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Abstract In this work we propose methods that exploit context sensor data modalities for
the task of detecting interesting events and extracting high-level contextual information
about the recording activity in user generated videos. Indeed, most camera-enabled elec-
tronic devices contain various auxiliary sensors such as accelerometers, compasses, GPS
receivers, etc. Data captured by these sensors during the media acquisition have already been
used to limit camera degradations such as shake and also to provide some basic tagging
information such as the location. However, exploiting the sensor-recordings modality for
subsequent higher-level information extraction such as interesting events has been a subject
of rather limited research, further constrained to specialized acquisition setups. In this work,
we show how these sensor modalities allow inferring information (camera movements,
content degradations) about each individual video recording. In addition, we consider a
multi-camera scenario, where multiple user generated recordings of a common scene (e.g.,
music concerts) are available. For this kind of scenarios we jointly analyze these multiple
video recordings and their associated sensor modalities in order to extract higher-level
semantics of the recorded media: based on the orientation of cameras we identify the region
of interest of the recorded scene, by exploiting correlation in the motion of different cameras
we detect generic interesting events and estimate their relative position. Furthermore, by
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analyzing also the audio content captured by multiple users we detect more specific
interesting events. We show that the proposed multimodal analysis methods perform well
on various recordings obtained in real live music performances.

Keywords Multimodal . Indexing . Sensor . Video . Multi-camera . Multi-user . Context .

Event

1 Introduction

In the past decade there has been an enormous growth in both the amount of user generated
multimedia content (images, video and audio) and in the means for its sharing (over the
Internet). This was enabled by rapid advances in the multimedia recording capabilities of
mobile devices and by the growth of social networking services. It is thereafter becoming
increasingly important to have richer semantic information about the media content in order
to enable its effective storage, retrieval, and usage. A typical retrieval use case is searching
within a video for particular events or objects which are considered to be interesting or
salient. An example of a salient event in a video of a concert is the end of a song performed
by the musicians. In order to effectively retrieve such events or objects, indexing the
multimedia content is a necessary preliminary step. The indexing process can be performed
either manually by a human (by a process known as manual annotation) or automatically.
Automatic techniques are preferable when the amount of media items to annotate is large. In
both manual and automatic cases a preliminary step is required before indexing the media
content: the analysis of the content itself in order to understand the semantics that are present
therein.

Automatic analysis of multimedia data is a very challenging task which has been
addressed for many years by researchers from a wide range of scientific fields such as
computer science, signal processing, computer vision, pattern recognition, artificial intelli-
gence, etc. The main approach to tackle the multimedia understanding problem has focused
on analyzing the video or audio content data, sometimes in a multimodal fashion (as we will
discuss in the next section dedicated to the prior art). However, nowadays a large portion of
camera-enabled electronic devices (such as modern smartphones) embed various auxiliary
sensors such as accelerometers, gyroscopes, magnetometers (compasses), Global Position-
ing System (GPS) receivers, light sensors, proximity sensors, etc., which provide rich
contextual data. By capturing auxiliary sensor data while the device is recording a video it
is possible to obtain additional information about the recorded scene [13]. For example,
these sensors are often used during the media acquisition to provide some basic tagging
information such as the location used in geo-tagging. As proposed also in [12], by inferring
the context of the recording process (for example, how the users move their cameras) it
would be possible to reduce the distance between low-level and higher level analysis (known
as the “semantic gap”). Furthermore, the results of the sensor data analysis can be used in
combination with the results obtained from audio- and video-content analysis.

In this paper we propose a set of methods which exploit auxiliary sensor data for
detecting interesting events and inferring information about the recorded activity in user
generated videos from individual or multiple cameras. Therefore the contribution of this
work is twofold. First, we develop methods for multimodal analysis of each individual
video, in order to detect:

& Camera movements
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– Camera panning.
– Camera tilting.

& Video-content degradations

– Camera shake.
– Wrong camera orientation.

Second, we develop multimodal analysis methods applied jointly to videos of the same
scene recorded by multiple users (for example at the same public happening, such as at a live
music show), in order to obtain information about:

& Angular Region of Interest of the recorded public happening. We refer to it as the “ROI”.
& Generic interesting events from co-occurring camera motion in multiple videos:

– Correlated camera panning.
– Correlated camera tilting.

& Relative positions of those cameras that perform correlated movements with respect to a
common object of interest.

In addition, we provide examples of how the detected generic interesting events can be
used for discovering the occurrence of more specific interesting events. This is accomplished
by combining the auxiliary sensor data analysis with the more traditional multimedia content
analysis.

The information extracted by the proposed multimodal analysis methods can then be utilized
by several applications or services dealing with multimedia content, in particular those which
may benefit from additional knowledge about it. Examples of such applications are:

& Automatic video retrieval—Multimedia archives would benefit from the availability of
additional information about videos. For example, it would be possible to retrieve a
video recorded during a certain camera movement, or a set of videos recorded during a
correlated camera panning (which may contain an interesting event, for the reasons that
we will explain in Section 5).

& Automatic video summarization techniques usually build on the availability of informa-
tion about salient events which were recorded by the camera(s) [19]. Salient events are
the most interesting portions of the video—which summarize the video itself. In this
way, a video summary of a public happening consists of only those video segments
capturing the salient events.

& Automatic multi-camera video mash-up generation is another potential application
which makes use of detected interesting events or other information about the video
content recorded by multiple cameras. A multi-camera video mash-up is a sequence of
video segments captured by different cameras which are aligned in time in order to
follow the original timeline. The ultimate goal of methods that automatically generate
such video mash-ups is to obtain a result which is similar to what a human (for example a
director) could produce. As for the creation of video summaries, this would require
knowledge of high-level content information; for example, knowledge about the pres-
ence of an interesting event captured by a certain camera would be used for switching
view to that camera when the event is taking place. By considering the video content
quality, segments of low quality (e.g., shaky segments) could be discarded. Also the
knowledge of the mutual distance between different cameras can be exploited in the
context of multi-camera video mash-up generation.
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An illustration of the extraction and utilization of multimodal information from multiple
capturing devices is provided in Fig. 1.

2 Prior art

A significant amount of work has already been done for analyzing video or audio content in
order to extract low- and/or high-level descriptors and concepts. A set of relatively low-level
descriptors for multimedia indexing and retrieval are made available as part of the MPEG-7
content description standard [20]. As already discussed in the introductory section, in this
paper we mainly focus on the analysis of videos for detecting the presence of camera
movements, video degradations and interesting events, for estimating the relative distance
between cameras and for identifying the region of interest. In the following we briefly
describe prior works which address each of these problems, by also highlighting their issues
and how our methods attempt to solve them or how their approaches are different from ours.
As our paper is based on multimodal analysis, we will describe prior works utilizing the
same kind of approach. An interesting review on the start-of-the-art of multimodal analysis
is presented in [30]. In the review one of the conclusions that the authors come up with is
that “multimodal analysis is the future”. Furthermore, whenever possible, we specify the
purpose for which the described analysis technique is thought to be used by the authors, i.e.,
for multimedia indexing and retrieval, for automatic video summarization, or for automatic
multi-camera video mash-up production.

Detecting the camera motion performed by individual cameras by means of video content
analysis has been studied extensively in the last twenty years. Early examples of such works

Fig. 1 Overview of the proposed analysis which exploits multiple cameras and multiple modalities
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are described in [34] and [16]. A more recent contribution which is of particular interest to
our paper, as it considers user generated videos, is the one proposed by Abdollahian et al.
[1]. The authors detect the camera movements for the purpose of automatically generating
video summaries. In particular, the camera motion is regarded as indicator of the camera
person’s interests in the scene, and is analyzed by means of content analysis for identifying
key-frames and regions of interest within a key-frame. In [10] and [24] camera motion is
detected for the purpose of automatically generating video summaries. In [10] fast camera
motion is detected as it can cause blurry images. In [24] camera movements are detected for
determining scene boundaries. These methods are all based on video-content analysis. This
implies two things: they are computationally demanding and their performance is impaired
by the presence of moving objects in the scene and by motion blur in the video frames.
Instead, the camera motion detection methods that we propose in this paper do not analyze
the effects that motion has on the recorded visual data but directly measure the camera
movements by using motion sensors.

Video quality estimation plays an important role in all the three purposes of multimedia
analysis that we are considering in this paper. In particular, in multimedia indexing and
retrieval applications it would be useful to know which video segments have low quality so
that they are not retrieved as a result of a query (if not otherwise specified). Furthermore,
video summaries and multi-camera mash-ups should not contain any low-quality segments
either. Shrestha et al. [28] proposed an automatic video mash-up system that takes into
account the video quality. In particular, they use a quality measure [29] which is based on the
blurriness, blockiness, shakiness and brightness of the video recordings. All of these four
measures are determined from the video content; in particular, the shakiness depends on the
motion between consecutive frames; the brightness depends on the pixel intensities within a
frame, and the blurriness [22] depends on the average extent of edges in the frame. In [21]
the authors propose a novel method for detecting the 3D camera-shake trajectory from the
captured image. In [32] home videos are considered. Features based on three motion
properties, namely speed, direction and acceleration, are extracted from video segments.
Subsequently, such video segments are classified as blurred, shaky, inconsistent or stable
using Support Vector Machines. In our method we also analyze the direction of the camera
motion and the acceleration, but we obtain them directly from the accelerometer and not
from the image content. Instead, the works described in [21, 28] and [32] are based on
content analysis. In the context of photography, data captured by motion sensors is exploited
for shake analysis in [27], wherein the authors target the detection of non-shaky temporal
segments during which allowing the camera to capture a photo. In [8] the authors analyze
sensor data in real-time for video stabilization in security surveillance systems. However
they do not discuss the details of the actual analysis being performed. In our approach
instead we consider user generated videos captured by mobile phones. We analyze streams
of recorded sensor readings, representing contextual information of such videos, to detect
camera shake throughout each recorded video (and classify this shake according to its
strength). In this way, we mark those video segments which have been detected as shaky,
for example in order to exclude them in a multi-camera video production or in the results of a
query for the case of multimedia retrieval applications. Our method works in a different way
than [8] and we will give more details in Section 4.2.1.

