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Abstract 

Background: Plasmodium falciparum resistance to anti‑malarial drugs remains a major obstacle to malaria control 
and elimination. The parasite has developed resistance to every anti‑malarial drug introduced for wide‑scale treat‑
ment. However, the spread of resistance may be reversible. Malawi was the first country to discontinue chloroquine 
use due to widespread resistance. Within a decade of the removal of drug pressure, the molecular marker of chloro‑
quine‑resistant malaria had disappeared and the drug was shown to have excellent clinical efficacy. Many countries 
have observed decreases in the prevalence of chloroquine resistance with the discontinuation of chloroquine use. 
In Zambia, chloroquine was used as first‑line treatment for uncomplicated malaria until treatment failures led the 
Ministry of Health to replace it with artemether‑lumefantrine in 2003. Specimens from a recent study were analysed 
to evaluate prevalence of chloroquine‑resistant malaria in Nchelenge district a decade after chloroquine use was 
discontinued.

Methods: Parasite DNA was extracted from dried blood spots collected by finger‑prick in pregnant women who 
were enrolling in a clinical trial. The specimens underwent pyrosequencing to determine the genotype of the P. falci-
parum chloroquine resistance transporter, the gene that is associated with CQ resistance.

Results: Three‑hundred and two specimens were successfully analysed. No chloroquine‑resistant genotypes were 
detected.

Conclusion: The study found the disappearance of chloroquine‑resistant malaria after the removal of chloroquine 
drug pressure. Chloroquine may have a role for malaria prevention or treatment in Zambia and throughout the region 
in the future.
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Background
The emergence of Plasmodium falciparum resistance to 
anti-malarial drugs has thwarted malaria control efforts 
and remains a major obstacle to malaria elimination 
throughout the world. Chloroquine was one of the first 
drugs to be used on a wide scale for the treatment of 
malaria. Chloroquine resistance emerged independently 

in different geographic regions [1]. Chloroquine resist-
ance that first emerged in Southeast Asia in the 1950s 
eventually reached sub-Saharan Africa in the 1970s. The 
spread of chloroquine-resistant falciparum malaria in 
Africa was responsible for a sharp increase in malaria 
morbidity and mortality [2, 3]. Resistance to chloroquine 
is modulated by the P. falciparum chloroquine resistance 
transporter (PfCRT) gene. A series of single-nucleotide 
polymorphisms is associated with increased rates of clin-
ical failure [4]. The replacement of lysine with threonine 
at position 76 (K76T) is necessary for the observation of 
in vitro chloroquine resistance [5, 6].
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As a result of the spread of chloroquine resistance and 
rising rates of clinical treatment failure, many countries 
changed the first-line drug treatment from chloroquine 
to sulfadoxine-pyrimethamine, either alone or in com-
bination with chloroquine or amodiaquine. Sulfadoxine-
pyrimethamine resistance quickly spread and now all 
malaria-endemic countries have adopted artemisinin-
based combination therapy for the treatment of malaria. 
There is now evidence of the emergence of resistance to 
artemisinin derivatives and possibly their partner drugs 
in Southeast Asia [7–10]. The international community is 
taking urgent and definitive action to prevent the spread 
of resistance to the artemisinins and their partners to 
Africa, where that outcome would be even more devas-
tating [11].

Due to widespread parasitological resistance and evi-
dence of high rates of treatment failure with chloroquine, 
in 1993 Malawi became the first country in Africa to 
discontinue chloroquine use and adopted sulfadoxine-
pyrimethamine for the treatment of uncomplicated 
malaria [12]. The prevalence of molecular markers of 
chloroquine-resistant malaria began to decrease imme-
diately after its use was discontinued and by the turn of 
the century, there was almost no chloroquine-resistant 
malaria detectable throughout the country [13, 14]. A 
recent review demonstrated that decreases in the preva-
lence of chloroquine-resistant malaria were associated 
with decreases in chloroquine use as measured by demo-
graphic health surveys [15]. Since then, many countries 
have reported the return of chloroquine-susceptible 
malaria, but none has demonstrated a complete disap-
pearance of chloroquine resistance as has been observed 
in Malawi [16–19].

