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Recently, several approaches have been proposed for the equalization of orthogonal frequency-division multiplexing (OFDM)
signals in challenging high-mobility scenarios. Among them, a minimum mean-squared error (MMSE) block linear equalizer
(BLE), based on a band LDL factorization, is particularly attractive for its good tradeoff between performance and complexity.
This paper extends this approach towards two directions. First, we boost the BER performance of the BLE by designing a receiver
window specially tailored to the band LDL factorization. Second, we design an MMSE block decision-feedback equalizer (BDFE)
that can be modified to support receiver windowing. All the proposed banded equalizers share a similar computational complexity,
which is linear in the number of subcarriers. Simulation results show that the proposed receiver architectures are effective in
reducing the BER performance degradation caused by the intercarrier interference (ICI) generated by time-varying channels. We
also consider a basis expansion model (BEM) channel estimation approach, to establish its impact on the BER performance of the
proposed banded equalizers.
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1. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is a
well established modulation scheme, which mainly owes its
success to the capability of converting a time-invariant (TI)
frequency-selective channel in a set of parallel (orthogonal)
frequency-flat channels, thus simplifying equalization [1].
Conversely, a time-variant (TV) channel destroys the orthog-
onality among OFDM subcarriers, introducing intercarrier
interference (ICI) [2, 3], and therefore making the OFDM
BER performance particularly sensitive to Doppler-affected
channels. Thus, the widespread use of OFDM in several com-
munication standards (e.g., DVB-T, 802.11a, 802.16, etc.)
and the increasing request for communication capabilities in
high-mobility environments have recently renewed the inter-
est in OFDM equalizers that are able to cope with significant
Doppler spreads [4–10]. Among those, a low-complexity
MMSE block linear equalizer (BLE) has been recently pro-
posed in [9], which, similarly to other equalizers, exploits the
observation that ICI generated by TV channels is mainly in-
duced by adjacent subcarriers [8]. Thus, assuming that the
ICI induced by faraway subcarriers can be neglected, the
BLE in [9] takes advantage of a band LDL factorization algo-
rithm to reduce complexity, which turns out to be linear in

the number of subcarriers. However, the neglected ICI intro-
duces an error floor on the BER performance of the equalizer
in [9].

In this paper we analyze two techniques to reduce this er-
ror floor while maintaining linear complexity. The first tech-
nique we consider takes advantage of receiver windowing
[11] to reduce the spectral sidelobes of each subcarrier, and
hence the ICI. This approach has been previously proposed
in [10] to minimize the neglected ICI. The scheme of [10]
does not only rely on receiver windowing, but it also adopts
an ICI cancellation technique guided by an MMSE serial lin-
ear equalizer (SLE). Our approach differs from that of [10]
in two aspects. First, we slightly modify the window design
of [10] to consider block linear equalization. Second, we do
not consider ICI cancellation techniques, because this paper
is focused on assessing performance of low-complexity one-
shot equalizers, which could be possibly employed as the first
step of any iterative cancellation approach. In this view, we
show by simulation results that receiver windowing for the
BLE is more beneficial than for the SLE when no ICI cancel-
lation is adopted.

The second technique we investigate is based on the
MMSE approach of [12, 13] for decision-feedback equaliza-
tion. Specifically, we incorporate the band LDL factorization
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of [9] in the design of a banded block decision-feedback
equalizer (BDFE), and we show by performance analysis and
simulations that the proposed BDFE outperforms the BLE
of [9], while preserving exactly the same complexity. In ad-
dition, we join receiver windowing and decision-feedback
equalization, thereby boosting the BER performance while
keeping linear complexity in the number of subcarriers.

Actually, the proposed low-complexity equalizers have to
be aware of the TV channel in order to perform equalization.
Thus, in order to prove the usefulness of those equalizers in
fast TV scenarios, channel estimation as well as its effect on
the BER performance has to be considered. Recently, several
authors [7, 14–16] proposed pilot-assisted channel estima-
tion techniques. All these techniques model the channel by
means of a basis expansion model (BEM), in order to min-
imize the number of parameters to be estimated, while pre-
serving accuracy. More specifically, for block transmissions
in underspread TV channels modeled by a complex expo-
nential (CE) BEM, [15] proved the MSE optimality1 of a
time-domain training with equally-spaced, equally-loaded,
and zero-guarded2 pilot symbols. Its natural dual in the fre-
quency domain, with equally-spaced, equally-loaded, and
zero-guarded pilot carriers has been considered in [14]. In
this paper, we focus on the frequency-domain version, be-
cause it seems more natural for OFDM block transmissions.
Indeed, this choice of embedding training, in each OFDM
block, does not force us to insert pilot-blocks in the time do-
main between OFDM blocks. Furthermore, current OFDM-
based standards generally employ equally-spaced (not zero-
guarded) pilot subcarriers for channel estimation purposes
in TI environments. Thus, conventional OFDM systems
could adopt the proposed strategy withminor modifications,
and could be employed in fast TV channels.

We show that the frequency-domain training, coupled
with a general BEM, provides significantly accurate LS and
LMMSE estimates to enable the use of the proposed low-
complexity equalizers, also in scenarios with high Doppler
spread.

The rest of the paper is organized as follows. We consider
the OFDM system model in TV channels in Section 2, while
Section 3 illustrates a BEM-based channel estimation tech-
nique. We develop the design of banded equalizers and of re-
ceiver windowing in Section 4. In Section 5 we comment on
simulation results for the BER performance of the proposed
receivers, with and without channel estimation. Finally, in
Section 6, some conclusions are drawn.

2. OFDM SYSTEMMODEL

Firstly, we introduce some basic notations. We use lower
(upper) boldface letters to denote column vectors (matri-
ces), superscripts ∗, T , H , and † to represent complex con-
jugate, transpose, Hermitian, and pseudoinverse operators,

1 Under LMMSE channel estimation for uncorrelated channel taps, but it
also holds for LS channel estimation, irrespective of the channel correla-
tion.

2 With zero-guarded pilot symbols we mean pilot symbols that are sur-
rounded by zeros on both sides.

respectively. We employ E{·} to represent the statistical ex-
pectation, and �x� and �x� to denote the smallest integer
greater than or equal to x, and the greatest integer smaller
than or equal to x, respectively. 0M×N is the M × N all-zero
matrix, IN is the N ×N identity matrix, δ(i) is the Kronecker
delta function, and ‖ · ‖ is the Frobenius norm. We use the
symbol ◦ to denote theHadamard (elementwise) product be-
tween matrices, and the symbol ⊗ to denote the Kronecker
product. We define [A]m,n as the (m,n)th entry of matrix A,
[a]n as the nth entry of the column vector a, (a) mod N as the
remainder after division of a by N , diag(a) as the diagonal
matrix with (n,n)th entry equal to [a]n, and vec(A) as the
vector obtained by stacking the columns of matrix A.

