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Abstract

Background: Human cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide. The
toll-like receptors (TLRs) have been reported as important factors in immune response against HCMV. Particularly, TLR2,
TLR4 and TLR9 have been shown to be involved in antiviral immunity. Evaluation of the role of single nucleotide
polymorphisms (SNPs), located within TLR2, TLR4 and TLR9 genes, in the development of human cytomegalovirus
(HCMV) infection in pregnant women and their fetuses and neonates, was performed.

Methods: The study was performed for 131 pregnant women, including 66 patients infected with HCMV during
pregnancy, and 65 age-matched control pregnant individuals. The patients were selected to the study, based on
serological status of anti-HCMV IgG and IgM antibodies and on the presence of viral DNA in their body fluids.
Genotypes in TLR2 2258 A > G, TLR4 896 G > A and 1196 C > T and TLR9 2848 G > A SNPs were determined by
self-designed nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in
TLR SNPs, were confirmed by sequencing. A relationship between the genotypes, alleles, haplotypes and multiple
variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women and their
offsprings, was determined, using a logistic regression model.

Results: Genotypes in all the analyzed polymorphisms preserved the Hardy-Weinberg equilibrium in pregnant women,
both infected and uninfected with HCMV (P> 0.050). GG homozygotic and GA heterozygotic status in TLR9 2848 G > A SNP
decreased significantly the occurrence of HCMV infection (OR 0.44 95% CI 0.21–0.94 in the dominant model, P≤ 0.050). The
G allele in TLR9 SNP was significantly more frequent among the uninfected pregnant women than among the infected
ones (χ2 = 4.14, P≤ 0.050). Considering other polymorphisms, similar frequencies of distinct genotypes, haplotypes and
multiple-SNP variants were observed between the studied groups of patients.

Conclusions: TLR9 2848 G > A SNP may be associated with HCMV infection in pregnant women.

Keywords: Human cytomegalovirus (HCMV), Toll-like receptors (TLRs), Single nucleotide polymorphism (SNP), Infection,
Pregnant women
Background
Human cytomegalovirus (HCMV) is the most common
cause of intrauterine infections worldwide, with sero-
prevalence rates at the range from 40 to 100% among
pregnant women [1–4]. Our recent study, performed
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among Polish pregnant women between 2010 and 2011,
showed seroprevalence of anti-HCMV IgG and IgM
antibodies to have been 62.4 and 2.2%, respectively [4].
Compared to other European populations of pregnant
women from the Netherlands (41%), France (46%) and
the United Kingdom (49%), the prevalence of IgG
anti-HCMV in the Polish pregnancy cohort was still
high [5–7]. In case of primary infections, diagnosed
during pregnancy, the transplacental transmissions of
the virus from mother to fetus occur with the incidence
rate of 30–40%, while the recurrent infections cause
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congenital cytomegaly within the range 0.2–2.2% [8–12].
Among fetuses and neonates, congenitally infected with
HCMV, cytomegaly may have both asymptomatic and
symptomatic course with severe symptoms, including
microcephaly, ventriculomegaly, increased periventricu-
lar echogenicity and calcifications [8, 12].
Taking into account the immune response to HCMV,

the Toll-like receptors (TLRs) have been reported to play
important role [13–15]. Particularly, TLR2, TLR4 and
TLR9 have been shown to be involved in antiviral im-
munity [14, 16–18]. In the most recent in vitro study,
TLR2 was found as a target of HCMV miR-UL112-3p
[19]. Previously, TLR2 was also determined to be in-
volved in the functional sensing of HCMV through dir-
ect interactions with viral glycoproteins (gp, g) gB and
gH [20]. In turn, TLR4 was reported to be correlated
with inhibition of HCMV infection [21]. In human
monocytoid THP1 cells and foreskin fibroblasts, TLR9
was determined to induce the expression of TNF-α at 1 h
after HCMV infection [22]. A study performed for neo-
natal human fibroblasts, showed some involvement of
TLR9 in the development of HCMV infection as well [23].
Previously, the role of single nucleotide polymor-

