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Abstract
Purpose Adverse effects related to anti-cancer drug treatment
influence patient’s quality of life, have an impact on the
realized dosing regimen, and can hamper response to
treatment. Quantitative models that relate drug exposure to the
dynamics of adverse effects have been developed and proven to
be very instrumental to optimize dosing schedules. The aims of
this review were (i) to provide a perspective of how adverse
effects of anti-cancer drugs are modeled and (ii) to report sev-
eral model structures of adverse effect models that describe
relationships between drug concentrations and toxicities.
Methods Various quantitative pharmacodynamic models that
model adverse effects of anti-cancer drug treatment were
reviewed.
Results Quantitative models describing relationships between
drug exposure and myelosuppression, cardiotoxicity, and
graded adverse effects like fatigue, hand-foot syndrome

(HFS), rash, and diarrhea have been presented for different
anti-cancer agents, including their clinical applicability.
Conclusions Mathematical modeling of adverse effects proved
to be a helpful tool to improve clinical management and support
decision-making (especially in establishment of the optimal dos-
ing regimen) in drug development. The reported models can be
used as templates for modeling a variety of anti-cancer-induced
adverse effects to further optimize therapy.

Keywords Modeling . Pharmacodynamics . Adverse
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Introduction

Adverse effects are a major problem in the treatment with both
cytotoxic drugs and newer targeted therapies, resulting in dose
reductions, dose delays, and treatment cessation. Toxicity can
impair quality of life, jeopardize treatment adherence, and ne-
cessitate dose reductions and dose delays, which can negatively
affect response to treatment and outcome [1, 2]. The tendency in
cytotoxic anti-cancer drug treatment is to dose drugs around the
maximum tolerated dose (MTD), which assumes that the
highest possible dose achieves the maximum effect [3].
Adverse effects are, therefore, frequently observed during treat-
ment with cytotoxic drugs. Targeted therapies are expected to
have less toxicity, mainly because of two reasons: (i) these ther-
apies are specific to a tumor target and induce less off target
toxicity and (ii) targeted therapies might have maximum target
inhibition at lower concentrations than the MTD. The latter has
led to the suggestion that targeted therapies should be dosed
around the optimal biological dose (where target saturation is
maximal) rather than the MTD. However, definition of the op-
timal biological dose is hampered by the lack of validated bio-
markers for efficacy, lack of information on the relation between
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target binding and survival measures, and yet information on the
highest possible dose remains of value [4]. As a consequence,
targeted therapies are still often dosed around the MTD [2].

Adverse effects related to cancer therapy are typically graded
by the National Cancer Institute’s Common Terminology
Criteria for Adverse Events (NCI-CTC-AE). A conventional
and common approach to analyze toxicity data is to calculate
the proportion of patients that experienced a certain (severe)
grade of toxicity [5]. Subsequently, these proportions can be
statistically related to dosing groups, area under the plasma
concentration-time curve (AUC) or other summary variables
for exposure [6]. However, it is essential to have information
on the dynamic relation between exposure and toxicity, which
provides information on when the toxicity occurs, what the se-
verity is over time, and if or when the adverse effect is reversed.
For this purpose, quantitative models are becoming increasingly
important. These models describe the time course of toxicities
related to exposure, as will be described throughout this review.

Since modeling adverse effects is becoming increasingly
important in anti-cancer drug treatment and drug development,
an overview of existing modeling approaches can be helpful for
future research. Therefore, the aim of this review is to give a
perspective of modeling adverse effects of anti-cancer drugs and
report several model structures that describe relationships
between drug concentrations and toxicities, thereby focusing
on the fixed effects of non-linear mixed effects models.