An OFDM system with N subcarriers and a cyclic prefix
of length L is considered. Using a notation similar to [1], the
kth transmitted block can be expressed as

u[k] = TCPFHa[k], (1)

where u[k] is a vector of dimension P = N+L, F is theN ×N
unitary discrete Fourier transform (DFT) matrix, defined by
[F]m,n = N−1/2 exp(− j2π(m − 1)(n − 1)/N), a[k] is the N-
dimensional vector that contains the transmitted symbols,
and TCP = [ITCP ITN ]T is the P × N matrix that inserts the
cyclic prefix, where ICP contains the last L rows of the iden-
tity matrix IN . Assuming that NA subcarriers are active and
NV = N − NA are used as frequency guard bands, we can
write

a[k]T =
[
01×NV /2 a[k]T 01×NV /2

]
, (2)

where a[k] is theNA×1 data vector. For simplicity, we assume
that the data symbols contained in a[k] are drawn from a fi-
nite constellation, and are independent and identically dis-
tributed (i.i.d.), with power σ2a .

After the parallel-to-serial conversion, the signal stream
u[kP+n−1] = [u[k]]n is transmitted through a time-varying
multipath channel hc(t, τ), whose discrete-time equivalent
impulse response is

h[n, l] = hc
(
nTS, lTS

)
, (3)

where TS = T/N is the sampling period, T is the useful
duration of an OFDM block (i.e., without considering the
cyclic prefix duration), and Δ f =1/T is the subcarrier spac-
ing. Throughout the paper, we assume that the channel
amplitudes are complex Gaussian distributed, giving rise
to Rayleigh fading, and that the maximum delay spread is
smaller than or equal to the cyclic prefix duration L, that is,
h[n, l] may have nonzero entries only for 0 ≤ l ≤ L. We will
also assume a wide-sense stationary uncorrelated scattering
(WSSUS) model, characterized by

E
{
h∗(n, l)h

(
n +m, l + i

)} = Rh(mTs)σ2l δ(i), (4)

where all the taps are subject to the same Doppler spectrum,
and σ2l Rh(0) = σ2l is the average power of the lth tap. For in-
stance, classical Jakes’ power spectral density is characterized
by the Clarke autocorrelation function Rh(t) = J0(2π fDt),
where fD is the maximum Doppler frequency.
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By assuming time and frequency synchronization at the
receiver side, the received samples can be expressed as

x[n] =
L∑

l=0
h[n, l]u[n− l] + nt[n], (5)

where nt[n] represents the AWGN with average power σ2nt =
E{|nt[n]|2}. The P received samples relative to the kth
OFDM block are grouped in the vector x[k], thus obtaining

x[k] = H(k)
0 u[k] +H(k)

1 u[k − 1] + nt[k], (6)

where [x[k]]n = x[kP + n − 1], and H(k)
0 and H(k)

1 are P × P
matrices defined by

H(k)
0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[kP, 0] 0 · · · · · · 0
...

. . .
. . .

...

h[kP + L,L]
. . .

. . .
...

...
. . .

. . . 0
0 · · ·h[kP + P − 1,L] · · ·h[kP + P − 1, 0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H(k)
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · h[kP,L] · · · h[kP, 1]
...

. . .
. . .

...

0
. . . h[kP + L− 1,L]

...
. . .

. . .
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

By applying the matrix RCP = [0N×L IN ] to x[k] in (6), the
cyclic prefix (and hence the interblock interference) is elim-
inated, and introducing windowing we obtain, by (1), the
N × 1 vector,

y[k] = ΔWRCPx[k] = ΔWH(k)FHa[k] + ΔWRCPnt[k],
(8)

where H(k) = RCPH
(k)
0 TCP is the equivalent N × N channel

matrix in the time domain, defined by
[
H(k)]

m,n = h(k)
[
m− 1, (m− n) mod N

]

= h
[
kP +m− 1, (m− n) mod N

]
,

(9)

and ΔW = diag(w) is an N ×N diagonal matrix representing
a time-domain receiver window. For conventional OFDM,
which does not employ receiver windowing, ΔW = IN . By
applying the DFT at the receiver, we obtain zW [k] = Fy[k],
which by (8) can be rearranged as

zW [k] = Λ
(k)
W a[k] + nW [k] = CWΛ(k)a[k] + nW [k], (10)

whereΛ(k) = FH(k)FH is the Doppler-frequency channel ma-
trix that introduces ICI, CW = FΔWFH is the circulant ma-
trix used to possibly reduce the ICI, and

nW [k] = FΔWRCPnt[k] = CWFRCPnt[k] (11)

represents the (possibly colored) noise, with covariance ma-
trix expressed by RnWnW = E{nW [k]nW [k]H} = σ2ntCWCH

W .
Actually, for conventional OFDM, CW = IN , and the noise is
white with RnWnW = σ2nt IN . The elements ofΛ(k) are obtained
by the 2D-DFT transform of the time-varying channel im-
pulse response, as expressed by

[
Λ(k)

]
p+q,p

= 1
N

N−1∑

n=0

N−1∑

l=0
h(k)[n, l]e− j(2π/N)(qn+l(p−1)), (12)

where q is the discrete Doppler index, and p is the discrete
frequency index. It can be observed that the channel fre-
quency response, for each Doppler component, is stored di-
agonally on Λ(k).

From now on, we consider a generic OFDM block, and
hence we drop the block index k. Due to the TV nature of
the channel, Λ in (10) is not diagonal. However, as shown
in [8] for relatively high Doppler spread and in [5] for high
Doppler spread, Λ is nearly banded, and each diagonal is as-
sociated, bymeans of (12), with a discrete Doppler frequency
that introduces ICI. Hence, Λ can be approximated by the
band matrix B (Figure 1), thereby neglecting the ICI that
comes from faraway subcarriers. We denote withQ the num-
ber of subdiagonals and superdiagonals retained from Λ, so
that the total bandwidth of B is 2Q + 1. Thus, B = Λ ◦ T(Q),
where T(Q) is anN×N Toeplitz matrix with lower and upper
bandwidthQ [17] and all ones within its band (see Figure 1).
The integer parameter Q, which can be chosen according to
some rules of thumb in [10], is very small when compared
with the number of subcarriers N , for example, 1 ≤ Q ≤ 5.

