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The estimation of the standard deviation of noise contaminating an image is a fundamental step in wavelet-based noise reduction
techniques. The method widely used is based on the mean absolute deviation (MAD). This model-based method assumes spe-
cific characteristics of the noise-contaminated image component. Three novel and alternative methods for estimating the noise
standard deviation are proposed in this work and compared with the MAD method. Two of these methods rely on a preliminary
training stage in order to extract parameters which are then used in the application stage. The sets used for training and testing,
13 and 5 images, respectively, are fully disjoint. The third method assumes specific statistical distributions for image and noise
components. Results showed the prevalence of the training-based methods for the images and the range of noise levels considered.
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1. INTRODUCTION

Noise reduction plays a fundamental role in image pro-
cessing, and wavelet analysis has been demonstrated to be
a powerful method for performing image noise reduction
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The procedure for noise
reduction is applied on the wavelet coefficients achieved us-
ing the wavelet decomposition and representing the image
at different scales. After noise reduction, the image is recon-
structed using the inverse wavelet transform. Decomposi-
tion and reconstruction are accomplished using two banks
of filters constrained by a perfect reconstruction condition
[3, 13]. The structure of these filter banks is characterised
by the frequency responses of two filters and by the pres-
ence or absence of sub/up-sampling, generating, respectively,
decimated or undecimated wavelet transforms. Undecimated
wavelet transforms have been considered for image noise re-
duction [3, 4, 5, 6, 10, 11, 12] as well as the decimated trans-
forms [1, 2, 6, 7, 8, 9].

Whilst alternative techniques have been proposed [14, 15,
16, 17, 18], the technique most widely used to reduce the

noise on the wavelet coefficients is to use one of a param-
eterised family of nonlinear functions, also called scheme.
Schemes that have been proposed include soft threshold-
ing [1, 6, 7], hard thresholding [2, 9], and optimal schemes
[3, 11, 12, 19, 20, 21]. The parameters identifying the nonlin-
ear functions to be applied on each scale depend on the char-
acteristics of the image component and on the noise. Several
techniques have been presented to estimate these parameters
based on the median operator or on the histogram of the
wavelet transform [6, 22]. Other techniques, such as themin-
imax threshold, global universal threshold, Sure threshold,
and James-Stein threshold, have been proposed in numer-
ous works [1, 2, 7]. Experiments performed to compare the
performances of these techniques [23, 24] demonstrated that
it is not possible to say which is the best, even if the global
universal threshold appears to be the worst. Usually these
techniques assume the knowledge a priori of the noise stan-
dard deviation level; therefore its correct estimation dramat-
ically affects the performances of the noise reduction tech-
nique. Donoho proposed a robust noise level estimator: the
mean absolute deviation (MAD) of wavelet coefficients at the
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highest resolution [1, 2, 6, 7]. Nevertheless, in our literature
research we did not find alternative methods addressed to
this problem.

In this paper, we include an investigation of the problem
of estimating the variance of the noise contaminating an im-
age and we compare three novel algorithms, two of which
based on training over a set of test images, with the MAD
technique.

The training process extracts a number of parameters us-
ing a set of noise-contaminated images generated by synthet-
ically combining noise-free images with realisations of the
noise process with a given level (standard deviation). During
the application of the algorithm, only a noisy image is avail-
able for analysis, from which the level of the contaminating
noise is estimated employing the parameters extracted dur-
ing the training.

In Section 2, we present the three new techniques for
noise level estimation over the wavelet components. The re-
sults are described and commented upon in Section 3, and
conclusions are drawn in Section 4.

2. NOISE LEVEL ESTIMATION

The most widely used method for estimating the variance
of the noise on a wavelet component is the mean absolute
deviation (MAD). This scheme tends to overestimate the
noise standard deviation in applications where the SNR in
the wavelet components is high, leading to unnecessary dis-
tortion of the image. The tendency for MAD to overestimate
the noise level is due to the fact that it assumes that the image
contribution in the band of interest can be neglected. How-
ever, the fact thatMAD is based on absolute deviationsmakes
it more robust to outliers (arising through image contribu-
tions in the band) than, say, direct estimate of the standard
deviation.

This section presents three alternative methods for esti-
mating the standard deviation of the noise from a noisy im-
age. These methods are based on the assumption that the
noise is Gaussian and additive. The methods can be applied
to any of the wavelet components of the image. However,
their performance degrades when the signal-to-noise ratio
(SNR) in the component increases, so in practice one usu-
ally finds that the noise variance is most accurately estimated
on the smallest scale (highest frequency) component where,
in most cases, the SNR is the lowest. If one is willing to make
the assumption of spatially white noise, then knowledge of
the noise variance at the smallest scale allows the one to infer
the noise variance at all other scales.

