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Abstract We obtain a new exact solution to the field equa-
tions for a 5-dimensional spherically symmetric static dis-
tribution in the Einstein–Gauss–Bonnet modified theory of
gravity. By using a transformation, the study is reduced to the
analysis of a single second order nonlinear differential equa-
tion. In general the condition of pressure isotropy produces
a first order differential equation which is an Abel equation
of the second kind. An exact solution is found. The solution
is examined for physical admissibility. In particular a set of
constants is found which ensures that a pressure-free hyper-
surface exists which defines the boundary of the distribution.
Additionally the isotropic pressure and the energy density are
shown to be positive within the radius of the sphere. The adi-
abatic sound-speed criterion is also satisfied within the fluid
ensuring a subluminal sound speed. Furthermore, the weak,
strong and dominant conditions hold throughout the distribu-
tion. On setting the Gauss–Bonnet coupling to zero, an exact
solution for 5-dimensional perfect fluids in the standard Ein-
stein theory is obtained. Plots of the dynamical quantities for
the Gauss–Bonnet and the Einstein case reveal that the pres-
sure is unaffected, while the energy density increases under
the influence of the Gauss–Bonnet term.

1 Introduction

Alternate or extended theories of gravity have aroused con-
siderable interest recently in view of difficulties with the gen-
eral theory of relativity to explain anomalous behaviour of
gravitational phenomena such as the late time expansion of
the universe. The mathematical reason for this interest is that
the higher order derivative curvature terms make a nonzero
contribution to the dynamics. In particular, Einstein–Gauss–
Bonnet (EGB) theory has proved promising in this regard,
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and therefore is the most extensively studied. It appears in a
natural way in the effective action of heterotic string theory
in the low energy limit [1]. Several new results have been
reported especially dealing with the aspect of gravitational
collapse. The causal structure of the singularities is differ-
ent from general relativity for inhomogeneous distribution
of dust and null dust [2].

Historically black hole models in EGB theory have been
intensively studied. Boulware and Deser [3] generalized the
higher dimensional solutions in the Einstein theory due to
Tangherlini [4], and by Myers and Perry [5] to include
the contribution of the EGB theory with quadratic curva-
ture terms. Wheeler [6], Torii and Maeda [7] and Myers
and Simons [8] have also considered black hole solutions
in EGB theory. Inhomogeneous collapse of dust, that is, a
pressure-free fluid with non-interacting particles, was stud-
ied by Maeda [9]. However, explicit exact solutions were
obtained by Jhingan and Ghosh [10]. Dadhich et al. [11]
proved that the constant density Schwarzschild interior
solution is universal in the sense that it is valid in both
higher dimensional Einstein theory and in EGB gravity.
The matching of these exterior metrics to an interior for
brane world stars to produce analytical models was investi-
gated by Casadio and Ovalle [12]. The matching of isolated
masses to a Schwarzschild exterior was analysed by Clifton
et al. [13].

Models of compact spheres, with a static spherically sym-
metric metric, in general relativity have been widely stud-
ied in the past. A variety of exact solutions to the Einstein
and Einstein–Maxwell system of field equations, have been
found for neutral and charged matter distributions, respec-
tively. For a physically acceptable model several conditions
have to be satisfied: the gravitational potentials and matter
variables are well behaved and regular in the stellar inte-
rior, the interior metric matches smoothly to the exterior
Schwarzschild spacetime, the speed of sound is less than the
speed of light and there is stability with respect to radial per-
turbations. A recent example of a charged anisotropic sphere
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in general relativity that can be related to observed stellar
objects is given by Sunzu et al. [14]. However, in EGB the-
ory there is less known about the interior of compact spheres.
This is largely true because of the higher degree of nonlin-
earity in the field equations that arises because of the appear-
ance of the terms associated with the Gauss–Bonnet coupling
constant. Some progress can be made if we assume that the
spacetime is specified and this then defines the matter vari-
ables; in this context Abbas et al. [15] generated a model
for an anisotropic compact body in modified EGB gravity.
However, in general the nonlinear EGB equations need to be
solved, a much more difficult task than in general relativity, to
produce the metric potentials in the interior. Exact solutions
to the EGB equations are necessary to probe the physical
features of the body. The physical features mentioned above
in general relativity for a sphere will also be applicable for a
realistic compact body in the EGB case. However, the exter-
nal metric is now the 5-dimensional Boulware–Deser space-
time (in contrast to the Schwarzschild metric of general rel-
ativity). An exact model in EGB theory, which demonstrates
matching to the Boulware–Deser metric, was found by Dad-
hich et al. [11] assuming the interior to have constant den-
sity. This suggests that we should investigate variable density
models.

