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Abstract The Green function of the fractional Laplacian of the differential order
bigger than one and the Green function of its gradient perturbations are comparable
for bounded smooth multidimensional open sets if the drift function is in an appro-
priate Kato class.
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1 Introduction

Perturbations of the Laplace operator � by the first order or gradient operators
b(x) · ∇ were studied by Cranston and Zhao in [23]. They proved for Lipschitz
domains that the Green function and the harmonic measure of � + b(x) · ∇ are
comparable with those of � under an appropriate Kato condition on the drift
function b . Zhang then showed in [46] and [47] that the transition density of
� + b · ∇ has Gaussian bounds. The results were extended to more general second
order elliptic operators by Liskevich and Zhang [40], and to drift measures satisfying
the Kato condition by Kim and Song [36].

The fractional Laplacian �α/2, 0 < α < 2, is a primary example of a non-local
generator of a Markovian semigroup. Perturbations of �α/2 received much attention
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recently. In particular Schrödinger perturbations of �α/2 were studied by Chen
and Song [19, 21], Bogdan and Byczkowski [7, 8], Bogdan et al. [6, 11]. Non-local
Schrödinger-type perturbations were considered by Kim and Lee in [35], following
earlier papers of Song [44, 45]. Gradient perturbations of �1/2 were studied by
Caffarelli and Vasseur [16] and Kiselev et al. [37]. Gradient perturbations of �α/2

for α > 1 were considered by Bogdan and Jakubowski [12] and Jakubowski and
Szczypkowski [34], with focus on sharp estimates of the corresponding transition
densities on the whole of R

d. In the present paper we estimate the Green function
for smooth bounded subsets of R

d.
Following [12] we let α ∈ (1, 2). We will consider dimensions d ∈ {2, 3, . . .}, a

nonempty bounded open C1,1 set D ⊂ R
d, its Green function GD for �α/2, and the

Green function G̃D of the operator

L = �α/2 + b(x) · ∇ ,

where b is a function in Kato class Kα−1
d (for details see Section 2). Our interest

in L is motivated by the development of the classical theory of the Laplacian, non-
symmetry of L (we have L∗ = �α/2 − b(x) · ∇ − div b), the fact that the drift is quite
a problematic addition to a jump type process, and by a handful of techniques which
already exist for �α/2.

The following estimate, aforementioned in the Abstract, is an extension to �α/2 of
the results of Cranston and Zhao [23].

Theorem 1 Let d ≥ 2, 1 < α < 2, b ∈ Kα−1
d , and let D ⊂ R

d be bounded and C1,1.
There exists a constant C = C(α, b , D) such that for x, y ∈ D,

C−1GD(x, y) ≤ G̃D(x, y) ≤ CGD(x, y) . (1)

Sharp explicit estimates of GD, hence of G̃D, exist, see Eq. 24, and sharp explicit
estimates of the corresponding Poisson kernel are given in Eq. 72 below. Theorem 1
is based on the perturbation formula for the Green operators,

G̃D = GD + G̃D b∇ GD ,

where b∇ ϕ(x) = b(x) · ∇ϕ(x). Iterating yields formal perturbation series,

G̃D =
∞∑

n=0

GD( b∇ GD)n .

The structure of the proof of Theorem 1 is now as follows. Section 2 provides
details on the C1,1 condition and on transition densities, Green kernels and harmonic
functions of the underlying Markov processes. In Section 3 we prove the perturbation
formula and in Section 4 we prove that the perturbation series indeed converges and
yields Eq. 1 for small sets D with bounded distortion. In the proofs we use estimates
for GD [20, 30, 38] and for the gradient of GD [14], the boundary Harnack inequality
for �α/2 [5, 13] and the Kato condition (30) for the drift function b . As a result in
Section 4 we obtain the Harnack and boundary Harnack inequalities for nonnegative
harmonic functions of L in large open sets. These are then used in Section 5 along
with the perturbation formula and a rough upper bound for G̃D given in Lemma 7, to
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prove Theorem 1 for arbitrary bounded C1,1 open sets. A number of other auxiliary
results are proved in the Appendix.

Concerning the statement of Theorem 1, we note that if the diameter of D is
smaller than r and the distortion of D is smaller than λ, then the constant C in Eq. 1
depends only on d, α, r, λ and the suprema in the definition of the Kato class Kα

d (see
below).

We observe that an approach similar to ours was recently used for gradient
perturbations of elliptic operators on small sets in [28] (see also [46]). In a wider
perspective, Theorem 1 is an analogue of the Conditional Gauge Theorem (CGT)
in the theory of Schrödinger perturbations, see [7, 8, 19, 21, 22] and [26]. We should
remark here that the distributions of the Markov processes generated by �α/2 and L
are not mutually absolutely continuous locally in time even for (nonzero) constant
drift b , and any α ∈ (0, 2), see [42, Theorem 33.1]. Therefore techniques based on
the Girsanov theorem [23] seem unavailable, and we need to proceed via analytic
estimates of kernel functions. Apparently an adaptation of our arguments could be
used to give a short analytic proof of CGT (compare [7, 19, 22]), in fact a proof
much simpler than that of Theorem 1. Noteworthy, Green function estimates for
Schrödinger perturbations hold conditionally under global assumptions of finiteness,
e.g. gaugeability, existence of (finite) superharmonic functions bounded from below
or smallness of the spectral radius. Lemma 7, a consequence of the estimates of the
transition densities in [12], overrides such assumptions here. Heuristically, adding
drift b(Xt)dt to a stochastic process will not increase its mass on R

d. This contrasts
with a possibly exponential growth of the mass of Feynman–Kac semigroups gen-
erated by Schrödinger operators. The drift may, however, change the mass of the
process killed off D by trying to push it away from the fatal Dc. This is why Eq. 1
is nontrivial phenomenologically. Also the symmetry of the semigroup and Green
function are lost in the presence of the drift, causing certain technical problems. In
this connection we note that G̃D(y, x) may be considered the Green function of L∗,
and this operator has non-zero Schrödinger part, namely −div b . Our results apply in
particular to the Ornstein–Uhlenbeck operator �α/2 + kx · ∇ (for dimensions d ≥ 2
and 1 < α < 2). Here k is a constant. We refer to [31] and [32] for estimates of
superharmonic functions of this important operator. We note that for k < 0 the drift
function b(x) = kx will generally increase the occupation time density (i.e. the Green
function) for sets D containing the origin.

The proof of Eq. 1 turned out to be quite difficult to handle, in terms of both
the preliminaries and the auxiliary estimates of the Green function. Therefore we
focused our attention on the more explicit C1,1 open sets rather than Lipschitz open
sets. We hope that our approach may now be adapted in the Lipschitz case. Here the
sensitive elements are Lemma 9 and Eq. 47.

A few additional comments on possible extensions of the results are due. If
d = 1 < α, then the right hand side of Eq. 29 below will no longer be integrable. This
explains our restriction to d ≥ 2. We however conjecture that Theorem 1 does extend
to d = 1. This case is interesting even for the sake of the one-dimensional Ornstein-
Uhlenbeck process. One may wonder if Eq. 1 holds for α = 1, but we certainly
know that Eq. 1 fails for α ∈ (0, 1). Indeed, if 0 < α < 1 then the expected exit times
from balls, to wit,

∫
B(x0,r)

GB(x0,r)(x, y)dy, are generally incomparable for �α/2 and
the Ornstein-Uhlenbeck operator �α/2 + kx · ∇ (see [31]), so the Green functions
are not comparable either. Heuristically, a (first-order) gradient perturbation is
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infinitesimally small with respect to �α/2 only if α > 1. This explains the restriction
1 < α < 2 in [12, 34] and the present paper. We remark that the existence of ratios
and Martin representation of nonnegative harmonic functions of L may likely be
obtained with the results and toolbox presented in this paper and [13]. We also
note that a similar approach should apply to additive perturbations of �α/2 by non-
local Lévy-type operators (compare [24]), provided Eq. 29 can be generalized. It
also seems possible and interesting to study drift perturbations of more general
semigroups subordinated to the Gaussian semigroup [43].

2 Preliminaries

In what follows, R
d denotes the Euclidean space of dimension d ≥ 2, dy stands for

the Lebesgue measure on R
d, and we let

1 < α < 2.

Without further mention we will only consider Borelian sets, measures and functions
in R

d. By x · y we denote the Euclidean scalar product of x, y ∈ R
d. We let B(x, r) =

{y ∈ R
d : |x − y| < r}. For D ⊂ R

d we denote

δD(x) = dist(x, Dc) ,

the distance to the complement of D.