phisms (SNPs, variations of single nucleotides at specific
positions in sequences of the genes), residing within TLR
genes, was also reported [24–26]. In case of TLR2 + 1350
T > C polymorphic site, the CC genotype (homozygotic
status with two minor C alleles) was correlated with
congenital HCMV infection [27]. In turn, our recent
study showed no genotypic variability within TLR2 +
1350 T > C as well as 2029 C > T SNPs among the
analyzed Polish fetuses and neonates, who were both
congenitally infected and uninfected with HCMV [28].
However, the study reported the GA heterozygotic status
and A allele located within TLR2 2258 G > A SNP to be
significantly more frequent among the infected off-
springs than among uninfected individuals [28]. In an
in vitro study of the transfected human embryonic kid-
ney (HEK) 293 cells exposed to HCMV gB, the TLR2
2258 SNP was shown to be associated with TLR2 signal-
ing impairment [25]. Considering TLR4, both 896 A > G
and 1196 C > T polymorphisms were reported to impair
TLR4/MD2 dimerization necessary to activate down-
stream signaling, involved in HCMV-induced immune
response [29, 30]. TLR4 896 A > G and TLR4 1196 C > T
SNPs were also determined to be significantly associated
with more frequent opportunistic infections and cytome-
galy, diagnosed among renal transplant recipients
(RTRs) [14, 31]. Another study performed for RTRs and
their unrelated donors, showed both TLR4 SNPs to be
possibly associated with the risk factors of invasive as-
pergillosis that included HCMV seropositivity [24]. Con-
sidering TLR9, the -1237 T > C SNP was marginally
correlated with recurrent urinary infections in RTRs
[32]. The study performed for Polish fetuses and neo-
nates congenitally infected with HCMV, showed the CC
genotype in TLR4 1196 polymorphism, as well as the
GA variant in TLR9 2848 G > A SNP to be correlated
with the infection, and the heterozygotic status in TLR9
SNP increased the risk of congenital cytomegaly by 4.81
times [18]. Moreover, complex AA variants for both
TLR2 2258 and TLR9 2848 G > A polymorphisms, were
found to be associated with an increased risk of congeni-
tal HCMV infection [28]. Regarding TLR9 -1486 T > C
and 2848 C > T SNPs, the heterozygous and homozy-
gous recessive genotypes within the reported polymor-
phisms, were associated with an increased risk of
HCMV disease among infants [33].
Considering reported data, the association between the

presence of genetic changes within TLR2 2258 G >A,
TLR4 896 A >G and TLR4 1196 C > T, as well as TLR9
2848 G > A SNPs and the occurrence of HCMV infection
among pregnant women seems to be really possible, al-
though there have been no such reports. Therefore, the
current paper was aimed to describe the role of TLR2,
TLR4 and TLR9 SNPs (see Fig. 1) in the occurrence of
HCMV infection among pregnant women, acquired
within the gestation period [18, 29, 34–39]. The estima-
tion of the possible relationship between the genetic status
within the analyzed polymorphic sites and the appearance
of HCMV infection might be significant to provide new
genetic alterations possibly associated with the infection
occurring among pregnant women during pregnancy.

Methods
The study was performed with 131 pregnant women, in-
cluding 66 patients infected with HCMV during
pregnancy, and 65 age-matched control individuals un-
infected with the virus, at the age between 18 and 41
years (mean 28.52 years). The mean age among HCMV-
infected pregnant women was 28.29 ± 5.29 years, and
among uninfected pregnant women was 28.75 ± 4.79
years. The samples were obtained from pregnant
women, admitted to the Department of Feto-Maternal
Medicine and Gynecology at the Polish Mother’s Me-
morial Hospital—Research Institute, between the years
2002 and 2014. Clinical samples, used in the TLRs’ SNPs
genotyping, consisted of whole blood and serum speci-
mens. HCMV infection, that occurred within the preg-
nancy period in pregnant women, was determined by
serological status for anti-HCMV antibodies, HCMV
DNA detection, as well as by ultrasound markers related
to congenital cytomegaly in their fetuses. Symptoms as-
sociated with congenital disease included microcephaly
(determined in 1 of 66 tested fetuses and neonates,
1.52%), ventriculomegaly (1/66, 1.52%), respiratory fail-
ure (5/66, 7.58%), heart defects (4/66, 6.06%), hepatitis
(1/66, 1.52%), ascites (2/66, 3.03%), intrauterine growth