To date, there appears to exist no complete stellar model
in 5-dimensional EGB theory for the perfect fluid configu-
ration of static spherically symmetric matter. The constant
density configuration of Dadhich et al. [11] and the static
spherically symmetric star of Kang et al. [16] need to satisfy
the junction conditions of EGB gravity so that matching is
possible at the stellar surface. The junction conditions for
EGB were derived in Davis [17] which are nontrivial and
very different from general relativity. Note that the variable
density model of Kang et al. [16] requires a further integra-
tion to produce an exact solution. As far as we are aware
there is no known interior variable density spherically sym-
metric exact solution to the EGB field equations. This is the
object of our study in this paper and to highlight the role of
junction conditions of [17]. The problem of finding an exact
interior metric in EGB theory for spherically symmetric dis-
tribution reduces to solving a system of three nonlinear par-
tial differential equations in four unknowns: the dynamical
quantities pressure and energy density and two gravitational
potentials. As the system is under-determined, it is neces-
sary to specify an additional constraint in order to close the
system. This process is analogous to the standard Einstein
gravity case. Traditionally, the approach has been to specify
one of the four unknowns and by integration to resolve the
remaining three. The reader is referred to the comprehen-
sive listing of exact solutions found in this way by Stephani
et al. [18] and Delgaty and Lake [19] for the Einstein case.
When one of the field equations is replaced by the equation

of hydrodynamic equilibrium, namely the vanishing diver-
gence of the energy momentum tensor, then it is prudent to
invoke an equation of state relating the energy density and
pressure. This appears to have been the approach of [16] in
their attempt to find an exact model. Interestingly the interior
model presented in [16] generates the well-known vacuum
metric [3] of EGB in the limit of vanishing pressure and den-
sity.

Recently Izaurieta and Rodriguez [20] argued that the
4-dimensional gravitational field may effectively emerge
from 5-dimensional EGB theory. The addition of diffeo-
morphism invariant terms to the action principle leads to
second order equations of motion and are therefore physi-
cally palatable. Consequently investigations in five dimen-
sions are laboratories for examining the impact of extra
dimensions on physics, for example by demonstrating that
a new exact solution satisfies elementary physical properties
demanded of astrophysical objects. In four dimensions the
higher order curvature terms in EGB theory do not affect
gravity. It is only with spacetime dimensions five or greater
that the Gauss–Bonnet term contributes nontrivially to the
dynamics. The simplest case in higher dimensions is five,
which has been extensively studied in several physical sce-
narios. We point out that the addition of the extra spa-
tial dimension has been investigated by Kang et al. [16]
in static stars, Brihaye and Reidel [21] in rotating boson
stars, Ghosh et al. [2] in spherical collapsing bodies, and
Chervon et al. [22] in emergent universe models. The pres-
ence of additional dimensions may have a dramatic effect
on the behaviour of matter. For example Maeda [9] showed
that massive timelike naked singularities may exist in five
dimensions and massless ingoing null naked singularities
are formed in dimensions greater than five in EGB theory.
Massive timelike naked singularities do not exist in general
relativity. Also note that the dynamics of charged radiating
gravitational collapse of shear-free matter has been stud-
ied recently in the so-called modified Gauss–Bonnet gravity
[23].

Our intention in this paper is to solve the nonlinear EGB
equations for a static spherically symmetric matter distribu-
tion. In Sect. 2 we briefly outline the basic equations in EGB
gravity. The field equations in 5-dimensional EGB gravity
are presented for a spherically symmetric metric, and they
are then transformed to an equivalent form in Sect. 3. An
exact solution to the EGB equations is found in Sect. 4. In
Sect. 5 a corresponding exact solution, in the Einstein case,
to the 5-dimensional case is presented. The physical fea-
tures of the model are investigated in Sect. 6. Some con-
cluding remarks are made in Sect. 7. In the appendix we
present several exact solutions in the Einstein case in five
dimensions by specifying a form for one of the metric poten-
tials.
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2 Einstein–Gauss–Bonnet gravity

The Gauss–Bonnet action in five dimensions is written as

S =
∫ √−g

[
1

2
(R − 2� + αLGB)

]
d5x + S matter, (1)

where α is the Gauss–Bonnet coupling constant. The strength
of the action LGB lies in the fact that despite the Lagrangian
being quadratic in the Ricci tensor, Ricci scalar and the Rie-
mann tensor, the equations of motion turn out to be second
order quasilinear and are compatible with a theory of gravity.
The Gauss–Bonnet term is of no consequence for n ≤ 4 but
is generally nonzero for n > 4.