In the windowed case, the banded approximation is ex-
pressed by ΛW ≈ BW , with BW = ΛW ◦ T(Q). Hence, the
window design can be tailored to make the channel matrix
“more banded,” so that ‖ΛW − BW‖ < ‖Λ − B‖ [10]. In-
deed, it was shown in [10] that receiver windowing reduces
the band approximation error. In this view, the band approx-
imation is even more justified.

Due to the band approximation of the channel ΛW ≈
BW , the ICI has a finite support. Consequently, it is possible
to design the transmitted vector a by partitioning training
and data in such a way that they will emerge from the chan-
nel (almost) orthogonal. Specifically, as proposed in [15] for
time-domain training, and in [14] for the frequency-domain
counterpart, we can design the transmitted vector as

a =[01×U s1 01×2U dT1 01×2U s2 01×2U dT2

· · · sL+1 01×2U dTL+1 01×U
]T
,

(13)

where sl represents the lth pilot tone, and dl is a D × 1 col-
umn vector containing the lth portion of the data. By com-
paring (13) with (2), is it clear that U = NV/2. The param-
eter U represents the maximum value of Q that preserves at
the receiver the orthogonality between data and pilots, in the
banded channel. Thus, the choice of U at the transmitter can
be done according to the maximum Doppler spread allowed
at the receiver. It is interesting to observe that the transmitted
vector in (13) contains equispaced pilots, which is an opti-
mal choice also in channels that are not doubly selective [18].
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Λ =

(a)

B =

(b)

Figure 1: Effect of the band approximation. In this example, we
show only the active part of the matrix (NA = 8, Q = 1).

Specifically, forU = 0, the pilot pattern of (13) reduces to the
optimal pilot placement for OFDM in TI frequency-selective
channels [19].

3. PILOT-AIDED CHANNEL ESTIMATION

Among the possible channel estimation techniques, training-
based techniques seem preferable in time-varying environ-
ments, because the channel has to be estimated within a sin-
gle block. For instance, pilot-aided channel estimation tech-
niques for block transmissions over doubly selective chan-
nels have been proposed and analyzed in [7, 14–16]. A com-
mon characteristic of all these approaches is the parsimo-
nious modeling of the TV channel by a limited number of
parameters that can capture the time-variation of the chan-
nel within one transmitted data block. The basic idea is to
express each TV channel tap as a linear combination of deter-
ministic time-varying functions defined over a limited time
span. Hence, the time variability of each channel tap is cap-
tured by a limited number of coefficients. This approach is
known in the literature as the basis expansion model (BEM),
and further details can be found in [20, 21].

The evolution of each channel tap in the time domain
during the considered OFDM block is stored diagonally in
the matrix H, as summarized by (9), or in the equivalent
windowed channel matrix HW =ΔWH. More precisely, the
lth tap evolution is contained in the vector hl = ΔW [h[0,

l],h[1, l], . . . ,h[N − 1, l]]T , where h[n, l] represents the lth
discrete-time channel path at time n. The BEM expresses
each channel tap vector hl as

hl = Ξηl =
[
ξ0, ξ1, . . . , ξP

][
ηl,0,ηl,1, . . . ,ηl,P

]T
, (14)

where ξ p represents the (p + 1)th deterministic base of size
N × 1, which is the same for all taps and all OFDM blocks,
ηl,p is the (p + 1)th stochastic parameter for the (l + 1)th tap
during the considered OFDM block, and P+1 is the number
of basis functions. Since the channel has been modeled by
the BEM, the possibly windowed channel matrix HW can be
expressed as

HW =
L∑

l=0
diag

(
hl
)
Zl =

L∑

l=0

P∑

p=0
ηl,p diag

(
ξ p
)
Zl, (15)

where Zl represents the N × N circulant shift matrix with
ones in the lth lower diagonal (i.e., [Zl]n,(n−l) mod N = 1) and
zero elsewhere. Clearly, Zl represents the lth delay in the lag
domain. Consequently,

ΛW = FHWFH =
L∑

l=0

P∑

p=0
ηl,pXpDl =

L∑

l=0

P∑

p=0
ηl,pΓl,p

= Γ
(
η ⊗ IN

)
,

(16)

where Xp=Fdiag(ξ p)FH is a circulant matrix with circulant
vector N−1/2Fξ p, which represents the discrete spectrum of
the (p+1)th basis function, Dl = FZlFH=diag(fl) is a diago-
nal matrix containing the lth discrete frequency vector fl, ex-
pressed by [fl]n= e j(2π/N)l(n−1), Γl,p=XpDl=Fdiag(ξ p)ZlFH ,
η = [ηT0 , . . . ,η

T
L ]

T contains the (L + 1)(P + 1) BEM param-
eters, and Γ = [Γ0,0, . . . ,Γ0,P ,Γ1,0, . . . ,Γ1,P , . . . ,ΓL,0, . . . ,ΓL,P].
By (10) and (16), assuming a general BEM, the received vec-
tor becomes

zW = Γ
(
η ⊗ IN

)
a + nW = Γ

(
I(P+1)(L+1) ⊗ a

)
η + nW , (17)

which can be rewritten as

zW = Ψ(a)η + nW , (18)

where Ψ(a) = Γ(I(P+1)(L+1) ⊗ a) is the data-dependent matrix
that couples the channel parameters with the received vector.
Whatever is the choice for the deterministic basis {ξ p}, and
assuming that the transmitted vector a can be partitioned as
the sum of a known training vector s and an unknown data
vector d, that is,

s = [01×U s1 01×4U+D s2 01×4U+D

· · · 01×4U+D sL+1 01×3U+D]T
(19)

and d = a− s (see (13)), the received vector becomes

zW = Ψ(s)η +ΛWd + nW , (20)

whereΛWd = Ψ(d)η. Now we introduce the (2U+1)(L+1)×
N matrix PS obtained by selecting from the N × N identity
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matrix only those rows that correspond to the pilot symbols,
that is, the rows with indices from (4U +D+1)l+1 to (4U +
D + 1)l + 2U + 1, for l = 0, . . . ,L, as expressed by

PS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2U+1 02U+1 0 · · · 0 02U+1 0

02U+1 I2U+1 0
...

...
...

...
...

...
...

...
...

...
...