2.1. Model-based estimation of the noise variance

One method of estimating the noise variance is to assume a
model for both the noise and image components and to fit
the data to this model. One model, consistent with the use
of a soft thresholding scheme, is to assume that the noise is
additive and Gaussian and the image has a Laplacian distri-
bution. If the Laplacian distribution has zero mean and stan-
dard deviation σu, then its probability distribution function

(pdf) is
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where erfc(x) is the complementary error function. The
problem is then to estimate the parameters σu and σv from
the observed pixel values. An optimal method to achieve this
is to employ the method of maximum likelihood (ML). In
this problem, ML leads to a solution with no closed analytic
form and one is faced with an optimisation task. The absence
of a sufficient statistic for this problem makes the computa-
tion of theML solution burdensome. At every iteration of the
optimisation, one is required to evaluate (2) for every pixel
in the image. In an off-line environment, this load may not
be too onerous, but for real-time implementation presents a
significant challenge.

An efficient, but suboptimal, alternative is to employ the
method of matching moments [25, 26]. The technique pre-
sented here is based on the 2nd and 4th moments of the data.
Assuming a Laplacian model for the image and a Gaussian
noise distribution, then the 2nd and 4th moments of the im-
age plus noise are given by

E
{
x2
} = m2 = σu

2 + σv
2,

E
{
x4
} = m4 = 6σu4 + 3σv4 + 6σu2σv2.

(3)

The moment matching method utilizes estimates of the mo-
ments,m2 andm4 obtained directly from the data using

�
mk = 1

N

∑
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Replacing the theoretical momentsmk, by their estimates
�
mk,

and solving (3) for the unknown noise variance, one obtains
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The above has a pleasant intuitive interpretation. The esti-
mate of the noise variance is obtained by scaling the sam-

ple mean square value,
�
m2. The factor

�
m4/
�
m

2

2 represents an
estimate of the kurtosis of the noisy image. If the image is
dominated by noise, then the kurtosis will be three and

�
m2

is unscaled. In the presence of a Laplacian component, then
the estimated noise variance is reduced by a factor that de-
creases as the kurtosis increases. There are conditions under
which the above expression can yield unrealistic values. If
�
m4 < 3

�
m

2

2, the process is sub-Gaussian (platykurtic), and as
such cannot be constructed by adding a Gaussian to a Lapla-
cian process. In practice, this will occur in instances where
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the process is nearly Gaussian, so that it is reasonable to use

σ2v = �m2. Alternatively, if
�
m4 > 6

�
m

2

2, then the process has
longer tails than those associated with a Laplacian model.
Again, summing Laplacian and Gaussian processes cannot
form such an image. Under these circumstances then σv2 = 0
is appropriate. Such methods are well suited to real-time im-
plementation since they only require two summations across
all pixels, conducted when estimating the moments, in con-
trast to the ML algorithm, which require repeated evaluation
of (2).

2.2. Estimation of noise variance using
trainedmoments

The method of moment matching relies upon an assumed
statistical model for the image and noise. This section de-
scribes how this method can be extended to avoid the need
to assume a statistical model and instead employs training
to form an estimate of the noise variance. The method used
to achieve this is based on fitting a linear model based on
a normalised set of moments. The algorithm is described in
the context of the three moments, but it can be readily gen-
eralised to incorporate other moment information. The mo-
ments are used in a normalised form and are defined as

M1 = m1,

M2 = m2

m1
,

M4 = m4

m1m2
.

(6)

These are designed to ensure that the normalised moments
have the same dimensions as the noise standard deviation.
The above choice of normalisations is not unique and similar
schemes can be constructed employing different normalised
moments. The noise standard deviation is then assumed to
be related to these normalised moments through a linear
equation

σv = α1M1 + α2M2 + α4M4, (7)

where αk are constant coefficients. Equation (7) can be re-
garded as a series approximation to (5), where the assump-
tion of a Laplacian image and additive Gaussian noise has
been removed. The normalisation is designed to guarantee
the dimensional consistency of (7). The K images in the
training set are then used to evaluate the unknown coeffi-
cients αk. This is achieved by creating a library of images at
different SNRs by adding noise with P different variances to
each of the images. The noise variances are chosen to cover
the range of noise levels expected in practice. For each im-
age and noise level, the normalised moments are estimated,
which leads to K × P realisations of (5). The coefficients αk
that generate the best approximations, in the least squares
sense, to the known noise variance across the training set can
be computed using standard linear algebra techniques. These
coefficients can then be used to approximate the noise vari-
ance on a new noisy image by first computing the normalised
moments and then applying (7) with the trained coefficients.