The EGB field equations may be written as

Gab + αHab = Tab, (2)

with metric signature (−++++) where Gab is the Einstein
tensor. The Lanczos tensor is given by

Hab = 2
(

R Rab − 2Rac Rc
b − 2Rcd Racbd + Rcde

a Rbcde

)

−1

2
gab LGB, (3)

where the Lovelock term has the form

LGB = R2 + Rabcd Rabcd − 4Rcd Rcd . (4)

3 Field equations

The generic 5-dimensional line element for static spherically
symmetric spacetimes is taken as

ds2 = −e2νdt2 + e2λdr2

+ r2
(

dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2
)

, (5)

where ν(r) and λ(r) are the gravitational potentials. We
utilise a comoving fluid velocity of the form ua = e−νδa

0
and the matter field is that of a perfect fluid with energy
momentum tensor Tab = (ρ + p)uaub + pgab. Accordingly
the EGB field Eq. (2) reduces to

ρ = 3

e4λr3

(
4αλ′ + re2λ − re4λ − r2e2λλ′ − 4αe2λλ′) ,

(6)

p = 3

e4λr3

(
−re4λ +

(
r2ν′ + r + 4αν′) e2λ − 3αν′) , (7)

p = 1

e4λr2

(
−e4λ − 4αν′′ + 12αν′λ′ − 4α

(
ν′)2

)

+ 1

e2λr2

(
1 − r2ν′λ′ + 2rν′ − 2rλ′ + r2 (

ν′)2
)

+ 1

e2λr2

(
r2ν′′ − 4αν′λ′ + 4α

(
ν′)2 + 4αν′′) . (8)

Note that the system (6)–(8) comprises three field equations
in four unknowns, which is similar to the standard Einstein
case for spherically symmetric perfect fluids. Observe that
the vacuum metric describing the gravitational field exterior
to the 5-dimensional static perfect fluid may be described by
the Boulware and Deser [3] spacetime as

ds2 = −F(r)dt2 + dr2

F(r)

+ r2(dθ2 + sin2 θdφ + sin2 θ sin2 φdψ), (9)

where

F(r) = 1 + r2

4α

(
1 −

√
1 + 8Mα

r4

)
.

In the above M is associated with the gravitational mass of the
hypersphere. The exterior solution is not unique and neither is
there a Birkhoff type theorem analogous to the 4-dimensional
gravity case. At least this metric involves branch cuts. Bog-
danos et al. [24] have analysed the 6-dimensional case in
EGB and demonstrated the validity of Birkhoff’s theorem
for this order.

We invoke the transformation e2ν = y2(x), e−2λ = Z(x)

and x = Cr2 (C being an arbitrary constant) which was
utilised successfully by Durgapal and Banerji [25], Finch
and Skea [26] and Hansraj and Maharaj [27] to generate new
exact solutions for neutral and charged isotropic spheres. For
applications to charged anisotropic relativistic matter with
this transformation see the recent works of Mafa Takisa and
Maharaj [28] and Maharaj et al. [29] in four dimensions. The
field equations (6)–(8) may be recast as

3Ż + 3(Z − 1)(1 − 4αC Ż)

x
= ρ

C
, (10)

3(Z − 1)

x
+ 6Z ẏ

y
− 24αC(Z − 1)Z ẏ

xy
= p

C
, (11)

2x Z (4αC[Z − 1] − x) ÿ − (
x2 Ż + 4αC

[
x Ż − 2Z + 2Z2

− 3x Z Ż
])