In 2003, Zambia was the first country in sub-Saharan 
Africa to officially adopt artemisinin-based combina-
tion therapy for the treatment of uncomplicated malaria, 
discontinuing the use of chloroquine plus sulfadoxine-
pyrimethamine and introducing artemether-lumefan-
trine [20]. Although the transition was challenged by 
limitations in the drug supply at the time, the country 
now has one of the longest history of artemisinin-based 
combination therapy use in the region. This study was 
designed to test the hypothesis that the prevalence of 
chloroquine resistance in Zambia would decrease or 
reach undetectable levels due to the long period of chlo-
roquine discontinuation in the country.

Methods
Study design and participants
This cross-sectional survey utilized specimens collected 
from women enrolled in a randomized clinical trial 
from 2010 to 2013, evaluating the efficacy of different 
artemisinin-based combination therapy to treat malaria 

in women in their second and third trimester of preg-
nancy. The study design and results have previously been 
reported [21]. The criteria for enrolment in the study 
were: age ≥15  years old; gestation ≥16  weeks; P. falci-
parum mono-infection of any density, with or without 
symptoms; haemoglobin concentration  ≥7  g/dL; resi-
dence within the health facility catchment area; willing to 
deliver at the health facility; and, ability to give informed 
consent. The study was carried out in Nchelenge district, 
Luapula province in the northern part of the country. 
This is an area of stable transmission with the entomo-
logical inoculation rate estimated at 4–48 infectious 
bites per 6  months in 2013 [22]. We collected and ana-
lysed specimens from pregnant women with a positive 
malaria smear who were enrolling the trial and before 
they received any antimalarial treatment. Comparisons 
were made to historical studies conducted in the Cop-
perbelt and Central Province of Zambia. Although these 
areas are not geographically close to the study site, they 
are rural areas of Zambia and the results were expected 
to be similar to Nchelenge.

The participants were diagnosed with malaria by a 
rapid diagnostic test [(RDT) SD Bioline, Standard Diag-
nostics] that detects histidine-rich protein-II antigen. 
Drops of blood were collected and dried on 3 M What-
man filter paper. The specimens were collected from 
enrolled participants prior to any study treatment. Speci-
mens with adequate quantities of blood were selected for 
molecular analysis.

Molecular analysis
Parasite DNA was extracted from the dried blood 
spots. The specimens underwent nested PCR followed 
by pyrosequencing to genotype of position 76 in Pfcrt. 
Details of the protocol used for molecular analysis of 
the samples can be found on the website [23]. A sum-
mary of DNA extraction, amplification and sequencing is 
described here.

The DNA was extracted from each dried blood spot 
sample using a commercially procured kit (QIAamp® 
DNA 96 Blood Kit, Qiagen), following a modified pro-
cedure for DNA extraction. The DNA was eluted in 
150 μl of AE Buffer (Qiagen) and stored at −80 °C until 
time of use. Amplification of Pfcrt 76 was carried out 
using nested PCR. The primers are listed in Table 1. The 
PCR and pyrosequencing primers for the Pfcrt 76 gene 
were synthesized by IDT (Coralville, IA, USA). Primer 
sequences were designed using the Pyrosequencing™ 
Assay Design Software (Qiagen). PCR was performed 
using the Biorad T100™ and C1000 Touch™ thermocy-
clers (Bio-Rad, Hercules, CA, USA). The reaction volume 
for both the primary and nested PCR was 25 μL, and con-
tained 1X PCR buffer (diluted from 10X Buffer, Qiagen), 
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200  μM mixture of dNTPs (Invitrogen), 2  mM MgCl2, 
(Qiagen), 1.5 units of HotStarTaq® DNA Polymerase 
(Qiagen), 0.2 μM (0.8 μM for nested reactions) external 
forward and reverse primers and 1 μL of DNA. Thermal 
cycling conditions for the primary and nested PCR reac-
tions were 95 °C for 15 min (HotStarTaq DNA Polymer-
ase activation), followed by 40 cycles (25 cycles for nested 
reaction) with denaturation at 95 °C for 30 s, annealing at 
45 °C for 45 s, and extension at 72 °C for 1 min; one cycle 
at 72  °C for 10  min and a final hold at 4  °C. Successful 
amplification was confirmed by running the nested PCR 
product and visualized on commercially procured E-gels 
(Invitrogen).