Modeling adverse effects

Myelosuppression

Myelosuppression is the leading dose-limiting toxicity in
treatment with cytotoxic agents. Hematological toxicity con-
sists of low leukocyte, thrombocyte, and platelet counts, po-
tentially leading to life-threatening infections, anemia, and
bleeding. Neutropenia, a subtype of leucopenia, is the most
common and serious hematologic toxicity observed during
t rea tment wi th cyto toxic ant i -cancer drugs [7] .
Myelosuppression can necessitate dose reductions and dose
delays, potentially resulting in suboptimal drug exposure.
Early approaches to describe hematological toxicity aimed at
finding correlations between summary variables of exposure
and summary variables of myelosuppression, not taking into
account the complete time course of either drug concentration
or myelosuppression. Survival fraction of blood cells or per-
centage change in blood count were typically used as summa-
ry variables for myelosuppression, whereas average drug con-
centration, AUC, or peak drug concentration were used to
summarize exposure [8–10]. These models have major limi-
tations such as poor predictive value and lack of description of
the dynamics of toxicity.

Empirical models

The first models describing the complete time course of
myelosuppression were empirical models. One model de-
scribed the time course of leucopenia in patients treated with
etoposide and used a lag time to account for the delay in the
myelosuppressive effect and a cubic spline function, which
represented the deviation of white blood cell (WBC) count
from baseline [11]. An Emax model described the decline in
WBC count from baseline, which was dependent on the effec-
tive concentration of etoposide. A similar empirical model
was published for paclitaxel-induced leucopenia [12].

Semi-mechanistic models

Currently, a more mechanistic modeling approach is used.
Mechanistic models mimick the physiological processes of
hematopoiesis. Generally, this improves the predictive value
of the model, since the mechanism-related parameters repre-
sent actual physiological processes. Hematopoiesis is charac-
terized by proliferation of progenitor cells in the bonemarrow,
followed by maturation and degradation of blood cells [13].
To make useful models for pharmacokinetic and pharmacody-
namic (PK-PD) analysis, several simplified semi-mechanistic
models have been developed (Table 1) [14–19]. These semi-
mechanistic models are all characterized by a proliferation cell
compartment or progenitor compartment containing cells that
have self-renewing capacity and a compartment representing
circulating cells. In order to account for the maturation pro-
cess, that delays the effect of the drug, either lag time or one-
to multiple-transit compartments are added to the model struc-
ture. In some of the semi-mechanistic models, a feedback loop
is incorporated to describe the rebound of blood cells, exceed-
ing the blood count at baseline, which occurs when drug con-
centrations decrease. Typically, this feedback effect is driven
by the amount of circulating blood cells, which affects the rate
of proliferation in the progenitor compartment. Drug effects
were modeled to affect the proliferation rate or the amount of
progenitor cells. Model characteristics of five published semi-
mechanistic models are summarized in Table 1. A general
model structure for myelosuppression is depicted in Fig. 1.

The first semi-mechanistic model developed used a two-
compartment indirect response model to describe the time
course of leucopenia in paclitaxel- and etoposide-treated pa-
tients [14]. The drug inhibited the proliferating cells only dur-
ing a sensitive stage. This model is the only model that used
lag time to mimick the maturation process instead of using
transit compartments.

In 2000, Friberg et al. published a semi-mechanistic model,
modeling the absolute neutrophil counts (ANCs) in 2′-deoxy-
2′-methylidenecytidine (DMDC)-treated patients [15]. This
model contained three additional proliferating compartments
and five non-mitotic compartments. The first-order
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elimination from the first progenitor compartment was propor-
tional to the DMDC concentration. A fraction of the effect of
DMDC on the first progenitor compartment was added to the
other proliferating compartments. The non-mitotic compart-
ments were not affected by DMDC concentration. Cytotoxic
anti-cancer drugs only affect proliferating cells; therefore, this
is a more elegant way of incorporating the maturation chain
and the delay in drug effect as compared to using lag time.

