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Abstract Signed graphs, i.e., undirected graphs with edges labelled with a plus or
minus sign, are commonly used to model relationships in social networks. Recently,
Kermarrec and Thraves (2011) initiated the study of the problem of appropriately
visualising the network: They asked whether any signed graph can be embedded into
the metric space R

l in such a manner that every vertex is closer to all its friends
(neighbours via positive edges) than to all its enemies (neighbours via negative
edges). Interestingly, embeddability into R

1 can be expressed as a purely combinato-
rial problem. In this paper we pursue a deeper study of this case, answering several
questions posed by Kermarrec and Thraves. First, we refine the approach of Kermar-
rec and Thraves for the case of complete signed graphs by showing that the problem
is closely related to the recognition of proper interval graphs. Second, we prove that
the general case, whose polynomial-time tractability remained open, is in fact NP -
complete. Finally, we provide lower and upper bounds for the time complexity of
the general case: we prove that the existence of a subexponential time (in the num-
ber of vertices and edges of the input signed graph) algorithm would violate the
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Exponential Time Hypothesis, whereas a simple dynamic programming approach
gives a running time single-exponential in the number of vertices.

Keywords Signed graphs · Relationships · Embedding into metric space

1 Introduction

Undirected graphs with edges labelled positively (by a +) and negatively (by a −),
called signed graphs, in many applications serve as a very simple model of relation-
ships between a group of people, e.g., in a social network. Sign labels can express
in a simplified way mutual relations, like staying in a relationship, family bonds or
conflicts, by classifying them either as friendship (+ edge), hostility (− edge) or
ambivalence (no edge). In particular, much effort has been put into properly under-
standing and representing the structure of the network, balancing it or naturally
partitioning into clusters [1, 3, 6, 15–18, 21]. One of the problems is to visualize the
model graph properly, i.e., in such a way that positive relations tend to make vertices
be placed close to each other, while negative relations imply large distances between
vertices.

In their recent work, Kermarrec and Thraves [14] formalized this problem as fol-
lows: Consider the metric space R

l with the Euclidean metric denoted by d . Given a
signed graph G, is it possible to embed the vertices of G in R

l so that for any posi-
tive edge uu1 and negative edge uu2 it holds that d(u, u1) < d(u, u2)? This question
has a natural interpretation: we would like to place a group of people so that every
person is placed closer to his friends than to his enemies.

The work of Kermarrec and Thraves [14] concentrated on showing a number of
examples and counterexamples for embeddability into spaces of small dimensions
(1 and 2) and a deeper study of the 1-dimensional case. Interestingly enough, the
case of the Euclidean line has an equivalent formulation in the language of pure
combinatorics: Given a signed graph G, is it possible to order the vertices of G so
that for any positive edge uw there is no negative edge uv with v laying between u

and w? The authors made algorithmic use of this combinatorial insight: Providing the
given signed graph is complete (i.e., every pair of vertices is adjacent via a positive or
negative edge) they show a polynomial-time algorithm that computes an embedding
into a line or reports that no such embedding exists.

Kermarrec and Thraves also posed a number of open problems in the area, includ-
ing the question of the complexity of determining the embeddability of an arbitrary
(not necessarily complete) graph into the Euclidean line.

Our Results We focus on the problem of embedding a signed graph into a line. The
reformulation of the 1-dimensional case of Kermarrec and Thraves turns out to be an
interesting combinatorial problem, which allows classical methods of analysis and
shows interesting links with the class of proper interval graphs.

We begin with refining the result of Kermarrec and Thraves for the case of com-
plete graphs. We prove that a complete signed graph is embeddable into a line
if and only if the graph formed by the positive edges is a proper interval graph.
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Using this theorem one can immediately transfer all the results from the well-studied
area of proper interval graphs into our setting. Most importantly, as recognition of
proper interval graphs can be performed in linear-time [4], we obtain a simpler algo-
rithm for determining the embeddability of a complete graph into a line, with a
linear runtime.