... 02U+1

...
02U+1 02U+1 0 · · · 0 I2U+1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

We obtain

zS = PSzW = Φη + PSΛWd + PSnW , (22)

where Φ = PsΨ
(s) is a matrix with size (2U + 1)(L + 1) ×

(P+1)(L+1). Note that the pilot pattern design in (13) takes
advantage of the (almost) banded nature of the channel. In-
deed, we observe that if ΛW is exactly banded with Q ≤ U ,
PSΛWd in (22) is equal to 0(2U+1)(L+1)×1, and hence the in-
terference produced by the data is eliminated. However, in
general ΛW is not exactly banded, and hence we consider
i = PSΛWd = PSΨ

(d)η in (22) as an interference term. Con-
sequently, we can estimate the BEM parameters in the least
squares (LS) sense, as expressed by

η̂LS = Φ†zS, (23)

and P ≤ 2U . Alternatively, if the receiver is aware of the
channel statistics, the channel can be estimated in the linear
MMSE (LMMSE) sense, as expressed by [22]

η̂LMMSE =
(
ΦH(Rii + Rnn

)−1
Φ + R−1ηη

)−1
ΦH(Rii + Rnn

)−1
zS,

(24)

where Rnn = PSE{nWnH
W}PH

S = σ2ntPSCWCH
WPH

S is the co-
variance matrix of the selected windowed noise (which re-
duces toRnn = σ2ntPSPH

S = σ2nt I(2U+1)(L+1) for rectangular win-

dowing), Rii = PSΨ
(d)RηηΨ

(d)HPH
S is the covariance matrix

of the interference, and Rηη = E{ηηH} is the covariance ma-
trix of the (P + 1)(L + 1) channel parameters, composed by
square submatrices {Rηlη j

= E{ηlηHj }} of size P + 1. Bearing
in mind (14), it is easy to show that Rηlη j

can be obtained
from the knowledge of the channel statistics, as expressed by
Rηlη j

= Ξ†E{hlhHj }Ξ†H . After estimating the BEM parame-
ter vector η, for example, by (23) or (24), we can recover the
channel matrix ΛW by (16).

Depending on the chosen basis matrix Ξ, the channel
matrixΛW obtained by (16) could be banded or nonbanded.
A popular choice for the basis functions is represented by
complex exponentials (CE) [20], which is also suggested by
the banded assumption for the channel matrix ΛW . Indeed,
for CE with P = 2Q, the pth basis function is ξ p = fp−Q,
which represents a discrete Doppler frequency shift. Conse-
quently, Xp = Fdiag(fp−Q)FH = ZQ−p, and (16) becomes

ΛW =
L∑

l=0

2Q∑

p=0
ηl,pZQ−p diag

(
fl
)
, (25)

which clearly reveals the banded nature of the channel ma-
trix. However, for the sake of generality, other bases that do
not lead to a perfectly banded channel matrix could be con-
sidered. A possibility is the use of discrete prolate spheroidal
(DPS) sequences as basis functions [23]. Another basis is
the polynomial (POL) basis, where [ξ p]n = ((n − 1)/N)p,
similarly to that proposed in [24]. A third option is based
on generalized complex exponentials (GCE), where [ξ p]n =
e j2π(p−Q)(n−1)/KN , which represents a truncated oversampled
Fourier basis [25]. Also orthonormal and/or windowed ver-
sions of these bases are possible. In all these cases, except
for the CE, the estimated channel matrix Λ̂W is not per-
fectly banded. However, we have already discussed the nearly
banded structure of the true channel matrix. Hence, we se-
lect only the 2Q + 1 main diagonals of Λ̂W , thus obtaining
B̂W = Λ̂W ◦ T(Q).

4. BANDED EQUALIZERS

In this section, we present some low-complexity equaliz-
ers obtained by exploiting the band approximation of the
Doppler-frequency channel matrix. We start by summariz-
ing some results derived in [9], where we proposed a banded
MMSE block linear equalizer (BLE) without considering the
potential benefit of receiver windowing. Subsequently, we fo-
cus on the window design and derive the windowed MMSE-
BLE (W-MMSE-BLE). Finally, we extend the proposed ap-
proach to consider the MMSE-BDFE and the windowed
MMSE-BDFE (W-MMSE-BDFE).

In our equalizer designs, we assume that the 2U subcar-
riers at the edges of the received block z are removed. Indeed,
because of the edge guard bands in the transmitted block
(13), the received block z contains little transmitted power
in its edge subcarriers, which could also be affected by ad-
jacent channel interference (ACI). Anyway, similar equalizer
designs without guard band removal can be obtained with
minor modifications.

As a consequence of the edge guard band removal, we
denote by zW theNA×1middle block of zW ,ΛW theNA×NA

middle block of ΛW , and BW = ΛW ◦ T(Q), where T(Q) is an
NA×NA Toeplitz matrix defined like T(Q). In addition, when
no windowing is applied, we omit the subscript for the sake
of clarity, and hence use z, Λ, and B, instead of zW , ΛW , and
BW , respectively.

4.1. MMSE-BLE

The band approximation Λ ≈ B has been exploited in [9] to
design a low-complexity MMSE-BLE, as expressed by

ãMMSE-BLE = GMMSE-BLEz, (26)

GMMSE-BLE = BH
(
BBH + γ−1INA

)−1 = (γ−1INA + BHB
)−1

BH ,
(27)

where the SNR γ = σ2a /σ
2
nt is assumed known to the receiver.

By exploiting a band LDL factorization of the band matrix
M1 = BBH + γ−1INA , or equivalently ofM2 = γ−1INA + BHB,
the MMSE-BLE (26) requires approximately (8Q2 + 22Q +
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4)NA complex operations [9]. The bandwidth parameter Q
can be chosen to trade off performance for complexity. Since
Q � NA, the computational complexity of the banded
MMSE-BLE (26)-(27) is O(NA), that is, significantly smaller
than that for other linear MMSE equalizers previously pro-
posed, whose complexity is quadratic [5] or even cubic [6] in
the number of subcarriers. In addition, as shown in [19], the
complexity of the MMSE-BLE is lower than that for a non-
iterative banded MMSE-SLE, that is, the MMSE-SLE used to
initialize the iterative ICI cancellation technique in [10].

4.2. BandedMMSE-BLEwith windowing

We now investigate a time-domain windowing technique
that makes the channel matrixΛW more banded thanΛ. Our
aim is to improve the performance of the banded MMSE-
BLE by reducing the band approximation error.