Regarding the estimation of the region of interest in videos captured by multiple cameras,
the prior art has mainly considered visual sensor networks for surveillance or for environ-
ment monitoring. Thus, as for our knowledge, no prior works have dealt with estimating the
region in which people are interested the most. For surveillance/monitoring types of
scenarios it is important to determine the “area of coverage” of the deployed cameras.
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Examples of such prior works are given in [18] and in [7]. In [18] the authors describe a
method that maximizes the area of coverage of a randomly deployed directional sensor
network. In [7] mobile sensors are used in order to reduce the number of required sensors
and to increase the robustness against dynamic network conditions. The authors consider as
the area of coverage the cell into which a sensor enters from a neighboring cell. These
methods are related to what we propose in this paper, but they attempt to achieve a different
goal. In fact our region of interest estimation method tries to understand where the angular
focus of main attention is in a public happening, without actively controlling the sensors (as
instead it is done in [18]). Also, as opposed to [7], we do not aim to reduce the number of
recording cameras and our region of interest depends on the directions towards which the
cameras are pointed.

Detecting interesting/salient events in videos has been a research topic for long time now,
and it is still an open problem as it requires knowledge about the high-level semantics
contained in a video. In the following we firstly discuss some of the existing content-based
multimodal event detection methods (i.e., those combining the analysis of video, audio and
eventually text) for the purpose of multimedia retrieval. In [4], events are extracted from
news videos in a multimodal unsupervised fashion. This method combines information from
audio, visual appearance, faces, and mid-level semantic concepts by applying coherence
rules. Some of the considered events are interview, dialog, introduction, commercial, anchor,
reporter. In [26] the authors study the joint modeling of text and image components of
multimedia content, by exploiting correlations between the two components. The method is
applied for cross-modal retrieval, i.e., for retrieving text documents in response to query
images and vice-versa. It is shown that the cross-modal model outperforms existing uni-
modal image retrieval systems. As in [26], in one of our event detection methods we also
exploit correlations between different modalities, namely between motion sensor data and
audio-content data. However, the works described in [4] and [26] analyze visual data (apart
from other types of data) which is usually computationally expensive. The analysis methods
that we propose are instead light-weight, as they mainly consider auxiliary sensor data
sampled at low rates, as we will describe in the next sections of this paper. Therefore our
methods are very suitable for being employed in large-scale video analysis frameworks.

Event detection is not restricted only to content searches made by users (i.e., to perform
video retrieval) but it plays a key role also in automatic video summarization applications. In
[25] a generic architecture for automated event detection in broadcast sport videos by means
of multimodal analysis was proposed. Low-level, mid-level and high-level features were
extracted from the audio and visual content (mainly from color and motion information) for
detecting events. Some of the high-level features detected were “Audience”, “Field”,
“Goal”, “Close-up of player”, “Tennis point” and “Soccer goal”. For detecting an event,
the system looks for a certain temporal pattern of high-level features which could be either
co-occurring or in temporal sequence.

Automatic or semi-automatic multi-camera video mash-up generation is another notable
application of high-level events detection. In [15], a system for organization of user-
contributed content from live music shows is presented. The authors consider as interesting
events those time-intervals for which a higher number of captured videos is available.
However, this method does not further analyze each extracted time-interval for detecting
more specific interesting events happening within it. Instead we propose to detect such
higher-level events by exploiting multiple modalities captured by multiple recording devi-
ces. Another related work is presented in [14] and it targets group-to-group videoconferenc-
ing. Therein, events (such as the presence of a dialogue) are defined by Ontology Web
Language models, and state changes in the resulting video stream are triggered by reasoning
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on the event ontology. View selection based on detection of events in multi-camera systems is
performed also in [23], where the authors have modeled events specific to an office environ-
ment. Low-level features are manually annotated and given to a Bayesian network (BN) for
learning the event models. The obtained BNmodel is then used for the recognition of events by
analyzing the features extracted from all cameras. View selection considers the camera which
provides the optimal view in terms of recognition probability of given event. Examples of
detected events are: “Cleaning”, “Conversation”, “Meeting”, etc. The prior works on multi-
camera video mash-up described in [14] and [23] consider “clean” and controlled recording
environments (e.g., laboratory environments), where the cameras are still and are capturing a
non-noisy audio scene. Instead, we analyze user generated videos which are typically corrupted
by unintentional camera motion and where the recording environment is often not known a
priori or predictable (e.g., in the case of recording an unanticipated event). A method for
detecting spatio-temporal events of interest in single and multi-camera systems is described in
[31], in which low-level events (denoted as primitive events) are used as building blocks and
combined by several available operators (AND, OR, SEQUENCE, REPEAT-UNTIL, and
WHILE) for detecting semantically higher level events (denoted as composite events). The
events are not predefined and hard-coded; instead they are specified by the users in the form of
composite events. Examples of primitive events are the followings: moving objects in a region
of interest, directional motion of objects, abandoned objects, object removal, trip wire, and
camera blinded/moved. The event detection methods presented in [14, 23] and [31] analyze
video and/or audio content data. This can represent a bottleneck, as the analysis would become
computationally too complex when the number of videos or cameras is too high. In [3],
interesting events are detected when users behave in a similar way in terms of view similarity,
group rotation, and acoustic-ambience fluctuation. In addition to detecting interesting events by
content analysis, the authors also mention the use of compass to detect what they call group
rotation, indicated by a large number of people rotating towards the event. They use a special
setup where mobile phones are attached to the clothes of the camera users and are used to record
during a happening. Instead in our work we rely solely on user generated content without any
restrictions on the camera use.

Regarding prior work on estimating the distance or the position of cameras, no prior work
has been done on exploiting the correlated motion of cameras capturing the same (moving)
object and relying only on auxiliary sensor data. However, one interesting related method is
presented in [2], in which the relative position of non-overlapping cameras is estimated by
recovering the missing trajectory points in the unobserved areas. For this, the algorithm uses
Kalman filtering and linear regression, but the authors do not explain how to obtain the
trajectory data from the audio-visual content (which is postponed to the future work). In [11]
the relative position between a device and a stationary object of interest is estimated by
fusing vision and inertial sensors (accelerometer and gyro). Our approach does not need any
specific landmark for estimating the mutual distance. Also, it is totally independent of the
video or audio content, as it analyzes only motion sensor data.

Unlike some of the discussed prior works, the methods for analyzing videos that we
propose in this paper consider videos captured by users in a non-controlled environment
(i.e., not in a laboratory, but in a real usage scenario), using camera-enabled mobile phones
without any restriction on how to handle them. Furthermore, we mainly analyze contextual
data (from auxiliary sensors) captured simultaneously with the video recording, thus avoid-
ing performing computationally expensive processing of the visual data. The topic of
analyzing contextual data for the purpose of inferring information about media content has
received limited attention by the research community. In [6], the authors study the use of
geo-location, image content and compass direction for annotating images, for the purpose of
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image retrieval. The use of compass (group rotation) and accelerometer (for shake detection)
was mentioned in [3]. In particular, accelerometer variance is used to detect if an interesting
shot is stable but the authors do not elaborate any further on this topic.

The rest of the paper is organized as follows. In Section 3 we introduce the auxiliary
sensors that we use in this work, background information about the estimation of camera
motion, and some of the video degradations commonly experienced in user generated video.
Section 4 describes the methods that we propose for performing multimedia indexing by
individually analyzing sensor data from each camera. In Section 5 we describe our methods
for extracting information (i.e., detecting events and estimating relative distances and ROI)
by jointly analyzing multimodal data captured by multiple cameras. Experimental evaluation
and related discussion are given in Section 6. Finally, Section 7 contains a general discussion
on the developed methods, on future directions of our research, and our concluding remarks.

3 Preliminaries

In this section we provide background information that is the basis for the work we describe
in the subsequent sections. In particular, we introduce the auxiliary sensors that we consider
in this work, an overview on camera motion types, and some of the video degradations
commonly experienced in user generated video.

3.1 Auxiliary sensors in mobile devices

As we mentioned, one of the main contributions of this work is the exploitation of auxiliary
sensor modality for analyzing user generated video content. It is therefore important to
introduce the sensors we use:

& Tri-axial accelerometer,
& Compass (tri-axial magnetometer).

A tri-axial accelerometer records acceleration across three mutually perpendicular axes.
One very important characteristic of this sensor is that when there is lack of other acceler-
ation it senses static acceleration of 1g (approximately 9.8 m/s2 at sea level) in the direction
of Earth’s center of mass. This relatively strong static acceleration allows identifying the tilt
of the camera with respect to the horizontal plane, i.e., the plane that is perpendicular to the
gravitation force. We fix the camera orientation with respect to the three perpendicular
accelerometer measurements axes as shown in Fig. 2.