We next analyse the general case. We resolve the open problem posed in [14]
negatively: it is NP -complete to resolve whether a given signed graph can be embed-
ded into a line. This hardness result also answers other questions of Kermarrec and
Thraves [14]. For example, we infer that it is NP -hard to decide the smallest dimen-
sion of a Euclidean space in which the graph can be embedded, as such an algorithm
could be used to test embeddability into a line.

Furthermore, we are able to show a lower bound on the time complexity of resolv-
ing embeddability into a line, under a plausible complexity assumption. We prove
that obtaining an algorithm running in subexponential time (in terms of the total num-
ber of vertices and edges of the input graph) would contradict the Exponential Time
Hypothesis [11] (see Section 2 for an exact statement). We complete the picture of
the complexity of the problem by showing a dynamic programming algorithm that
runs in O�(2n) time, 1 matching the aforementioned lower bound up to a constant in
the base of the exponent (n denotes the number of vertices of the input graph).

Organisation of the Paper In Section 2 we recall widely known notions and facts
that are of further use, and provide the details of the combinatorial reformulation of
the problem by Kermarrec and Thraves [14]. Section 3 is devoted to refinements in
the analysis of the case of the complete signed graphs, while Section 4 describes
upper and lower bounds for the complexity of the general case. Finally, in Section 5
we gather conclusions and ideas for further work.

2 Preliminaries

Basic Definitions For a finite set V , by an ordering of V we mean a bijection
π : V → {1, 2, . . . , |V |}. We sometimes treat an ordering π as a linear order
on V and for u, v ∈ V we write u ≤π v to denote π(u) ≤ π(v). A lexico-
graphic ordering imposed by π on pairs of elements from V is an ordering π ′ of
V × V defined as follows: (a, b) ≤π ′ (c, d) if and only if a <π c, or a = c and
b ≤π d . If π is an ordering of vertices of a directed graph G, then we say that
π is a topological ordering if and only if for every (v, w) ∈ E(G) we have that
v ≤π w. A directed graph admits a topological ordering of vertices if and only if it is
acyclic.

In a graph G = (V , E) the neighbourhood of a vertex v, denoted N(v), is the set
of all its neighbours, i.e., {w : vw ∈ E}. The closed neighbourhood of v is defined
as N[v] = N(v) ∪ {v}.

1The O�() notation suppresses factors that are polynomial in the input size.
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A signed graph is a triple G = (V , E+, E−), where E+, E− ⊆ (
V
2

)
and

E+ ∩ E− = ∅. We view a signed graph as an undirected simple graph with two pos-
sible labels on the edges: positive (+) and negative (−). We call the edges from E+
positive, while those from E− negative. The graph G+ = (V , E+) is called the pos-
itive part of G, and G− = (V , E−) — the negative part. A signed graph is called
complete if E+ ∪ E− = (

V
2

)
, i.e., every pair of vertices is adjacent via a positive or

negative edge.

Proper Interval Graphs Let G = (V , E) be an undirected graph, I be a family of
size |V | of intervals on real line with nonempty interiors and pairwise different end-
points and ι : V → I be any bijection. We say that I is an interval model for
G if for every v, w ∈ V , v 
= w, vw ∈ E is equivalent to ι(v) ∩ ι(w) 
= ∅.
I is a proper interval model if, additionally, none of the intervals is entirely con-
tained in any other. Graphs having an interval model are called interval graphs,
while if a proper interval model exists as well, we call them proper interval
graphs.

Looges and Olariu showed the following combinatorial characterization of proper
interval graphs. An ordering π of the vertex set of a graph G = (V , E) is called
an umbrella ordering if whenever π(v1) < π(v2) < π(v3), then v1v3 ∈ E implies
v1v2 ∈ E and v2v3 ∈ E.

Theorem 2.1 ([19]) A graph G is a proper interval graph if and only if G admits an
umbrella ordering.