ẏ − (
1 + x Ż − Z

) = 0, (12)

where the last equation is called the equation of pressure
isotropy. Equation (12) has been arranged as a second order
differential equation in y, which for some analyses in the
4-dimensional Einstein models, proves to be a useful form.
Functional forms for Z(x) may be selected a priori so as to
allow for the complete integration of the field equations. For
example, the form Z = 1+ x produces a higher dimensional
Schwarzschild solution with constant density. This corrobo-
rates the result of Dadhich et al. [11] that the constant density
Schwarzschild solution is universal – that is it is independent
of dimension. We have also found a number of other cases
for Z for which (12) is integrable and these will be dealt with
in the future.
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For the present work it should be noted that (12) may also
be regarded as a first order ordinary differential equation in
Z , and may be expressed in the form

(
x2 ẏ + xy + 4αCx ẏ − 12αCx ẏ Z

)
Ż + 8αC (ẏ − x ÿ) Z2

+ (
2x2 ÿ + 8αCx ÿ − 8αC ẏ − y

)
Z + y = 0. (13)

This is an Abel equation of the second kind for which few
solutions are known. However, note that by choosing forms
for y should in theory result in the expressions for Z by inte-
gration. Therefore we seek choices for the metric potential y
which will allow for a complete resolution of the geometrical
and dynamical variables.

4 New exact interior solution in the EGB case

Locating exact solutions for (13) is difficult to achieve in
view of its nonlinearity. One strategy is to investigate the
consequence of one or more of the coefficients to vanish. In
requiring that the coefficient of Z2 vanishes we obtain the
restriction

ẏ − x ÿ = 0, (14)

which may be solved to give

y = 1

2
C1x2 + C2, (15)

where C1 and C2 are constants of integration. Note that the
restriction (14) simplifies (13) but does not remove its non-
linearity. Inserting (15) into (13) the condition of pressure
isotropy is transformed to

[
3C1x3 + 8βC1x2 + 2C2x − 24βC1x2 Z

]
Ż

+
[
3C1x2 − 2C2

]
Z + C1x2 + 2C2 = 0, (16)

where for convenience we set β = αC . Renaming C1
C2

= ε

Eq. (16) assumes the simpler form

[
3εx3 + 8βεx2 + 2x − 24βεx2 Z

]
Ż

+ [
3εx2 − 2

]
Z + εx2 + 2 = 0, (17)

which will aid our graphical investigations. The parameters ε

and β will have to be assigned values to obtain the qualitative
features of the eventual model. On solving (17), we obtain
the solutions

Z = 3εx2 + 8βεx + 2 ± ϒ

24βεx
, (18)

where

ϒ = (
4(1 − 16βεx) + 4ε

(
16β2ε + 3 + 144β2εC3

)
x2

+ 3ε2(3x4 + 32βx3)
) 1

2 ,

and C3 is an integration constant.
With the help of (18) and (10) the energy density for the

EGB case is given by

ρ

C
= 27ε2x4 − 48βε2x3 − 32β2εx

48βε2x4

+ 4 − 4(1 − 4βεx)ϒ

48βε2x4

− x(3εx2 + 16βεx − 2)ϒ ′ − (ϒ − xϒ ′)ϒ
48βε2x4 , (19)

while the pressure p has the form

p

C
= 27ε2x4 + 96ε2βx3 + 8ε(3 + 32εβ2)x2

24εβx2(εx2 + 2)

− 64εβx − 4 + x(3εx2 + 16εβx − 2 + 2ϒ)ϒ

24εβx2(εx2 + 2)
, (20)

via (11). The adiabatic sound-speed parameter is found to be

d p

dρ
= 2εx2U (x)(

εx2 + 2
)2

V (x)
, (21)

where U (x) and V (x) are, respectively, given by

U (x) = −96ε3βx5 + 4ε2(15 − 128εβ2)x4

+ 384ε2βx3 − 16εx2 + 128εβx − 16

+ 8(εx2 + 1)ϒ2 − 4x(εx2 + 2)ϒϒ ′

+ 2(3ε2x4 + 24ε2βx3 − 4εx2 + 16εβx − 4)ϒ

− x(3ε2x4 + 16ε2βx3 + 4εx2 + 32βεx − 4)ϒ ′,

and

V (x) = 48ε2x3 + 96βεx − 16 + 16(1 − 3βεx)ϒ − 4ϒ2

+ x(3εx3 + 48εβ − 10)ϒ ′ + x(5ϒ + xϒ ′)ϒ ′

− x2(3εx2 + 16εβx − 2 + ϒ)ϒ ′′.