We consider electronic compasses realized from tri-axial magnetometers. These sensors
output the instantaneous horizontal orientation towards which they are pointed with respect

Fig. 2 Illustration of accelerome-
ter data axes alignment with
respect to the camera. Also the
two camera movements consid-
ered in this work are shown (i.e.,
panning and tilting)
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to the magnetic north. That is, the output of the compass is given in degrees from the
magnetic north. By using a tri-axial magnetometer, the sensed orientation of the camera is
correct even in the presence of tilt (with respect to the horizontal plane).

Accelerometers and compasses provide mutually complementary information about the
attitude of the device in which they are embedded. Accelerometers provide the angle of tilt
with respect to the horizontal plane whereas compasses provide information about the angle
of rotation within the horizontal plane (with respect to magnetic north). In case of a camera
embedding these sensors, an accelerometer can provide information about tilt movements,
whereas a compass can provide information about panning movements.

We assume that the sensor readings are sampled at a fixed (but possibly different for the
individual sensors) sampling rate. Also, we assume that the sampling timestamps for the
sensor data are available and they are aligned with the start of video recording. The recorded
sensor data can be regarded as a separate data stream. In the evaluation section (Section 6),
we show that these assumptions are reasonable and can be readily satisfied without special-
ized hardware setup.

Other auxiliary sensors which can be found embedded in modern smartphones are
gyroscopes and GPS receivers. Gyroscopes estimate the rotational position of the device
they are embedded in, by measuring and integrating the angular velocity. GPS receivers
provide an estimate of the device location in the form of a geographical coordinate pair.
However, in this work we do not consider these two types of sensors for the following
reasons. For the use cases addressed in this paper the orientation accuracy provided by the
electronic compass (for determining panning movements and the ROI) and the accelerom-
eter (for detecting tilting movements and wrong camera orientation) was considered to be
sufficient. Also, our test recording devices did not embed gyroscopes, so we relegated their
use to the future work. GPS receivers were not considered as they would provide the location
information only when the cameras are outdoors, whereas we target both outdoor and indoor
public happenings.

3.2 Camera motion

In cinematography camera motion is regarded as one of the most important types of
cinematic techniques. Camera motion can be classified into two main categories: rotational
and translational. In this work we consider only rotational camera motion, as it is the most
common case for user generated videos. In particular, we focus on camera panning and
camera tilting.

Camera panning is the horizontal rotational movement of a camera, whereas camera
tilting consists of rotating the camera in the vertical direction with respect to the horizontal
plane (see Fig. 2). Both of these camera movements are commonly performed either for
following an object of interest or for changing the focus point (or direction) of the recording.

The detection of camera motion is commonly regarded as global motion estimation, as
opposed to estimating the motion of objects present in the recorded scene. To obtain
information about the camera movements, there are mainly two approaches: content based
techniques and motion-sensors based techniques. As already described in the section
dedicated to the prior art, the most common techniques are based on video content analysis
(such as for example in [1] and [24]). Such methods analyze changes in pixel data between
subsequent frames of the video for estimating the displacement of objects with respect to the
camera view. Unfortunately, these content based techniques are typically computationally
demanding, furthermore their performance could be impaired by the motion of objects
present in the recorded scene.
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3.3 Video degradations

The degradations that we consider are camera shake and wrong camera orientation (with
respect to the horizontal plane). We shall briefly describe them in what follows.

Unintentional camera shake is a notable problem in the most common use case of holding
the camera by hands (i.e., not supported by a tripod or a stand). The problem becomes even
worse with elapsing of the recording time as the hands get tired. Not limited only to
unintentional hand shake, there are often other factors such as shake due to movement
(walking or being transported) of the user holding the camera. For example, fast or hectic
camera moves are a common characteristic of handheld video recording as the user may
point the camera swiftly to a different direction in order to capture unanticipated events or
simply due to lost attention. These also fall in the category of shake.

When a video mash-up (or summary) is created by temporally merging video segments
captured by multiple cameras, it is important to have all video segments recorded in the same
camera orientation, i.e., either all in landscape mode (in which the major axis of the sensor/
display is parallel to the horizontal plane) or all in portrait mode (in which the major axis of
the sensor/display is perpendicular to the horizontal plane). However, in professional multi-
camera productions videos are almost never captured and displayed in portrait mode. Thus,
we define “wrong camera orientation with respect to the horizontal plane” as the orientation
of the camera when it is in portrait mode. This wrong camera orientation represents yet
another problem that is characteristic of non-professional video recording. In fact people are
used to record for their own personal video archives without worrying about the camera
orientation, because each recorded video is usually watched individually (i.e., one at a time).

4 Multimodal analysis of individual videos

In this section we consider individual user generated videos which have been recorded by a
camera-enabled device while auxiliary sensor data was simultaneously captured. For each of
such videos we analyze the associated auxiliary sensor data for detecting camera motion and
video degradations. Performing such detections is important for example in video summa-
rization or in multi-camera video production, where too fast camera motion or low quality
video content are not desirable and should be excluded. Furthermore, we utilize indexed
camera movements within other multimodal analysis methods that we present in this paper
(generic and specific interesting event detection, mutual distance estimation). The important
and novel aspects of this section consist of analyzing auxiliary sensor data associated to
individual user generated videos (which have been recorded without any restrictions on the
use of the camera-enabled devices) in order to detect camera motion and video degradations.

4.1 Detection of individual camera moves

In this sub-section we develop methods for detecting camera panning and camera tilting in
individual user generated videos by means of multimodal data analysis. The novelty
introduced by our methods consists of exploiting context sensor data (from the auxiliary
sensors considered in Section 3.1) for camera motion detection, in order to overcome the
limitations of content-based camera motion estimation (already discussed in Section 2 and in
Section 3.2). Our global motion detection methods are computationally efficient, and their
performance does not depend on the effect of camera motion on the video-content data as it
does instead for the content-based techniques. The individual camera moves that are
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detected by our proposed methods represent low-level events and they are the basis for
discovering the higher-level information presented in Sections 5.2, 5.3 and 5.4. Before
describing the details of our panning and tilting detection algorithms (described in subsec-
tions 4.1.2 and 4.1.3), we first discuss the way by which we achieve detection of camera
motion that takes into account the camera zoom level.

4.1.1 Zoom-invariant camera motion

It is important to notice that camera movements affect the video content that is being
recorded in a different manner depending on the angle of view of the camera. The angle
of view is the angular extent of the scene which is captured by the image sensor. A camera
move (panning or tilting) of certain angular extent has greater impact on the recorded scene
when the angle of view is narrower. The angle of view depends on the size of the image
sensor, on the focal length (optical zoom) and on the application of digital zoom. Provided
that the image sensor has fixed size, the changes to the angle of view are due to changes in
the zoom (optical or digital). Due to non-square aspect ratio of the imaging sensors, the
angles of view across the horizontal and across the vertical dimensions differ; thereafter, we
refer to them as αh and αv, respectively.

The actual change to which the recorded video scene is subject during a panning depends
on the angle of view in horizontal direction αh used during the recording, as illustrated in
Fig. 3. For a camera panning of θp degrees the camera view changes by a ratio of rh ¼
θp=ah

� �
where rh≥1 indicates a complete change of the viewed scene. For a ratio rh<1, the

panning will result in keeping 100rh% of the view after the panning ends. Analogously, for
camera tilting, the angle of view in vertical direction affects the actual change of scene ratio,
which is given by rv0(θt/αv), where θt is the span of the camera tilting.

Consequently, the angle of view affects the perceived (from the video content) speed of
camera motion, which we analyze for detecting camera panning and tilting. We thereafter
propose to measure the scene-change rates Rh and Rv as indicators of the perceived speed of

Fig. 3 Illustration of the different visual impact of a panning extent of 28° on the recorded scene, when the
zoom level changes
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camera motion, which are obtained from the angular speed of the camera (in respectively
horizontal and vertical directions) and from the angle of view in the following way:

Rh ¼ rh
Δt

¼ θp
ah �Δt

¼ wh

ah
ð1Þ

Rv ¼ rv
Δt

¼ θt
av �Δt

¼ wv

av
ð2Þ

where ωh and ωv are the angular speeds respectively in horizontal direction and in vertical
direction.

4.1.2 Camera panning

In order to detect the camera panning, we analyze the data captured by the electronic
compass during the video recording activity, instead of relying on video content analysis.
This method for detecting camera panning requires much less computational complexity
than methods based on video content analysis. Also, we analyze the real motion of the
camera and not the effects the camera motion has on the recorded video content. Therefore,
our method is not affected at all by the motion of objects on the scene.

For detecting a panning event we perform the following steps:

Algorithm 1—Camera panning detection

1. Apply low-pass filtering to the raw compass data.
2. Compute the first discrete derivative over time of the filtered compass signal, which

represents the angular speed of the camera.
3. Scale the obtained angular speed by the reciprocal of the angle of view, obtaining

the rate of scene-change in the horizontal direction Rh.
4. Select the peaks of the obtained rate of scene-change by using a threshold TP.

The low-pass filtering in the first step is necessary to avoid obtaining peaks which are due
to short or shaky camera movements, rather than to intentional camera motion. The
threshold has been set as TP03.08·10

−3 based on extensive empirical optimizations and it
is such that for the reference value of the angle of view αh065 deg (which corresponds to
minimum zoom level in our case), a panning is detected if the camera moves horizontally
with angular speed of at least ωh02 deg/sec. An illustration of how camera panning is
detected from the compass signal is given in Fig. 4. Each camera panning is represented by
two timestamps: start- and stop-panning timestamps.