Exponential Time Hypothesis [11]: The Exponential Time Hypothesis (ETH for
short) asserts that there exists a constant C > 0 such that no algorithm solving the
3-CNF-SAT problem in O(2Cn) exists, where n denotes the number of variables in
the input formula.

Combinatorial Problem Statement In [14], Kermarrec and Thraves work with the
metric definition of the problem: Given a signed graph G = (V , E+, E−) a fea-
sible embedding of G in the Euclidean space R

l is such a function f : V → R
l

that for all u1, u2, u, if u1u ∈ E+ and u2u ∈ E−, then d(f (u1), f (u)) <

d(f (u2), f (u)) (recall that d stands for the Euclidean distance in R
l). How-

ever, for the 1-dimensional case they have in essence proved the following
result:

Theorem 2.2 (Lemmata 3 and 4 of [14], rephrased) A signed graph G =
(V , E+, E−) has a feasible embedding in a line iff there is an ordering π of V such
that for every u ∈ V :

(i) there are no u1 <π u2 <π u such that u1u ∈ E+ and u2u ∈ E−;
(ii) there are no u1 >π u2 >π u such that u1u ∈ E+ and u2u ∈ E−.

We will jointly call conditions (i) and (ii) the condition imposed on u. Somewhat
abusing the notation, the ordering π will also be called an embedding of G into
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the line. Therefore, from now on we are working with the following combinatorial
problem that is equivalent to the version considered by Kermarrec and Thraves:

3 The Complete Signed Graph Case

In their work, Kermarrec and Thraves [14] announced a polynomial-time algorithm
solving the LINE CLUSTER EMBEDDING problem in the case where the input signed
graph is complete. Their line of reasoning was essentially as follows: if a signed graph
can be embedded into a line, then its positive part has to be chordal. However, for
a connected chordal graph with at least 4 vertices that actually is embeddable into a
line, every perfect elimination ordering of the graph is a feasible solution. Therefore,
having checked that the graph is chordal and computed a perfect elimination ordering
of every connected component, we can simply verify whether the obtained ordering
is a correct line embedding.

We refine the approach of Kermarrec and Thraves by showing the following
simple observation (see also Fig. 1 for an illustration).

Lemma 3.1 For a signed complete graph G = (V , E+, E−), an ordering π of V is
a feasible embedding of G into a line if and only if π is an umbrella ordering of the
positive part of G.

Proof If π is not a feasible embedding of G into a line, then there exists u1, u2, u ∈
V such that u1u ∈ E+, u2u ∈ E−, and u2 lies between u1 and u in the ordering π .
Consequently, u1u is an edge of the positive part, but u2u is not, hence π is not an
umbrella ordering of G+.

In the other direction, if π is not an umbrella ordering of G+, then there exist
v1 <π v2 <π v3 such that v1v2 ∈ E+ but v1v3 /∈ E+ or v3v2 /∈ E+. As G is a

Fig. 1 A picture proof of Lemma 3.1. The first row presents forbidden situations in a feasible embedding
of G into a line, whereas the second row presents forbidden situations in an umbrella ordering
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complete graph, v1v3 ∈ E− or v3v2 ∈ E−. In the first case, we have a violation of
condition (ii) imposed on v1, and in the second case we have a violation of condition
(i) imposed on v3. Consequently, π is not a feasible embedding of G into a line.

Corollary 3.2 A complete signed graph G = (V , E+, E−) is embeddible in R
1 if

and only if G+ = (V , E+) is a proper interval graph.

Recall that proper interval graphs are a subclass of chordal graphs; therefore, the
result nicely fits into the picture of Kermarrec and Thraves. Moreover, the theory of
proper interval graphs is well-studied, so many results from that area can be imme-
diately translated to our setting. For instance, many NP-complete problems become
solvable in polynomial time on proper interval graphs (e.g., [2, 10, 13, 20]), and
the linear-time algorithm of Corneil et al. [4] for recognizing proper interval graphs
immediately solves the LINE CLUSTER EMBEDDING problem in linear time in case
of a complete signed graph.