Definition 1 Nonempty open D ⊂ R
d is of class C1,1 at scale r > 0 if for every Q ∈

∂ D there are balls B(x′, r) ⊂ D and B(x′′, r) ⊂ Dc tangent at Q.

Thus, B(x′, r) and B(x′′, r) are the inner and outer balls tangent at Q, respectively.
If D is C1,1 at some unspecified scale (hence also at all smaller scales), then we simply
say D is C1,1. The localization radius,

r0 = r0(D) = sup{r : D is C1,1 at scale r},
refers to the local geometry of D, while the diameter,

diam(D) = sup{|x − y| : x, y ∈ D} ,

refers to the global geometry of D. The ratio diam(D)/r0(D) ≥ 2 will be called the
distortion of D. We can localize each C1,1 open set as follows.

Lemma 1 There exists κ > 0 such that if D is C1,1 at scale r and Q ∈ ∂ D, then there is
a C1,1 domain F ⊂ D with r0(F) > κr, diam(F) < 2r and

D ∩ B(Q, r/4) = F ∩ B(Q, r/4) . (2)

We will write F = F(z, r), and we note that the distortion of F is at most 2/κ , an
absolute constant. The proof of Lemma 1 is given in the Appendix.

In what follows D will be a nonempty bounded C1,1 open set in R
d.

We note that such D may be disconnected but then it may only have a finite number
of connected components, at a positive distance from each other.



Green Function for the Fractional Laplacian Perturbed by Gradient 459

We will now give a brief review of the potential theory of the fractional Laplacian,
and of the fractional Laplacian perturbed by gradient operators. The former case is
well known [2, 7, 9, 13, 39]. The latter case is similar but we feel it calls for more
details, and they are given in the Appendix.

Let Ad,γ = 

(
(d − γ )/2

)
/(2γ πd/2|
(γ /2)|) and

ν(y) = Ad,−α|y|−d−α , y ∈ R
d .

The coefficient Ad,−α is so chosen that
∫

Rd

[
1 − cos(ξ · y)

]
ν(y)dy = |ξ |α , ξ ∈ R

d . (3)

For (smooth compactly supported) φ ∈ C∞
c (Rd), the fractional Laplacian is

�α/2φ(x) = lim
ε↓0

∫

|y|>ε

[
φ(x + y) − φ(x)

]
ν(y)dy , x ∈ R

d (4)

(see [7, 9] for a broader setup). If x �∈ supp φ then

�α/2φ(x) =
∫

Rd
φ(y)ν(y − x)dy . (5)

If r > 0 and φr(x) = φ(rx) then

�α/2φr(x) = rα�α/2φ(rx) , x ∈ R
d . (6)

In this respect, �α/2 behaves like differentiation of order α. We let pt be the smooth
real-valued function on R

d with Fourier transform
∫

Rd
pt(x)eix·ξ dx = e−t|ξ |α , t > 0 , ξ ∈ R

d . (7)

According to Eq. 3 and the Lévy–Khinchine formula, {pt} is a probabilistic convolu-
tion semigroup with Lévy measure ν(y)dy, see [42], [15] or [9]. Let

p(t, x, y) = pt(y − x) .

Using Eq. 7 one proves that p is the heat kernel of the fractional Laplacian:

∞∫

s

∫

Rd

p(u − s, x, z)
[
∂uφ(u, z) + �α/2

z φ(u, z)
]

dzdu = −φ(s, x) , (8)

where s ∈ R, x ∈ R
d and φ ∈ C∞

c (R × R
d).

We consider the time-homogeneous transition probability

(t, x, A) →
∫

A
p(t, x, y)dy , t > 0 , x ∈ R

d , A ⊂ R
d .

By Kolmogorov’s and Dinkin-Kinney’s theorems the transition probability defines
in the usual way Markov probability measures {Px, x ∈ R

d} on the space � of
the right-continuous and left-limited functions ω : [0, ∞) → R

d. We let E
x be the

corresponding integrations. We will denote by X = {Xt}t≥0 the canonical process on
�, Xt(ω) = ω(t). In particular, according to Eq. 7,

E
0eiXt ·ξ = e−t|ξ |α , ξ ∈ R

d, t ≥ 0 . (9)
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In fact, (X, P
0) is a Lévy process in R

d with zero Gaussian part and drift, and with
ν(y)dy as the Lévy measure [42]. It follows from Eq. 7 that

pt(x) = t−d/α p1(t−1/αx) , t > 0 , x ∈ R
d . (10)

It is well-known that p1(x)
C≈ 1 ∧ |x|−d−α , hence

pt(x)
C≈ t−d/α ∧ t

|x|d+α
, t > 0, x ∈ R

d . (11)

Symbol
C≈ means that either ratio of the sides is bounded by C ∈ (0,∞), and C

does not depend on the variables shown, here t and x. We will write mere ≈ if
C is unimportant or understood. Constants will usually be denoted with generic
C (in statements) or c (in proofs), and we will occasionally enumerate them for
convenience of referencing. As usual, a ∧ b = min(a, b) and a ∨ b = max(a, b). In
what follows we will often use the identity

ab = (a ∧ b)(a ∨ b) . (12)

In view of Eq. 10 and the fact that each pt is a radial function, X is called the isotropic
α-stable Lévy process (see [15, 42] for a discussion of general stable Lévy processes).
We introduce the Riesz potential kernel (for d > α),

Ad,α|x|α−d =
∫ ∞

0
pt(x)dt , x ∈ R

d . (13)

This is infinite if x = 0, see Eq. 11.
To study �α/2 with Dirichlet conditions we will consider the time of the f irst exit

of the (canonical) process from D,

τD = inf{t > 0 : Xt /∈ D} .

We let ωx
D(B) = P

x(XτD ∈ B), the α-harmonic measure of D [2, 4, 39]. The joint
distribution of (τD, XτD) defines the transition density of the process killed when
leaving D [3, 22, 27]:

pD(t, x, y) = p(t, x, y) − E
x[τD < t; p(t − τD, XτD , y)], t > 0, x, y ∈ R

d .

By Blumenthal’s 0–1 law, radial symmetry of pt and C1,1 geometry of the boundary of
∂ D, we have P

x(τD = 0) = 1 for every x ∈ Dc. In particular, pD(t, x, y) = 0 if x ∈ Dc

or y ∈ Dc. By the strong Markov property,

E
x[t < τD; f (Xt)] =

∫

Rd
f (y)pD(t, x, y)dy , t > 0 , x ∈ R

d ,

for functions f ≥ 0. The Chapman–Kolmogorov equations hold for pD,
∫

Rd
pD(s, x, z)pD(t, z, y)dz = pD(s + t, x, y) , s, t > 0, x, y ∈ R

d .

Also, pD is jointly continuous when t �= 0, and we have

0 ≤ pD(t, x, y) = pD(t, y, x) ≤ p(t, x, y) . (14)
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In particular,
∫

Rd
pD(t, x, y)dy ≤ 1 . (15)

For s ∈ R, x ∈ R
d, and φ ∈ C∞

c (R × D), we have (compare Eq. 8)

∞∫

s

∫

Rd

pD(u − s, x, z)
[
∂uφ(u, z) + �α/2

z φ(u, z)
]

dzdu = −φ(s, x) , (16)

which justifies calling pD the heat kernel of the (Dirichlet) fractional Laplacian on
D. We define

GD(x, y) =
∫ ∞

0
pD(t, x, y)dt, x, y ∈ R

d . (17)

It follows that GD(x, y) is symmetric and lower semi-continuous, and

GD(x, y) +
∫

Dc
Ad,α|y − z|α−dωx

D(dz) = Ad,α|x − y|α−d . (18)

The Green operator of �α/2 for D is

GD f (x) = E
x
∫ τD

0
f (Xt)dt =

∫

Rd
GD(x, y) f (y)dy, x ∈ R

d ,

and we have

GD(�α/2φ)(x) = −φ(x) , x ∈ R
d , φ ∈ C∞

c (D) . (19)

A result of Ikeda and Watanabe [29] asserts that for x ∈ D the P
x-distribution of

(τD, XτD−, XτD) restricted to XτD− �= XτD is given by the density function

(s, u, z) → pD(s, x, u)ν(z − u) . (20)

The C1,1 geometry of D implies that P
x(XτD− �= XτD) = 1 for x ∈ D [5]. By Eqs. 17,

20 and Tonelli’s theorem the P
x-distribution of XτD has a density function, called the

Poisson kernel and defined as

PD(x, z) =
∫

D
GD(x, y)ν(z − y)dy . (21)

The Green function and Poisson kernel of the ball are known explicitly:

GB(x0,r)(x, v) = Bd,α |x − v|α−d
∫ w

0

sα/2−1

(s + 1)d/2 ds , (22)

PB(x0,r)(x, y) = Cd,α

[
r2 − |x − x0|2
|y − x0|2 − r2

]α/2

|x − y|−d , (23)

where Bd,α = 
(d/2)/(2απd/2[
(α/2)]2), Cd,α = 
(d/2)π−1−d/2 sin(πα/2),

w = (r2 − |x − x0|2)(r2 − |v − x0|2)/|x − v|2 ,

|x − x0| < r, |v − x0| < r, and |y − x0| ≥ r; see [4], [41] or [39].
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The next estimate was proved by Kulczycki [38] and Chen and Song [20],

GD(x, y)
C≈ |x − y|α−d

(
δD(x)α/2δD(y)α/2

|x − y|α ∧ 1
)

(24)

≈ |x − y|α−d δD(x)α/2δD(y)α/2

[δD(x) ∨ |x − y| ∨ δD(y)]α , x, y ∈ D . (25)

The reader may check equivalence of Eqs. 24 and 25 by first considering the

case δD(x)
3≈ δD(y). We like to remark that Eq. 25 may be also regarded a direct

consequence of the approximate factorization of the Green function of Lipschitz
open sets, see [30, Theorem 21]. It is well known that C = C(d, α, λ) in Eqs. 24 and
25, if diam(D)/r0(D) ≤ λ, i.e. C may be so selected to depend only on d, α and (an
upper bound for) the distortion of D. This follows from the proofs of [38] and [20]
and is explicitly stated in [30].

We will consider a nonnegative function u on R
d, and an open set U ⊂ R

d. u is
called α-harmonic on U if for each open bounded V ⊂ V ⊂ U ,

u(x) = E
xu(XτV ), x ∈ V.

We say that u is regular α-harmonic on U if also

u(x) = E
xu(XτU ) , x ∈ U .

Here we assume absolute integrability of the expectations, and E
xu(XτU ) is under-

stood as E
x[τU < ∞; u(XτU )]. For instance x → GD(x, y) is α-harmonic in D \ {y}.

In fact, by the strong Markov property, GD(x, y) = GV(x, y) + E
xGD(XτV , y) for

every open V ⊂ U , and GV(x, y) = 0 if dist(y, V) > 0 (see, e.g., [13]).
The following two results can be found in [5], see also [13].

Lemma 2 (Harnack Inequality) Let x, y ∈ R
d, s > 0 and k ∈ N satisfy |x − y| ≤ 2ks.

Let function u be nonnegative in R
d and α–harmonic in B(x, s) ∪ B(y, s). There is

C = C(d, α) such that

C−12−k(d+α)u(x) ≤ u(y) ≤ C2k(d+α)u(x). (26)

Lemma 3 Let Z ∈ ∂ D and r ∈ (0, r0], 0 < p < 1. Assume that functions u, v are
nonnegative in R

d and regular α–harmonic and non-zero in D ∩ B(x0, r). If u and
v vanish on Dc ∩ B(x0, r) then

C−1 u(x)

v(x)
≤ u(y)

v(y)
≤ C

u(x)

v(x)
, (27)

for x, y ∈ D ∩ B(x0, pr). Here C = C(d, α, p).

We like to remark that the boundary Harnack inequality (Lemma 3) in fact
holds for general open sets and is equivalent to an approximate factorization of the
Poisson kernel of general open sets, see [13]. We encourage the reader to factorize
PB(0,1)(x, y) when x, y are not too close to each other. In passing we also note that
an approximate factorization of pD(t, x, y) for Lipschitz domains is given in [10].
Concluding this part of our preliminary discussion we refer the reader to [9, 13] for
more details and references.
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We note that α-harmonic functions are smooth where α-harmonic; use Eq. 23 or
see [7]. The following gradient estimate is given in [14, Lemma 3.2].

Lemma 4 Let U be an arbitrary open set in R
d. For every nonnegative function u on

R
d which is α–harmonic in U we have

|∇u(x)| ≤ d
u(x)

δU (x)
, x ∈ U . (28)

Since GU (·, y) is α-harmonic in U \ {y}, for every y ∈ U we obtain

|∇xGU (x, y)| ≤ d
GU (x, y)

δU (x) ∧ |x − y| , x, y ∈ U, x �= y . (29)

We note in passing that a reverse inequality holds locally at the boundary of Lipschitz
domains, with constant depending on the Lipschitz character of D [14, Lemma 4.5].
In this sense Eqs. 28 and 29 are sharp. Also, ∇xGU (x, y) is jointly continuous for
x �= y ∈ U , see [14, (10)].

Recall that 1 < α < 2. We say that vector field b : R
d → R

d belongs to the Kato
class Kα−1

d if

lim
ε→0

sup
x∈Rd

∫

|x−z|<ε

|b(z)| |x − z|α−1−d dz = 0 . (30)

For instance, if b is bounded or if |b(z)| ≤ |z|1−α+ε and 0 < ε < α − 1, then b ∈ Kα−1
d .

Without much mention elements of Kα−1
d will either be vector fields R

d → R
d or

real-valued test functions R
d → R, i.e. Kα−1

d is more a condition than a class. Since
|x − z|α−1−d is locally bounded from below, |b(z)|dz is a locally finite measure, and
Eq. 30 is a local uniform integrability condition. If b ∈ Kα−1

d and f is bounded, then
f b ∈ Kα−1

d , in particular, f b is locally integrable. We note that Kα−1
d ⊂ Kα

d , where
Kα

d is defined by

lim
ε→0

sup
x∈Rd

∫

|x−z|<ε

|b(z)| |x − z|α−d dz = 0 . (31)

Following [12] and [34] we recursively define, for t > 0 and x, y ∈ R
d,

p0(t, x, y) = p(t, x, y) ,

pn(t, x, y) =
∫ t

0

∫

Rd
pn−1(t − s, x, z)b(z) · ∇z p(s, z, y) dz ds , n ≥ 1 ,

and we let

p̃ =
∞∑

n=0

pn . (32)

The series converges absolutely, p̃ is a continuous probability transition density
function, and

c−1
T p(t, x, y) ≤ p̃(t, x, y) ≤ cT p(t, x, y) , x, y ∈ R

d , 0 < t < T , (33)

where cT → 1 if T → 0, see [12, Theorem 2]. From a general perspective the
approach of [12, 34] consist of using the semigroup as test functions, setting the
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assumptions on the perturbation so that p1 is dominated by p in short time,
and recursively estimating multiple integrals defining pn, so that the comparability
with p is preserved. Auxiliary estimates of ∇z p(s, z, y) are obtained in [12, 34] by
subordination to the Gaussian kernel, but the scope of the method is wider. For
instance applications to Schrödinger perturbations of general transition densities are
given in [11, 33].

We let P̃, Ẽ be the Markov distributions and expectations defined by transition
density p̃ on the canonical path space. We define the heat kernel of L on D by the
usual G. Hunt’s formula,

p̃D(t, x, y) = p̃(t, x, y) − Ẽ
x [

τD < t; p̃(t − τD, XτD , y)
]

. (34)

We denote by G̃D(x, y) and G̃D the Green function and operator of L on D,

G̃D(x, y) =
∫ ∞

0
p̃D(t, x, y)dt , (35)

G̃Dφ(x) =
∫

Rd
G̃D(x, y)φ(y)dy .

By Blumenthal’s 0–1 law, p̃D(t, x, y) = 0 and G̃D(x, y) = 0 if x ∈ Dc or y ∈ Dc, see
Eq. 33. The next lemmas rely on the definition of p̃ and generalize results stated
above for �α/2. The proofs of Lemmas 5, 6 and 8 are moved to the Appendix.

Lemma 5 For s > 0, x ∈ D and φ ∈ C∞
c

(
(0,∞) × D

)
we have

∫ ∞

s

∫

D
p̃D(u − s, x, z)

(
∂u + �α/2

z + b(z) · ∇z
)
φ (u, z) dz du = −φ(s, x) . (36)

By Eq. 33 we have

lim
t→0

p̃(t, x, y)

t
= lim

t→0

p(t, x, y)

t
= ν(y − x) .

Thus the intensity of jumps of the canonical process X under P̃
x is the same as under

P
x. Accordingly, we obtain the following description.