2.3. Estimating the noise variance using
cumulative distribution functions

This method is based on trying to exploit plane regions in
the image. Consider a plane area of the image; the standard
deviation of the image computed over that area is a direct
estimate of the standard deviation of the noise. It should be
noted at this stage that the method is to be applied to wavelet
components that, by construction, have a global zero mean.
This means that by forming the sum of squared pixel values
in a neighbourhood one obtains a localised estimate of the
image variance.

In regions where there is image detail (at the scale associ-
ated with the particular component) then the local variance
will, on average, be the sum of the local image variance and
the noise variance, assuming the noise and image are statisti-
cally independent. Hence in these regions the local variance
will be greater than in plane areas. This implies that informa-
tion about the noise variance can be obtained by examining
areas with the smallest values of the local variance. To form
an estimate based on this information, the cumulative dis-
tribution function (cdf), c(x), of the local pixel variances is
formed. The value of c(x) represents the number of pixels
with a local variance less than x.

The character of the cdf depends upon both the image
and noise statistics, but for small values of x the values of
c(x) are dominated by the noise. Computation of cdf for all
possible values of x is burdensome and the solution adopted
herein is designed with computational efficiency in mind.
Specifically, we will only measure the cdf for a particular
value of x = x0. Mean values of c(x0) are computed across
the training set of images and are stored for a range of noise
variances. This forms a lookup table of values of c(x0) against
noise variance. When a new image is presented, the value of
c(x0) is computed and the lookup table is employed to infer
the noise variance.

The effectiveness of the method depends upon the choice
of x0. This point is chosen as the value that maximises a dis-
crimination metric evaluated across the training set. As an
example, the optimal grey level discriminator, x0l1 l2 , between
two noise levels can be defined using the function

fl1,l2 (x) =
∣∣ml1 (x)−ml2 (x)

∣∣√
σl1 (x) + σl2 (x)

,

x0l1 l2 = argmax
x

(
fl1,l2 (x)

)
,

(8)

where l1 and l2 are the two noise levels, ml(x) and σl(x) are
the mean and the standard deviation of the cdf at a grey level
x computed across the set of images. The optimal grey level
between all the noise levels x0 is defined as

x0 = argmax
x

(
ftot(x)

)
,

ftot(x) =
∑
i, j

fli,l j (x), i < j,
(9)

where the summation is taken across all the noise levels con-
sidered.
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Figure 1: Images used for training.

3. RESULTS

To assess the performance of the noise estimation processes,
a series of simulations was conducted. The three meth-
ods for noise estimation presented in Section 2 were imple-
mented along with MAD. Those methods that needed train-
ing were trained on a set of 13 images (Figure 1). The per-
formance of the methods was then evaluated using a selec-

tion of five images (Figure 2).1 Note that the training and
test sets contained no common images. Gaussian noise was
added to each of the five images using six different noise lev-
els. The noise was estimated using only the highest frequency

1Training and test sets of images are available at http://www.soton.ac.uk/
∼anto/image/figures and tables.htm.

http://www.soton.ac.uk/~anto/Image/Figures and tables.htm
http://www.soton.ac.uk/~anto/Image/Figures%20and%20tables.htm
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Figure 2: Images used for testing.

(smallest scale) wavelet component. The filter bank used for
the wavelet decomposition is showed in Figure 3 and the
coefficients described in (10),2

H11h = [1, 2, 1]
4

, H01h = [−1, 2,−1]
4

,

H11v = H11h
T , H01v = H01h

T ,

H12h = [1, 0, 2, 0, 1]
4

, H02h = [−1, 0, 2, 0,−1]
4

,

H12v = h12h
T , h02v = h02h

T ,

H13h = [1, 0, 0, 0, 2, 0, 0, 0, 1]
4

,

H03h = [−1, 0, 0, 0, 2, 0, 0, 0,−1]
4

,

H13v = H13h
T , H03v = H03h

T .

(10)

2The filter bank used for the wavelet decomposition is extensively de-
scribed in [3].

The mean squared error between the estimated noise vari-
ance and the true variance of the added noise is computed;
the results are presented in Tables 1 and 2.