The most well-known semi-mechanistic model for
myelosuppression by Friberg et al. published in 2002 is often
referred to as the golden standard for modeling the time course
of myelosuppression [17]. Development was based on data
from docetaxel-, etoposide-, and paclitaxel-treated patients,
in whomANC andWBCwere measured. The model structure
is described by the following equations:

dProl

dt
¼ kprol⋅Pcells⋅ 1−Edrug

� �
⋅

Circ0
Cir

� �γ

−ktr⋅Pcells

dTransit1

dt
¼ ktr⋅Pcells−ktr⋅Transit1

dTransit2

dt
¼ ktr⋅Transit1−ktr⋅Transit2

dTransit3

dt
¼ ktr⋅Transit2−ktr⋅Transit3

dCirc

dt
¼ ktr⋅Transit3−kcirc⋅Circ

where kprol represents the first-order proliferation input, Pcells
represents the amount of cells in the proliferation compart-
ment, and Edrug represents the drug effect. The feedback
mechanism was described by (Circ0/Circ)

γ, where Circ0 is
the ANC or WBC blood count at baseline, Circ is the amount
of circulating blood cells, and γ is the parameter estimate to
determine the impact of the feedback. Transits 1–3 represent
the amount of cells in the transit compartments, and ktr repre-
sents the rate constant between compartments. Degradation of
circulating cells is described by the rate constant kcirc. The
first-order proliferation input is different from previously de-
scribed models, which used a zero-order rate constant of pro-
liferation. It was assumed that the proliferation, maturation,
and degradation rate constants were equal. Therefore, only
three system-related parameters were estimated. An analysis
was conducted to evaluate the consistency of the system-
related parameters, by fixing them and re-estimating the
drug-related parameters. The drug-related parameter estimates
were comparable. Additionally, the system-related parameter

Table 1 Semi-mechanistic models describing blood count over time

Reference Drug Observed variable Para Trb kprol
c Drug effect

Minami (1998) [14] Paclitaxel WBC 4 Lag time Zero order Emax

Friberg (2000) [15] DMDC ANC 7 9 Zero order Emax

Zamboni (2001) [16] Topotecan ANC 4 1 Zero order Emax

Friberg (2002) [17] Docetaxel, etoposide, and paclitaxel ANC WBC 5 3 First order Linear

Panetta (2003) [18] TMZ ANC 5 2 First order Emax

Bulitta (2009) [19] Paclitaxel paclitaxel EL ANC 5 1d Zero order Linear

WBC white blood cell count, ANC absolute neutrophil count, TMZ temozolomide
a Number of parameters estimated in pharmacodynamic model
b Number of transit compartments or if lag time is used
c Proliferation rate constant
dMaturating pool of cells

Fig 1 General model structure for myelosuppression. Edrug drug effect, ktrmaturation rate constant, kprol proliferation rate constant, kcirc degredation rate
constant, Trn transition compartment, Circ0 circulating cells at baseline, Circ amount of circulating cells, and γ factor for impact of feedback
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estimates were similar for different drugs, enabling inter-
changeability of the model between drugs. In 2003, a model
with similar characteristics was published [18].

The most recent model for myelosuppression is a
multiple-pool life span model for neutropenia [19].
This model estimates the life span of cells staying in
a certain stage, starting with duration of the cells in the
progenitor compartment, followed by duration in the
maturation compartment, and lastly by duration in the
circulation until degradation of the neutrophils. The
model requires extensive computing with use of 17 dif-
ferential equations.

In conclusion, the model published by Friberg et al.
in 2002 is most frequently used and has several advan-
tages above the other models [17]. This model has a
clear separation between drug-related and system-
related parameters, making the model applicable to dif-
ferent drugs. Additionally, the model only estimates few
system-related parameters, allowing it to model sparse
data sets. Four of the reported models in this review
have been compared to the model by Friberg et al.
using ANC data from patients treated with a Plk-1 in-
hibitor [20]. The results of this analysis implicated that
none of the models showed superior performance to the
model by Friberg et al. [17, 20]. Lastly, this model has
been used in multiple studies with different drugs and
research aims and has also been modified and applied to
describe thrombocytopenia in patients treated with cyto-
toxic anti-cancer drugs or targeted therapies [21–33].
The extensive application, the limited number of
system-related parameters, and the overall experience
with this model make it the best starting point for
modeling myelosuppression.