It is clear that the main difference with that in Section 4.1
is the noise coloring produced by the windowing operation,
as expressed by (11). By neglecting the edge null subcarriers,
(10) can be rewritten as

zW = ΛWa + C
∼

Wn, (28)

where n = FRCPnt, and C
∼

W is the middle block of CW with
sizeNA×N . Hence, by the band approximationΛW ≈ BW =
ΛW ◦ T(Q), the MMSE-BLE becomes

ãW = GW-MMSE-BLEzW , (29)

GW-MMSE-BLE = BH
W

(
BWBH

W + γ−1C
∼

WC
∼

H
W

)−1
. (30)

In this view, we consider the minimum band approximation
error (MBAE) sum-of-exponentials (SOE) window, which is
expressed by

[w]n =
Q∑

q=−Q
bqe

j2πqn/N , (31)

where the coefficients {bq} are designed in order to minimize
‖ΛW − BW‖. Thanks to the SOE constraint, the covariance
matrix of the windowed noise is banded with total band-
width 4Q + 1. This leads to linear MMSE equalization algo-
rithms characterized by a very low complexity, which is linear
in the number of subcarriers, as detailed in Section 4.2.2.

4.2.1. Window design

Our goal is to design a receiver window with two features.

(a) The approximation ΛW ≈ BW should be as good as
possible, and possibly better than the approximation
Λ ≈ B. This would reduce the residual ICI of the
banded MMSE-BLE.

(b) The noise covariance matrix C
∼

WC
∼

H
W in (30) should be

banded, so that the equalization can be performed by
band LDL factorization ofM3 = BWBH

W + γ−1C
∼

WC
∼

H
W .

We point out that, without the band approximation, the ap-
plication of a time-domain window at the receiver does not

change the MSE of the MMSE-BLE. This is why we adopt
the minimum band approximation error (MBAE) criterion,
which can be mathematically expressed as follows. Choose w
that minimizes E{‖EW‖2}, where EW = ΛW−BW , subject to
the energy constraint tr(Δ2

W ) = N . (Equivalently, E{‖BW‖2}
can be maximized subject to the same constraint.) Note that
this criterion is similar to the max Average-SINR criterion
of [10]. Indeed, also in [10] the goal is to make the chan-
nel matrix more banded, in order to facilitate an iterative
ICI cancellation receiver. Differently, in our case, we want
to exploit the band LDL factorization, and hence we also
require the matrix C

∼

WC
∼

H
W in (30) to be banded. Since the

NA×NA matrix C
∼

WC
∼

H
W is the middle block of theN×N ma-

trix CWCH
W = FΔ2

WFH , we impose that the SOE constraint,
that is, the elements of the windoww, should satisfy (31). In-
deed, whenw is a sum of 2Q+1 complex exponentials, the di-
agonal of Δ2

W can be expressed as the sum of 4Q+1 exponen-
tials, and consequently, by the properties of the FFT matrix,
FΔ2

WFH is exactly banded with lower and upper bandwidth
2Q. Obviously, the class of SOEwindows includes some com-
mon cosine-based windows such as Hamming, Hann, and
Blackman. The SOE constraint (31) can also be expressed by

w = F̃b, (32)

where F̃=[fN−Q, . . . , f−1, f0, f1, . . . , fQ], and b=[b−Q · · · bQ]T

is a vector of size 2Q+1 that contains the design parameters.
By applying the MBAE criterion, by [10, Appendix], we

obtain

E
{∥∥BW

∥∥2} = wH
(
RH H ◦ A

)
w, (33)

whereH is anN×N matrix obtained fromH by rearranging
the diagonals as columns, that is, [H]m,n = h[m,n], RHH =
E{H HH}, while A is an N ×N matrix defined as

[A]m,n = sin
(
π(2Q + 1)(n−m)/N

)

N sin
(
π(n−m)/N

) . (34)

By maximizing (33) with the SOE constraint (32), the win-
dow parameters in b are obtained by the eigenvector that cor-
responds to the largest eigenvalue of F̃H(RHH◦A)F̃. Note that
this maximization leads to bq = b∗−q, and consequently the
MBAE-SOE window is real and symmetric.

We remark that the window design depends not only on
the selected Q, but also on the time-domain channel auto-
correlation RH H , and hence on the maximum Doppler fre-
quency fD. Therefore, even if we assume a specific Doppler
spectrum (e.g., Jakes), the designed window will be differ-
ent for each ( fD,Q). Anyway, we will show that for reason-
able values of fD the designed window does not change so
much. Consequently, a small set of window parameters can
be designed and stored at the receiver, and chosen depending
on ( fD,Q).

4.2.2. Computational complexity

We show that the windowing operation produces a minimal
increase in terms of computational complexity. In this com-
putation, we neglect the complexity of the window design,
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Figure 2: Structure of the BDFE.

which can be performed offline. For the same reason, we also
neglect the computation of C

∼

WC
∼

H
W .

Since CWCH
W is circulant, its submatrix C

∼

WC
∼

H
W contains

at most N different values. Moreover, due to the SOE con-
straint, only 4Q + 1 entries are different from zero. Conse-
quently, since C

∼

WC
∼

H
W is Hermitian, we need 2Q + 1 com-

plex multiplications (CM) to obtain γ−1C
∼

WC
∼

H
W . Further-

more, approximately (2Q + 1)NA complex additions (CA)
are required to sum γ−1C

∼

WC
∼

H
W with BWBH

W , which is also
Hermitian. In the absence of windowing, only NA CA were
necessary. Hence, 2QNA extra CA are required. In addition,
N extra CM are needed to obtain ΔWH in ΛW . We do not
consider the complexity of the FFT, which should be per-
formed also in the absence of windowing. As a result, the
complexity increase of the banded MMSE-BLE due to win-
dowing is roughly (2Q+1)NA complex operations, for a total
of (8Q2 + 24Q + 5)NA complex operations.

For the SLEs, the complexity increase is nearly equal to
that for the BLEs. Hence, the W-MMSE-BLE is less complex
than the noniterative MMSE-SLE with windowing.

4.3. BandedMMSE-BDFE

4.3.1. Equalizer design

We design a banded BDFE that exploits the low complex-
ity offered by the band LDL factorization algorithm of [9].
To design the feedforward filter FF and the feedback filter
FB (see Figure 2), we adopt the MMSE approach of [12].
This approach minimizes the quantity MSE = tr(Ree), where
Rxy = E{xyH} and e = ã − a (Figure 2). We also impose
the constraint that FB is strictly upper triangular, so that the
feedback process can be performed by successive cancella-
tion [13].

By the standard assumption of correct past decisions, that
is, â = a, the error vector can be expressed by e = FFz−(FB+
INA)a. By the orthogonality principle, it holds Rez = 0NA×NA ,
which leads to

FF =
(
FB + INA

)
RazR−1zz =

(
FB + INA

)
ΛH(ΛΛH + γ−1INA

)−1
.

