collection of molecular signatures database v3.0 pro-
vided by Broad Institute (http://www.broadinstitute.org/
gsea/msigdb/index.jsp). The q-value of each gene set
was calculated by the permutation test. Gene sets with
q-value less than 0.1 were considered to be enriched.

Clinical validation of MGP
MGP scores were compared between patients with pCR
and RD using the non-parametric Wilcoxon test. The
scores were used as a continuous variable to perform
receiver-operator characteristics curve (ROC) analysis to
evaluate the predictive performance of the MGP. Uni-
variate and multivariate logistic regression analyses were
also performed including ER status, nodal status and

http://rmaexpress.bmbolstad.com
http://www-stat.stanford.edu/~tibs/superpc
http://www-stat.stanford.edu/~tibs/superpc
http://www.r-project.org
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
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tumor grade as categorical variables and age, tumor size
and the MGP score as continuous variables. To control
for the confounding effect of trastuzumab, analyses were
done separately for patients treated with FEC/TX plus H
and patients treated with FEC/TX.

Results
Gene signature for TFEC-MGP
In vitro chemosensitivity results, represented by the area
under the dose–response curve values to TFEC treat-
ment, were determined for each of the 42 breast cancer
cell lines (Additional file 2. Table S1). Through univari-
ate analysis, 633 genes were identified to be significantly
correlated with drug response (q < 0.01). Among them,
the top 291 probe sets with a regression coefficient larger
than the threshold estimated by 10-fold cross-validation
were included in the final model. The corresponding gene
symbols and functions of these 291 probe sets are listed in
the Additional file 2: Table S3. Functional analysis indicated
that these genes are involved in different biological process,
including cell cycle, transcription, translation, immune re-
sponse, and metabolism (Additional file 2: Table S4).
Noticeably, among the identified 44 datasets, several of
them are related to proto-oncogene MYC and BRCA1,
which are very well studied genes that play important roles
in breast cancer pathogenesis.

Clinical validation of TFEC-MGP
A total of 184 pre-treatment specimens were obtained
during the trial. Sufficient and high-quality RNA were
isolated from 111 specimens. Of these, 91 specimens
were included in the final analysis. Reasons for exclu-
sion included failure of cRNA generation (n=8), failure
to meet quality control standards for array analysis
(n=8), and lack of outcome data (n=4). The unexpect-
edly low success rate for RNA isolation may be due to
various reasons, including use of a technology-intense
procedure in community-based offices and, as a result,
a strong learning curve effect on the RNA yields and
success rate. The patient demographic characteristics of
this study population were similar to those from the
trial as a whole with respect age, tumor size, node sta-
tus and ER status, but not to histologic grade and HER-
2 status (Additional file 2: Table S2). The difference is
likely due to a relatively large number of patients with
unknown tumor grade and HER-2 information. Of the
91 patients eligible for our study, 66 received treatment
with FEC/TX and 25 received treatment with FEC/TX
plus H. Table 1 details the demographic characteristics
for these patients.
Among the FEC/TX-treated cases (n = 66), the mean

MGP scores were significantly lower in pCR (0.23, 95%
CI: 0.19-0.26) compared to RD (0.29, 95% CI: 0.26-0.32)
cohorts (Wilcoxon rank test: p<0.01). The AU-ROC was
0.70 (95% CI: 0.57-0.82) across all patients including both
ER-positive and ER-negative cancers (Figure 1). In con-
trast, among the HER2-positive FEC/TX plus trastuzumab
treated cases, the mean MGP scores for cases with pCR
and RD were identical, 0.29 and 0.28, respectively (p=0.57)
and the AU-ROC was 0.43 (95% CI: 0.20-0.66).
We also examined predictive performance separately

for the ER-positive and ER-negative cancers that were
treated with FEC/TX. The AU-ROC was 0.59 (95% CI:
0.36-0.82) for the ER-positive subgroup (n = 37) and
0.69 (95% CI: 0.52-0.86) for the ER-negative subgroup (n
= 28) (Figure 1) (note: ER status was not reported for
one patient). This finding suggests that this particular
MGP may have a discriminating value in ER-negative
and HER-2 negative tumors.
Logistic regression analysis was performed to further

assess the performance of the TFEC-MGP in predict-
ing pCR. Univariate analysis revealed that only the
MGP score was significantly associated with pCR
(p<0.0001; Table 2). Regression analysis for the FEC/
TX plus H group found no significant association be-
tween the TFEC-MGP prediction scores and pCR sta-
tus (Table 3).
Discussion
In this study, we developed a TFEC-MGP from breast
cancer cell lines by associating in vitro drug response
data with gene expression profiling data. Independent,
blinded validation of this MGP using clinical data from
US Oncology 02-103 clinical trial indicated that this cell
line derived MGP was able to differentiate between
patients who would experience pCR and those who
would have RD after neoadjuvant treatment with FEC
followed by TX. This result demonstrated the feasibility
of developing an MGP predicting pCR of breast cancer
patients using chemoresponse data and gene expression
profiling from breast cancer cell lines.
These results differ from a previous study that was not

successful in developing an MGP from breast cancer cell
lines in several important features [10]. This study used
a larger number of cell lines for discovery (42 versus 19).
In addition, in this study, cells were exposed to a drug
combination (instead of single agents) and in vitro che-
mosensitivity was assessed through direct measurements
of cell death (as opposed to biochemical assays). Differ-
ent statistical methods were also used to generate our
prediction model. An important strength of this study is
that prediction results were generated blinded to any
outcome information.
Clinical variables such as ER, PR, HER2 and tumor

grade are well known to be associated with chemotherapy
responses in breast cancer but these were not significant
in univariate analysis in this study. It is desirable to