Lemma 6 The P̃
x-distribution of (τD, XτD) on (0,∞) × (D)c has density

∫

D
p̃D(u, x, y)ν(z − y) dy , u > 0 , δD(z) > 0 . (37)

We define the Poisson kernel of D for L,

P̃D(x, y) =
∫

D
G̃D(x, z)ν(y − z) dz , x ∈ D , y ∈ Dc . (38)

By Eqs. 35, 38 and 37 we have

P̃
x(XτD ∈ A) =

∫

A

∫

D
G̃D(x, z)ν(y − z) dz dy =

∫

A
P̃D(x, y)dy , (39)

if A ⊂ (D̄)c. For the case of A ⊂ ∂ D, we refer the reader to Lemma 14.
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The following rough estimate of G̃D results from the estimates of p̃ and the fact
that X jumps out of D at least with intensity

∫
|y|>diam(D)

ν(y)dy > 0.

Lemma 7 G̃D(x, y) is continuous for x �= y, G̃D(x, x) = ∞ for x ∈ D, and

G̃D(x, y) ≤ C0|x − y|α−d , x, y ∈ R
d ,

where C0 = C0(d, α, diam(D)).

Proof We claim that there are constants c and C such that

p̃D(t, x, y) ≤ Ce−ct , t > 1, x, y ∈ R
d . (40)

Indeed, let κD(y) = ∫
Dc ν(z − y)dz, so that κD(y) ≥ c > 0 for y ∈ D. Let x ∈ D, t ≥ 0,

and F(t) = P̃
x(τD > t) = ∫

D p̃D(t, x, y)dy. By Lemma 6,

−F ′(t) =
∫

D
p̃D(t, x, y)κD(y)dy ≥ cF(t) ,

hence P̃
x(τD > t) ≤ e−ct. By the semigroup property and Eq. 33, for t > 1,

p̃D(t, x, y) ≤
∫

D
p̃D(t − 1, x, z) p̃(1, z, y) dz

≤ c1

∫

D
p̃D(t − 1, x, z)p(1, z, y) dz

≤ c1 p(1, 0, 0) P̃
x(τD > t − 1) ≤ Ce−ct .

By Eqs. 35, 33 and 40 we obtain

G̃D(x, y) ≤
∫ 1

0
c1 p(t, x, y) dt +

∫ ∞

1
Ce−ct dt

≤ Ad,α|x − y|α−d + C/c ≤ (
Ad,α + C diam(D)d−α/c

) |x − y|α−d .

By Eq. 35 and dominated convergence theorem G̃D(x, y) is continuous if x �= y, see
Eqs. 33 and 11.

The next lemma results from integrating Eq. 36 against time.

Lemma 8 For all ϕ ∈ C∞
c (D) and x ∈ D we have

∫

D
G̃D(x, z)

(
�α/2ϕ(z) + b(z) · ∇ϕ(z)

)
dz = −ϕ(x) . (41)

The definition of L-harmonicity is analogous to that of α-harmonicity.

Definition 2 u is L-harmonic on U if for each open bounded V ⊂ V ⊂ U ,

u(x) = Ẽ
xu(XτV ), x ∈ V.

We say that u is regular L-harmonic on U if also

u(x) = Ẽ
xu(XτU ) , x ∈ U .
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Here Ẽ
xu(XτU ) = Ẽ

x[τU < ∞; u(XτU )] and we always assume absolute integra-
bility. In particular, x → G̃D(x, y) is L-harmonic in D \ {y}, in fact G̃D(x, y) =
G̃U (x, y) + Ẽ

xG̃V(X(τU ), y) for every open U ⊂ D. We should note that in general
G̃D(x, y) �= G̃D(y, x) (non-symmetry), and y → G̃D(x, y) is not L-harmonic. This
accounts in part for the difficulties in estimating G̃D.

3 Perturbation Formula

As before, D is a bounded C1,1 open set in R
d, b ∈ Kα−1

d and 1 < α < 2 ≤ d. Let

G = GD, G̃ = G̃D and δ = δD.

In view of Eq. 29 the next lemma yields uniform integrability of b(z) · ∇zG(y, z). In
particular, the singularity δ(z)α/2−1 of ∇zG at ∂ D integrates against |b |.

Lemma 9 G(y, z)/[δ(z) ∧ |y − z|] is uniformly in y integrable against |b(z)|dz.

Proof In view of Eq. 25 it is enough to prove the uniform integrability of

H(y, z) = |y − z|α−d δ(y)α/2δ(z)α/2

[δ(z) ∨ |y − z| ∨ δ(y)]α
1

δ(z) ∧ |y − z| .

Let AR(y) = {z ∈ D : H(y, z) > R} for R > 0. We will verify that

lim
R→∞

sup
y∈D

∫

AR(y)

H(y, z)|b(z)| dz = 0 .

For r > 0 we denote

Kr = sup
x∈Rd

∫

B(x,r)
|b(y)||x − y|α−1−ddy .

By Eq. 30 we have that Kr < ∞ and Kr ↓ 0 as r ↓ 0. For all x ∈ R
d and r > 0,

∫

B(x,r)
|b(z)| dz ≤ rd+1−α

∫

B(x,r)
|x − z|α−1−d|b(z)| dz ≤ Krrd+1−α .

For r > 0 we let D(r) = {z ∈ D : δ(z) > r}. If m > 0, y ∈ D and z ∈ D(δ(y)/m), that
is δ(z) > δ(y)/m, then we have

|H(y, z)| ≤ m1−α/2|y − z|α−1−d .

Indeed, by Eq. 12,

H(y, z) = |y − z|α−d δ(y)α/2δ(z)α/2

[δ(z) ∨ |y − z| ∨ δ(y)]α
δ(z) ∨ |y − z|
δ(z)|y − z|

≤ |y − z|α−1−dδ(z)α/2−1δ(y)α/2[δ(z) ∨ |y − z| ∨ δ(y)]1−α

≤ |y − z|α−1−dδ(z)α/2−1δ(y)1−α/2 ≤ m1−α/2|y − z|α−1−d .
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If R → ∞, then uniformly in y we have
∫

D(δ(y)/m)∩AR(y)

H(y, z)|b(z)| dz

≤ m1−α/2
∫

{z∈D : |y−z|α−1−d>Rmα/2−1}
|y − z|α−1−d|b(z)| dz → 0 . (42)

For y ∈ D, k, n ≥ 0 and m ≥ 2 we consider

Wm
n,k(y) =

{
z ∈ D : δ(y)

m2n+1 < δ(z) ≤ δ(y)

m2n
, kδ(y) < |y − z| ≤ (k + 1)δ(y)

}
.

Wm
n,k(y) may be covered by c1(k + 1)d−2md−12n(d−1) balls of radii δ(y)

m2n , thus
∫

Wm
n,k(y)

|b(z)| dz ≤ c1(k + 1)d−2md−12n(d−1) sup
x∈Rd

∫

B(x,δ(y)/m2n)

|b(z)| dz

≤ c1 Kδ(y)/m2n(k + 1)d−2md−12n(d−1)

(
δ(y)

m2n

)d+1−α

= c1 Kδ(y)/m2n(k + 1)d−2mα−22n(α−2)δ(y)d+1−α .

For z ∈ Wm
n,k(y) we have δ(y) ≥ 2δ(z), hence |y − z| ≥ δ(y)/2 and |y − z| ≥ δ(z). We

obtain
∫

AR(y)\D(δ(y)/m)

H(y, z)|b(z)| dz

≤
∞∑

n=0

∞∑

k=0

∫

Wm
n,k(y)

δ(y)α/2

|y − z|dδ(z)1−α/2 |b(z)| dz

≤
∞∑

n=0

∞∑

k=0

∫

Wm
n,k(y)

δ(y)α/2

(
(k + 1)δ(y)/2

)d[δ(y)/(m2n+1)]1−α/2
|b(z)| dz

≤ c2 Kδ(y)/m

∞∑

n=0

∞∑

k=0

(k + 1)d−2mα−22n(α−2)2d(k + 1)−d2n(1−α/2)m1−α/2

≤ c3mα/2−1 Kδ(y)/m .

Let ε > 0. We chose m and R so large that c3mα/2−1 Kdiam(D)/m < ε/2 and

sup
y∈D

∫

D(δ(y)/m)∩AR(y)

H(y, z)|b(z)| dz < ε/2 .

This completes the proof. ��

We consider the operator b∇ :

( b∇ φ)(x) = b(x) · ∇φ(x) =
d∑

i=1

bi(x)
∂φ(x)

∂xi
.
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We will study the perturbation series
∑∞

n=0(G b∇ )nG of integral operators on Kα−1
d .

Namely we will apply G b∇ G to real-valued f ∈ Kα−1
d :

G b∇ Gf (x) =
∫

D
G(x, z)b(z) · ∇z

∫

D
G(z, y) f (y) dy dz . (43)

We will need to interchange the integration and differentiation in Eq. 43.