Cardiovascular adverse effects

For both cytotoxic and targeted therapies, cardiovascular
toxicity has been reported. Anthracyclines can cause ar-
rhythmias during or after administration and chronic
cardiac toxicity, resulting in irreversible left ventricular
dysfunction and congestive heart failure (CHF) [34].
Anthracycline-induced CHF has been related to dose,
where patients receiving a cumulative dose of 550 mg/
m2 doxorubicin were at increased risk of developing
CHF [35]. Trastuzumab has also been associated with
cardiac complications, inducing (reversible) left ventric-
ular systolic dysfunction, which can result in CHF [36].
Additionally, tyrosine kinase inhibitors, targeting the
vascular-endothelial growth factor receptor (VEGFR),
have been associated with hypertension and cardiac ar-
rhythmias as well as other systemic anti-cancer drugs
[37–39].

Hypertension

Pharmacodynamic models have been developed for
lenvatinib- and sunitinib-induced hypertension, describing
the change in blood pressure (BP) over time in relation to
treatment (Table 2) [40, 41]. The relationship between
lenvatinib exposure and increase of diastolic (d) and systolic
(s) BP was best described by an indirect response model with
two effect models for dBP and sBP. The plasma concentration
of lenvatinib at the time point of BP measurement was used as
input rate for the indirect effect model with a linear function
[40]. Additionally, this model included the effect of anti-
hypertensive therapy on blood pressure. A similar indirect
response model is used to describe the increase of dBP in
sunitinib-treated patients [41].

Cardiotoxicity

Cardiotoxicity as expressed as decline in left ventricular ejection
fraction (LVEF) was used to develop a pharmacodynamic model
with an effect compartment model to describe the decrease in
LVEF over time, related to trastuzumab exposure [42].
Recovery of the LVEF was implemented in the model.
Additionally, the model incorporated the prior cumulative
anthracycline dose as a covariate and found that this dose
was an important determinant for the sensitivity to LVEF
decline.

The relation between exposure and increase in BP and de-
crease of LVEF, as reported in both papers, are empirical
models [40, 42]. It is, therefore, difficult to extrapolate these
models directly between different drugs that might induce
hypertension.

QT interval prolongation

Anti-cancer drugs, such as anthracyclines and tyrosine kinase
inhibitors, can prolong the QT interval, which can lead to
severe cardiac arrhythmias, such as torsade de pointes [38].
Concentration-QT modeling can provide important informa-
tion on the relation between exposure and heart rate-corrected
QT interval (QTc) [43, 44]. However, these models are mainly
developed for anti-arrhythmic drugs and not for anti-cancer
drugs. A recent publication investigated the effect of
moxifloxacine, a compound that prolongs the QT interval,
by developing a PK-PD model for translational purposes
[43]. The time course of the QT interval is described by the
following three components: the individual heart rate correc-
tion, the circadian rhythm, and the drug effect:

QT ¼ QT 0⋅
RR

RRref

� �α

þ A⋅cos
2π
24

t−∅ð Þ
� �

þ Edrug
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where QT0 represents the QT interval at baseline, RR is the
heart rate, and RR/RRref is multiplied by QT0 to correct for
individual heart rate. A and ø represent the amplitude and the
phase of the circadian rhythm, respectively, and ED represent
the drug effect. Subsequently, the probability of QT prolonga-
tion above a critical threshold (e.g., >10 or >20 ms) can be
derived. An effect compartment can be considered formodeling
the ECG time course [45]. Similar model structures could be
used to model QT prolongation induced by anti-cancer drugs.