Table 1 Clinical and demographic characteristics of breast cancer patients treated with FEC/TX (n=66) and FEC/TX plus
H (n=25)

Characteristic 66 patients treated with FEC/TX 25 patients treated with FEC/TX plus H

pCR
No. cases (%)

RD
No. cases (%)

pCR
No. cases (%)

RD
No. cases (%)

All patients 25 (100) 41 (100) 12(100) 13 (100)

Age in yrs

Median (range) 49 (34-69) 49 (26- 67) 50 (37-59) 49 (39-64)

Histology

Invasive ductal (IDC) 24 (96.0) 38 (92.7) 12 (100.0) 12 (92.3)

Invasive lobular (ILC) 0 (0.0) 1 (2.4) 0 (0.0) 0 (0.0)

Invasive mucinous (IMC) 0(0.0) 1 (2.4) 0(0.0) 0 (0.0)

NOS 1 (4.0) 1 (2.4) 0 (0.0) 1 (7.7)

Clinical tumor size at baseline

T1 0 (0) 1 (2.4) 0 (0.0) 0 (0.0)

T2 9 (36.0) 14 (34.1) 4 (33.3) 7 (53.8)

T3 14 (56.0) 23 (56.1) 6 (50.0) 4 (30.8)

T4 2 (8.0) 3 (7.3) 2 (16.7) 2(15.4)

Clinical node status at baseline

N0 8 (32.0) 15 (36.6) 2 (16.7) 4 (30.8)

N1 12 (48.0) 22 (53.7) 7(58.3) 4 (30.8)

N2 2 (8.0) 2 (4.9) 1 (8.3) 4 (30.8)

N3 3 (12.0) 1 (2.4) 1 (8.3) 0 (0.0)

Unkown 1 (8.3) 1 (7.7)

Histologic Grade

1 & 2 4 (16.0) 10 (24.4) 6 (50.0) 3 (23.1)

3 14 (56.0) 26 (63.4) 4 (33.3) 9 (69.2)

Unknown 7 (28.0) 5 (12.2) 2 (16.7) 1 (7.7)

ER status

Positive1 8 (32.0) 20 (48.8) 2 (1.7) 8 (61.5)

Negative 17 (68.0) 20 (48.8) 10 (76.9) 5 (38.5)

Unknown 0 (0.0) 1 (2.4)

HER-2 status

Positive 2 5 (20.0) 5 (12.2) 13 (100) 12 (92.3)

Negative 20 (80.0) 33 (80.5) 0 (0.0) 1 (7.7)

Unknown 0 (0.0) 3 (7.3) 0 (0.0) 0 (0.0)
1Cases where >10% of tumor cells stained positive for ER with immunohistochemistry were considered positive. 2Cases that showed either 3+ IHC staining or had
gene copy number >2.0 were considered HER2-positive.
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develop MGPs that provide independent information of
these clinical variables. Ideally, an MGP would be devel-
oped for each molecular subset of breast cancer. Although
sufficient numbers of suitable cell lines for each tumor
subtype are not yet established to allow MGP discovery by
subtype, our study indicates that informative data could
still be gleaned from combined analysis of all different
breast cancer cell lines. Of note, the subset analysis strati-
fied by ER status revealed that this MGP may provide in-
formation independent of ER status, indicating that the
MGP may have predictive value in both ER-positive and
ER-negative patients. This finding is particularly of interest
for ER-negative patients, whose clinical outcomes are diffi-
cult to predict.
It is also notable that the MGP developed for the FEC/

TX treatment arm did not have prediction benefit for
patients in the FEC/TX plus trastuzumab treatment
arm. This may be due to the small number of patients in
the FEC/TX plus H group, making it highly unlikely to
find an effect due to lack of power. Moreover, while tras-
tuzumab can substantially improve the chemotherapy
response for HER2-positive patients [19], the MGP
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Figure 1 Prediction results for patients receiving FEC/TX with and without H treatment. A: ROC curve for TFEC-MGP for all patients who
did not receive H treatment. B: ROC for TFEC-MGP for all patients who received H treatment. C: ROC curve for TFEC-MGP for ER-negative patients
who did not receive H treatment. D: ROC curve for TFEC-MGP for ER-positive patients who did not receive H treatment.
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developed in the present study did not include drug re-
sponse data for trastuzumab; this may also lead to the
poor performance in FEC/TX plus H treatment arm.
To understand how the predictive performance of an