Lemma 10 Let 1 < α < 2. If f ∈ Kα−1
d or at least G(z, y)/|y − z| is locally in z ∈ D

uniformly integrable against | f (y)|dy, then

∇z

∫

D
G(z, y) f (y) dy =

∫

D
∇z G(z, y) f (y) dy , z ∈ D . (44)

Proof The result is proved for f ∈ Kα−1
d in [14, Lemma 5.2]. For the more general

f we note that G(z, y) and ∇zG(z, y) are continuous on D × D except at z =
y, see the remark following Eq. 29. They are also uniformly integrable against
| f (y)|dy for z in compact subsets of D. In consequence g(z) = Gf (z) and k(z) =∫

D ∇z G(z, y) f (y) dy are continuous on D. We consider fn = f ∧ n ∨ (−n) ∈ Kα−1
d ,

gn = Gfn. We have gn → g and ∇gn → k. It follows that ∇g = k. ��

For x, y ∈ D we let

κ(x, y) =
∫

D
|b(z)| G(x, z)G(z, y)

G(x, y)(δ(z) ∧ |y − z|) dz , (45)

κ̂(x, y) =
∫

D
|b(z)| G(x, z)G(z, y)(δ(x) ∧ |x − y|)

G(x, y)(δ(z) ∧ |y − z|)(δ(x) ∧ |x − z|) dz . (46)

In what follows κ and κ̂ will serve as majorants for the perturbation series.

Lemma 11 Let λ, r < ∞. There is C1 = C1(d, α, b , λ, r) such that if D is C1,1,
diam(D)/r0(D) ≤ λ and diam(D) ≤ r, then κ(x, y) ≤ C1, κ̂(x, y) ≤ 2C1 for x, y ∈ D,
and C1(d, α, b , λ, r) → 0 as r → 0.

Proof Denote g(x) = δ(x)α/2. Let x, z ∈ D. By Eq. 25 we have

g(z)

g(x)
G(x, z) ≈ g2(z)

(δ(x) ∨ |x − z| ∨ δ(z))α
|x − z|α−d

≤
(

δ(z)

δ(z) ∨ |x − z|
)α

|x − z|α−d ≤ δ(z)

δ(z) ∨ |x − z| |x − z|α−d (47)

= (
δ(z) ∧ |x − z|)|x − z|α−1−d . (48)

Let G(x, y) = G(x, y)/[g(x)g(y)]. The so-called 3G Theorem holds for G:

G(x, z) ∧ G(z, y) ≤ cG(x, y) , x, y, z ∈ D ,
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where c depends only on d, α and the distortion of D [25]. We obtain

G(x, z)G(z, y)

G(x, y)
= g2(z)

G(x, z)G(z, y)

G(x, y)
≤ c

(
g(z)

g(x)
G(x, z) ∨ g(z)

g(y)
G(z, y)

)

≤ c
(

δ(z) ∧ |x − z|
|x − z|d+1−α

∨ δ(z) ∧ |y − z|
|y − z|d+1−α

)

= c
(
δ(z) ∧ |x − z| ∧ |y − z|)

(
1

|x − z|d+1−α
∨ 1

|y − z|d+1−α

)
. (49)

We have

G(x, z)G(z, y)

G(x, y)
(
δ(z) ∧ |y − z| ∧ |x − z|) ≤ c(|x − z|α−1−d + |y − z|α−1−d) ,

so we actually have uniform integrability against |b(z)|dz. The statement about κ

follows form (30).
To estimate κ̂ we consider two cases. If 2|x − z| > δ(x) ∧ |x − y|, then

δ(z) ∧ |x − z| ∧ |y − z|
(δ(z) ∧ |y − z|)(δ(x) ∧ |x − z|) ≤ 1

δ(x) ∧ |x − z| ≤ 2
δ(x) ∧ |x − y| .

If 2|x − z| ≤ δ(x) ∧ |x − y|, then δ(z) ≥ δ(x)/2, |y − z| ≥ |x − y|/2, and so

δ(z) ∧ |x − z| ∧ |y − z|
(δ(z) ∧ |y − z|)(δ(x) ∧ |x − z|) ≤ δ(z) ∧ |x − z| ∧ |y − z|

(δ(x)/2 ∧ |x − y|/2)|x − z| ≤ 2
δ(x) ∧ |x − y| .

By Eqs. 49 and 30 we obtain κ̂(x, y) ≤ 2C1. In fact we observe the uniform integrabil-
ity against |b(z)|dz. The above estimates of the factors in Eqs. 45 and 46 depend on
D only through d and diam(D)/r0(D) [30]. Therefore the integrals in Eqs. 45 and 46
are arbitrarily small if diam(D) is small enough, and the distortion of D is bounded
by a constant. This follows from Eq. 30. If diam(D) is not small but finite then we
only have the boundedness of κ and κ̂ , which also follows from Eq. 30. ��

For x �= y we let

G1(x, y) =
∫

D
G(x, z)b(z) · ∇zG(z, y) dz. (50)

By Eqs. 29 and 45, and Lemma 11 the integral is absolutely convergent,

|G1(x, y)| ≤ d G(x, y)

∫

D

|b(z)|G(x, z)G(z, y)

G(x, y)(δ(z) ∧ |y − z|) dz ≤ dC1G(x, y) . (51)

For f ∈ Kα−1
d ⊂ Kα

d we have

∫

D
G(x, y)

∫

D
|b(z)| G(x, z)G(z, y)

G(x, y)(δ(z) ∧ |y − z|) dz| f (y)|dy

≤ C1

∫

D
G(x, y)| f (y)|dy < ∞ ,
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hence by Lemma 10, Eq. 29 and Fubini’s theorem,

G b∇ Gf (x) =
∫

D
G(x, z)

∫

D
b(z) · ∇zG(z, y) f (y) dy dz

=
∫

D
G1(x, y) f (y) dy .

We like to note that the linear map f → b∇Gf preserves Kα−1
d because ∇Gf is a

bounded function, see Lemma 9 and the remarks following Eq. 30.
We will now prove the pointwise perturbation formula.

Lemma 12 Let x, y ∈ R
d, x �= y. We have

G̃(x, y) = G(x, y) +
∫

D
G̃(x, z)b(z) · ∇zG(z, y)dz . (52)

Proof Let x ∈ D. For φ ∈ Kα−1
d we consider

�(φ) =
∫

Rd

[
G̃(x, y) − G(x, y) −

∫

Rd
G̃(x, z)b(z) · ∇zG(z, y)dz

]
φ(y)dy .

By Lemmas 9 and 7, the iterated integral converges absolutely. If ϕ ∈ C∞
c (D) and

φ = �α/2ϕ, then using Eqs. 41 and 19, and Lemma 10 we obtain

�(φ) = −ϕ(x) − G̃(b∇ϕ)(x) + ϕ(x) − G̃(b∇(−ϕ))(x) = 0 .

By [7, Theorem 3.12], �(φ) = ∫
Rd φ(y)λ(y)dy, where λ is α-harmonic on D. Since our

λ is bounded near ∂ D and vanishes on Dc, we have that λ ≡ 0, see [7, Lemma 17]. By
uniform integrability and the remark following Eq. 29 and by Lemma 7 we see that
both sides of Eq. 52 are continuous in y ∈ D \ {x}, hence we have pointwise equality
in Eq. 52. ��

In addition to G1 we inductively define

Gn(x, y) =
∫

Gn−1(x, z)b(z) · ∇zG(z, y) dz , x �= y ∈ D , n = 2, 3, . . . .

We also let G0(x, y) = G(x, y). By Eqs. 29, 51 and 45, and Lemma 11 and induction,

|Gn(x, y)| ≤
∫

D
|Gn−1(x, z)||b(z)||∇zG(z, y)| dz

≤ (C1d)n−1
∫

D
|b(z)|G(x, z)|∇zG(z, y)| dz ≤ (C1d)nG(x, y) , (53)

where n = 0, 1, 2, . . . and x �= y. By Eq. 53 and induction we prove that
∫

D
Gn(x, z)

∫

D
b(z) · ∇zG(z, y) f (y) dydz =

∫

D
Gn+1(x, y) f (y) dy ,

hence Gn is the integral kernel of G( b∇ G)n,

G( b∇ G)n f (x) =
∫

D
Gn(x, y) f (y) dy , f ∈ Kα−1

d , x ∈ D .
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We can also handle the gradient of Gn. Namely, for x, y ∈ D, x �= y, and n = 1, 2, . . .,
we have:

|∇xGn−1(x, y)| ≤ (2C1)
n−1dn G(x, y)

δ(x) ∧ |x − y| , (54)

Gn(x, y) =
∫

G(x, z)b(z) · ∇zGn−1(z, y)dz , (55)

and

∇xGn(x, y) =
∫

∇xGn−1(x, z)b(z) · ∇zG(z, y)dz . (56)

The inequality and the equalities are proved consecutively by induction. In the
process we use Lemma 10, Eq. 46, estimates following Eq. 49 in the proof of
Lemma 11, and Fubini’s theorem.