Furthermore, we classify the detected panning movements with respect to their speed. A
panning can be a slow one, performed by the user with the intent of capturing the scene
during the camera motion (e.g., for obtaining a panoramic panning or for following a
moving object), or a faster one, for example performed in order to change the focus point
(or direction) of the video recording. As already described in Section 4.1.1, a certain angular
speed of a panning can have different visual impacts on the recorded scene when using
different angles of view (e.g., different zoom levels). In fact, for the same angular speed the
scene recorded during a panning changes more rapidly when the camera is using a greater
level of zoom. Therefore, in order to account for the effects of the zoom level, for classifying
each detected panning we compare its scene-change rate Rh with a threshold TS09.85·10

−3.
If Rh is greater than TS then we mark the panning movement as fast, otherwise as slow. The
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threshold TS has been set after extensive experimentations and it is such that, for the
reference value of the angle of view αh065 deg, a panning with horizontal angular speed
exceeding 6.4 deg/sec is considered a fast panning. Figure 5 shows a sequence of panning
movements and their classification. Furthermore, Fig. 6 shows the detection and classifica-
tion of panning movements together with the video frames captured before and after each
panning.

4.1.3 Camera Tilting

For detecting camera tilt movements, we exploit the ability of the accelerometer to detect
both:

& the steady-state camera tilt angle (i.e., when no tilting is being performed by the
cameraman),

& the speed and duration of a camera tilting.

We assume that the camera tilting involves marginal translational acceleration—especial-
ly when compared to the Earth’s gravitational component of 1g. Actually, this assumption
should be satisfied in order to capture video that does not suffer from obtrusive camera shake
or motion blur. When the cameraman is performing a tilting movement, the gravitational
component changes so that it gets distributed between the X and the Z axes from Fig. 2.

Let us define the angle of tilt as the angle between the Z axis and the horizontal plane. The

angle of tilt for a given instantaneous static acceleration vector, A
!¼ AX ;AY ;AZ½ � is

θ ¼ arctan
AZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AXð Þ2 þ AYð Þ2
q ð3Þ

We compute the discrete derivative of the obtained instantaneous angles, which indicates
the speed at which the tilt angle changes. Let us denote this derivative as Dθ. In order to
detect the temporal extent of a camera tilting move, we first compute the vertical scene-
change rate Rv as:

Rv ¼ Dθj j
av

; ð4Þ
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and then we compare it with a predefined threshold, Tt, and obtain an array, T, whose
elements indicate the detected tilting movement:

T ¼ 1 Rv>Ttf g ð5Þ
That is, nonzero values of T indicate that a tilting is being performed.

4.2 Detection of video content degradations

This subsection presents methods that exploit context sensor data modality to detect
degradations (camera shake and wrong camera orientation) in individual user generated
videos. The degradations are detected for the whole duration of a given video. This is
accomplished by segmenting the video into small segments of fixed duration. The same
segmentation is performed also for the sensor data.

4.2.1 Camera shake

We analyze streams of recorded sensor readings, representing contextual information of a user
generated video, to detect camera shake and classify it according to its strength. As a result of
the analysis we mark the video segments which have been detected as shaky, in order to be
evaluated by multi-camera production systems or multimedia retrieval applications.
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We propose to analyze changes in the static acceleration across the three axes of a tri-axial
accelerometer in order to detect shake. More precisely, we detect changes of the device
orientation with respect to the horizontal plane provided that there is relatively small
translational acceleration as compared with the static acceleration (an assumption that is
satisfied when holding the camera by hands). We assume that the frequency band 10–20 Hz
(see [33]) in the accelerometer-data spectrum contains contributions mainly from shake and
thereafter we use it for our further processing. Filtering out the lower frequency components
is important in order to avoid slower non-shake camera movements, such as panning and tilt,
being detected as shake. The overall algorithm is as follows.

Algorithm 2—Camera shake detection

1. Apply a high-pass filter with cut-off frequency of 10 Hz on each of the three
components of the accelerometer data (i.e., corresponding to the X, Y, and Z axes).

2. For each video segment, do the following:

a. Compute the sample variance of each of the three filtered accelerometer compo-
nents and store as, Ex, Ey, and Ez

b. Compute the median value of Ex, Ey, and Ez and assign it as the amount of shake
in the video segment.

It is worth discussing why step 2b is needed. Even though we assume that the shake
affects all three components, a fast tilt or panning can produce a significant contribution to
one of these three components—typically stronger than what hand shake contributes. Thus,
in order to avoid such moves affecting on the shake estimation, we take the median value of
the sample variances as representative of the level of shake. We further classify the shake as
strong in case the obtained median value is greater than τshake, which is a predefined
threshold. Figure 7 is an illustration of how the detection of shake (and also of wrong
camera orientation) is performed.

4.2.2 Wrong camera orientation

The camera orientation (landscape or portrait) can be detected by measuring the static
component of the accelerometer (i.e., the gravitational acceleration acting on the device).
This fact is being exploited in mobile phones to detect landscape or portrait mode of
operation. We make use of it to detect whether video segments are shot with correct or
wrong camera orientation, for the reasons that we illustrated in Section 3.3. Without loss of
generality, let us assume that the diagram in Fig. 2 shows the correct orientation of the
camera with respect to the axes of the accelerometer. This is the case when the static
acceleration does not have any contribution along the Y axis. We assume the orientation of
the recording device being a relatively slowly-varying event (as otherwise it would fall into
the category of shake). Thereafter, we consider the lower frequency portion of accelerometer
components (by applying a low-pass filter with the same cut-off frequency as the one used
for the shake detection, i.e., 10 Hz). To detect the camera orientation in any of the video
segments, we compute the average of the instantaneous orientations within this segment.
The instantaneous orientations are computed with a formula analogous to Eq. (3),

θY ¼ arctan
AYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AXð Þ2 þ AZð Þ2
q ð6Þ
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and then we check for wrong phone orientation by comparing θYj j > θwo , where θwo is a
predefined parameter that is the maximum allowed angle of deviation.

5 Multimodal analysis of videos recorded by multiple users

In this section we now consider a recording scenario in which multiple people are
simultaneously recording the same happening, for example, a live music show or a
sport happening. The most important and novel aspects of the work described in this
section are a joint analysis of the multiple recordings and exploitation of auxiliary
sensors (providing context data), where both content and context data are captured by
mobile phones without any restrictions on their usage. In particular, the outcomes of
our analysis techniques are the identification of the region of interest, the detection of
generic interesting events, the estimation of the relative distance between users and
examples of detecting more specific interesting events. Some of the reasons for
performing such analysis lie in the need for understanding high-level information
about a public happening which has been recorded by multiple cameras. For example,
this information can be subsequently used for indexing the video content, so that it
can be easily browsed or retrieved, or for automatically creating video summaries or
multi-camera video mash-ups. In particular, determining the region of interest is
important for understanding which segments of the recorded videos are the most
relevant; extracting interesting/salient events would provide information about the
most important video segments; determining the relative distance of cameras is useful
for a better awareness of the recording activity. Furthermore, the detection of specific
interesting events exploits the knowledge of the identified ROI for inferring higher-
level semantic information.

Fig. 7 Detection of video shake and of wrong camera orientation
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5.1 Identifying a region of interest

In some use cases it is important to know which area of a public happening is considered as
the most interesting by the audience. In this work we propose to identify the ROI by
exploiting the fact that most public happenings have a single scene of common interest,
often this is the performance stage. Most of the people who are recording usually point their
camera towards the stage for most of the recording time. Therefore, we consider the time
spent by a camera user recording towards a certain direction as an implicit indication of his/
her interest on the scene. In addition, we exploit the availability of multiple cameras in order
to exclude outlier camera users (i.e., users recording mostly towards an orientation which is
interesting only for them). Thus, we identify the ROI as the specific angular range of
orientations (with respect to North) towards which the users have recorded video content
for most of the time.

As we already discussed in Section 2, prior works have focused on different types of
scenarios, mainly on surveillance and environment monitoring. Instead our method attempts
to understand the angular region in which people are interested the most in a public happening.
The novelty of our ROI estimation method consists of analyzing solely auxiliary sensor data
captured by multiple cameras for inferring the ROI. The algorithm works as follows:

Algorithm 3—ROI detection

1. The preferred angular width of the ROI is a parameter to be set manually.
2. For each recording user, compute the time spent recording in each orientation and

update the histogram of recorded time units (e.g., seconds) over the orientations.
3. Analyze the obtained histogram and find the angular range (of user-specified width)

that maximizes the length of total video content which has been captured towards
such a range. This angular range represents the ROI.

The width of the ROI can be set to any reasonable value. In our experiments we have set
it to 90° or 180°. Figure 8 shows an example in which seven camera users recorded a live
music performance by pointing their cameras towards a limited range of orientations for
most of the recording time.

5.2 Generic interesting event detection

During public shows such as live music performances or sports happenings, there are often
certain events that attract the attention of some or most of the attending people, and thus also
of those who are recording video. We consider such events as interesting events. For
example, an interesting event in a music show would consist of the guitar player starting
playing a solo or moving around on the stage. When such events occur, the most natural
thing that a person who is recording would do is to capture the event, by turning the camera
towards the subject (e.g., the guitar player) that has triggered the interesting event and
eventually by following its movements. As a result, the cameras of these people will be
moved in a similar (or correlated) manner; a similar idea is utilized for automatic zooming in
[5]. We consider this correlated and simultaneous motion of some cameras as a potentially
interesting event for the viewer of the recorded videos, as it was found interesting and worth
recording by multiple camera users. In contrast, a camera movement performed solely by
one camera user might have been triggered by something which is of interest only for that
particular user. As the specific type of event that has triggered the attention of the camera
users will not be identified, we denote such events as generic interesting events. We detect
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the camera motion for each individual video recording by means of sensor data analysis as
described in Section 4.1. We assume that the recordings of all users are mutually temporally
aligned; the alignment itself is a topic on which we do not elaborate further in this paper.