Fig. 1 The primary structures of TLR2, TLR4 and TLR9 genes, loci of the polymorphic sites analyzed in the study, and role of the polymorphisms in
immune response. Structures of the genes were developed using the Ensembl genome browser and NCBI dbSNP database. Numbered squares
represent the following exons in the genes. Lengths of the exons containing analyzed polymorphisms, and of the whole genes, are shown by
numbers of nucleotides (nt) over black lines. Diagonal subtitles show the names of studied SNPs. Role of the polymorphisms is indicated on the
right side of genes
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restriction (IUGR, 6/66, 9.09%), as well as fetal/neonatal
death (7/66, 10.61%), and were observed among the
28.8% (19/66) offsprings of the infected pregnant
women. Active HCMV infections were confirmed in 15
pregnant women (15/66, 22.7%) and their 10 offsprings
(10/66, 15.2%), based on the presence of the viral DNA
in body fluids, including maternal whole blood, plasma,
and urine samples, as well as fetal amniotic fluids and
umbilical cord blood specimens. Considering all the
studied parameters related to HCMV infection, the over-
all rate of congenital viral transmission from mother to
the fetus was 33.3% (22/66). The study was approved by
the Research Ethics Committee at the Polish Mother’s
Memorial Hospital—Research Institute. All the samples,
previously collected for diagnostic purposes, were anon-
ymized in this report. Informed consent forms were
signed by all the enrolled pregnant women.

Serological tests
Blood specimens were gained from the pregnant women
by venipuncture on their first visit to the Hospital, be-
tween the 5th and 38th week of gestation (mean 21.96
weeks). The mean gestational age among HCMV-
infected pregnant women was 22.50 ± 9.21 weeks, and
among uninfected pregnant women was 21.63 ± 9.02
weeks. Serum samples were obtained by centrifugation
and then stored at 4oC until analysis, on the day of
blood collection. Serological status was determined at
the Hospital’s Department of Clinical Microbiology.
Screening for anti-HCMV IgG and IgM antibodies was
performed with VIDAS CMV IgG and IgM tests (bio-
Mérieux, France), used between the years 2002 and
2006. Both IgG and IgM antibodies titers ≥ 6 IU/ml were
determined as positive. Between 2006 and 2011, the
antibodies levels and IgG avidity, were evaluated by the
chemiluminescence immunoassays (CLIA), using anti-
CMV IgG and IgM tests (Diasorin/Biomedica, Italy).
Samples were considered as IgG- or IgM-positive for
antibody levels ≥ 0.6 IU/ml and ≥ 30 IU/ml, respectively.
The IgG avidity with indexes < 0.200 was interpreted as
low, 0.200–0.300 as borderline, and ≥ 0.300 as high.
From the year 2012, the CLIA method was replaced by
the enzyme-linked fluorescence assays (ELFA), used to
determine antibodies levels. IgG antibody titers ≥ 6 IU/
ml and IgM indexes ≥ 0.9 were considered positive.

DNA extraction
Genomic and viral DNA was extracted from studied body
fluids, using a QIAamp DNA Mini Kit (QIAGEN, Hilden,
Germany). The isolated DNA was diluted in 100 μL of
elution buffer and stored at -20oC until further genetic
analyses, according to the manufacturer’s guidelines.

Quantification of HCMV DNA
Among HCMV infected patients, the amount of viral
DNA in the study specimens, was determined by the
quantitative real-time PCR assay for the detection of
UL55 gene fragment, as described previously [40–42].
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The reactions were performed in triplicate and the PCR
conditions were as follows: initial activation for 10 min
at 95°C and 50 cycles of repeated denaturation at 95°C
for 15 s and annealing at 60°C for 1 min. The standard
curves were obtained from serial 10-fold dilutions from
105 to 1 plasmid DNA, containing the entire HCMV
UL55 open reading frame [42, 43]. The amplification
was performed by a 7900HT Fast Real-Time PCR Sys-
tem (Applied Biosystems, USA).

Genotyping of TLR2, TLR4 and TLR9 SNPs
TLR2 2258 G > A, TLR4 896 A > G and 1196 C > T
SNPs, as well as TLR9 2848 G > A SNP (see Fig. 1), were
genotyped, using the self-designed nested PCR-RFLP as-
says. The sequences of the external and internal primers,
the lengths of PCR products and annealing tempera-
tures, used in the PCR assays for TLR SNPs, were previ-
ously shown [18, 28, 44]. The sequences, annealing
temperatures, and the sizes of amplicons for TLR SNPs
are presented in Table 1. The sequences of external
primers were developed, using the Vector NTI Suite 5.5
software, whereas the internal primers were taken from
the literature [45–49]. Nested PCR products were
digested overnight with AciI, NcoI, HinfI or BstUI endo-
nucleases, in order to study the genotypes residing
within the analyzed TLR2 2258 G > A, TLR4 896 A > G,
TLR4 1196 C > T or TLR9 2848 G > A SNPs, respect-
ively. The genotypes and alleles were determined by the
Table 1 Primer sequences, annealing temperatures and amplicon le