To study the energy conditions we need to obtain forms for
ρ− p, ρ+ p and ρ+3p. Explicit forms for these expressions
can be immediately generated from (19) and (20). We will
compare these expressions with the corresponding forms of
the 5-dimensional Einstein case later.

Other restrictions in (13) may lead to new models in addi-
tion to that considered in this section. For example on setting
the coefficient of Z in (13) to zero, we obtain

x (x + 1) ÿ − ẏ − 1

2
y = 0, (22)
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where we have set 4αC = 1 for simplicity. This produces
a differential equation which is of the hypergeometric type,
and consequently is not readily expressible in terms of ele-
mentary functions. Therefore the prospects of establishing Z
explicitly are remote for the resultant form for y. This case
may be treated with the other methods and this will be consid-
ered later. Additionally, it should be noted that the vanishing
of the coefficient of Ż is not mathematically feasible as it
involves both y and Z .

5 New exact interior solution in the Einstein case

The 5-dimensional Einstein version of the above is obtained
by setting α = 0 in (13) to give the differential equation

2x2 Z ÿ + x2 Ż ẏ + (1 − Z + Ż x)y = 0. (23)

This differs from its 4-dimensional counterpart

4x2 Z ÿ + 2x2 Ż ẏ + (1 − Z + Ż x)y = 0, (24)

in the coefficients of its first two terms [25]. Invoking the
metric ansatz (15), Eq. (23) reduces to

x(3εx2 + 1)Ż + (3εx2 − 1)Z + (εx2 + 1) = 0, (25)

where we have set ε̃ = C1
2C2

. The general solution to (25) is
given by

Z(x) = 1 + C3x − ε̃x2

1 + 3ε̃x2 . (26)

It is important to observe that this does not follow as a special
case of solution (18) since β and consequently α appears in
the denominator. Now the dynamical quantities, pressure,
energy density, sound-speed index, and energy conditions
have the forms

p = 3C
[
C3 + 5C3ε̃x2 − 8ε̃2x3

]
(ε̃x2 + 1)(1 + 3ε̃x2)

, (27)

ρ = 6C
[
C3 − 6ε̃x − 6ε̃2x3

]
(1 + 3ε̃x2)2 , (28)

d p

dρ
= x(1 + 3ε̃x2)

× 12ε̃3x − 15C3ε̃
2x4 − 16ε̃2x3 − 6C3ε̃x2 − 12ε̃x + C3

6(ε̃x2 + 1)2
[
3ε̃2x4 + 6ε̃x2 − 2C3x − 1

] ,

(29)

ρ − p

3C
= C3 − 12ε̃x − 6C3ε̃x2

(1 + ε̃x2)(1 + 3ε̃x2)2

− 16ε̃2x3 + 15C3ε̃
2x4 − 12ε̃3x5

(1 + ε̃x2)(1 + 3ε̃x2)2 , (30)

ρ + p

3C
= 3C3 − 12ε̃x + 6C3ε̃x2

(1 + ε̃x2)(1 + 3ε̃x2)2 ,

− 32ε̃2x3 − 15C3ε̃
2x4 + 36ε̃3x5

(1 + ε̃x2)(1 + 3ε̃x2)2 , (31)

ρ + 3p

3C
= 5C3 − 12ε̃x + 26C3ε̃x2

(1 + ε̃x2)(1 + 3ε̃x2)2 ,

− 48ε̃2x3 − 45C3ε̃
2x4 + 84ε̃3x5

(1 + ε̃x2)(1 + 3ε̃x2)2 , (32)

respectively. In the plots to follow, we exhibit the above quan-
tities in comparison with their EGB counterparts to investi-
gate the role of the Gauss–Bonnet term in the solution.

6 Physical features

We extrapolate from the familiar conditions imposed on stel-
lar configurations in the usual Einstein theory of gravity to the
5-dimensional EGB case. It would be interesting to see if the
models generated in this modified theory of gravity satisfy
these standard conditions. We require that the energy den-
sity ρ and pressure p, and the metric potentials e2ν and e2λ,
should be regular in the interior. The radial pressure should
vanish at the boundary r = R. The gradients ρ′ and p′ should
be negative for barotropic matter. The speed of sound should
remain subluminal throughout the interior of the star. At the
boundary r = R the metric functions should match smoothly
to the exterior Boulware and Deser [3] solution

e2ν(R) = 1 + R2

4α

(
1 −

√
1 + 8Mα

R4

)
= e−2λ(R).