As already discussed in Section 2, many previous works have considered the problem of
detecting interesting events either from a single video or from multiple videos. However, most
of them analyze exclusively video and/or audio content data, thus being computationally very
expensive. The novelty of our approach consists on both the type of data on which the analysis
is performed, and the types of interesting events that are detected. In fact, we analyze solely
auxiliary sensor data which is a computationally light-weight approach. The analysis of such
type of data allows us to exploit the interest implicitly shown by the recording users, which
would hardly be possible to determine by performing only content-based analysis.

In the following we describe how we analyze compass data and accelerometer data for
detecting generic interesting events from respectively correlated camera panning and corre-
lated camera tilting.
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Fig. 8 ROI identification. a Scenario where multiple users record a live music performance using their
cameras. b (Unwrapped) compass data captured by the users during the video recording. As can be seen in the
plot, six users pointed their cameras towards a similar orientation for most of the recording time. We have
specified a preferred ROI width of 90°. The proposed method identified the ROI to be in the range [110, 200]
degrees, which is satisfactory, as it corresponds to orientations pointing towards the stage of the recorded
happening. During the recording session some of the users performed panning movements either inside or
outside the identified ROI. In particular, one user has been recording, all the time, something which was
outside the ROI
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5.2.1 Correlated camera panning

In order to detect generic interesting events from correlated panning movements we perform
correlation analysis on the compass data captured by different camera users. In this way, we
aim to discover temporal segments within which the compass data from some users is highly
correlated.

Thus, it is likely that in those time intervals the users have turned their cameras in a
similar way (i.e., similar temporal extent of the camera movement, similar speed, etc.).
Figure 9 shows an example in which a number of users is recording a stage and at some point
a subset of these users turn their cameras towards an interesting point (the performer 1). For
the correlation analysis we have chosen to compute the Spearman’s rank correlation
coefficient [9], as it allows for detecting similar panning movements even if the cameras
are being turned to opposite directions or the speed of the panning varies. After the
computation of the correlation has been performed, we apply an empirically set threshold
in order to detect the main peaks of correlation. From this thresholding operation we get two
timestamps that refer to the beginning and the end of the highly correlated camera panning.
They represent the temporal boundaries of the generic interesting events. In order to filter out
some irrelevant correlated camera motion (i.e., not related to a substantial change in the
orientation), we consider as correlated camera panning each of those temporal segments in
which there is co-occurrence of a correlation peak and of camera panning operations
performed by the camera users.

The method could be summarized in the following steps:

Algorithm 4—Detection of correlated camera panning

1. Compute the Spearman correlation between the raw compass data streams produced
by the cameras.

2. Detect the major peaks of correlation by using a threshold.
3. Detect the camera panning movements for each camera.
4. Detect the co-occurrence of a correlation peak for a certain set of cameras and of

panning movements for the same set of cameras.

Fig. 9 Correlated camera pan-
ning movements (view from the
top). The orientations of the
cameras before and after the cor-
related panning are represented
respectively by the dotted lines
and the solid lines
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5.2.2 Correlated camera tilting

In this section we consider correlated camera tilts performed by two or more users by
comparing their individual detected tilts as given by Eq. (5). An illustration of this event is
given in Fig. 10a, where two users are recording and following an object of interest moving
in vertical direction. Let us denote the detected tilt of the k-th user as Tk. Then, we classify
two or more camera tilts as correlated if and only if their temporal beginnings and ends are
within a predefined threshold, tcorr, and the tilt directions are coinciding. The tilt directions
are given by the sign of the derivative Dθ. Let us consider the individual tilts of any two
camera users (detected as described in Section 4.1), described by their pairs of beginning-

and ending- timestamps, tbeg1 ; tend1 and tbeg2 ; tend2 : These camera tilts are detected as correlated

if and only if jtbeg1 � tbeg2 j < tcorr and jtend1 � tend2 j < tcorr .

For the correlated tilt detection we use a different approach than for the correlated
panning detection as we consider as correlated only tilts performed in the same direction.
The reason for this is that camera tilting in opposite directions is highly unlikely to be a

Fig. 10 Illustration of camera users performing correlated camera tilting (a) and correlated camera panning (b)
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result of following the very same object of interest. Such an unlikely scenario is when two
camera users are at substantially different altitudes and the object or scene they are recording
is positioned between them in altitude. In contrast, camera panning in opposite directions is
rather common as the camera users can have various locations with respect to the scene of
interest.

5.3 Detecting mutual distance between users

The correlated camera panning and tilting discussed in the previous sections allow us to infer
some information about the relative positions of the users that perform these camera move-
ments with respect to the common object (scene) of interest. More precisely, the goal is to
detect the ratio of the distance of each user to the common object of interest.

The novelty of our method consists of utilizing only the correlated motion of cameras
capturing the same moving object, which is detected solely by auxiliary sensor data analysis.
Also, compared to the prior art discussed in Section 2, our method does not make use of any
specific stationary landmark for inferring the mutual distance.

We consider separately the methods exploiting correlated panning and tilting since for the
correlated tilting we have additional information (the reference of the horizontal plane) and this
allows us to detect the exact ratio of distances of the users who perform correlated tilting.

Let us denote the steady camera tilt angles before and after the tilting movement of the k-
th user as respectively aold

k and anew
k , where the individual tilts are part of a detected

correlated tilting; an illustration is given in Fig. 10a. Also, let us denote the unknown
distance from the scene to the k-th user as dk. After simple calculations, the ratio between
the distances di and dj of users i and j is computed as

di
dj

¼ tan aold
j

� �� tan anew
j

� �
tan aold

ið Þ � tan anew
ið Þ ; ð7Þ

where αold, anew 2 �p=2; p=2ð Þ and αold≠αnew. In the above equation, the ratio is always
non-negative as the correlated tilts are always in the same direction (up or down). In the
same manner we can compute the ratio of distances (to the scene) between each pair of users
and a map of such distances can be computed. To obtain all distances in absolute values
(e.g., in meters), it is required to know the absolute value of only one of the distances (from a
user to the moving object), i.e., the absolute distance of at least one user with regards to the
commonly viewed scene.

The correlated camera panning can also be used to infer some information about the
distance between users. However, it is limited by the fact that the direction in which objects
of interest have changed is unknown, as cameras can be also on opposite sides of the object
and thus perform panning in opposite directions. Instead for tilting the change is simply in
the same vertical direction. Thereafter, for each user we detect a circle on which the user’s
coordinates can be located; this is illustrated in Fig. 10b. We propose to compute the ratio
between the greatest possible distance for each user from the axis connecting the old and the
new objects of interest:

max dið Þ
max dj

� � ¼ tan θj=2
� �

tan θi=2ð Þ ; ð8Þ

where θj and θi are the individual angles of panning. Thereafter, the obtained ratio between
the maximum distances can be used as approximation of the actual ratio di/dj.
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It is worth noting that, in these methods for estimating the relative distance of users by
exploiting correlated motion, we assume that the camera users are not moving (or else their
movements are negligible compared to the distances between them). This is a fairly
reasonable assumption as performing video recording and simultaneously moving the
camera would result in significant camera shake.

5.4 Application of generic interesting events for detecting specific events

The generic interesting events described in Section 5.2 can be used as a building block for
discovering other more specific events in which correlated camera motion among users is
meaningful, by integrating them with the analysis of other data modalities. In this section we
give an example of how the detected generic interesting events can be used for discovering
some specific and higher-level events for a particular type of public happenings being
recorded—live music performances. The specific event detection algorithm presented here
takes advantage of two main ideas. The first one consists of jointly analyzing data streams of
same modality (e.g., compass data) captured by multiple devices, in order to detect simple
events (each one obtained from one sensor modality). The second idea consists of exploiting
the availability of data from multiple modalities, by combining the detected simple events
for obtaining higher-level semantics of the media analysis. We consider two examples of
such higher-level events that can be defined by means of compound sentences:

S1: “Music starts and some users make a correlated panning to point to the stage”,
S2: “Music ends and some users make a correlated panning towards the audience”.

These events represent something quite common in real-world scenarios of live music
shows. In fact, regarding the event S2, at the end of each song the audience usually starts
applauding, and those people who are recording a video in many cases decide to capture
such a salient moment by turning their cameras towards the audience. Similarly, it is also
common to point the camera back to the stage when the next song starts. We use the
following simpler events (that we denote also as primitive events) for detecting the specific
events: camera panning correlation, audio class, and audio similarity degree. In the follow-
ing we will first describe the considered primitive events and then we will provide more
details about how we obtain the specific ones.

5.4.1 Primitive event detection

The first primitive event that we consider is the camera panning correlation, already
described in Section 5.2.1. In particular, for the specific event S1 we detect correlated
camera panning movements that end towards the identified ROI, whereas for S2 we consider
only those correlated panning movements that end towards directions outside the ROI.