Corollary 3.3 Assuming the input graph is complete and given as the set of positive
edges, LINE CLUSTER EMBEDDING can be solved in O(|V |+|E+|) time complexity.
Moreover, the algorithm can produce a feasible ordering of the vertices in the same
time, if such an ordering exists.

4 The General Case

4.1 NP -Completeness of the General Case

In [14] Kermarrec and Thraves asked whether the LINE CLUSTER EMBEDDING

problem is also polynomial-time solvable in the case where the input is not restricted
to complete graphs. In this section we show that this is unlikely: in fact, the problem
becomes NP -complete.

In the proof we use an auxiliary problem, called ACYCLIC PARTITION.

ACYCLIC PARTITION has been introduced and proven to be NP -complete by
Eppstein and Mumford [7] and, independently, by Guillemot et al. [9]. In both these
papers it was used as a pivot problem for proving NP -completeness of other prob-
lems. For the sake of completeness we would like to revisit the NP -hardness proof,
because we need explicit bounds on the size of the directed graph obtained in the
reduction for further applications. We begin with an instance of the SET SPLITTING

problem, which is known to be NP -complete [8].
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Lemma 4.1 There exists a polynomial-time algorithm that given an instance (F, U)

of SET SPLITTING outputs an equivalent instance G = (V , A) of ACYCLIC

PARTITION, for which |V | = |U | + ∑
F∈F |F | and |A| = 3

∑
F∈F |F |.

Proof We construct the directed graph D = (V , A) as follows. For every set F ∈ F
and every u ∈ F we build a vertex cF

u and connect all the vertices corresponding to
the same set F into a directed cycle in any order. For every element u ∈ U we build
a vertex du and for every vertex of the form cF

u we introduce two arcs: (du, c
F
u ) and

(cF
u , du). This concludes the construction; it is easy to verify the claimed sizes of V

and A.
Let us formally prove that the instances are equivalent. Let X be any solu-

tion to the (F, U) instance of SET SPLITTING. Let V1 = {du : u ∈ X} ∪
{cF

u : u ∈ U \ X} and V2 = {du : u ∈ U \ X} ∪ {cF
u : u ∈ X}. As

X splits every set F ∈ F , none of the cycles formed by vertices cF
u for fixed

F is entirely contained in either V1 or V2. Also, for every element u the ver-
tex du becomes isolated in the corresponding graph D[Vi], as all his neighbours
belong to V3−i . Therefore, both D[V1] and D[V2] are collections of isolated ver-
tices and directed paths and (V1, V2) is a solution to the ACYCLIC PARTITION

instance.
In the other direction, let (V1, V2) be a solution to the instance of ACYCLIC PAR-

TITION. Let X = {u : du ∈ V1} ⊆ U ; we claim that X is a solution to the instance
of SET SPLITTING. Note that, due to the 2-cycles on the vertices du and cF

u , we have
that for every u ∈ X, all vertices cF

u belong to V2, whereas for every u /∈ X, all
vertices cF

u belong to V1.
Take any F ∈ F . As the cycle formed by vertices cF

u is not entirely contained
in any of the graphs D[V1], D[V2], there exist some u1 such that cF

u1
∈ V1 and u2

such that cF
u2

∈ V2. As the cycles formed by pairs {du1 , c
F
u1

} and {du2 , c
F
u2

} are also
not entirely contained in D[V1] nor in D[V2], du1 ∈ V2 and du2 ∈ V1. Consequently,
u1 ∈ U \ X, u2 ∈ X and F is split.

Lemma 4.2 There exists a polynomial-time algorithm that given an instance D =
(V , A) of ACYCLIC PARTITION outputs an equivalent instance H = (V ′, E+, E−)

of LINE CLUSTER EMBEDDING, such that |V ′| = |V | + |A| + 1, |E+| = 2|A| and
|E−| = |A| + |V |.