Table 1 illustrates the improved performance of all three
new methods relative to MAD with respect to the six noise
levels. The mean squared error is computed over the five im-
ages. In general, the two training-based methods achieve a
better performance than the moment matching technique or
MAD. For four noise levels the cdf method performs best and
for the other two levels the trained moment-based method
achieves the best results. The grey level selected to estimate
the noise level in the cdf method performs particularly well
when the contaminating noise level is clearly higher than
the standard deviation of the image component (last col-
umn in Table 2). All the methods tend to perform better
as the noise level increases, as one would anticipate. This
test provides some evidence of the utility of training-based
schemes.
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DecompositionOriginal
image H01h(Z) H01v(Z) HH

H11v(Z) HL

H11h(Z) H01v(Z) LH

H11v(Z) H02h(Z) H02v(Z) LLHH

LL

H12v(Z) LLHL

H12h(Z) H02v(Z) LLLH

H12v(Z) H03h(Z) H03v(Z) LLLLHH

LLLL

H13v(Z) LLLLHL

H13h(Z) H03v(Z) LLLLLH

H13v(Z) LLLLLL

Summation

Reconstructed
image

Figure 3: Filter bank used for the wavelet decomposition. H0mh and H1mh are the horizontal decomposition filters for decomposition level
h and H0mv and H1mv are the vertical decomposition filters for decomposition level h. The reconstruction is achieved by summing of the
components.

Table 2 compares the performance of the three new
methods with those of the MAD method and with re-
spect to the five images. The mean squared error is com-
puted over the six noise levels. The cdf method achieves
the best performances for three images (A, B, and C), the
performances of the MAD and moment matching meth-
ods are superior, respectively, for images D and E. In gen-
eral, again the two training-based methods achieve bet-
ter performance than the moment matching technique or
MAD.

We believe that the poor performance of the moment
matching method (third column) can be attributed to the
inadequacy of the Laplacian distribution for modelling the
underlying image. This has been verified by comparing the
mean squared error between synthetically generated images
with optimal3 Laplacian distribution and the image compo-
nent distribution (sixth column). The ratio between the val-
ues in the third and sixth columns and in the same row is
almost constant and this demonstrates that performances of
the moment matching method are strongly related to the dis-
crepancy between optimal (Laplacian distribution) and real
image components.

3The parameters of the Laplacian distribution were selected to minimise
the MSE between synthetic image and image component.

We also believe that the comparatively poor performance
of MAD (second column) is due to the fact that it assumes
that there is zero image contribution in the component being
examined. The last column of Table 2 lists the standard devi-
ation of the image component. Comparing the second and
last columns, the relation between the MAD performance
and the standard deviation of the image component contri-
bution is clear.

4. CONCLUSIONS

The problem of the noise standard deviation level estima-
tion over the wavelet component is considered in this work.
Three novel methods have been proposed and their per-
formance was compared with that of those achieved using
the classical MAD-based method. The techniques utilised
to estimate the noise level are in general based on some
type of assumption concerning image and noise charac-
teristics. An alternative solution proposed here is to use
training-based methods which do not rely on any prior
assumption and utilise parameters extracted from a pre-
liminary stage performed on a set of representative im-
ages. Among the methods proposed here, two are training-
based, while the third is based on the assumption of spe-
cific statistical distributions for image and noise compo-
nents. The set of images used for training is representative
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Table 1: Mean squared errors for noise standard deviation estimates computed over 5 images.

Standard deviation
MAD Moment matching Trained moments cdf

of synthetic noise

5 3.49 2.49 2.35 2.73

7 3.01 2.36 1.91 1.86

9 2.63 2.13 1.59 1.55

11 2.33 1.97 1.38 1.40

13 2.08 1.76 1.37 0.46

15 1.84 1.62 1.31 0.43

Overall mean 2.56 2.06 1.65 1.41

Table 2: Mean squared errors for noise standard deviation estimates computed over 6 noise levels (columns 2–5); mean squared error
between image component and synthetically generated image with optimal Laplacian distribution (column 6); and standard deviation of the
image component (column 7).

Image MAD Moment matching Trained moments cdf MSE (IC − IL) STD IC

Image A 2.75 2.89 0.84 0.34 1.18 8.14

Image B 1.27 1.32 1.25 1.00 0.62 2.57

Image C 1.95 3.25 0.98 0.71 1.45 3.49

Image D 0.83 1.22 1.52 1.73 0.47 1.67

Image E 5.98 1.62 3.68 3.26 0.83 11.11

Overall mean 2.56 2.06 1.65 1.41 — —

of the class of the video images and completely disjoint
from the set used for testing the methods and comparing
the results. For the large majority of the images and noise
levels considered, the training-based methods demonstrated
their ability to offer superior performance. The advantages
and disadvantages of the model-based techniques, such as
the MAD and the novel model proposed here, are also dis-
cussed.

The results showed in this paper need to be generalised
using larger sets of test images and different range noise lev-
els. The techniques proposed seem also to be suitable for
other classes of images and for non-spatially white Gaussian
noise distributions. A desirable development of this work
could focus on these aspects.
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