For realistic matter we require compliance with the energy
conditions: weak energy condition (ρ − p > 0), strong
energy condition (ρ + p > 0), and dominant energy con-
dition (ρ + 3p > 0).

Clearly a complete analytic treatment of our solution is
ostensibly not possible given its complexity. From an exam-
ination of the pressure (20) it is evident that solving for x in
terms of p is not attainable as this reduces to solving an eighth
degree polynomial equation, and there is no general way of
doing this. This in turn means that it is not possible to write
the density as a function of pressure to obtain a barotropic
equation of state; the form p = p(ρ) is not possible.

We proceed to select a set of values for the various con-
stants in the problem in order to determine a model that har-
monises best with the physical conditions. The graphs in
Figs. 1, 2, 3 and 4 displayed were produced by assuming the
values C1 = −0.02, C2 = −50, C3 = −0.05, α = −150,
C = 0.0002 and β = αC . (Observe that the use of a negative
coupling constant α is not novel—see for example Guo and
Schwarz [30]). For these choices it is pleasing to note from
Fig. 2 that a pressure-free hypersurface does indeed exist and
is defined approximately by x = 40.94339 geometric units.
The approximation of x identified graphically does produce
a vanishing value in the analytic expression for the pressure.
Within this boundary we note that the pressure is positive def-
inite, and decreases monotonically outwards from the central
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Fig. 1 Plot of energy density versus radial coordinate x
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Fig. 2 Plot of pressure versus radial coordinate x
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Fig. 3 Plot of sound-speed parameter versus radial coordinate x

regions to the boundary r = R. Additionally, Fig. 1 demon-
strates that the density is positive and decreasing everywhere
within the spherical distribution. Importantly we observe that
the causality criterion 0 <

d p
dρ

< 1 is satisfied everywhere in
the interior of the star as evidenced by Fig. 3. This implies that
the sound speed is never superluminal within the boundary.
The energy conditions are depicted in Fig. 4. From these we
infer that all the conditions: weak (solid line), strong (dashed
line) and dominant (dotted line) are satisfied within the radius
of the distribution. Using the values of the aforesaid con-

10 20 30 40 50 60

–0.01

0.01

0.02

0.03

0.04

0.05

Fig. 4 Plot of energy conditions versus radial coordinate x

stants as well as the boundary value x = 40.94339 allows
us to compute the mass as M = 1.51 × 107 geometric units.
Working in these same units we find that the mass to radius
ratio is M

R = 369700, which clearly violates the Buchdahl
[31] limit M

R < 4
9 valid for stars in the Einstein general the-

ory of relativity. This suggests that the Buchdahl upper bound
may not hold in this model in EGB gravity theory.

The dashed curve in each of Figs. 1 and 2 reflects the sit-
uation when the EGB coupling constant is set to 0. In other
words, it shows the 5-dimensional Einstein analogue. It can
be seen from Fig. 2 that there is no discernible difference
between the pressure profiles in the Einstein and the EGB
scenarios. The density plot in Fig. 1 however, demonstrates
that the radius for a positive energy density is improved by
the presence of the EGB coupling constant. This implies that
the gravitational field in the Gauss–Bonnet theory can sus-
tain a greater amount of matter per unit radius as opposed
to its Einstein counterpart. Note that the central singularity
in this model is an artefact of the non-removable curvature
singularity. A way of avoiding the singularity is to call upon
a two-fluid scenario such as in a core-envelope model. This
idea is popularly invoked in the standard 4-dimensional the-
ory; see for example the deconfined quark core model sur-
rounded by an envelope of barotopic matter of Sharma and
Mukherjee [32].

Matching of the interior metric with an exterior metric
such as the Boulware–Deser solution is achieved via setting

(
1

2
C1C2 R4 + C2

)2

= 1 + R2

4α

(
1 −

√
1 + 8Mα

R4

)
, (33)

1 + R2

4α

(
1 −

√
1 + 8Mα

R4

)

= 3C1C2 R4 + 8βC1C R4 + 2C2 ± C2ϒ

24βC1C R4 , (34)
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0 = 27C2
1 C4 R8 + 96C2

1βC3 R6

+ 8C1(3C2 + 32C1β
2)C2 R4 − 64C1C2βC R2 + 4C2

2

−
(

3C1C2C2 R4 + 16C1C2βC R2 − 2C2
2 + 2C2

2ϒ
)

ϒ.