Iterating Eq. 52, by Eq. 55 we obtain for n = 0, 1, . . ., and x �= y,

G̃(x, y) = G(x, y) +
∫

G̃(x, z)b(z) · ∇zG(z, y)dz

=
n∑

k=0

Gk(x, y) +
∫

G̃(x, z)b(z) · ∇zGn(z, y)dz . (57)

The details are left to the reader.

4 Local Results

We will prove and use the comparability of GS and G̃S for small smooth sets, S, of
class C1,1 (this part of our development is similar to [28]). The following is a variant
of Khasminski’s lemma [22].

Lemma 13 Let d ≥ 2, 1 < α < 2, b ∈ Kα−1
d and λ > 0. There is ε = ε(d, α, b , λ) > 0

such that if diam(S)/r0(S) ≤ λ and diam(S) ≤ ε, then

2
3

GS(x, y) ≤ G̃S(x, y) ≤ 4
3

GS(x, y), x, y ∈ R
d . (58)

Proof Let D = S. By Lemma 11 and Eq. 53 there is ε = ε(d, α, b , λ) > 0 and

|Gn(x, y)| ≤ 4−nG(x, y) , x �= y , n = 0, 1, . . . ,

provided diam(D)/r0(D) ≤ λ and r0(D) ≤ ε. For x �= y we have G̃(x, y) =∑∞
n=0 Gn(x, y). Indeed, the remainder in Eq. 57 is bounded by

c
∫

D
|x − z|α−d|b(z)|(2C1)

n−1dn G(z, y)

δ(z) ∧ |y − z|dz → 0 , as n → ∞ .

Here 2C1d ≤ 1/2 and the integral is finite because of Lemma 9 and Eq. 31. Thus,

G̃(x, y) =
∞∑

n=0

Gn(x, y) ≤
∞∑

n=0

4−nG(x, y) = 4
3

G(x, y) ,
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and

G̃(x, y) ≥ G(x, y) −
∞∑

n=1

4−nG(x, y) = 2
3

G(x, y) .

��

We like to note that the comparison constants in the above proof will improve to
1 if diam(S) → 0 and the distortion of S is bounded. By Eq. 39,

P̃
x(XτS ∈ A) ≈ P

x(XτS ∈ A) , x ∈ S , A ⊂ (S)c . (59)

We are in a position to prove that the boundary of our general C1,1 open set D is
not hit at the first exit (recall that 1 < α < 2).

Lemma 14 For every x ∈ D we have that P̃
x(XτD ∈ ∂ D) = 0.

Proof Let u(x) = P̃
x(XτD ∈ ∂ D), x ∈ R

d. We claim that there exists c = c(d, α, D, b)

> 0 such that u(x) < 1 − c for x ∈ D. Indeed, we consider small ε > 0, x ∈ D,
r = ε dist(x, Dc), the ball B = B(x, r/2) ⊂ D, and a ball B′ ⊂ (D)c with radius and
distance to B comparable with r. By Eqs. 59 and 23,

P̃
x(XτD /∈ ∂ D) ≥ P̃

x(XτB(x,r/2) ∈ B′) ≈ P
x(XτB(x,r/2) ∈ B′) ≥ c .

Furthermore, let Dn = {y ∈ D : dist(y, Dc) > 1/n}, n = 1, 2, . . .. We consider n
such that B(x, r/2) ⊂ Dn. We have P̃

x(XτDn
∈ D) ≤ 1 − P̃

x(XτB ∈ B′) ≤ 1 − c, as
before. Let C = sup{u(y) : y ∈ D}. We have u(x) = Ẽ

x{u(XτDn
); XτDn

∈ D} ≤ C(1 −
c), hence C ≤ C(1 − c) and so C = 0. ��

In the context of Lemma 13, the P̃
x distribution of XτS is absolutely continuous

with respect to the Lebesgue measure, and has density function

P̃S(x, y) ≈ PS(x, y) , y ∈ Sc , (60)

provided x ∈ S. This follows from Eq. 39 and Lemma 14. For clarity,

P̃
x(XτS ∈ A) ≈ P

x(XτS ∈ A) , x ∈ S , A ⊂ Sc . (61)

Lemma 15 (Harnack Inequality for L) Let x, y ∈ R
d, 0 < s < 1 and k ∈ N satisfy |x −

y| ≤ 2ks. Let ũ be nonnegative in R
d and L-harmonic in B(x, s) ∪ B(y, s). There is

C = C(d, α, b) such that

C−12−k(d+α)ũ(x) ≤ ũ(y) ≤ C2k(d+α)ũ(x) . (62)

Proof We may assume that s ≤ 1 ∧ ε/2, with ε of Lemma 13. Let u(z) = ũ(z) for
z ∈ B(y, 2s/3)c and u(z) = ∫

B(y,2s/3)c ũ(v)PB(y,2s/3)(z, v) dv for z ∈ B(y, 2s/3), so that
u is nonnegative in R

d and (regular) α–harmonic in B(y, 2s/3). Let z ∈ B(y, s/2). By
Eq. 61,

ũ(z) = Ẽ
zũ(X(τB(y,2s/3))) =

∫

B(y,2s/3)c
ũ(v)P̃B(y,2s/3)(z, v) dv ≈ u(z) .
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By Lemma 2 we get ũ(z) ≈ ũ(y) with a constant depending only on d, α and b . To
compare ũ(x) and ũ(y) we will assume that |x − y| ≥ 3s/2, because otherwise we may
take smaller s. For z ∈ B(y, s/2) we have |x − z| ≤ |x − y| + |y − z| ≤ 2ks + s/2 ≤
2k+1s, and we get

PB(x,s/2)(x, z) = Cd,α

(
(s/2)2

|x − z|2 − (s/2)2

)α/2 1
|x − z|d

≥ Cd,α2−αsα|x − z|−d−α

≥ Cd,α2−(d+2α)2−k(d+α)s−d .

Since P̃B(x,s/2) ≈ PB(x,s/2), by the first part of the proof we obtain

ũ(x) =
∫

B(x,s/2)c
P̃B(x,s/2)(x, z)ũ(z) dz ≥

∫

B(y,s/2)

P̃B(x,s/2)(x, z)ũ(z) dz

≈
∫

B(y,s/2)

PB(x,s/2)(x, z)ũ(z) dz

≥ |B(y, s/2)|Cd,α2−(d+2α)2−k(d+α)s−dũ(y) = c2−k(d+α)ũ(y) .

By symmetry, ũ(x) ≈ ũ(y). ��

We obtain a boundary Harnack principle for L and general C1,1 sets D.

Lemma 16 (BHP) Let z ∈ ∂ D, 0 < r ≤ r0(D), and 0 < p < 1. If ũ, ṽ are nonnegative
in R

d, regular L-harmonic in D ∩ B(z, r), vanish on Dc ∩ B(z, r) and satisfy ũ(x0) =
ṽ(x0) for some x0 ∈ D ∩ B(z, pr) then

C−1ṽ(x) ≤ ũ(x) ≤ Cṽ(x) , x ∈ D ∩ B(z, pr) , (63)

with C = C(d, α, b , p, r0(D)).