Proof We construct the graph H as follows: The set of vertices, V ′, consists of:

• a special vertex s;
• for every e ∈ A, a checker vertex ce;
• for every v ∈ V , an alignment vertex av .

We construct the edges of the signed graph as follows:

• for every e ∈ A, we introduce a positive edge sce;
• for every v ∈ V , we introduce a negative edge sav;
• for every arc (v, w) ∈ A, we introduce a positive edge c(v,w)av and a negative

edge c(v,w)aw.
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This concludes the construction; it is easy to verify the claimed sizes of V ′, E+, E−.
Let us prove equivalence of the instances. Let π , an ordering of V ′, be a solution

of the LINE CLUSTER EMBEDDING instance (V ′, E+, E−). As the special vertex
s is adjacent via positive edges to all the checker vertices, and via negative edges
to all the other, alignment, vertices, in the ordering π the checker vertices together
with the special vertex have to form an interval, i.e., a set of consecutive elements
with respect to π . Let V1 be the set of those v ∈ V for which av is to the left of
this interval, whereas V2 is the set of those v ∈ V for which av is to the right of
this interval. Formally, V1 = {v ∈ V : av ≤π s} and V2 = {v ∈ V : av ≥π s}.
We claim that (V1, V2) is a feasible solution of the ACYCLIC PARTITION instance
(V , A). Consider any arc (v, w) such that v, w ∈ V1. As av ≤π c(v,w), aw ≤π c(v,w),
c(v,w)av ∈ E+ and c(v,w)aw ∈ E−, then it follows that aw ≤π av . Thus, π has to
induce a reverse topological ordering on the vertices of D[V1] and, therefore, D[V1]
has to be acyclic. Symmetrically, D[V2] has to be acyclic as well, which concludes
the proof of (V1, V2) being a feasible solution.

Now take any solution (V1, V2) of ACYCLIC PARTITION instance (V , A). Let π1
be any topological ordering of D[V1] and π2 be any topological ordering of D[V2],
by which we mean that if (u, v) is an arc of D[V1], π1(u) < π1(v), and the same
holds for π2. Let us construct an ordering π of V ′ as follows:

• first, place all the vertices av for v ∈ V1 in the reverse order induced by π1;
• then, place all the checker vertices c(v,w) for which v ∈ V1 and w ∈ V2, in any

order;
• then, place all the checker vertices c(v,w) for which v, w ∈ V1, in reverse

lexicographic order imposed by π1 on pairs (v, w);
• then, place the special vertex s;
• then, place all the checker vertices c(v,w) for which v, w ∈ V2, in lexicographic

order imposed by π2 on pairs (v, w);
• then, place all the checker vertices c(v,w) for which v ∈ V2 and w ∈ V1, in any

order;
• finally, place all the vertices av for v ∈ V2 in the order induced by π2.

We claim that such π is a feasible solution to LINE CLUSTER EMBEDDING instance
(V ′, E+, E−).

Note that the positive neighbours of the special vertex s form an interval, there-
fore the condition imposed on this vertex is satisfied. Now consider a checker vertex
c(v,w). If v, w belong to different sets V1, V2, then the only negative neighbour of
c(v,w) is the first or the last of his closed neighbourhood with respect to π , thus sat-
isfying the condition imposed on c(v,w). In case when v, w ∈ V1 or v, w ∈ V2 this is
also true, due to π1, π2 being topological orderings of D[V1], D[V2] respectively.