(35)

The last equation arises as a result of the vanishing of the
pressure at r = R. There are sufficient free parameters in the
model to ensure that conditions (33)–(35) are satisfied. We
find that

C1 = −b ± 2aE

4a
± 1

2

√
4a3 E B ± [4abe − b3 − 8a2 f ]

4a3 E
,

(36)

C2 = 2A − C1C2 R4

2
, (37)

C3 =
(

A + C1C2 R4 + 4βC1C R2
[
1 − 3A2

])2

27β2C2
1C2 R4(2A − C1C2 R4)2

+ 64βC1C2C R2 − 4C2
2

432β2C2
1 C2 R4

− 9C2
1 C4 R8 + 96βC2

1 C3 R6

432β2C2
1 C2 R4

− 4C1C2 R4
(
16β2C1 + 3C2

)
432β2C2

1C2 R4
, (38)

where

A =
√√√√1 + R2

4α

(
1 −

√
1 + 8Mα

R4

)
,

a = 11C8 R16 + 112βC7 R14 + 240A2βC7 R14

− 192β2C6 R12 + 768β2C6 R12,

b = −196AC6 R12 − 576AβC5 R10 − 1152A3βC5 R10

− 1024Aβ2C4 R8 − 3072A3β2C4 R8,

e = −76A2C4 R8 − 16C4 R8 + 1088A2C3 R6

+ 1724A4C3 R6 + 1792Aβ2C2 R4 − 256β2C2 R4,

f = 68AC2 R4 + 640A3C R2 − 128AC R2 − A5βC R2,

h = 64A4,

with

E =

√√√√√2
1
3 b2 +

(
3 × 2

1
3 b2 − 2

10
3 ae + 4ag

1
3

)
g

1
3

3 × 2
7
3 a2g

1
3

,

B = 3 × 2
8
3 a

(
e2 − 3b f + 12ah

)
3 × 2

4
3 a2g

1
3

+ 3 × 2
1
3 b2g

1
3 − 2

10
3 aeg

1
3

3 × 2
4
3 a2g

1
3

− 2
5
3 a

[
e2 − 3b f − 12ah

] − 2ag
2
3

3 × 2
4
3 a2g

1
3

and

g = 2e2 − 9be f + 27a f 2 + 27b2h − 72aeh

+ ( − 4[e2 − 3b f + 12ah]3

+ [2e2 − 9be f + 27a f 2 + 27b2h − 72aeh]2) 1
2 .

From (36)–(38) we observe that the free parameters C1, C2,
C3 in the model are defined in terms of α, M, R (and C). It is
interesting to note that the parameters that arise in the inte-
gration are defined in terms of physically relevant quantities:
α is the Gauss–Bonnet coupling constant, R is the radius and
M is the mass of the star.

7 Conclusion

We have produced an exact solution for a static spherically
symmetric distribution of perfect fluid in the modified EGB
gravity theory. The model has been studied for physical
admissibility and has been found to satisfy several elemen-
tary tests for physical reality. The pressure function vanishes
for a particular radius and this hypersurface identifies the
boundary of the fluid. Within this boundary the pressure and
energy density profiles are positive for the choice of con-
stants made. Importantly the fluid is found to be causal as the
sound speed is subluminal. The weak, strong and dominant
energy conditions are found to be satisfied everywhere in the
interior. Finally matching with the Boulware–Deser exterior
metric is permitted. We point out that the general junction
conditions for matching in EGB gravity has been considered
by Davis [17]. The higher order curvature terms lead to a
modified set of junction conditions to be satisfied at the stel-
lar surface. These surface equations are very different from
general relativity, and their complexity makes it unlikely to
easily demonstrate an exact solution. For a complete stellar
model of a star in EGB gravity those boundary equations
should be satisfied. In this treatment we have shown that it is
possible to find bound EGB interior solutions with variable
densities and pressures with desirable physical features.

Acknowledgments B. Chilambwe thanks the University of KwaZulu-
Natal for a scholarship. B. Chilambwe and S. Hansraj thank the National
Research Foundation for financial support. S. Maharaj acknowledges
that this work is based upon research supported by the South African
Research Chair Initiative of the Department of Science and Technology
and the National Research Foundation.