Proof In view of Lemma 15 we may assume that r is small. Let F = F(z, r/2) ⊂
B(z, r) be the C1,1 domain of Lemma 1, localizing D at z. For x ∈ F we have
ũ(x) = ∫

P̃F(x, z)ũ(z) dz ≈ u(x), where u(x) = ∫
PF(x, z)ũ(z) dz. Similarly ṽ(x) ≈

v(x) = ∫
PF(x, z)ṽ(z) dz. Since ũ(x0) = ṽ(x0), we have u(x0) ≈ v(x0). By Lemma 3,

u(x) ≈ v(x), provided x ∈ D ∩ B(z, r/8). We use Lemma 15 for the full range x ∈
D ∩ B(z, pr). ��

5 Proof of Theorem 1

By Eqs. 52 and 29 we have the estimate

G̃(x, y) ≤ G(x, y) + d
∫

D

G̃(x, z)G(z, y)

δ(z) ∧ |y − z| |b(z)| dz , x, y ∈ D . (64)

We consider η < 1, say η = 1/2. By Lemma 9 and the uniform integrability in
Lemma 11 (see Eq. 49) there is a constant r > 0 so small that

∫

Dr

G(z, y)

δ(z) ∧ |y − z| |b(z)| dz <
η

d
, y ∈ D , (65)
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and
∫

Dr

G(x, z)G(z, y)

G(x, y)(δ(z) ∧ |y − z|) |b(z)| dz <
η

d
, y ∈ D . (66)

Here Dr = {z ∈ D : δ(z) ≤ r}. We denote

ρ = [ε ∧ r0(D) ∧ r]/16 ,

with ε = ε(d, α, b , 2/κ) of Lemma 13, see also Lemma 1.
To prove Eq. 1 we will consider x, y in a partition of D × D. We will also consider

Q, R ∈ ∂ D such that δ(x) = |x − Q|, δ(y) = |y − R|.
I. First we suppose that δ(y) ≥ ρ/4. We denote

• D1 = {x ∈ D : |y − x| ≤ ρ/8},
• D2 = {x ∈ D : δ(x) ≥ ρ/8},
• D3 = {x ∈ D : δ(x) < ρ/8}.
(a) Let x ∈ D1. Denote B = B(y, ρ/4). By Eq. 24 we have GB(x, y) ≈ |x −

y|α−d ≈ G(x, y). Lemma 13 yields the lower bound in Eq. 1:

G̃(x, y) ≥ G̃B(x, y) ≈ GB(x, y) ≈ G(x, y) .

By Lemma 7 we get the upper bound in Eq. 1.
(b) Let x ∈ D2 \ D1. Let x0 ∈ D be such that |x0 − y| = ρ/8. G̃(·, y) is L-

harmonic in B(x, ρ/8) ∪ B(x0, ρ/8). By Lemma 15, (a) and Lemma 2 we
get G̃(x, y) ≈ G̃(x0, y) ≈ G(x0, y) ≈ G(x, y).

(c) Let x ∈ D3. Let x0, y0 ∈ D be collinear with x, Q and such that δ(x0) =
|x0 − Q| = 5ρ/32 and δ(y0) = |y0 − Q| = 7ρ/32 (consider an inner ball
tangent at Q to see the situation). Let F = F(Q, ρ) be the approximating
domain of Lemma 1. The functions G̃(·, y0), G̃F(·, y0) and G̃(·, y) are
regular L-harmonic in B(Q, 6ρ/32). By Lemmas 16, 13 and 3,

G̃(x, y)

G̃(x0, y)
≈ G̃F(x, y0)

G̃F(x0, y0)
≈ GF(x, y0)

GF(x0, y0)
≈ G(x, y)

G(x0, y)
.

By (a) and (b), G̃(x0, y) ≈ G(x0, y) and we obtain Eq. 1 in the considered
case I, that is for δ(y) ≥ ρ/4 and all x ∈ D.
Before we proceed to the next case we recall that G̃ is non-symmetric.

II. Suppose that δ(y) ≤ ρ/4. The proof of Eq. 1 follows in three steps.

Step 1. We will first prove that G̃(x, y) ≥ cG(x, y), x ∈ D.
To this end we denote

• F1 = {x ∈ D : |x − R| ≤ ρ},
• F2 = {x ∈ D : δ(x) ≥ ρ/4},
• F3 = {x ∈ D : δ(x) < ρ/4}.

(d) Let x ∈ F1. Consider F = F(R, 8ρ). Then δ(x) = δF(x) and δ(y) = δF(y).
Consequently, G(x, y) ≈ GF(x, y), see Eq. 24. As before we have

G̃(x, y) ≥ G̃F(x, y) ≈ GF(x, y) ≈ G(x, y) .
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(e) Let x ∈ F2 \ F1. Let x0 ∈ D be collinear with y, R and such that δ(x0) =
|x0 − R| = ρ/2. We note that |x − y| ≥ 3ρ/4 and |x0 − y| ≥ ρ/4. By
Harnack inequalities and (d), G̃(x, y) ≈ G̃(x0, y) ≥ cG(x0, y) ≈ G(x, y).

(f) Let x ∈ F3 \ F1. Let z0 ∈ D be such that δ(z0) = |z0 − R| = ρ/3 and let
x0 ∈ D be such that δ(x0) = |x0 − Q| = ρ/4. We have |x0 − y| > ρ/2 and
|z0 − y| ≥ ρ/12. By Harnack inequalities and (d),

G̃(x0, y) ≈ G̃(z0, y) ≥ cG(z0, y) ≈ G(x0, y) . (67)

G̃(·, z0) and G̃(·, y) are regular L-harmonic in D ∩ B(Q, ρ/3) because
|z0 − Q| > 5ρ/12 and |y − Q| > ρ/2. By Lemmas 16, part I and 3,

G̃(x, y)

G̃(x0, y)
≈ G̃(x, z0)

G̃(x0, z0)
≈ G(x, z0)

G(x0, z0)
≈ G(x, y)

G(x0, y)
.

By this and Eq. 67, G̃(x, y) ≥ cG(x, y).

Step 2. We next prove the upper bound in Eq. 1 for δ(x) ≥ ρ/4. By part I,

c−1
1 G(x, z) ≤ G̃(x, z) ≤ c1G(x, z) , z ∈ D \ Dr .

The constant c1 and other constants in what follows will only depend
on d, α, (the suprema in the Kato condition for) b , r0(D) and diam(D).
By Eq. 45 and Lemma 11,

∫

D

G(x, z)G(z, y)

δ(z) ∧ |y − z| |b(z)| dz ≤ C1G(x, y) .

Therefore by Eq. 64,

G̃(x, y) ≤ G(x, y) + c1d
∫

D\Dr

G(x, z)G(z, y)

δ(z) ∧ |y − z| |b(z)| dz

+ d
∫

Dr

G̃(x, z)G(z, y)

δ(z) ∧ |y − z| |b(z)| dz

≤ AG(x, y) + d
∫

Dr

G̃(x, z)G(z, y)

|y − z| ∧ δ(z)
|b(z)| dz , (68)

where A = 1 + c1dC1. By Lemma 7 and Eq. 65 we obtain

G̃(x, y) ≤ AG(x, y) + C0d
∫

Dr

|x − z|α−dG(z, y)

δ(z) ∧ |y − z| |b(z)| dz

≤ AG(x, y) + B(x) , (69)

where B(x) = ηC0δDr (x)α−d. We claim that for n = 0, 1, . . .,

G̃(x, y) ≤ A
(
1 + η + · · · + ηn)G(x, y) + ηn B(x) . (70)

This is proved by induction: we plug Eq. 70 into Eq. 68, and use Eqs.
65 and 66. In consequence,

G̃(x, y) ≤ A
1 − η

G(x, y) . (71)
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Step 3. We will now prove the upper bound in Eq. 1 when δ(x) < ρ/4. We will
consider F1, F3 and F from Step 1. If x ∈ F3 \ F1 than we use the same
argument as in (f), but this time all the terms in Eq. 67 are comparable
because of Eq. 71, and we obtain Eq. 1. Finally, for x ∈ F1 ⊂ F we have

G̃(x, y) = G̃F(x, y) +
∫

D\F
P̃F(x, z)G̃(z, y) dz .

By Lemma 13 , G̃F(x, y) ≈ GF(x, y). We already know that for z ∈
D \ F1, G̃(z, y) ≈ G(z, y), and P̃F(x, z) ≈ PF(x, z) by Eq. 60. Thus,

G̃(x, y) ≈ GF(x, y) +
∫

D\F
PF(x, z)G(z, y) dz = G(x, y) .

The proof of Theorem 1 is complete. In passing we only note that Eqs.
38 and 1, and [20] or [30, Theorem 22] yield sharp estimates of the
Poisson kernel:

P̃D(x, y) ≈ PD(x, y) ≈ δD(x)α/2δDc(y)−α/2 [
1 ∨ δDc(y)

]−α/2 |y − x|−d .

(72)

Appendix

Let function φ be of class C1,1, i.e. satisfy

|∇φ(x̃) − ∇φ(ỹ)| ≤ η|x̃ − ỹ| , x̃, ỹ ∈ R
d−1 , (73)

for some η < ∞. Let f (t) = φ((1 − t)ỹ + tx̃), t ∈ [0, 1]. We have

|φ(x̃) − φ(ỹ) − ∇φ(ỹ) · (x̃ − ỹ)| =
∣∣∣∣
∫ 1

0

(
f ′(t) − f ′(0)

)
dt

∣∣∣∣

=
∣∣∣∣
∫ 1

0
(x̃ − ỹ) · (∇φ((1 − t)ỹ + tx̃) − ∇φ(ỹ)

)
dt

∣∣∣∣

≤ η|x̃ − ỹ|2/2 . (74)

We will consider nonlinear transformations of R
d defined as follows,

Tx = (x̃, xd + φ(x̃)) , T−1x = (x̃, xd − φ(x̃)) . (75)

Proof of Lemma 1 For x = (x1, . . . , xd−1, xd) ∈ R
d we let x̃ = (x1, . . . , xd−1), so that

x = (x̃, xd). The halfspace H = {x ∈ R
d : xd > 0} is a C1,1 domain at each scale r > 0,

and we can localize it at 0 by

K = {x ∈ R
d : 0 < xd < r/2, |x̃| < r/4 +

√
(r/4)2 − (xd − r/4)2} .