Gene GenBank Accession No.a SNPb name Primer sequences
(5’-3’)

TLR2 NC_000004.12 2258 G > A
(rs5743708)

External For: CGGAAT
Rev: GGACTT

Internal For: GCCTAC
Rev: GGCCAC

TLR4 NG_011475 896 A > G External For: AAAACT

(rs4986790) Rev: TGTTGG

Internal For: AGCATA

Rev: AGAAG

1196 C > T External For: AGTTGA

(rs4986791) Rev: GGAAA

Internal For:
GGTTGCTGTT

Rev:
ACCTGAAGA

TLR9 EU170539 2848 G > A External For: GTCAAT

(rs352140) Rev: CATTGC

Internal For: AAGCTG

Rev: TTGGCT
a No., number
b SNP, single nucleotide polymorphism
c bps, base pairs
length of restriction fragments, resolved on 2% agarose
gels, as previously described [45–49]; see Additional file
1: Figure S1. Randomly selected amplicons for the stud-
ied TLR SNPs were then sequenced by the Sanger
method, at the Genomed Joint-Stock Company (Warsaw,
Poland), to verify the genotypes, determined by the
PCR-RFLP assay. Sequencing was performed for five GG
homozygotes and seven GA heterozygotes in TLR2 SNP,
for six AA homozygotes and four AG heterozygotes in
TLR4 896 A > G SNP, for five CC homozygotes and five
CT heterozygotes in TLR4 1196 C > T SNP, as well as
for five GG homozygotes, five GA heterozygotes and five
AA homozygotes in TLR9 SNP. The exemplary chro-
matograms for DNA fragments of sequenced PCR prod-
ucts encompassing different TLR SNPs are presented in
Additional file 2: Figure S2. In order to determine the
analyzed genotypes, the sequenced and the reference
fragments of the analyzed TLR genes were compared,
using the BLASTN program for the alignment of two (or
more) sequences (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PA-
GE_TYPE=BlastSearch&BLAST_SPEC=blast2seq&LINK_L
OC=align2seq). Chromatograms were read, using the
Chromas Lite 2.1.1 program.

Statistical analysis
Distribution of genotypes and alleles in the analyzed
TLR2, TLR4 and TLR9 SNPs among HCMV-infected
and uninfected pregnant women was estimated by
ngths, obtained in nested PCR assays for SNPs in the TLR genes

Annealing temperature
[oC]

Amplicon length
(bps) c

GTCACAGGACAGC
TATCGCAGCTCTCAG

52 605

TGGGTGGAGAACCT
TCCAGGTAGGTCTT

59 340

TGTATTCAAGGTCTGGC 52 355

AAGTGAAAGTAAGCCT

CTTAGACTACTACCTCCATG 61 188

ATTTGAGTTTCAATGTGGG

TCTACCAAGCCTTGAGT 52 510

CGTATCCAATGAAAAGA

CTCAAAGTGATTTTGGGAGAA
59 407

CTGGAGAGTGAGTTAAATGCT

GGCTCCCAGTTCC 52 292

CGCTGAAGTCCA

GACCTCTACCACGA 59 177

GTGGATGTTGTT

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=blast2seq&LINK_LOC=align2seq
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=blast2seq&LINK_LOC=align2seq
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=blast2seq&LINK_LOC=align2seq
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means of descriptive statistics. The studied groups of pa-
tients were tested for the Hardy-Weinberg (H-W) equi-
librium, the linkage disequilibrium (LD) and haplotypes,
using the SNPStats software (http://bioinfo.iconcologia.-
net/en/SNPStats_web). Genotypes in all the analyzed
polymorphisms preserved the H-W equilibrium in preg-
nant women, both infected with HCMV and control un-
infected individuals (P > 0.050). The TLR4 896 A > G
and 1196 C > T SNPs were in linkage disequilibrium
among the studied groups of pregnant women (P ≤
0.050). The relationships between the genotypes, alleles
or haplotypes in TLR SNPs and the occurrence of the
viral infections were determined by cross-tabulation,
Pearson’s Chi-squared test and by the logistic regression
model. The multiple-SNP analysis for the haplotypes in
TLR4 SNPs, as well as for the complex genotypic vari-
ants within the range of all the analyzed TLR SNPs was
performed by the Expectation Maximization (EM) algo-
rithm. The outcomes of the analyses were determined
statistically significant when the significance level of P ≤
0.050 was obtained. The statistical analysis was in part
supported by the NCSS 2004 software.