123



277 Page 8 of 9 Eur. Phys. J. C (2015) 75 :277

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Further new exact solutions in the Einstein
case

We note that Eq. (12), or (13), admits large classes of
solutions for prescribed forms of Z and y. A particular 5-
dimensional exact model in the Einstein case (α = 0) was
presented in Sect. 4. Other exact solutions to (13) are possi-
ble for different forms of Z . In this appendix we list a few
new solutions in various categories. However, for the sake of
brevity we do not study these solutions in detail.

Appendix A.1: The form Z = 1 + xn

With this choice for Z , Eq. (12) assumes the form

2x2−n(xn + 1)ÿ + nx ẏ + (n − 1)y = 0, (A.1)

and has solutions which are the Legendre polynomials given
by

y(x) = C1
√

xLegendreP

(
−n + √

n2 − 12n + 12

2n
,

1

n
,
√

xn + 1

)

+ C2
√

xLegendreQ

(
−n + √

n2 − 12n + 12

2n
,

1

n
,
√

xn + 1

)
, (A.2)

where the standard Legendre functions of the first and sec-
ond kind are defined, as usual, in terms of hypergeometric and
gamma function. For certain values of n the Legendre func-
tions reduce to elementary functions. Some of these cases
are presented in Table 1.

It should be noted that the n = 1 case corresponds to the
model treated by Dadhich et al. [11], and which was shown
to be equivalent to the interior Schwarzschild solution. The
other cases appear to be novel.

Appendix A.2: The form Z = (1 + x)2

The general form Z = (1 + x)n does not appear to yield
elementary solutions except in the case n = 1 (coinciding

Table 1 Forms for the potential y for specific values of the parameter
n

n Potential y

1 2C1
√

1 + x + C2

2 C1 cos
[

sinh−1[x]√
2

]
+ C2 sin

[
sinh−1[x]√

2

]

−1
C1

√
1+x+C2

(√
x(3+x)−3

√
1+x sinh−1[

√
x]

)
√

x

−2 x

(
C1

(√
x2+1+1√
x2+1−1

)−
√

10
4 + C2

(√
x2+1+1√
x2+1−1

) √
10
4

)

1
2 C1x + C2

(
3x ln

√
1+√

x+1√
1+√

x−1
+ 2(2 − 3

√
x)(

√
1 + √

x)

)

with the above) and n = 2. In the latter case the exact solution
is given by

y(x) = C1 cos

[
ln(1 + x)√

2

]
+ C2 sin

[
ln(1 + x)√

2

]
, (A.3)

where C1 and C2 are integration constants. Consequently the
line element for this solution has the form

ds2 = −
(

C1 cos

[
ln(1 + x)√

2

]
+ C2 sin

[
ln(1 + x)√

2

])2

dt2

+ 1

(1 + x)2 dr2 + r2d�2,

where d�2 is the line element for the customary 3-sphere.

Appendix A.3: The form Z = 1
1+x : 5-dimensional

Finch–Skea model

Even though the case Z = 1
1+x is a simple form, it is worthy

of special attention in its own right by virtue of the fact that
this ansatz has been used by Finch and Skea [26] in four
dimensions to generate physically reasonable stellar models
that conform to the astrophysical theory of Walecka [33], and
extended by Hansraj and Maharaj [27] to include charge. The
Finch–Skea model was a correction of the earlier work of
Duorah and Ray [34]. For the 5-dimensional case the master
field Eq. (12) is

2(1 + x)ÿ − ẏ + y = 0. (A.4)

Note that its counterpart in 4-dimensions is given by

4(1 + x)ÿ − 2 ẏ + y = 0, (A.5)

where a difference in the initial coefficients is evident. The
solution to (A.4) is given by

y(x) = (c2 + c1w) cos w + (c2w − c1) sin w, (A.6)
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where w = √
2(1 + x) and c1 and c2 are arbitrary con-

stants to be established by matching with the exterior
Schwarzschild–Tangherlini solution. On the other hand the
Finch–Skea equation (A.5) is solved by

y(x) = (c2 + c1v) cos v + (c2v − c1) sin v, (A.7)

where v = √
1 + x . Therefore it is clear that the physical

properties of these solutions should be practically the same
as there is only a difference of the factor of

√
2. Clearly the

change of dimension to five does not materially influence the
physics of the perfect fluid.
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