(35)

We now apply the band approximationΛ ≈ B, which by (27)
leads to

FF =
(
FB + INA

)
GMMSE-BLE. (36)

This result points out that the feedforward filter is the cascade
of the low-complexity MMSE-BLE GMMSE-BLE, and an upper
triangular matrix FB + INA with unit diagonal. To design FB,

we observe that Ree can be expressed as

Ree =
(
FB + INA

)(
Raa − RazR−1zz R

H
az

)(
FB + INA

)H
. (37)

After standard calculations that also involve the matrix inver-
sion lemma, we obtain

Ree = σ2nt
(
FB + INA

)(
γ−1INA +ΛHΛ

)−1(
FB + INA

)H
. (38)

To exploit the computational advantages given by the LDL
factorization, we make the band approximation ΛHΛ ≈
BHB, thus obtaining

Ree = σ2nt
(
FB + INA

)(
γ−1INA + BHB

)−1(
FB + INA

)H
. (39)

By using the LDL factorization,

M2 = γ−1INA + BHB = L2D2LH2 , (40)

and hence tr(Ree) can be simply minimized by setting

FB = LH2 − INA , (41)

which renders Ree diagonal. By (27), (36), (40), and (41), we
obtain

FF = LH2 GMMSE-BLE = LH2 M
−1
2 BH = D−12 L−12 BH. (42)

Since B is banded, L2 is lower triangular and banded, and
D2 is diagonal, it turns out that the banded MMSE-BDFE
is characterized by a very low complexity, as detailed in the
following.

4.3.2. Complexity analysis

We now compute the number of complex operations nec-
essary to perform the proposed banded MMSE-BDFE. By
means of (41) and (42), the soft output of the MMSE-BDFE,
expressed by ã = FFz− FB â, can be rewritten as

ã = D−12 L−12 BHz− (LH2 − INA

)
â. (43)

Since B is banded, we need (2Q + 1)NA CM and 2QNA CA
to obtain μ = BHz. The matrices L2 and D2 are obtained by
band LDL factorization of M2. From [9], (2Q2 + 3Q + 1)NA

CM and (2Q2 + Q + 1)NA CA are necessary to obtain M2.
In addition, by the band LDL factorization algorithm of
[9], (2Q2 + 3Q)NA CM, (2Q2 + Q)NA CA, and 2QNA com-
plex divisions (CD) are required to obtain L2 and D2. Then,
θ = L−12 BHz = L−12 μ can be obtained by solving the band
triangular system L2θ = μ, which requires 2QNA CM and
2QNA CA [17], while D−12 L−12 BHz = D−12 θ requires NA CD.
To perform (LH2 − INA)â, 2QNA CM and (2Q − 1)NA CA are
required. Moreover,NA CA are necessary to perform the sub-
traction betweenD−12 L−12 BHz and (LH2 −INA)â. As a result, the
proposed BDFE requires approximately (4Q2 + 12Q + 2)NA

CM, (4Q2 + 8Q + 1)NA CA, and (2Q + 1)NA CD, for a total
of (8Q2 + 22Q + 4)NA complex operations.

It is worth noting that, thanks to the banded approach,
the proposed MMSE-BDFE is characterized by exactly the
same complexity as the MMSE-BLE, which is linear in
the number of subcarriers. Therefore, the proposed banded
MMSE-BDFE is less complex than other nonbanded DFE
schemes. Just to consider a few, the serial DFE [5] has
quadratic complexity, while the complexity of the V-BLAST-
like successive detection [6] is O(N4

A).
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4.3.3. Performance analysis

We compare the mean-squared error (MSE) performance of
the banded BDFE with the banded BLE of [9]. By (39) and
(41), it is easy to verify that

MSEBDFE = tr
(
Ree
) = tr(σ2ntL

H
2 M

−1
2 L2

) = σ2nt tr
(
D−12

)

= σ2nt

NA∑

i=1

[
D−12

]
i,i.

(44)

Moreover, the MMSE-BLE can be obtained from theMMSE-
BDFE by setting the feedback filter to zero. Thus, from (39)
with FB = 0NA×NA , we obtain

MSEBLE = tr
(
Ree
) = tr

(
σ2ntM

−1
2

) = σ2nt

NA∑

i=1

[
M−1

2

]
i,i

= σ2nt

NA∑

i=1

NA∑

j=1

[(
LH2
)−1]

i, j

[
D−12

]
j, j

[
L−12
]
j,i

= σ2nt

NA∑

i=1

[
D−12

]
i,i + σ2nt

NA∑

i=1

NA∑

j=i+1

[
D−12

]
j, j

∣∣[L−12
]
j,i

∣∣2,

(45)

which is obviously greater than MSEBDFE in (44). Hence, we
expect that the bit error rate (BER) of the proposed MMSE-
BDFE will be lower than that for the MMSE-BLE. However,
we still expect a BER floor, due to the band approximation
of the channel matrix. This fact will be confirmed later by
simulations.

4.4. BandedMMSE-BDFEwith windowing

In Sections 4.2 and 4.3, we have presented two low-complex-
ity equalizers that exploit either MBAE-SOE windowing or
decision-feedback. In this section, we marry banded BDFE
and MBAE-SOE windowing.

4.4.1. Equalizer design

The equalizer design follows the same MMSE approach of
Section 4.3, hence we highlight the main differences intro-
duced by windowing. In the windowed case, the error vector
is expressed by e = FFzW−(FB+INA)a, and the orthogonality
principle leads to

FF =
(
FB + INA

)
RazWR

−1
zW zW

= (FB + INA

)
ΛH
W

(
ΛWΛH

W + γ−1C
∼

WC
∼

H
W

)−1
.

(46)

We can apply ΛW ≈ BW , thereby obtaining

FF =
(
FB + INA

)
GW-MMSE-BLE

= (FB + INA

)
BH
W

(
BWBH

W + γ−1C
∼

WC
∼

H
W

)−1
.

(47)

To design the FB, we observe that Ree = (FB + INA)(Raa −
RazWR

−1
zW zWR

H
azW )(FB + INA)

H . By the matrix inversion lemma,

we obtain

Ree

=σ2nt
(
FB + INA

)(
γ−1INA +ΛH

W

(
C
∼

WC
∼

H
W

)−1
ΛW

)−1(
FB+INA

)H
.

(48)

We now make the approximation

ΛH
W

(
C
∼

WC
∼

H
W

)−1
ΛW ≈ Λ

∼

H
W

(
CWCH

W

)−1
Λ
∼

W , (49)

whereΛ
∼

W = FHWF
∼

H is theN×NA middle block ofΛW , and
F
∼

is the NA ×N middle block of F, thus obtaining

Ree=σ2nt
(
FB+INA

)(
γ−1INA+Λ

∼

H
W

(
CWCH

W

)−1
Λ
∼

W

)−1(
FB+INA

)H
.