For pyrosequencing, single-stranded biotinylated PCR 
products were prepared using the PyroMarkTM Vacuum 
Prep Tool and Workstation (Qiagen). 3  μL of Streptavi-
din Sepharose HP beads (Amersham Biosciences, Upp-
sala, Sweden) was added to 40 μL binding buffer (10 mM 
Tris–HCl, pH 7.6, 2 M NaCl, 1 mM EDTA, 0.1% Tween 
20) and mixed with 2–5  μL PCR product (depending 
on the band intensity seen for the nested PCR product 
on the Qiaxcel) and 28 μL water for 5 min at room tem-
perature using a thermomixer (Eppendorf ) at a speed of 
1400  rpm. The beads containing the immobilized tem-
plate were captured on the filter probes of the Vacuum 
Prep Tool after the vacuum was applied and then washed 
with 70% ethanol for 15 s, denaturation solution (0.2 M 
NaOH) for 15  s, and washing buffer (10  mM Tris–ace-
tate, pH 7.6) for 15  s. The vacuum was then released, 
and the beads were released into a PyroMarkTM Q96 
HS Plate (Qiagen) containing 12  μL annealing buffer 
(20 mM Tris–acetate, 2 mM MgAc2, pH 7.6) and 0.4 μM 
sequencing primer. The plate was incubated at 80 °C for 
2 min on a digital heat block, and allowed to cool at room 
temperature for 5  min. Pyrosequencing reactions were 
performed according to the manufacturer’s instructions 
using the PyroMark® Gold Q96 Reagent Kit (Qiagen), 
which contained the enzyme, substrate and nucleo-
tides. The assays were performed on the PyroMarkTM 
Q 96MD instrument (Qiagen). The sequence to analyse 
(STA) entered into the instrument was: G/TTA/TTT/
CA/CATTACACA/TTACACTTAAATA. The nucleotide 

dispensation order used was: CGTATCATAGCACAT 
GAC. The sample genotype was determined using the 
SNP mode of the PyroMarkTM Q 96MD software.

Ethics, consent and permission
The study protocol was reviewed and approved by the 
Tropical Diseases Research Centre Institutional Review 
Board in Ndola, Zambia, and authority to conduct the 
research was sought in line with the existing Zambian 
national guidelines. Written informed consent was 
obtained from all individuals who agreed to participate 
in the study. A Material Transfer Agreement was signed 
prior to transferring anonymized specimens to the Uni-
versity of Maryland School of Medicine, Institute for 
Global Health, Division of Malaria Research laboratory.

Results
Among the specimens from 900 participants who were 
recruited in the study, 314 dried blood spot filter papers 
had sufficient blood spot to be selected. DNA was suc-
cessfully extracted, amplified and pyrosequenced for 
Pfcrt 76T in 302 samples. Clinical data were not available 
to the laboratory investigators.

All the 302 samples (302/302; 100%) analysed for the 
Pfcrt 76 harboured the wild type, susceptible AAA nucle-
otides, coding for lysine. No threonine was detected at 
position 76. The amino acid sequence in all specimens 
at positions 72-76 was CVMNK, the wild type, chloro-
quine-susceptible haplotype. Results from a decade of 
molecular surveys of PfCRT prevalence in Zambia are 
shown in Fig. 1.

Discussion
Nchelenge District in Zambia is now only the second 
site to document the complete return of chloroquine-
susceptible malaria after the removal of chloroquine drug 
pressure. This follows a slow decline in the prevalence of 
chloroquine resistance in Zambia: from 95% in 2001 [24] 
to 26% in 2006 [25] and is now at undetectable levels. 
Although historical molecular data are not available spe-
cifically from Nchelenge, clinical efficacy was reported in 
1986–88. At that time, chloroquine failed to clear over 

Table 1 Primers for amplification of the region of PfCRT 76

Codon Primer Sequence (5′–3′) Bases Amplicon size

72–97 External forward GACCTTAACAGATGGCTCAC 20 347 bp

External reverse TTTTATATTGGTAGGTGGAATAG 23

Internal forward Biotin‑GGTAAATGTGCTCATGTGTTTAAACTTATT 30 241 bp

Internal reverse TTACTTTTGAATTTCCCTTTTTATTTCCA 29

72–76 Pyrosequencing primer AGTTCTTTTAGCAAAAATT 19
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20% of infections in the first week, suggesting the molec-
ular resistance marker estimates from neighbouring 
regions were accurate as molecular resistance rates are 
usually much higher than clinical failure rates [26].