MGP developed from cell lines compares with the perform-
ance of other signatures developed from patients, we com-
pared our 291-gene signature with three well-recognized
Table 2 Univariate and multivariate analysis results for the FE

Factors Univariate logistic regression analysis

OR (95% CI) p-value

Age 1 .00 (0.95, 1.05) 0.94

ER 0.47 (0.17, 1.34) 0.16

PR 0.51 (0.18, 1.42) 0.20

Nodal 1.27 (0.44, 3.67) 0.65

T 1.10 (0.50, 2.43) 0.82

Grade 1.35 (0.36, 5.09) 0.66

MGP scores 0.00 (0.00, 0.2) 0.01

OR: odds ratio for having pCR vs. RD; CI, confidence interval; p-value. The compariso
(positive vs. negative) PR, progesterone receptor (positive vs. negative); Nodal (posi
genomic signatures which were developed from patients:
70-gene signature [20], ROR (Risk of Relapse) score which
was only based on intrinsic subtype (ROR-S) [21], and ROR
score which combines information from subtype and prolif-
eration genes (ROR-P) [21]. The prediction results based
on these 4 genomic signatures are highly correlated to each
other (data not shown). Moreover, their performance of
C/TX group (n=66)

Multivariate logistic regression analysis

OR (95% CI) p-value

1.01 (0.94, 1.08) 0.8

1.16 (0.19,7.18) 0.87

0.87 (0.14, 5.48) 0.88

1.92 (0.46, 8.01) 0.37

1.3 (0.49, 3.45) 0.60

1.07 (0.24, 4.77) 0.92

0.00 (0.00, 7.28) 0.15

n vs. reference state for the categorical variables were ER, estrogen receptor
tive vs. negative); T (Tumor size); Grade (grade 3 vs. 2) and MGP scores.



Table 3 Univariate and multivariate analysis results for FEC/TX plus H group (n=25)

Univariate logistic regression analysis Multivariate logistic regression analysis

OR (95% CI) p-value OR (95% CI) p-value

Age 0.99 (0.88, 1.10) 0.83 0. 91 (0.68, 1.22) 0.53

ER 0.13 (0.02, 0.82) 0.03 0.01 (0.00, 2.21) 0.09

Nodal 2.25 (0.32, 15.76) 0.41 0.15 (0.00, 7.94) 0.26

T 1.53 (0.5, 4.63) 0.45 0.66(0.07, 6.68) 0.73

Grade 0.22 (0.04, 1.37) 0.11 0.05 (0 .00, 2.33) 0.13

MGP scores 11.93 (0.00, 1.27E+06) 0.67 1.85E+06 (0.00, 1.35E+16) 0.21

OR: odds ratio for having pCR vs. RD; CI, confidence interval; p-value. The comparison vs. reference state for the categorical variables were ER, estrogen receptor
(positive vs. negative) Nodal (positive vs. negative); T (Tumor size); Grade (grade 3 vs. 2) and MGP scores.
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predicting pathological complete response (pCR) is very
similar. For all patients treated by FEC/TX (n = 69), the
AUC-ROC for the 291-gene signature, 70-gene signature,
ROR-S, and ROR-P are 0.70 (0.57 – 0.82), 0.68 (0.81-0.55),
0.77 (0.65-0.89), and 0.74 (0.64-0.89), respectively. This
observation indicates that a genomic predictor developed
from cell lines performs similarly to other genomic predic-
tors derived from patients, which should be considered
along with the other advantages of cell line-based MGP
development.
This study also has several limitations, foremost the

validation sample size was small and therefore confi-
dence intervals around the AU-ROC estimates were
broad. Secondly, we recognize the differences in chemo-
therapy regimen between our in vitro assay and the clin-
ical treatment that patients received. For example, the
serial dilution of TFEC in vitro is not an attempt to
simulate the FEC/TX regimen that was used clinically in
USO 02-103. In addition the concurrent administration
of docetaxel in vitro may not be equivalent to the subse-
quent administration of docetaxel in vivo. This may
affect the performance of the developed MGP. Thirdly,
in our analysis, patient response is divided into either
pathological complete response (pCR) or residual disease
(RD). However, most cases with RD have some degree of
tumor response. An analysis based on RD score (tumor
residual evaluated as a continuous variable) would be
ideal; unfortunately, this information was not collected
in our dataset. Finally, we did not establish MGP cut off
values in this study to define responder versus non-
responder categories for patients, which would require a
substantially larger sample size and a separate independ-
ent cohort to test the validity of the selected threshold.
In the absence of large validation cohorts it remains un-
known whether the true predictive performance of this
assay is sufficiently high or not for clinical use.
Conclusions
In summary, this study provides a proof of principle that
an MGP for TFEC treatment can be generated from
breast cancer cell lines with known response to this com-
bination chemotherapy which remains informative when
applied to human patient data. It is particularly encour-
aging that the predictor has the trend of performing better
for ER-negative tumors, a subset of breast cancers for
which the development of pharmacogenomic response
predictors has proven to be difficult in the past [22].
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