In order to detect the instants when a song starts and ends (i.e., for performing song
segmentation) we classify the audio into “Music” and “No music” using the audio classifier
described in [17], which we have specifically trained for livemusic shows. The end of class “No
music” and the start of class “Music” represent the start of a song, whereas the end of class
“Music” and the start of class “No music” represent the end of a song. As the audio classifi-
cation is applied on live music audio recorded by mobile phones, the presence of ambient noise
and the quality of the microphones reduce the performances of the audio classifier. As a result,
we obtain a relatively high rate of missed detections for the start or end of songs. To overcome
this problem, we detect start and end of songs also with an additional method that exploits the

140 Multimed Tools Appl (2014) 70:119–158



following idea. While a song is being played, even if the cameras are spread all over the
audience area, they will capture similar audio content, which is output by the loudspeakers. On
the contrary, after the song has ended, the cameras will not capture the same sound anymore and
the audio similarity among them will likely be low. We take advantage of this for performing
song segmentation by determining whether the audio content recorded by the users is similar or
not. We interpret the transition in the audio similarity degree for most of the cameras from low
to high and from high to low as respectively the start and the end of a song. We compute the
similarity degree for temporally overlapping audio segments extracted from the video record-
ings of different cameras. For computing the audio similarity, we use a recent work which is
described in [17]. Then we apply a threshold on the output of the analysis in order to
discriminate between low and high similarity degree.

5.4.2 Combining primitive events for detection of specific events

For detecting the two specific events S1 and S2, we consider the co-occurrence (within a
predetermined temporal window) of a panning correlation peak and a state change for at
least one of the two song segmentation methods. S1 is detected when a panning correlation
peak (for some cameras) occurs (and the panning movements end towards the ROI) and at
the same time there is a transient from no-song to song (detected either by the audio
classifier or by the audio similarity algorithm, or both). Then we can assert that the song
has started and very likely some of the users have pointed their cameras towards something
of interest within the ROI, probably the performance stage. S2 is detected when there is a co-
occurrence of a panning correlation peak (and the panning movements end towards orienta-
tions outside the ROI) and a transient from song to no-song (detected either by the audio
classifier or by the audio similarity algorithm, or both). Then we assert that the song has
ended and very likely some of the users have pointed their cameras to something they found
interesting outside the ROI, for example the audience which is applauding. In case the two
song segmentation methods provide conflicting results (i.e., for the same temporal window
one method detects the start of a song and the other detects the end), then we consider only
the detection provided by the audio classifier, as it has proved to be more reliable than the
audio similarity analysis for the song segmentation task.

6 Evaluation

In this section we evaluate the performance of the proposed methods: detection of individual
camera moves, detection of video degradations, ROI estimation, detection of generic
interesting events, estimation of mutual distance between cameras, and examples of detect-
ing more specific events. As our methods mainly analyze streams of sensor measurements
captured simultaneously with the video recording, there are no publicly available datasets
that already contain such sensor data. Therefore, we use special test data which is collected
and partitioned into two datasets as described in Section 6.1. For capturing the test data we
used publicly available high-end smart phones and simple dedicated software that collects
the sensor data synchronously with video recording. The default sampling rate for each
sensor was used, i.e., 40 samples per second for the accelerometer and 10 samples per
second for the compass, where each sample is further labeled with its timestamp. The
angular resolution of the compass is 1°. The time alignment between a recorded video and
the recorded sensor data was straightforward to obtain, as the video start- and stop-recording
times were obtained from the creation time of the media file and were then matched to the
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timestamps of the sensor measurements. The software application that we used stored the
auxiliary sensor measurements (and associated timestamps) as data streams associated with
the recorded video. In particular the sensor data streams were stored in text/plain format, as
there are no standardized formats for storing this type of data together with the associated
video content.

In this section we use the following measures for evaluating the performances of the
detection methods:

& Precision (P), computed as the ratio true positives/(true positives+false positives), where
true positives are the correct detections and false positives are the non-correct detections.

& Recall (R), computed as the ratio true positives/(true positives+false negatives), where
false negatives are the missed detections.

& Balanced F-measure (F), computed as the ratio 2 � P � Rð Þ= P þ Rð Þ. It is the harmonic
mean of the precision and the recall.

At the end of this section (in subsection 6.8) we provide a discussion on the experimental
results for all tested methods.

6.1 Test datasets

We used two datasets in our experiments: dataset D1 which was obtained in a real world
scenario, and dataset D2 which was obtained in a simulated scenario.

Dataset D1 contains 47 video recordings from two different live music shows (featuring
10 bands), spanning an overall time duration of about 62 min. The data was collected by
nine users that were attending the shows and were sparsely located in the audience (so that
there is no visual interference between them during the recording). The age of the users
varied between 25 and 40. They had different video recording skills: some of them (about
the half) were used to record using a mobile phone, whereas the others only rarely used their
phones or other devices for recording videos. Furthermore, most of the users did not know in
advance the songs being played at the show (i.e., they were not fans of the bands). The
participants were not given any specific instructions on the way of recording. On the
contrary, they were only asked to record the happening as they would normally do for their
own personal use. The only constraint was to use camera-enabled phones that we provided
(instead of their personal phone), thus a short explanation about how to access the camera
application was given to the users beforehand. Dataset D1 has been used for evaluating the
following methods: detection of individual camera moves, detection of video degradation,
estimation of the ROI, detection of generic and specific interesting events.

In order to obtain a dataset with significant number of camera movements, for dataset D2 we
simulated a recording experiment in a large auditorium where two camera users were asked to
record what they were considering interesting for a duration of 25 min. During that time,
moving objects were displayed in different parts of the large auditorium display, serving as
potential reason to perform a camera move. Even though the users were used to utilize mobile
phones for their everyday life, they were not used to record videos with them (i.e., only
occasionally). Dataset D2 has been used for validating the following analysis methods: detec-
tion of individual camera moves, detection of video degradations, detection of generic and
specific interesting events, and estimation of the mutual distance between cameras.

Datasets D1 and D2 are not publicly available for legal reasons, mainly due to copyrights
of the bands playing in the live music shows (for dataset D1) and in the simulated public
happening (for dataset D2).
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6.2 Detection of individual camera moves

In Section 4.1 we described a method which detects camera movements by solely analyzing
auxiliary sensor data captured during the video recording. In particular, camera panning and
camera tilting are detected by analyzing data captured by the electronic compass and by the
accelerometer, respectively.

For evaluating the performance of the camera motion detection methods the following
approach has been adopted. Firstly we visually inspected the recorded video content
contained in datasets D1 and D2 in order to manually annotate the occurrence of camera
panning and tilting movements. Furthermore, each panning event was manually labeled as
either slow or fast depending on whether the video content captured during each panning
was respectively pleasant or unpleasant to watch. Afterwards, we applied the proposed
detection methods on the datasets. The obtained results are summarized in Table 1. We also
applied our method for panning speed classification on the detected panning movements.
Table 2 summarizes the performance of the proposed panning classification method on
datasets D1 and D2. In particular, in the table we report the classification accuracy only for
those panning movements that were correctly detected (i.e., only for the true positives).

6.3 Detection of video degradations

Two methods for detecting video degradations by solely analyzing auxiliary sensor data
were described in Section 4.2. In particular, we proposed to detect camera shake and classify
its strength, and to detect the temporal segments during which a camera is being held in
portrait mode (considered as wrong orientation for the reasons explained in Section 3.3).

We have tested the algorithms using datasets D1 and D2 which include segments of
normal camera usage (standing still or performing slow or faster camera movements),
segments with camera shake, and segments where the camera was held in a wrong orien-
tation (i.e., portrait mode). The approach for evaluating our proposed methods is as follows.
By visual inspection we manually annotated 522 video segments with shake. Out of these,
495 were correctly identified by the proposed shake detection technique. In 43 segments
instead our method has erroneously detected shake. Thus, we achieved a precision of 92%, a
recall of 94.8% and a balanced F-measure of 93.4%. We compare the proposed shake
detection method with global motion estimation based on content-analysis block matching.
We specifically selected a fully static scene with significant amount of details in order to set

Table 1 Test results for detecting camera movements (panning and tilting) performed by individual users. gt
stands for ground truth (manually annotated events), tp stands for true positives, fp for false positives, p for
precision, r for recall, and f for balanced f-measure

Dataset GT TP FP P R F

Camera panning

D1 129 112 12 0.90 0.87 0.89

D2 104 104 2 0.98 1.0 0.99

Total 233 216 14 0.94 0.93 0.94

Camera tilting

D1 73 69 7 0.91 0.95 0.93

D2 207 204 9 0.96 0.99 0.97

Total 280 273 16 0.94 0.97 0.96
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an ideal condition for the content-based global motion estimation. From Fig. 7, we observe
that in regions that do contain shake, the proposed sensor-based shake detection produces
results that are also in line with the results of the global motion estimation. However, the
global motion estimation also erroneously triggers when otherwise non-shake camera move-
ments are performed, whereas the proposed method does not suffer from that. At the thirtieth
second of the video presented in Fig. 7 it is possible to see how false positives are caused
also by camera tilting and by rotating the phone. In the bottom plot of the same figure, we
show also the detection of a camera being turned to portrait mode; the detected wrong
camera orientation is accurate and follows well the change in static tilt angle associated with
the device orientation (shown in green in the same plot). The wrong phone-orientation was
detected correctly in all 51 cases when there was such; misclassification of vigorous shake as
wrong phone orientation occurred for 2 video segments.

6.4 Identification of region of interest

In Section 5.1 we described a method for identifying the (angular) region of interest in a
public happening by inferring the attention of the people recording the happening itself. In
fact, we determine the horizontal angular range towards which most of the people are
pointing their cameras for most of the recording time. For obtaining the horizontal orienta-
tion of each camera we analyzed the compass data.