To date, other countries have only demonstrated 
decreases in prevalence of chloroquine-resistant malaria. 
This may be due to several factors. In many countries, the 
use of chloroquine persisted for a longer period of time 
before artemisinin-based combination therapy was intro-
duced, and also where the acquisition of anti-malarial 
drugs from the private sector is common. In addition, the 
return of chloroquine-susceptible infection likely occurs 
most quickly in the context of high transmission settings, 
where a large proportion of infections are not treated 
and there is ample opportunity for recombination during 
sexual reproduction in the mosquito [27]. The return of 
chloroquine-susceptible malaria in Malawi occurred via 
an expansion of susceptible parasites that had survived 
in the population despite chloroquine drug pressure 
[28]. In contrast, in Southeast Asia, where transmission 
is low, chloroquine-resistant malaria has become fixed in 
the population. As a result, even with changes in malaria 
treatment policy, chloroquine resistance continues to 
remain fixed in the parasite population.

There are several limitations to the generalizability of 
this study. Due to the sample size and the limited geo-
graphic region covered by the samples, this survey may 
have failed to detect rare cases of chloroquine-resistant 
malaria and the findings may be limited to the northern 
region where the study was conducted. The use of pyrose-
quencing is highly sensitive to detect minor genotype 
populations. Pyrosequencing can detect the presence of 
a second genotype that is present in 20% of the sample. 
Thus, the very low prevalence of chloroquine-resistant 

parasites cannot be entirely excluded. Finally, the sam-
ples were collected from pregnant women with infec-
tions detectable by RDT. Pregnant women are often used 
as sentinel groups for monitoring parasite prevalence 
and drug resistance due to their reliable contact with 
health facilities. Moreover, the drug-resistance patterns 
of their infections are unlikely to differ from the general 
population.

The return of chloroquine-susceptible malaria to the 
entire region may present a novel opportunity for re-
introducing the use of chloroquine to prevent malaria, 
especially in vulnerable populations. It is a safe, well-
tolerated and long-acting drug that can be administered 
in young children and also at any stage of pregnancy. 
Importantly, it does not have cross-resistance with cur-
rent artemisinin-based combination therapy so the use 
of chloroquine would not compromise the efficacy of 
first-line treatment. With the spread of sulfadoxine-
pyrimethamine resistance throughout eastern and 
southern Africa, chloroquine may be a viable alterna-
tive for intermittent preventive treatment or continuous 
chemoprophylaxis during pregnancy. Chloroquine may 
also be a reasonable option for use as seasonal malaria 
chemoprophylaxis in infants and children in regions 
where the combination of amodiaquine and sulfadox-
ine-pyrimethamine is not effective. Although Zambia, 
Malawi and Tanzania are areas where seasonal malaria 
chemoprophylaxis is likely to be effective [29], the pro-
gram has largely been rolled out in West Africa, where 
sulfadoxine-pyrimethamine remains effective. The use of 
artemisinin-based combination therapy as intermittent 
treatment or chemoprevention could rapidly shorten the 
useful therapeutic life of the current first-line treatment 
in Africa. The confirmation of the resurgence of chloro-
quine-susceptible malaria may provide a new opportu-
nity to use alternative medications to protect the most 
vulnerable populations.

Conclusions
This study documented the disappearance of chloro-
quine-resistant malaria in northern Zambia after the 
adoption of artemisinin-based combination therapy. 
This is only the second region in the world where this 
phenomenon has been reported. These findings have 
important public health implications. Although chloro-
quine resistance may re-emerge if used as monotherapy 
for treatment of symptomatic disease, chloroquine may 
be a desirable option for prevention of malaria dur-
ing pregnancy or for chemoprophylaxis in infants and 
children.
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Fig. 1 Prevalence of chloroquine‑susceptible malaria in Zambia 
(PfCRT K76) in Zambia from 2001–2012 [23, 24]
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