Now take any vertex av , by symmetry assume v ∈ V1. We need to prove that the
condition imposed on av is satisfied as well. The neighbours of v consist of:

1. positive neighbours c(v,v′), such that v′ ∈ V2;
2. positive neighbours c(v,v′), such that v′ ∈ V1;
3. negative neighbours c(v′,v), such that v′ ∈ V1;
4. negative neighbours c(v′,v), such that v′ ∈ V2.
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We now verify that by the construction of π the neighbours of av lie in this
very order with respect to π . Clearly, the order in which we placed the check-
ers in π ensures that the neighbours from (1) are placed before the neighbours
from (2) and that the neighbours from (3) are placed before the neighbours from
(4). Thus the only non-trivial check is whether the vertices from (2) lie before
the vertices from (3). Assume otherwise, that there are some v′

1, v
′
2 such that

(v, v′
1) ∈ A, (v′

2, v) ∈ A, but c(v,v′
1)

>π c(v′
2,v). Then v′

2 <π1 v as π1 is a
topological ordering of D[V1], so the pair (v′

2, v) is lexicographically smaller than
the pair (v, v′

1). Hence c(v,v′
1)

>π c(v′
2,v), a contradiction with the construction

of π .
We have verified that for all the vertices the conditions imposed on them are

satisfied, so the instances are equivalent.

The NP -completeness of the SET SPLITTING problem [8], together with Lem-
mata 4.1, 4.2 and a trivial observation that LINE CLUSTER EMBEDDING is in NP ,
gives us the following theorem.

Theorem 4.3 The LINE CLUSTER EMBEDDING problem is NP -complete.

As mentioned before, the question of finding the smallest dimension of the
Euclidean space, into which the given graph can be embedded, clearly generalizes
testing embeddability into a line. Therefore, we have the followingcorollary.

Corollary 4.4 It is NP -hard to decide the smallest dimension of the Euclidean
space, into which a given signed graph can be embedded.

4.2 Lower Bound on the Complexity

In this subsection we observe that the presented chain of reductions enables us also to
establish a lower bound on the complexity of solving LINE CLUSTER EMBEDDING

under ETH. Firstly, let us complete the chain of the reductions.

Lemma 4.5 There exists a polynomial-time algorithm that given an instance ϕ of 3-
CNF-SAT with n variables and m clauses, outputs an equivalent instance (U,F) of
SET SPLITTING with |U | = 2n + 1 and

∑
F∈F |F | = 2n + 4m.

Proof We construct the instance (U,F) as follows. The universe U consists of one
special element s and two literals x, ¬x for every variable x of ϕ. The family F
includes (a) for every variable x, a set Fx = {x, ¬x}; (b) for every clause C, a set FC

consisting of s and all the literals in C. It is easy to check the claimed sizes of U,F .
We claim that the instance of SET SPLITTING (U,F) is equivalent to the instance ϕ

of 3-CNF-SAT.

Assume that ψ is a boolean evaluation of variables of ϕ that satisfies ϕ. We con-
struct a set X ⊆ U as follows: X consists of all the literals that are true in ψ . Now,
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every set Fx is split, as exactly one of the literals is true and one is false, whereas
every set FC is split as well, as it contains a true literal, which belongs to X, and the
special element s, which does not.

Now assume that X ⊆ U is a solution to the SET SPLITTING instance (U,F).
As taking U \ X instead of X also yields a solution, without losing generality we
can assume that s /∈ X. Every set Fx is split by X; therefore, exactly one literal of
every variable belongs to X and exactly one does not. Let ψ be a boolean evaluation
of variables of ϕ such that it satisfies all the literals belonging to X. Observe that ψ

satisfies ϕ: for every clause C the set FC has to be split, so, as s /∈ X, one of the
literals of C belongs to X and, thus, is satisfied by ψ .

Note that by pipelining Lemmata 4.5, 4.1 and 4.2, we obtain a reduction from
3-CNF-SAT to LINE CLUSTER EMBEDDING, where the output instance has a num-
ber of vertices and edges bounded linearly in the number of variables and clauses
of the input formula. As the Exponential Time Hypothesis also excludes a possi-
bility of having an algorithm for 3-CNF-SAT with running time subexponential
in the total number of variables and clauses of the formula [12], we obtain the
following.