For evaluating the proposed ROI identification technique we adopted the following
approach. Firstly, for each recorded public happening, we manually estimated the angular
range where the stage of the musical performance was located with respect to the audience
area. For this, we identified the concert area (both stage and audience areas) on a satellite
map which provided also the reference direction of North. Afterwards, we estimated the

Table 2 Test results for the classification of panning movements based on speed. The accuracy is computed
as the ratio between the number of correctly classified panning movements and the total number of panning
movements which were correctly detected (true positives)

Dataset Confusion matrix Accuracy (%)

D1 Automatically detected
as fast

Automatically detected
as slow

96.4

Manually annotated as fast
(ground truth)

25 1

Manually annotated as fast
(ground truth)

3 83

D2 Automatically detected
as fast

Automatically detected
as slow

97.1

Manually annotated as fast
(ground truth)

32 0

Manually annotated as slow
(ground truth)

3 69

Total Automatically detected
as fast

Automatically detected
as slow

96.8

Manually annotated as fast
(ground truth)

57 1

Manually annotated as slow
(ground truth)

6 152
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range of orientations with respect to North (i.e., by considering North as at orientation of 0°,
in the same way as electronic compasses do) of lines departing from different points within
the audience area and ending into different points within the stage area. In particular, we
selected the range in order to consider an ROI width of 90°. This manually identified range
represented the ground truth in our evaluation. After this manual estimation, we applied our
algorithm on the test data (i.e., the compass data captured by all cameras recording the public
happening) and then compared the automatically identified ROI with the one that we had
manually estimated.

Regarding dataset D1, for the two live music shows our method identified the ROIs as the
ranges [279°, 9°] (see Fig. 11) and [40°, 130°]. By comparison with the ground truth we
verified that the identified ROIs are correct, i.e., they correspond to the actual ranges of
orientations towards which the two performance stages were positioned with respect to the
respective audience areas. We did not evaluate the ROI identification method on dataset D2

because the use of only two recording cameras would not be statistically significant for such
a task which is based on the exploitation of where most of the users point their cameras.

6.4.1 Combined use of camera panning and region of interest

Figure 12 shows an example of using the detected and classified panning movements, and
the identified ROI for automatically generating a multi-camera video mash-up. The data for
this example is taken from one of the two live music performances contained in dataset D1.
For the sake of simplicity, in this figure we consider only two cameras. For each camera, the
plot of the compass data captured during the video recording is shown. Some relevant frames
extracted from the recorded videos are shown below the associated compass data. These
frames have been extracted at time instants indicated by the red arrows (mostly before and
after each panning which is relevant for this example). The bottom-most part of the figure
represents the multi-camera video mash-up obtained by stitching together segments
extracted from the two source videos. These segments are delimited by the camera-
switches instants. In the video mash-up a switch to a certain camera is triggered by the
occurrence of a panning (which ends within the ROI) performed by that camera. The
switching times are indicated by the vertical dashed lines that originate either from video
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Fig. 11 Excerpt of (unwrapped) compass data captured by multiple cameras in one of the live music shows in
dataset D1. For this happening the ROI has been identified in the range [279°, 9°] when a preferred ROI width
of 90° was specified
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1 or video 2 (either at the beginning or at the end of each panning movement), depending on
which camera has triggered the switch. Panning detection, panning classification and ROI
identification has been performed by using our proposed methods. For this example a
preferred ROI width of 180° has been chosen; the identified ROI is in the range [230°,
50°]. The user of camera 1 performed several slow panning movements, recording always
within the ROI. The user of camera 2 performed three slow and one fast panning move-
ments. Among the slow movements, the first one is within the ROI, the second one starts
inside the ROI and ends outside the ROI, and the third is within the area outside the ROI.
The fast panning was performed from outside the ROI to inside.

Due to prior state, the excerpt of the mash-up starts with video 1. At 252 s user of camera
2 performs a slow panning. As the movement ends within the ROI, a camera-switch is
performed in the video mash-up from video 1 to video 2. Also, as it is a slow panning, the
switch happens at the beginning of the camera motion. At almost 260 s camera 1 performs a
slow panning within the ROI, therefore a camera-switch from video 2 to video 1 is triggered.
At about 267 s camera 2 starts a slow panning, but since the movement ends towards outside
the ROI, no camera-switch is triggered in the mash-up. Another short panning happens in
video 2 at 278 s, but again outside the ROI. At about 282 s camera 2 performs a fast panning
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Fig. 12 Combined use of panning movements, their classification and Region of Interest for automatically
generating a multi-camera video mash-up
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that starts outside the ROI and ends inside it, so a switch from video 1 to video 2 is triggered.
The actual switching time corresponds to the end of the panning, as the movement is fast
(and also because the scene recorded outside the ROI should not be shown in the video
mash-up).

6.5 Detection of generic interesting events

A novel approach to detecting generic interesting events was presented in Section 5.2. We
proposed to analyze context sensor data to detect temporal segments during which a salient
event has occurred. In particular, we detect the time interval during which some people have
moved their camera in a correlated way, as this is considered an indicator of common
interest. At this stage of the analysis we do not aim at understanding the specific reason of
the correlated movements. We detect generic interesting events from correlated camera
panning and from correlated camera tilting.

In this section we provide empirical results and their evaluation about these methods. The
evaluation has been performed in the following way. By visually inspecting the videos
recorded at each public happening, we manually annotated events which are commonly
considered as interesting in the context of live music performances, such as the start of
singing, the start of a guitar solo, or something funny/unusual that happened either on the
performance stage or within the audience area. For each manually extracted event we noted
down the (absolute) timestamps of its beginning and end. Afterwards, we ran the detection
algorithms on the test data and then compared the obtained results to the ground truth by
checking whether the time intervals of the automatically and of the manually detected events
were coinciding or within a predefined temporal window. Furthermore, for considering a
detected event as a true positive we performed a further validation step. We considered those
cameras that were detected as performing correlated movements and in particular the video-
content segment that they recorded during the detected time interval. By visual analysis we
verified that the cameras actually recorded the manually extracted salient event.

6.5.1 Generic interesting events from correlated camera panning

We applied the detection of generic interesting events from correlated camera panning
(described in Section 5.2.1) on recordings of real live music performances (dataset D1)
and on recordings in simulated environment (dataset D2). For dataset D1, we manually
annotated 50 interesting events. Following is a list of some types of detected interesting
events for that experiment:

& Audience putting hands up or clapping.
& Person being lifted by the audience.
& Start of singing.
& Start of guitar solo.
& Guitar player playing hi-hat (a cymbal).
& Performers moving across the stage.
& Music starting after a break.

Figure 13 shows the detection of some interesting events from dataset D1. The experi-
mental results are summarized in Table 3. Based on these results we can assert that the
proposed method is effective in recognizing such interesting events when recording real live
music performances.
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6.5.2 Generic interesting events from correlated camera tilting

The detection of interesting events from correlated camera tilting movements is obtained by
applying the method proposed in Section 5.2.2. The objective performance evaluation of this
method is given in Table 3. Dataset D1 contains much fewer correlated tilting movements as
compared with correlated panning; one explanation is that changes in horizontal direction
are more probable for capturing an object of common interest. Plots of the detected camera
tilt angles and the detected correlated tilts are illustrated in Fig. 14. In this plot, it can be seen
that false positive detection of individual camera tilts (seen in the plot for both camera users
1 and 2) are not resulting in a false positive for the correlated camera tilt—as there is no
matching in both users.
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Table 3 Test results for detecting generic interesting events. gt stands for ground truth (manually
annotated events), tp stands for true positives, fp for false positives, p for precision, r for recall, and f
for balanced f-measure

Dataset GT TP FP P R F

Generic interesting events from correlated panning

D1 50 43 17 0.72 0.86 0.78

D2 58 48 4 0.92 0.83 0.87

Total 108 91 21 0.81 0.84 0.83

Generic interesting events from correlated tilting

D1 5 5 1 0.83 1.0 0.91

D2 112 105 9 0.92 0.94 0.93

Total 117 110 10 0.92 0.94 0.93
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6.6 Detection of relative users’ distances to a common point of interest

In Section 5.3 we proposed methods for estimating the mutual distance between cameras,
which analyze only auxiliary sensor data. In particular, we consider those temporal segments
in which correlated camera movements between different cameras occur.

In order to evaluate our proposed methods specified by Eqs. (7) and (8), we applied them
on dataset D2 for detecting mutual distances from correlated camera movements. We note
that for dataset D1 we could not obtain ground truth user locations since the users had been
changing their locations throughout the performance—thereafter, we could not use this
dataset to validate the proposed methods. For dataset D2, we had two different cases (known
to us); in the first case, the distance (to the stage) of one of the user was twice as much as the
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distance of the other and in the second case the two users had exactly the same distance to
the stage. The proposed methods based on correlated tilting and panning provided rather
faithful estimation of the ratio of the users’ distances to the stage when applied to 170
correlated camera movements from dataset D2. The mean of all estimated distance ratios
resulted within 2% of the actual ones (meaning lack of bias) and the sample standard
deviation was 10.7% of the actual distance ratios. The value of the standard deviation shows
that the estimation errors were relatively small. In fact, three outliers were contributing the
most for its value, having errors that were greater than 50% of the actual distance ratio.
These outliers were due to the fact that the initial (i.e., just before the camera movement had
been performed) points of interest for the users were not the same.

6.7 Detection of specific events

In this section we evaluate the performances of the specific event detector presented in
Section 5.4. The method that we proposed consists of combining events which are detected
from individual modalities in order to detect more specific and semantically richer events.
We provided two examples, S1 and S2, of how this can be realized in practice. In these
examples the following three primitive events need to be combined: correlated camera
panning, audio class, audio similarity degree. In particular, S1 is detected when there is
co-occurrence of correlated panning, audio class changing from “No music” to “Music”, and
audio similarity degree changing from “Low” to “High”. Instead, for detecting S2 we need to
observe the co-occurrence of correlated panning, audio class changing from “Music” to “No
Music” and audio similarity changing from “High” to “Low”.