Put differently, K is defined by the conditions: |x̃| < r/2 and

r/4 −
√

(r/4)2 − ((|x̃| − r/4)+)2 < xd < r/4 +
√

(r/4)2 − ((|x̃| − r/4)+)2 ,
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where a+ = max(a, 0). We see that K is C1,1 at scale r/4. We consider the inner and
outer balls of radius r/4 for K, tangent at Q ∈ ∂K. Let

B = {x ∈ R
d : 2(n, x − Q) > |x − Q|2}

be either one of them. Here n ∈ R
d and |n| = r/4.

Let D be C1,1 at a scale r > 0. It is well known that up to isometry D locally
coincides with the image of the halfspace H by a transformation T of the form (75),
see [1, Section 2]. Namely, by possibly changing coordinates, we may assume that
0 ∈ ∂ D, φ satisfies Eq. 73, φ(0) = 0, ∇φ(0) = 0,

|φ(x̃)| ≤ |x̃|2
r

<
r
4

, provided |x̃| < r/2 ,

and

{x ∈ D : |x̃| < r/2, |xd| < r } = {x ∈ R
d : |x̃| < r/2, φ(x̃) < xd < r} .

We also have η ≤ c/r in Eq. 73, where c ≥ 1 is an absolute constant.
We define F = T K ⊂ D. We see that F locally coincides with D, and F ⊂ {x :

|x̃| < r/2, −r/4 < xd < 3r/4}, hence diam(F) < 2r. We claim that F is C1,1. The claim
will follow from considering the image of B by T. Let ξ = ∇φ(Q). We note that
|ξ | ≤ η|Q̃| ≤ ηr/2 ≤ c/2. We define

x → Sx = T(Q + x) − T Q = (x̃, xd + [φ(Q̃ + x̃) − φ(Q̃)]) ,

S−1x = (x̃, xd − [φ(Q̃ + x̃) − φ(Q̃)]), Lx = (x̃, xd + ξ · x̃), L−1x = (x̃, xd − ξ · x̃). We
will use L−1 as a linear approximation of S−1 at x = 0. Let L−1∗ be the transpose of
L−1. We have |Lx| ≤ |x| + |ξ ||x| ≤ |x|(2 + c)/2. The same is true of L−1 and L−1∗.
We note that

T B − T Q = S(B − Q) = {x ∈ R
d : 2(n, S−1x) > |S−1x|2} ,

and x = 0 is on the boundary of the set. Consider the ball B′ = {x : 2κ (L−1∗n, x) >

|x|2}. Note that T Q ∈ ∂(B′ + T Q). We will verify our claim on F by proving that
if 2κ = c−1 ∧ (1 + 3c/4)−2, then B′ ⊂ S(B − Q), or B′ + T Q ⊂ T B. To this end we
note that

2κ(L−1∗n, x) > |x|2 (76)

implies that |x| < 2κ|L−1∗n| ≤ r/2. For such (small) x, by Eq. 74, we obtain

|S−1x| ≤ |x| + |ξ ||x| + η|x|2/2 ≤ |x|(1 + 3c/4) . (77)

Similarly,

|S−1x − L−1x| = |φ(Q̃ + x̃) − φ(x̃) − ξ · x̃| ≤ η|x̃|2/2 .

Now, Eq. 76 yields 2(n, L−1x) > |x|2/κ , hence

2(n, S−1x) > 2(n, S−1x) − 2(n, L−1x) + 1
κ

|x|2 ≥ 1
κ

|x|2 − 2|n|η|x̃|2/2

≥ 1
2κ

|x|2 ≥ (2κ)−1(1 + 3c/4)−2|S−1x|2 ≥ |S−1x|2 .

The proof is complete. ��
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Proof of Lemma 5 By [34] for s > 0, x ∈ R
d and φ ∈ C∞

c

(
(0,∞) × R

d
)
,

∫ ∞

s

∫

Rd
p̃(u − s, x, z)

(
∂u + �α/2

z + b(z) · ∇z
)
φ(u, z)dz du = −φ(s, x) . (78)

We note that the above integral is absolutely convergent. Indeed,

| (∂u + �α/2
z + b(z) · ∇z

)
φ(u, z)| ≤ c(1 + |b(z)|) ,

and if φ(u, z) = 0 for u > M, then by Eq. 33 and the remark following Eq. 30,

∫ ∞

s

∫

Rd
p̃(u − s, x, z)

∣∣(∂u + �α/2 + b(z) · ∇z
)
φ(u, z)

∣∣ dz du

≤ c1

∫ M

s

∫

Rd
p(u − s, x, z)(1 + |b(z)|) dz du

≤ c2

∫

Rd
(|x − z|α−d ∧ |x − z|−α−d)(1 + |b(z)|) dz < ∞ .

Furthermore, for x ∈ R
d, s ∈ R by Eqs. 34 and 78 we obtain

∫ ∞

s

∫

D
p̃D(u − s, x, z)

(
∂u + �α/2

z + b(z) · ∇z
)
φ(u, z) dz du

=
∫ ∞

s

∫

Rd
p̃(u − s, x, z)

(
∂u + �α/2

z + b(z) · ∇z
)
φ(u, z) dz du

− Ẽ
x
∫ ∞

s+τD

∫

Rd
p̃(u − s − τD, XτD , z)

(
∂u + �α/2

z + b(z) · ∇z
)
φ(u, z) dz du

= −φ(s, x) + Ẽ
xφ(s + τD, XτD)

= −φ(s, x) . (79)

��

Proof of Lemma 6 Let s = 0, x ∈ D, φ ∈ C∞
c ((0,∞) × R

d) and assume that supp φ ∈
(0,∞) × (D)c. By Eqs. 79 and 5 we obtain

Ẽ
xφ(τD, XτD) =

∫ ∞

0

∫

D

∫

Dc
p̃D(u, x, y)φ(u, z)ν(z − y)dzdydu .

��

Proof of Lemma 8 Let ϕ ∈ C∞
c (D) and let χ(u) ∈ C∞

c (R) be such that χ(u) = 1 for
u ∈ (−1, 1). For n = 1, 2, . . . we define φn(u, z) = ϕ(x)χ(u/n), and we have

∣∣(∂u + �α/2 + b(z) · ∇z
)
φn(u, z)

∣∣ ≤ c(1 + |b(z)|)
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with c independent of n. By Eq. 36, Lemma 7 and dominated convergence,

−ϕ(x) = lim
n→∞ −φn(0, x)

= lim
n→∞

∫ ∞

0

∫

D
p̃D(u, x, z)

(
∂u + �α/2

z + b(z) · ∇z
)
φn(u, z) dz du

=
∫ ∞

s

∫

D
p̃D(u, x, z)

(
�α/2ϕ(z) + b(z) · ∇ϕ(z)

)
dz du

=
∫

D
G̃D(x, z)

(
�α/2ϕ(z) + b(z) · ∇ϕ(z)

)
dz .

��
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43. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein functions. In: de Gruyter Studies in Mathe-
matics, vol. 37. Walter de Gruyter & Co., Berlin (2010) Theory and applications

44. Song, R.M.: Probabilistic approach to the Dirichlet problem of perturbed stable processes.
Probab. Theory Relat. Fields 95(3), 371–389 (1993)

45. Song, R.M.: Feynman–Kac semigroup with discontinuous additive functionals. J. Theor. Probab.
8(4),727–762 (1995)

46. Zhang, Q.: A Harnack inequality for the equation ∇(a∇u) + b∇u = 0, when |b | ∈ Kn+1.
Manuscr. Math. 89(1), 61–77 (1996)

47. Zhang, Q.S.: Gaussian bounds for the fundamental solutions of ∇(A∇u) + B∇u − ut = 0.
Manuscr. Math. 93(3), 381–390 (1997)


	Estimates of the Green Function for the Fractional Laplacian Perturbed by Gradient
	Abstract
	Introduction
	Preliminaries
	Perturbation Formula
	Local Results
	Proof of Theorem 1
	Appendix
	References