Theorem 4.6 Unless ETH fails, there is a constant δ > 0 such that there is no algo-
rithm that given a (V , E+, E−) instance of LINE CLUSTER EMBEDDING problem,
solves it in O(2δ(|V |+|E+|+|E−|)) time.

4.3 A Single-Exponential Algorithm for LINE CLUSTER EMBEDDING

Note that the trivial brute-force algorithm for LINE CLUSTER EMBEDDING checks
all possible orderings, working in O�(n!) time. To complete the picture of the
complexity of LINE CLUSTER EMBEDDING, we show that a simple dynamic pro-
gramming approach can give single-exponential time complexity. This matches the
lower bound obtained from under Exponential Time Hypothesis (up to a constant in
the base of the exponent).

Before we proceed with the description of the algorithm, let us state a combinato-
rial observation that will be its main ingredient. Let (V , E+, E−) be the given LINE

CLUSTER EMBEDDING instance. For X ⊆ V and v /∈ X we will say that v is good
for the set X iff

• no vertex w ∈ X that is adjacent to v via a negative edge is simultaneously
adjacent to some vertex from V \ (X ∪ {v}) via a positive edge;

• no vertex w ∈ V \ (X ∪ {v}) that is adjacent to v via a negative edge is
simultaneously adjacent to some vertex from X via a positive edge.

Lemma 4.7 An ordering π is a feasible solution of (V , E+, E−) if and only if every
vertex v ∈ V is good for the set {u : u <π v}.

Proof One direction is obvious: if π is a feasible solution, then every vertex v has
to be good for the set {u : u <π v}. If v would not be good for {u : u <π v}, there
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would exist a vertex w certifying that v is not good, and the condition imposed upon
w would be not satisfied.

Now assume that every vertex v ∈ V is good for {u : u <π v} and take an
arbitrary vertex v ∈ V . If there were vertices u1 <π u2 <π v such that u1v ∈
E+ while u2v ∈ E−, then u2 would not be good for the set {u : u <π u2}, a
contradiction. Similarly, if there were vertices u1 >π u2 >π v such that u1v ∈ E+
while u2v ∈ E−, then u2 would not be good for the set {u : u <π u2}, a contradiction
as well. Therefore, the condition imposed on v is satisfied for an arbitrary choice
of v.

Theorem 4.8 LINE CLUSTER EMBEDDING can be solved in O�(2n) time and
space complexity. Moreover, the algorithm can also output a feasible ordering of the
vertices, if it exists.

Proof Let (V , E+, E−) be the given LINE CLUSTER EMBEDDING instance. Let
W = {(v, X) : v is good for X}. Let us construct a directed graph D = (W, F ),
where ((v, X), (v′, X′)) ∈ F if and only if X′ = X ∪{v}. As recognizing being good
is clearly a polynomial time operation, the graph D can be constructed in O�(2n) time
and has that many vertices and edges. Observe that by Lemma 4.7 there is a feasible
ordering π if and only if some sink (v, V \{v}) is reachable from some source (u, ∅);
indeed, such a path corresponds to introducing the vertices of V one by one in such a
manner that each of them is good for the respective prefix. Reachability of any sink
from any source can be, however, tested in time linear in the size of the graph using a
breadth-first search. The search can also reconstruct the path in the same complexity,
thus constructing the feasible solution.

5 Conclusions

In this paper we addressed a number of problems raised by Kermarrec and Thraves
in [14] for embeddability of a signed graph into a line. We refined their study of
the case of a complete signed graph by showing relation with proper interval graphs.
Moreover, we have proven NP -hardness of the general case and shown an almost
complete picture of its complexity.

Although the general case of the problem appears to be hard, real-life social
networks have a certain structure. Is it possible to develop faster, maybe even
polynomial-time algorithms for classes of graphs reflecting this structure?
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