For evaluating the performance of this example methods for detecting specific events we
used dataset D1. Dataset D2 could not be used as this dataset does not include recordings of
real live music shows, while events S1 and S2 are valid only within the domain of such types
of public happenings. For collecting the ground truth we visually inspected the videos and
observed the occurrence of both S1 and S2 once for each song performed by the bands
recorded in dataset D1, respectively at the beginning and at the end of the songs. For each
observed instance of S1 and S2 we noted down its timestamps. We then applied the detection
algorithm on the test data and for the actual validation of the results we followed a similar
procedure as for the detection of generic interesting events. We verified that the detected
specific events were temporally coinciding with the manually extracted events. Also, we
verified that the cameras detected as performing correlated movements in the manual
annotation and in the proposed algorithm were actually the same.

The test results and the performance measures are given in Table 4. Figure 15 shows an
example (extracted from the second live music show contained in dataset D1) in which the
specific event S2 is detected from two camera users recording one of the test songs.

Table 4 Experimental results for the detection of specific events. tp stands for true positives, fp for false
positives, p for precision, r for recall, and f for balanced f-measure

Specific event Ground truth event TP FP P R F

S1 19 15 4 0.79 0.79 0.79

S2 19 16 3 0.84 0.84 0.84

Total 38 31 7 0.82 0.82 0.82
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6.8 Discussion on the achieved results

Through extensive experimentations on both real world and simulated scenarios we have
shown the effectiveness of the multimodal analysis methods that we proposed in this paper.
Regarding the results for the detection of individual camera movements we achieved very
high accuracy (expressed as the balanced F-measure) in both the considered datasets (on
average, 0.94 for panning and 0.96 for tilting). In addition, the operations involved for
detecting such movements are rather simple (mainly low-pass filtering and first-order
derivative), especially because they are applied on data which is sampled at very low rates
(in total 50 samples per second). Prior works on detecting such movements have mainly
focused on analyzing the video content, like in [1] where the authors consider the particular
case of user generated videos. Content-based approaches are computationally expensive, as
for example 1 s of HD video at 25 frames per second contains about 46 million pixels,
whereas in our experiments 1 s of accelerometer and compass data contains only 50 sensor
measurements. By looking at the results given in Table 1, we can observe that detection
accuracies are higher for dataset D2. This was expected, as this dataset has been collected in
a controlled environment where we have simulated a public happening, thus external
disturbances (like big crowds of people, etc.) were absent. In addition, we have tested the
classification of panning movements into two classes, slow and fast, obtaining an overall
accuracy of 96.8%. The proposed classification method is based on a predefined speed
threshold which was set in such a way that video content recorded during a fast panning
would not be pleasant to watch. Such classification could be used for example in the
automatic generation of a summary or of a mash-up, so that video content recorded during
too fast camera movements can be excluded from being used.

We have also evaluated our proposed methods for detecting video segments containing
degradations by solely analyzing motion sensor data. Regarding the detection of shake, we
achieved good recall performance (94.8%). The obtained false negatives (i.e., missed
detections) were due to segments with rather mild shake. We also obtained several false
positives (i.e., mistakenly detected shake segments), which were also contributed by camera
tilting and by rotating the phone. Also the shake detection, in the same way as the detection
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of fast camera movements, can be used for the purpose of excluding some video segments
which are not pleasant to watch, for example in video summaries or video mash-ups. The
detection of wrong camera orientation has proved to work effectively too, as it detected
correctly all ground truth wrong orientation segments, and the number of false positives was
very limited.

Regarding the estimation of the angular region of interest we have shown how our
method is effective in exploiting the orientation of the cameras recording the public
happening. The method is straightforward and it is light-weight in terms of computational
complexity, as only compass data (captured by all cameras) is being analyzed. For example,
as 1 s of recorded video has 10 compass samples associated to it, the total amount of
compass data captured during a show of 1 h and recorded by 10 different cameras would be
only 360,000 samples, which is negligible when compared to the amount of video or audio
data captured during the same time span.

We evaluated also our proposed method for detecting generic interesting events
from correlated panning and correlated tilting. The methods performed well on data-
sets D1 and D2, achieving respectively 0.83 and 0.93 of balanced F-measure. There-
fore, the performance for dataset D1 is lower than for dataset D2 and, in particular, for
D1 we obtained an increased number of false positives, caused by inadvertent camera
movements. By applying these methods we were able to automatically detect events
in a way which would have been hard for content-based techniques. One example is
the event of a person in the audience which was lifted by other people (this is often
observable especially in rock and metal concerts). The prior work discussed in [3] has
also addressed the problem of exploiting auxiliary sensor data for detecting interesting
events, but the setup used by the authors consists of cameras attached to the clothes
of users, which is not the typical use case when attending public happenings such as
live music performances. Instead, in our tests we did not put any restrictions on the
use of the camera-enabled mobile phones. Figure 16 shows the detection of few
generic interesting events for one of the two live music shows in dataset D1. Also,
as an example of usage of the detected events, the automatic generation of a video
summary is illustrated, wherein each detected interesting event is included.

Regarding the estimation of relative distance between cameras we showed that our method
obtains small errors; this is a good achievement especially when considering that we do not
make use of any indoor/outdoor positioning system. Instead we only analyze streams of
compass and accelerometer measurements, thus leading to a light-weight approach compared
to other methods that analyze audio and/or video data (such as in [2] and [11]). Furthermore, our
method is totally independent of the place (i.e., indoors or outdoors) where the distance
estimation needs to be performed, as it only exploits correlated motion between multiple
cameras. Thus, our approach is very suitable to the use case of analyzing videos recorded in
public happenings (e.g., live music performances), which are often held indoors where posi-
tioning systems such as the GPS could not be utilized for estimating the distance between
cameras.

Finally we evaluated the detection of two example specific events for the domain of
live music shows. We obtained an overall balanced F-measure of 0.82 which is a good
result, given the semantically high level of the information being inferred with these
two specific events (for example S2 consists of the cameras being turned in a
correlated way for recording the audience at the end of a song). Also these specific
events would require high computational cost for being detected by means of video
content analysis, as for example face detection and other visual analysis methods
would be required.
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7 Conclusions

In this paper we presented a set of multimodal analysis methods for detecting interesting
events and obtaining high-level contextual information in user generated videos.

First, we consider individual videos. By exploiting auxiliary sensor measurements cap-
tured during the video recording we are able to detect camera movements (tilting and
panning). Previous work (such as [1]) has addressed the problem of detecting camera motion
in user generated video by analyzing the video content data. Unfortunately, content-based
approaches are prone to errors due to the fact that they measure only the effects of motion on
the video data, not the camera movement itself; thus other types of motion, such as motion of
objects in the scene, may negatively affect the performance of content-based techniques.
Instead our method is independent of motion of objects as it analyzes movements detected
by the auxiliary sensors (compass and accelerometer). Furthermore, the use of such sensors
avoids the computational burden of content analysis. For individual videos we detect also
video content degradations (camera shake and wrong camera orientation) by analyzing
accelerometer data which is stored as data streams associated to the video content. This
way, a system which automatically generates a video summary or a multi-camera video
mash-up can decide to exclude video segments which were detected as being of low quality.

In addition we consider a scenario in which multiple camera users record videos of a
common scene (e.g., a live music show). We exploit the availability of multimodal data
captured by multiple cameras for inferring information about the recording activity and the
recorded scene. By analyzing the compass data captured by all cameras we estimate the
angular region of interest of the public happening. This technique is computationally
efficient and through experimentations we have shown that it gives satisfactory results.
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We analyze auxiliary sensor data captured by multiple cameras also for discovering generic
interesting events, by detecting correlated camera movements among multiple users. We
evaluated these event detection methods against our datasets and we were able to perform
detection of events that would have been hard to achieve by analyzing only content data from a
single camera. When considering the detection of high-level events from user generated videos,
the proposed methods are among the very first to exploit the auxiliary sensor modality. To our
knowledge, only [3] has previously considered this modality for the purpose of video summa-
rization. However, the setup used in that work consists of mobile phone cameras attached to the
clothes of some users—whereas in our work we rely solely on user generated content without
any restrictions on the camera use. The generic interesting events discovered by our methods
are used also for estimating the relative distance of those cameras performing correlated
movements. We have shown that this technique performs accurately on test data. Finally, by
combining sensor data analysis with audio content analysis, we provide an example in which
more specific events (i.e., with higher-level semantics) are discovered.

Our experiments on real and simulated scenarios show that the proposed multimodal analysis
methods perform well in extracting the considered events and contextual information. We would
like to mention that other sensors can be employed in multimodal event detection. For example, a
tri-axial gyroscope can provide a finer resolution of the rotational movements of the camera as
comparedwith the compass and the accelerometer. However, a gyroscope by itself cannot provide a
reference with respect to actual space coordinates and thus cannot replace any of these two sensors.

As the conclusions of this work we want to remark that due to the availability of information
describing the actual scene and the recording activity from different modalities (e.g., motion
sensors describe the device attitude, audio content describes the audio-scene, video content
describes the visual-scene, etc.), multimodal analysis can provide results with higher-level
semantics (as the ones presented in Section 5.4). Themulti-user availability and themultimodal
data availability are jointly exploited in this work and constitute one of its main contributions.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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