Ordered categorical adverse effects

Typically, cancer therapy-related adverse effects are graded
using the ordered NCI-CTC-AE scale, ranging from 0 to 5.
This range represents no adverse effects (0) to mild, moderate,
severe, life-threatening adverse effects, and lastly death (5).
Adverse effects such as vomiting, diarrhea, rash, fatigue, and
hand-foot syndrome (HFS) are solely described by this ordered
categorical scale. A conventional approach to describe the rela-
tion between exposure and the occurrence of a certain grade is
by statistically comparing the incidence of grades between
different dose groups. Early models for these type of adverse
effects used ordered logistic regression or proportional odds
models [46, 47]. Both comparing the incidence of adverse
effects and the ordered logistic regression approach have
shortcomings. In these analyses, only the most severe grade
of the adverse effect observed in a patient is used. By compar-
ing incidences, the already categorized data is dichotomized,
leading to substantial loss of information and ignoring the
time course of the effect. Furthermore, the dependency of
the previous observed grade in predicting the probability of
the occurrence of the next grade is not taken into account. This

problem can be addressed by implementing a Markov pro-
cess in the model. First-order Markov models take into
account the value of the preceding observation. The pro-
portional odds model can be extended with a first-order
Markov model [48]. In this way, the probability of transi-
tion between severity grades of adverse effects depends on
the preceding grade. Typically, the logit transformation is
used to constrain values of probabilities between 0 and 1,
similar to the logistic regression approach. This approach
has been used for modeling different anti-cancer-induced
graded adverse effects (Table 2).

HFS has been described by a proportional odds model with
a Markov process to model the cumulative probabilities of
getting a grade 0, 1, or ≥2 for HFS related to accumulation
of capecitabine [49]. HFS and fatigue in sunitinib-treated pa-
tients have been modeled using a first-order Markov model
that was similar to the extension of the proportional odds
model [41]. Vascular endothelial growth factor receptor 3
(VEGFR-3) was identified as biomarker, and its relative
change over time was modeled as predictor of the occurrence
and severity of fatigue and HFS.

Keizer et al. used a Markov transition model to describe
proteinuria in patients treated with the VEGFR inhibitor
lenvatinib [40]. Using a compartmental structure, each ad-
verse event grade is represented with a compartment, which
in turn is denoted with its own differential equation. The prob-
ability of experiencing a certain grade is represented by the
corresponding compartment amount. The amounts in all com-
partments sum up to 1 at any time. At each observation, these
amounts are re-set to a full probability for the observed state
and 0 for all other states, and hence, a first-order Markov
property is introduced. The rate constants for the movement
of these amounts (i.e., probabilities) between compartments,

Table 2 Pharmacodynamic models describing continuous and categorical adverse effects

Reference Drug AEa Observed variable Parb Drug effect

Continuous adverse effects

van Hasselt (2011) [42] Trastuzumab Cardiotoxicity LVEF 3 Emax

Keizer (2010) [40] Lenvatinib Hypertension BP 3 Linear

Hansson (2013) [41] Sunitinib Hypertension dBP and sBP 3 Linear

Marostica (2015) [43] Moxifloxacine QT prolongation QTc 4 Linear

Categorical adverse effects

Keizer (2010) [40] Lenvatinib Proteinuria CTC 6 Linear

Hénin (2008) [48] Capecitabine HFS CTC 10 Emax

Hansson (2013) [41] Sunitinib HFS and fatigue CTC 12 Emax

Suleiman (2015) [49] Erlotinib Rash and diarrhea CTC 6 Linear

HFS hand-foot syndrome,CTCNCI-CTC-AE, LVEF left ventricular ejection fraction, BP blood pressure, d diastolic, s systolic,QTc heart rate-corrected
QT interval
a Adverse effect
b Number of model parameters estimated in structural pharmacodynamic model (fixed effects excluding drug effect parameters)
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which reflect the transitions between the different grades, are
then estimated. AsMarkovmodels potentially allow transition
between all states in the model, assumptions can be made to
reduce the number of parameters to be estimated. For this
reason, in the analysis of Keizer et al., only the transitions
between neighboring grades were estimated. The following
differential equations were used:

dP Gr0ð Þ
dt

¼ k10⋅P 1ð Þ−k01⋅P 0ð Þ

dP Gr1ð Þ
dt

¼ k01⋅P 0ð Þ þ k21⋅P 2ð Þ−k10⋅P 1ð Þ−k12⋅P 1ð Þ

dP Gr2ð Þ
dt

¼ k12⋅P 1ð Þ þ k32⋅P 3ð Þ−k21⋅P 2ð Þ−k23⋅P 2ð Þ

dP Gr3ð Þ
dt

¼ k23⋅P 2ð Þ−k32⋅P 3ð Þ

Recently, a modeling and simulation framework for
erlotinib-induced rash and diarrhea in patients with NSCLC
was published [50]. The model structure was similar to the
model used by Keizer et al., which was a continuous-time
Markov model. A general structure of a Markov model, incor-
porating 5 grades (0-4), is depicted in Fig. 2.

The use of Markov processes is preferred over use of the
proportional odds model for modeling ordered graded adverse
effects. Markov models allow use of total longitudinal data on
graded toxicities over time. Furthermore, these models take
the preceding grade observed into account, which enables the
precise characterization of the dynamics of toxicity. The
Markov models currently published are empirical models.
More mechanistic elements can easily be introduced in these
models, for instance, using latent variables describing the un-
derlying pharmacodynamic effects. However, this underlying
mechanism is in most cases unknown. The major drawback of
analyzing graded or categorical data is the fact that informa-
tion is lost by using categories. In some cases, there is not a
sufficient number of observations of severely graded adverse
effects. Therefore, grades are sometimes merged together, lead-
ing to loss of already categorized information. However, if the
clinical relevance between merged grades is not profound, this
is an acceptable approach. Though, if available, the underlying
observations might be better than the use of grades (e.g., blood
pressure, instead of grades for hypertension).

Application of adverse effect models

Developed models for adverse effects have been applied to
support decision-making regarding treatment optimization
and clinical development. Ideally, PK-PD modeling frame-
works are developed that integrate data on pharmacokinetics,
adverse effects, and efficacy. An example of such a framework

is available for sunitinib [41]. This paper did not only include
modeling of ANC, fatigue, blood pressure, and HFS but also
investigated if adverse effects were predictive for overall sur-
vival. Hypertension and neutropenia were found predictive for
overall survival, functioning as biomarkers for treatment
response.

Adverse effect models can additionally support
decision-making regarding dose adjustments and dose in-
dividualizations, using simulation methods. The previous-
ly described modeling and simulation framework for
erlotinib-induced rash and diarrhea investigated the safety
of high-dose erlotinib pulses (1600 mg/week + 50 mg/day
remaining week days) proposed, compared to the standard
dose (150 mg/day) and different other dosing regimens
[50]. Based on a simulation analysis using the framework
developed, severe rash was predicted to occur in 20 % of
patients treated with the pulsed dosing regimen, compared
to 12 % in patients treated with the standard dosing regi-
men. In contrast with the common perception, radiotherapy
was found to attenuate erlotinib-induced rash significantly,
which advocates for using erlotinib and radiotherapy to-
gether. The framework also included a survival model,
finding that experiencing rash at any grade was associated
with improved clinical efficacy in terms of survival, albeit
not significantly. Another example demonstrated that
modeling can be helpful for determining individual dose
adjustment of capecitabine to reduce severe grade HFS
while maintaining efficacy [51]. The paper reports a clini-
cal trial simulation in which the proportional odds Markov
model was used on individual patient data [49]. Intolerable
HFS (grade ≥2) was predicted for the next treatment cycle,
based on the previous cycle for each patient. Dose adjust-
ments were made accordingly. Individualized dose adjust-
ments using the Markov model were compared to using
standard dose adjustments and found to reduce the duration
of intolerable HFS by 10 days without loss of efficacy.
Both modeling frameworks are examples of how a model-
ing approach can support dose adjustments and dose indi-
vidualizations using predictive simulation methods.