(50)

Note that the approximation (49) is equivalent to the ap-
proximation RazWR

−1
zW zWR

H
azW ≈ RazWR

−1
zW zWR

H
azW , that is, the

equality in (49) holds true if we design the feedback filter by
including the edge guard bands in the correlation matrices.

Since CW is circulant,

Λ
∼

H
W

(
CWCH

W

)−1
Λ
∼

W

=
(
F
∼

HHΔH
WFH

)(
FΔ−1W Δ−HW FH

)(
FΔWHF

∼

H
)

= F
∼

HHHF
∼

H = F
∼

HHFHFHF
∼

H = Λ
∼

HΛ
∼

,

(51)

whereΛ
∼

is theN×NA middle block of the unwindowed chan-
nel matrix Λ. Consequently, (50) reduces to Ree = σ2nt (FB +
INA)(γ

−1INA + Λ
∼

HΛ
∼

)−1(FB + INA)
H . Henceforth, we can ex-

ploit the computational advantages given by the LDL factor-
ization algorithm in [9] by applying the band approximation
Λ
∼

HΛ
∼

≈ B
∼

HB
∼

, where B
∼

is the N ×NA middle block of B, and
B is the banded version of Λ. Consequently, we obtain

Ree = σ2nt
(
FB + INA

)(
γ−1INA + B

∼

HB
∼

)−1(
FB + INA

)H
, (52)

which is formally similar to (39). Hence, tr(Ree) can be min-
imized by using the band LDL factorization:

M4 = γ−1INA + B
∼

HB
∼

= L4D4LH4 , (53)

which leads to

FB = LH4 − INA , (54)

FF = LH4 GW , (55)

where GW = GW-MMSE-BLE is expressed by (30). We highlight
that also GW can take advantage from a band LDL factoriza-
tion, as in (53). However, these two band LDL factorizations
are applied to different matrices, whereas in the unwindowed
MMSE-BDFE case they are applied on the same matrix M2

expressed by (40). Consequently, in the windowed case, the
complexity advantage is smaller than that in the unwindowed
case, as detailed in Section 4.4.2.

We also observe that the design of the feedforward and
feedback filters does not consider the presence of pilot
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symbols used for channel estimation purposes (see (13)).
However, we can always reinsert the known pilot symbols
when performing the successive cancellation in the feedback
path. This partially prevents the error propagation, because
the pilots are equispaced. Alternatively, we can design (L+1)
smaller DFEs, each one for a single portion dl of the data in
(13).

4.4.2. Complexity analysis

The performance and complexity analyses of the W-MMSE-
BDFE can be obtained similarly as those of the unwindowed
MMSE-BDFE case. However, the result of the complexity
analysis turns out to be slightly different. In the following, we
use the same approach of Section 4.3.2 to evaluate the num-
ber of complex operations required by the W-MMSE-BDFE.
By (54) and (55), the soft output of theW-MMSE-BDFE, ex-
pressed by ã = FFzW − FB â, can be rewritten as

ã = LH4 GWzW −
(
LH4 − INA

)
â. (56)

The computation of GWzW is equivalent to applying the
banded W-MMSE-BLE and hence requires roughly (8Q2 +
24Q + 5)NA complex operations. The band LDL factoriza-
tion of M4 needs (8Q2 + 10Q + 2)NA complex operations.
To perform LH4 GWzW , we need 2QNA CM and 2QNA CA.
To perform (LH4 − INA)â, 2QNA CM and (2Q − 1)NA CA
are required. Moreover, NA CA are necessary to perform the
subtraction between LH4 GWzW and (LH4 − INA)â. As a re-
sult, the proposed bandedW-MMSE-BDFE requires approx-
imately (16Q2+42Q+7)NA complex operations. Hence, with
MBAE-SOE windowing, the complexity of the banded W-
MMSE-BDFE is nearly doubled with respect to the banded
W-MMSE-BLE. However, thanks to the banded approach,
also the complexity of the banded W-MMSE-BDFE is linear
in the number of subcarriers.

5. SIMULATION RESULTS

The aim of this section is twofold. First, assuming perfect
channel knowledge, we compare the BER performance of
the proposed equalizers with the MMSE-BLE of [9], in or-
der to establish the performance gain obtained by decision-
feedback and by windowing. Second, we show how the pilot-
aided channel estimation of Section 3 affects the BER perfor-
mance.

In the first set of simulations (i.e., with perfect channel
knowledge), we consider an OFDM system with N = 128,
and a unique block with NA = 96 active and contiguous data
subcarriers, a cyclic prefix with L = 8, and QPSK modula-
tion. We also assume Rayleigh fading channels with expo-
nential power delay profile and Jakes’ Doppler spectrum. The
root-mean-square delay spread of the channel, normalized to
the sampling period TS, is σ = 3.

Figure 3 shows the BER performance of the MMSE-
BDFE for different values ofQ when the normalized Doppler
frequency fD/Δ f = 0.15. We want to highlight that this value
generally represents a high Doppler spread condition. For in-
stance, for a carrier frequency fC = 10GHz and a subcar-
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Figure 3: BER comparison betweenMMSE-BLE andMMSE-BDFE
( fD/Δ f = 0.15).

rier spacing Δ f = 20 kHz, it corresponds to a mobile speed
V = 324Km/h. We can deduce from Figure 3 that the per-
formance gain obtained by BDFE tends to increase for high
values of Q. However the banded MMSE-BDFE still presents
an error floor, which is due to the band approximation of the
channel.

Figure 4 shows the results obtained by MBAE-SOE win-
dow design when Q = 1 for several values of fD/Δ f . In this
case, since Q = 1, the window design reduces to the opti-
mization of a single amplitude parameter, which is the ratio
2|b1|/b0 plotted in Figure 4. This figure clearly shows that, for
a large range of Doppler spreads, the optimum ratio is close
to 0.852, which is the ratio that characterizes the Hamming
window [11]. However, for very high normalized Doppler
spreads, the optimum ratio tends to decrease, that is, less en-
ergy should be allocated to the cosine component. Figure 5
presents the BER of the MMSE-BLE with SOE windowing
when Q = 1 and fD/Δ f = 0.15. The best performance is ob-
tained for the ratio 2|b1|/b0 = 0.844, which corresponds to
our MBAE-SOE design. It should be pointed out that also
other suboptimum SOE windows outperform the rectangu-
lar window, which represents the case of no windowing and
can be considered as a degenerated SOE window with ratio
2|b1|/b0 equal to zero.