Results
Prevalence of anti-HCMV IgG and IgM antibodies
In pregnant women, HCMV infection during pregnancy
was estimated on the basis of IgG seroconversion within
gestation, on the presence of IgG and IgM specific anti-
bodies or on a low IgG avidity index. IgG seropositivity
was confirmed in 96.55% (56/58) of the infected preg-
nant women, while data on IgM antibodies suggestive of
the recent infection, were obtained for 86.21% (50/58) of
infected individuals. Control group in the study, con-
sisted of pregnant women seronegative for both IgG and
IgM antibodies against HCMV, who were classified as
uninfected individuals.

HCMV DNA loads in body fluids
The median load of HCMV DNA in whole blood speci-
mens of the infected pregnant women was 3.8 × 102 cop-
ies/ml and ranged from 1.3 × 102 to 1.1 × 103 copies/ml,
while the mean viral load was 5.2 × 102 copies/ml. In
case of plasma specimens, the median viral load was
5.6 × 102 copies/ml, ranging from 1.8 × 102 to 3.6 × 103

copies/ml, whereas the mean viral load was 1.4 × 103

copies/ml. Regarding urine samples, the median HCMV
DNA load was 4.4 × 102 copies/ml, ranging from 1.5 ×
102 to 2.4 × 103 copies/ml, and the mean viral load was
3.2 × 103 copies/ml. Considering fetal amniotic fluids,
the median HCMV DNA load was 9.9 × 102 copies/ml,
and ranged from 2.2 × 102 to 1.5 × 103 copies/ml, while
the mean viral load was 9.2 × 102 copies/ml. In umbilical
cord blood samples, the median HCMV DNA load was
3.2 × 103 copies/ml, and ranged from 1.6 × 102 to 6.6 ×
103 copies/ml, and the mean viral load was 3.3 × 103

copies/ml.

Frequencies of the genotypes in TLR2, TLR4 and TLR9
SNPs
In the pregnant women, infected with HCMV, the fre-
quencies of GG and GA genotypes found at TLR2 2258
G > A polymorphic site were 93.9% (62/66) and 6.1% (4/
66), respectively (see Table 2). In cases of TLR4 SNPs,
AA and AG genotypes in 896 A > G SNP were carried
by 91.8% (56/61) and 8.2% (5/61) of the pregnant
women, respectively, while CC and CT genotypes in
1196 C > T polymorphism—by 90.9% (60/66) and 9.1%
(6/66), respectively. Considering TLR9 2848 G > A SNP,
the GG, GA and AA genotypes were determined in
13.3% (8/60), 41.7% (25/60), and 45% (27/60) of patients,
respectively. Among uninfected pregnant women, the
frequencies of GG and GA genotypes in TLR2 SNP were
92.2% (59/64) and 7.8% (5/64), respectively. The fre-
quencies of AA and AG genotypes in TLR4 896 A > G
were 86.9% (53/61) and 13.1% (8/61), respectively, while
the rates of CC and CT genotypes in TLR4 1196 C > T
were 87.3% (55/63) and 12.7% (8/63), respectively. In
cases of TLR9 2848 G > A polymorphism, the GG, GA
and AA genotypes were observed in 20.3% (13/64),
53.1% (34/64), and 26.6% (17/64), respectively. Taking
that into account, the GG homozygotic and GA hetero-
zygotic status decreased significantly the occurrence of
HCMV infection (OR 0.44, 95% CI 0.21–0.94 in the
dominant model; P ≤ 0.050; see Table 2). In turn, the fre-
quencies of the genotypes, located in TLR2 and TLR4
SNPs, were similar between the studied groups of the in-
fected and uninfected pregnant women. Moreover, both
the haplotypes in TLR4 polymorphisms and the complex
variants within the range of all the analyzed SNPs, were
observed in similar frequencies among the studied
groups of patients. Considering congenital transmission
of HCMV from the infected pregnant women to their fe-
tuses, similar frequencies of various genetic variants of
the analyzed polymorphisms, were observed between
mothers of congenitally infected and uninfected
offsprings.