Lastly, modeling and simulation of adverse effect
models can optimize treatment and support clinical trial
designs. The hypertension model, discussed in this review,
has been used to optimize treatment with lenvatinib [52].
This paper investigated four strategies to clinically manage
lenvatinib-induced hypertension to maximize both the
number of patients on treatment and the average dose level
during treatment, with use of simulations. An adverse
effect-guided dose titration could potentially increase drug
exposure without additional toxicity. Additionally, a de-
sign where anti-hypertensive treatment was followed by
lenvatinib dose reduction proved to keep a large number
of patients on treatment. This approach aimed at minimiz-
ing treatment cessation due to toxicity in order to improve
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response to treatment. The intervention designs were sup-
portive of development of a phase II clinical trial.

Discussion

This review reports several structural models for modeling
adverse effects of anti-cancer drugs. Firstly, the best modeling
approach depends on the type of data available and secondly,
on whether or not prior knowledge of the underlying mecha-
nism of the adverse effect is available. If the adverse effect is
reported as continuous variable and prior knowledge on the
mechanism behind the effect, the best approach is to develop a
mechanism- or semi-mechanism-based model. Mechanistic
models generally have a better predictive performance and
potentially allow for extrapolation beyond the conditions on
which the model was developed. The model by Friberg et al.,
published in 2002, proves to be the best starting point for
modeling hematologic toxicity, with only few pharmacody-
namic parameters to be estimated, and the mechanistic ap-
proach makes the model interchangeable between different
anti-cancer drugs [17]. If no prior mechanistic knowledge is
available or implementation in the model is impossible, data
can be modeled using generic pharmacodynamic effect
models. This more empirical approach can give insight in
how an adverse effect evolves over time, if data is continuous.
In some cases, the underlying continuous measurement is
graded using the NCI-CTC-AE scale. For example, hyperten-
sion can be graded as such, however, the underlying continu-
ous measurement, blood pressure, is needed to grade this tox-
icity. Therefore, blood pressure measurement itself can be
used to develop PK-PD models. In conclusion, if an underly-
ing continuous measurement is available, this longitudinal
continuous data is preferred over ordered graded data, since
it is less prone to loss of information. In subsequent simulation
studies, the clinically well-accepted graded score can still be
derived from the continuous data. Adverse effects like diar-
rhea, vomiting, and HFS are difficult to quantify and are de-
scribed by ordered categorical grades. In this case, the best
approach is to model the probabilities using a proportional
odds model with a Markov process. The probability of a cer-
tain grade will then depend on the previously observed grade,
which is true for almost all observed effects in oncology.

Modeling and simulation methods for analyzing adverse ef-
fects are preferred over the conventional comparison of adverse
effect incidences between dosing groups. Quantitative models

consider the variability between patients, allowing integration
of patient characteristics that might be important in predicting
the safety profile. Patient characteristics can alter systemic
exposure to the drug and may lead to differences in onset,
severity, and duration of adverse effects. Typically, physiolog-
ical factors such as age, body size, gender, kidney function, and
liver function can alter exposure, as well as pharmacogenetic
factors and administration of other drugs [53]. Integration of
these patient characteristics can be helpful in managing individ-
ual dose adaptations. In addition, proposed models can be used
to model adverse effects driven by combination therapy, which
is often applied in the oncology setting.

Established PK-PD models can predict different clinical
scenarios. These simulations are particularly helpful in finding
the optimal relationship between exposure and safety. Ideally,
a PK-PD modeling framework is developed, that integrates
data on exposure, efficacy, and toxicity, to assess the optimal
balance between safety and efficacy [41, 54]. Modeling tumor
growth as a biomarker for efficacy can be of added value in
assessing this balance [55].

In conclusion, mathematical modeling of adverse effects
can provide insight in how toxicities evolve over time and if
or what patient-related factors can impact this time course. In
addition, a modeling approach includes all available data,
minimizing loss of information as is typically the case using
more conventional methods of analyzing toxicity data. At last,
modeling and simulation frameworks have been proven to
support clinical trial designs, to optimize treatment, and to
guide dose adjustments or dose individualizations.
Therefore, modeling adverse effects proves to be a helpful tool
for both improvement of clinical management and support of
decisions regarding drug development.
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