Figure 6 shows the BER for some linear equalizers with
windowing when Q = 2 and fD/Δ f = 0.15. As far as the
MMSE-BLE is concerned, the Hamming window, which
is near optimum for Q = 1, outperforms the rectangular
window. Anyway, the BER performance of the MMSE-BLE
with MBAE-SOE window is even better, thus confirming
the goodness of our window design. Among the BLE ap-
proaches, the non-banded MMSE-BLE of [6] has the low-
est BER, but its computational complexity is cubic instead
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Figure 5: BER of the MMSE-BLE with different SOE windows
( fD/Δ f = 0.15, Q = 1).

of linear in the number of subcarriers. Figure 6 also displays
the BER of some noniterativeMMSE-SLEs, with and without
windowing, obtained from [5, 10]. In the SLE case, window-
ing is less effective than that for BLE. The Hamming win-
dow slightly worsens the BER performance with respect to
the rectangular window, and the MBAE-SOE window even
more. This indicates that for SLEs windowing alone is not ef-
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Figure 6: BER of MMSE-BLE and MMSE-SLE with different win-
dows ( fD/Δ f = 0.15, Q = 2).

fective and should be coupled with iterative ICI cancellation
techniques as in [10].

By Figure 6, we can also note that the proposed banded
MMSE-BLE withMBAE-SOE window outperforms the non-
banded MMSE-SLE of [5], which has the lowest BER among
the considered noniterative SLE approaches. In addition, the
proposed banded MMSE-BLE with MBAE-SOE window has
linear complexity in the number of subcarriers, whereas the
nonbanded MMSE-SLE of [5] has quadratic complexity.

It is also interesting to observe that MBAE-SOE win-
dowing allows for a complexity reduction by simply reduc-
ing the parameter Q, without any performance penalty. In-
deed, by comparing Figure 5 with Figure 6, it is evident that
the W-MMSE-BLE with Q = 1 (i.e., that with 2|b1|/b0 =
0.844 in Figure 5) outperforms the unwindowedMMSE-BLE
with Q = 2 (i.e., that identified by rectangular window in
Figure 6). In addition, the complexity of the W-MMSE-BLE
with Q = 1 is roughly 46% of the complexity of the unwin-
dowed MMSE-BLE with Q = 2.

Figure 7 plots the shapes of the windows designed for
Q = 2 and fD/Δ f = 0.15. It is evident that the MBAE-SOE
window and the Schniter window [10] are very similar. The
Schniter window, which is designed without the SOE con-
straint (32), produces an almost-banded noise covariance
matrix. This means that the SOE constraint (32) does not
exclude goodwindows.Moreover, it is interesting to note that
for Q = 2 both the Schniter window and the MBAE-SOE
window are very similar to the Blackman window [11]. We
also remember that for Q = 1 the MBAE-SOE window and
the Schniter window are similar to the Hamming window (at
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Figure 7: Shape of different windows ( fD/Δ f = 0.15, Q = 2).

least for reasonable values of normalized Doppler spread).
Although the Hamming and Blackman windows have been
derived in a different context, we feel that this is not merely a
coincidence. Indeed, many common windows, such as Ham-
ming and Blackman, have been derived with the purpose of
reducing the spectral sidelobes of the Fourier transform of
the window [11]. Similarly, in our case, we want to mitigate
the ICI outside the band of the channel matrix, and this ICI
is caused by the spectral sidelobes of the Fourier transform
of the window. However, in our scenario, the window design
is also dependent on other factors, such as the Doppler spec-
trum and the maximum Doppler frequency.

In the second set of simulations, we also take into account
the effect of channel estimation. We consider an OFDM sys-
tem with N = 256, U = Q, Q = 2 unless otherwise stated,
L = 4, and QPSK modulation. We assume Rayleigh fad-
ing channels with uniform power delay profile and Jakes’
Doppler spectrum with fD/Δ f = 0.256. As far as channel
estimation is concerned, we choose P+1 = 2Q+1 GCE basis
functions with oversampling factor K = 2 [25]. The channel
is estimated by using the LMMSE criterion (24). The power
ratio ρ ≈ 3.316 between data and pilots has been chosen ac-
cording to [26]. The SNR is defined as the ratio between total
signal power (including pilot power) and noise power.

Figure 8 illustrates the MSE of the channel estimation,
defined as MSE = E{‖Ĥ − H‖}/E{H} for the unwindowed
channel and as MSE = E{‖ĤW − HW‖}/E{HW} for the
windowed channel, assuming Q = 2 and by using orthog-
onalized GCE (O-GCE) (i.e., Ξ is obtained after the QR de-
composition of the GCE basis matrix) and orthogonalized
windowed GCE (OW-GCE) (i.e., Ξ is obtained after the QR
decomposition of the windowed GCE basis matrix) basis
functions. Specifically, with O-GCE we first estimate H and
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Figure 8: MSE different channel estimations ( fD/Δ f =0.256, Q=2).

then we reconstruct HW = ΔWH by the knowledge of the
MBAE-SOE window, whereas with OW-GCE we first esti-
mate HW and then we reconstruct H = Δ−1W HW . It is shown
that in both cases it is better to estimate the windowed chan-
nel rather than the unwindowed channel. Moreover, the O-
GCE basis produces a better estimate of the unwindowed
channel with respect to the OW-GCE basis.

Figure 9 compares the BER performance of the banded
W-MMSE-BDFE with the banded W-MMSE-BLE and the
bandedMMSE-BDFE. It is evident that theW-MMSE-BDFE
outperforms the other two equalizers. Specifically, the W-
MMSE-BDFE is able to reduce the error floor. This reduction
is more pronounced for high values ofQ. It is also worth not-
ing that the degradation produced by channel estimation is
quite small for both W-MMSE-BLE and W-MMSE-BDFE,
especially at high SNR. Due to the good channel estima-
tion, the BER floor is caused mainly by the band approxima-
tion. Similar conclusions can be drawn for different Doppler
spreads.

6. CONCLUSIONS

In this paper, we have designed banded MMSE equalizers for
OFDM systems in high Doppler spread channels. Thanks to
a band LDL factorization algorithm, these MMSE equaliz-
ers are characterized by a low complexity. To enhance BER
performance, both decision-feedback and optimum (in the
MBAE sense) receiver windowing have been investigated.
Moreover, by means of a BEM channel estimation approach,
we validated the effectiveness of the proposed equalizers also
in the presence of channel estimation errors. We remark that
the values of Q used in the various band approximations
could also be different. However, due to space constraints,
we used the same value for all the band approximations. A
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Figure 9: BER comparison of banded MMSE equalizers ( fD/Δ f =
0.256).

deeper analysis of the impact of different Q’s could be the
subject of future work.
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