Distribution of the alleles in TLR2, TLR4 and TLR9 SNPs
In the infected pregnant women, the frequencies of G
and A alleles in TLR2 2258 G > A SNP were 97.0% (128/
132) and 3.0% (4/132), respectively (see Table 3). In case
of TLR4 polymorphisms, A and G alleles in 896 A > G
SNP were determined in 96.0% (117/122) and 4.0% (5/
122) of the patients, respectively, while C and T alleles
in 1196 C > T SNP—in 95.0% (126/132) and 5.0% (6/
132), respectively. Regarding TLR9 2848 G > A SNP, G
and A alleles were carried by 34.0% (41/120) and 66.0%
(79/120) of the infected pregnant women, respectively.

http://bioinfo.iconcologia.net/en/SNPStats_web
http://bioinfo.iconcologia.net/en/SNPStats_web


Table 2 Relationship between TLR2, TLR4 and TLR9 SNPs and the occurrence of HCMV infection among pregnant women

Gene polymorphism Genetic model Genotype Genotype prevalence rates; n (%) a ORb (95% CI) c P-valued

Infected cases Uninfected controls

TLR2 2258 G > A - GG 62 (93.9%) 59 (92.2%) 1.00

GA 4 (6.1%) 5 (7.8%) 0.76 (0.19–2.97) 0.690

TLR4 896 A > G - AA 56 (91.8%) 53 (86.9%) 1.00

AG 5 (8.2%) 8 (13.1%) 0.59 (0.18–1.92) 0.380

TLR4 1196 C > T - CC 60 (90.9%) 55 (87.3%) 1.00

CT 6 (9.1%) 8 (12.7%) 0.69 (0.22–2.11) 0.510

TLR9 2848 G > A Codominant GG 8 (13.3%) 13 (20.3%) 0.39 (0.13–1.13) 0.093

GA 25 (41.7%) 34 (53.1%) 0.46 (0.21–1.03)

AA 27 (45.0%) 17 (26.6%) 1.00

Dominant AA 27 (45.0%) 17 (26.6%) 1.00

GA-GG 33 (55.0%) 47 (73.4%) 0.44 (0.21–0.94) 0.032

Recessive AA-GA 52 (86.7%) 51 (79.7%) 1.00

GG 8 (13.3%) 13 (20.3%) 0.60 (0.23–1.58) 0.300

Overdominant GG-AA 35 (58.3%) 30 (46.9%) 1.00

GA 25 (41.7%) 34 (53.1%) 0.63 (0.31–1.28) 0.200
a n, number of tested pregnant women
b OR, odds ratio
c 95% CI, confidence interval
d logistic regression model; P ≤ 0.050 is considered as significant

Wujcicka et al. Virology Journal  (2017) 14:64 Page 6 of 10
Among uninfected pregnant women, the frequencies of
G and A alleles in TLR2 2258 G > A SNP were 96.0%
(123/128) and 4.0% (5/128), respectively. The frequen-
cies of A and G alleles in TLR4 896 A > G SNP were
93.0% (114/122) and 7.0% (8/122), respectively, and the
Table 3 Distribution of the alleles, located in TLR2, TLR4 and
TLR9 SNPs

Gene polymorphism
and allele

No.a of carriers with TLR alleles (%) P-valueb

Cases Controls

TLR2 2258
G > A

G 128 (97%) 123 (96%) 0.699

A 4 (3%) 5 (4%)

TLR4 896
A > G

A 117 (96%) 114 (93%) 0.392

G 5 (4%) 8 (7%)

TLR4 1196
C > T

C 126 (95%) 118 (94%) 0.523

T 6 (5%) 8 (5%)

TLR9 2848
G > A

G 41 (34%) 60 (47%) 0.042

A 79 (66%) 68 (53%)
a No. - number
b Pearson’s Chi-squared test; P ≤ 0.050 is considered significant
rates of C and T alleles in TLR4 1196 C > T SNP were
94.0% (118/126) and 6.0% (8/126), respectively. Consid-
ering TLR9 SNP, the G and A alleles were found in fre-
quencies of 47.0% (60/128) and 53.0% (68/128),
respectively. The G allele in TLR9 SNP was significantly
more frequent among the uninfected pregnant women,
as compared to the infected ones (χ2 = 4.14, P ≤ 0.050;
Pearson’s Chi-squared test; see Table 3). The distribution
of the alleles at other analyzed polymorphic sites was
similar between the studied groups of patients.
Discussion
Both GG homozygous and GA heterozygous variants in
TLR9 2848 G > A SNP were found in our study to have
been significantly associated with a decreased occur-
rence of HCMV infection among pregnant women.
Additionally, the G allele in TLR9 SNP was observed sig-
nificantly more frequently among the uninfected preg-
nant women than among the infected ones. The
frequencies of the genotypes and alleles within TLR9
2848 G > A SNP determined among uninfected pregnant
women, but not among HCMV-infected patients, were
similar to the frequencies reported for European popula-
tions (see https://www.ncbi.nlm.nih.gov/projects/SNP/
snp_ref.cgi?rs=352140).
Differences in distribution of both the genotypes and

alleles within TLR9 2848 G > A SNP between the in-
fected pregnant women analyzed in the current study,

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=352140
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=352140
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and the reported European populations might be due to
a selection bias. Similarly, significantly higher prevalence
rates of anti-HCMV IgG and IgM antibodies determined
among the infected pregnant women studied in this
paper, as compared to the previously reported cohort of
Polish pregnant women between 2010 and 2011, as well
as to other European populations, are possibly also
caused by a classification of the patients to the presented
study [4–7]. So far, it has been the first study to reveal a
really significant role of TLR9 2848 G > A SNP in the oc-
currence of HCMV infection in pregnant women.
Another research reported before that the GA heterozy-
gotic status in the analyzed TLR9 SNP, carried by fetuses
and neonates, congenitally infected with HCMV, had sig-
nificantly increased the risk of the infection [18]. In turn,
the G allele in TLR9 SNP was more frequent among the
infected offsprings than among the uninfected ones, al-
though that difference was statistically non-significant
[18]. The distinct contribution of the analyzed TLR9
SNP in the occurrence of HCMV infection may have
been age-related, as well as may have resulted from the
classification bias. The qualification criteria of the preg-
nant women to the study included their serological sta-
tus, the presence of HCMV DNA in their body fluids
and were also based on confirmed congenital infection
with the virus in their fetuses. In turn, the fetuses were
diagnosed as congenitally infected with HCMV only on
the basis of ultrasound markers and on the presence of
HCMV DNA in their body fluids, since the diagnostics
towards the infection is not routinely performed in preg-
nant women. Considering the role of TLR9 SNP in
HCMV infection, the TT homozygotic status in TLR9
-1237 T > C SNP was reported to have been correlated
with a decreased risk of the infection in HCMV-
seropositive kidney transplant recipients [50]. In recipi-
ents of allogeneic hematopoietic stem cell transplants,
the HCMV infection occurred significantly more fre-
quently among carriers of minor C allele in TLR9 -1237
T > C, as compared to the patients, carrying the T allele
[51]. On the other hand, the TLR9 2848 G > A poly-
morphism was not involved in the incidence of HCMV
infection among the examined patients [51]. However,
TLR9 -1486 T > C and 2848 C > T SNPs were associated
with an increased risk of HCMV disease among infants
[33]. Therefore, it seems possible that different SNPs,
residing within TLR9 gene, may have been correlated
with various disease types. Regarding the HCMV infec-
tion, previous papers showed some contribution of
TLR9 to its occurrence [14, 22, 23]. In case of plasmacy-
toid dendritic cells (pDCs), the infection with HCMV
was significantly associated with increased levels of
TLR9 [52]. The inhibited cytokine expression, observed
after treatment of pDCs with CpG, agonists for TLR7
and TLR9, suggested an involvement of the reported
TLRs in the development of HCMV infection [52]. What
is more, a significant role in the occurrence of HCMV
infection was previously confirmed for TLR2 and TLR4
molecules as well [30, 53, 54]. TLR2 was found to have been
involved in the functional sensing of HCMV through a dir-
ect interaction with the viral glycoproteins gB and gH [20].
In case of TLR4, the molecule was involved in an inhibition
of HCMV infection [21]. The expression levels of both
TLR2 and TLR4 were correlated with the levels of HCMV
IE1-72 protein [55]. Considering genetic alterations in the
current study, no differences were found in the distribution
of distinct genotypes within the range of both TLR2 and
TLR4 SNPs. The frequencies of the genotypes in the ana-
lyzed TLR2 and TLR4 polymorphic sites, found among
HCMV-infected pregnant women were similar to the fre-
quencies observed among European populations (see
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5
743708; https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref
.cgi?rs=4986790; https://www.ncbi.nlm.nih.gov/projects/SN
P/snp_ref.cgi?rs=4986791). Taking into account the allelic
variability within TLR2 2258 G >A and TLR4 1196 C >T
SNPs, the frequencies observed among all pregnant women
studied in our research, were similar to the frequencies re-
ported for European populations. In case of TLR4 896 C >T
SNP, similarity to the European populations was found for
HCMV-infected pregnant women (see https://www.ncbi.
nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4986790). So far,
no other study has shown before any possible involvement
of TLR2 2258 G >A,TLR4 896 A>G and TLR4 1196 C >T
SNPs in the occurrence of HCMV infection during preg-
nancy. However, in case of congenital HCMV infection, GA
heterozygotic status and A allele within TLR2 2258 G >A,
as well as CC genotype in the other TLR2 + 1350 T >C
SNP, was reported to be correlated with the infection [27,
28]. Regarding presented data, the age-dependent type of
the involvement of TLR2 2258 G >A polymorphism to
HCMV infection seems to be quite possible. Considering
TLR4 SNPs, the CC genotype in TLR4 1196 C >T SNP, GC
haplotype in both analyzed TLR4 SNPs, as well as GCA
multiple variants within the range of TLR4 and TLR9 2848
G >A SNPs, were found to have been correlated with con-
genital HCMV infection in fetuses and neonates [18]. In
pregnant women, the frequencies of distinct genotypes in
TLR4 SNPs were similar to those, determined among con-
genitally infected fetuses and neonates, although no CT
genotype at TLR4 1196 C >T polymorphic site was ob-
served among the infected offsprings [18]. Among pregnant
women, the low genotypic variability within TLR2 and TLR4
SNPs seems to be the important cause of the lack of any as-
sociations with HCMV infection. Similarly to our study,
almost the same frequencies of distinct genotypes in both
TLR2 2258 G >A and TLR4 896 G >A SNPs were deter-
mined in patients with transplants, with and without clinical
signs of HCMV infection [50]. Regarding the outcomes

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5743708
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5743708
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4986790
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4986790
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4986791
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4986791
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4986790
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4986790
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presented in this report,TLR9 2848 G >A SNP seems to be
the major polymorphism, contributing to HCMV infection
in pregnant women during pregnancy. However, the studied
genetic alteration is not involved, either in amino acid
changes in TLR9 molecule or in regulatory site modifica-
tions within TLR9 gene [56]. Therefore, other molecular
changes occurring simultaneously with the analyzed poly-
morphism, may contribute to the course of immune re-
sponse after the infection with HCMV.
Conclusions
The outcomes presented in the current study show that
TLR9 2848 G > A SNP seems to be involved in the oc-
currence of HCMV infection in pregnant women. Since
both the GG homozygotic and GA heterozygotic sta-
tuses, as well as the G allele at TLR9 polymorphic site
were significantly more frequent among the uninfected
pregnant women, when compared with the infected
ones, the genetic alterations in the studied polymorph-
ism may plausibly be associated with the infection with
HCMV. However, we suggest that further detailed stud-
ies would highly be justified to investigate the molecular
mechanism of the TLR9 2848 G > A SNP function in
HCMV infection.
Additional files

Additional file 1: Figure S1. Exemplary PCR-RFLP products representative
for various genotypes within TLR2 2258 G>A (A), TLR4 896 A>G (B), TLR4 1196
C> T (C) and TLR9 2848 G>A (D) SNPs. DNA fragments were resolved in 2%
agarose gel, stained with ethidium bromide. Disparate lanes show restriction
profiles for distinct genotypes in the range of studied TLR polymorphisms,
determined in different pregnant women. The numbers on the right side of
electropherograms show the size of separated DNA fragments. M—50 bp DNA
marker; GG, GA, AA, AG, CT, CC—genotypes determined in studied TLR
polymorphisms. (TIF 501 kb)

Additional file 2: Figure S2. a and b Representative chromatograms of
DNA fragments of various sequenced PCR products, encompassing TLR2
2258 G > A (A, B), TLR4 896 A > G (C, D), TLR4 1196 C > T (E, F) and TLR9
2848 G > A (G-I) SNPs. For TLR2 SNP, DNA forward strands were
sequenced, and for TLR4 and TLR9—reverse strands were assayed. The
numbers above some peaks of chromatograms indicate the following
nucleotides determined in sequenced DNA fragments. Loci of the
polymorphisms and genotypes analyzed in the study, are indicated with
arrows. GG, GA, AA, AG, CT, CC—genotypes determined in studied TLR
SNPs. (ZIP 1732 kb)
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