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Abstract Algorithms for the computation of geodesics on
an ellipsoid of revolution are given. These provide accurate,
robust, and fast solutions to the direct and inverse geodesic
problems and they allow differential and integral properties
of geodesics to be computed.
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1 Introduction

The shortest path between two points on the earth, customar-
ily treated as an ellipsoid of revolution, is called a geodesic.
Two geodesic problems are usually considered: the direct
problem of finding the end point of a geodesic given its start-
ing point, initial azimuth, and length; and the inverse problem
of finding the shortest path between two given points. Refer-
ring to Fig. 1, it can be seen that each problem is equivalent to
solving the geodesic triangle N AB given two sides and their
included angle (the azimuth at the first point, α1, in the case
of the direct problem and the longitude difference, λ12, in the
case of the inverse problem). The framework for solving these
problems was laid down by Legendre (1806), Oriani (1806,
1808, 1810), Bessel (1825), and Helmert (1880). Based on
these works, Vincenty (1975a) devised algorithms for solving
the geodesic problems suitable for early programmable desk
calculators; these algorithms are in widespread use today.
A good summary of Vincenty’s algorithms and the earlier
work in the field is given by Rapp (1993, Chap. 1).
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The goal of this paper is to adapt the geodesic methods of
Helmert (1880) and his predecessors to modern computers.
The current work goes beyond Vincenty in three ways: (1)
The accuracy is increased to match the standard precision
of most computers. This is a relatively straightforward task
of retaining sufficient terms in the series expansions and can
be achieved at little computational cost. (2) A solution of
the inverse problem is given which converges for all pairs of
points (Vincenty’s method fails to converge for nearly antip-
odal points). (3) Differential and integral properties of the
geodesics are computed. The differential properties allow
the behavior of nearby geodesics to be determined, which
enables the scales of geodesic projections to be computed
without resorting to numerical differentiation; crucially, one
of the differential quantities is also used in the solution of the
inverse problem. The integral properties provide a method for
finding the area of a geodesic polygon, extending the work
of Danielsen (1989).

Section 2 reviews the classical solution of geodesic prob-
lem by means of the auxiliary sphere and provides expan-
sions of the resulting integrals accurate to O( f 6) (where f
is the flattening of the ellipsoid). These expansions can be
inserted into the solution for the direct geodesic problem
presented by, for example, Rapp (1993) to provide accuracy
to machine precision. Section 3 gives the differential proper-
ties of geodesics reviewing the results of Helmert (1880) for
the reduced length and geodesic scale and give the key prop-
erties of these quantities and appropriate series expansions
to allow them to be calculated accurately. Knowledge of the
reduced length enables the solution of the inverse problem
by Newton’s method which is described in Sect. 4. Newton’s
method requires a good starting guess and, in the case of
nearly antipodal points, this is provided by an approximate
solution of the inverse problem by Helmert (1880), as given
in Sect. 5. The computation of area between a geodesic and
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Fig. 1 The ellipsoidal triangle N AB. N is the north pole, N AF and
N B H are meridians, and AB is a geodesic of length s12. The longitude
of B relative to A is λ12; the latitudes of A and B are φ1 and φ2. E F H
is the equator with E also lying on the extension of the geodesic AB;
and α0, α1, and α2 are the azimuths (in the forward direction) of the
geodesic at E, A, and B

the equator is formulated in Sect. 6, extending the work of
Danielsen (1989). Some details of the implementation and
accuracy and timing data are presented in Sect. 7. As an
illustration of the use of these algorithms, Sect. 8 gives an
ellipsoidal gnomonic projection in which geodesics are very
nearly straight. This provides a convenient way of solving
several geodesic problems.

For the purposes of this paper, it is useful to generalize
the definition of a geodesic. The geodesic curvature, κ , of an
arbitrary curve at a point P on a surface is defined as the cur-
vature of the projection of the curve onto a plane tangent to
the surface at P . All shortest paths on a surface are straight,
defined as κ = 0 at every point on the path. In the rest of
this paper, I use straightness as the defining property of geo-
desics; this allows geodesic lines to be extended indefinitely
(beyond the point at which they cease to be shortest paths).

Several of the results reported here appeared earlier in a
technical report (Karney 2011).

2 Basic equations and direct problem

I consider an ellipsoid of revolution with equatorial radius a,
and polar semi-axis b, flattening f , third flattening n, eccen-
tricity e, and second eccentricity e′ given by

f = (a − b)/a = 1 −
√

1 − e2, (1)

n = (a − b)/(a + b) = f/(2 − f ), (2)

e2 = (a2 − b2)/a2 = f (2 − f ), (3)

e′2 = (a2 − b2)/b2 = e2/(1 − e2). (4)

As a consequence of the rotational symmetry of the ellipsoid,
geodesics obey a relation found by Clairaut (1735), namely

sin α0 = sin α1 cos β1 = sin α2 cos β2, (5)
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Fig. 2 The elementary ellipsoidal triangle N E P mapped to the auxil-
iary sphere. N E and N PG are meridians; EG is the equator; and E P is
the great circle (i.e., the geodesic). The corresponding ellipsoidal vari-
ables are shown in parentheses. Here P represents an arbitrary point on
the geodesic E AB in Fig. 1

where β is the reduced latitude (sometimes called the para-
metric latitude), given by

tan β = (1 − f ) tan φ. (6)

The geodesic problems are most easily solved using an aux-
iliary sphere which allows an exact correspondence to be
made between a geodesic and a great circle on a sphere. On
the sphere, the latitude φ is replaced by the reduced lati-
tude β, and azimuths α are preserved. From Fig. 2, it is clear
that Clairaut’s equation, sin α0 = sin α cos β, is just the sine
rule applied to the sides N E and N P of the triangle N E P
and their opposite angles. The third side, the spherical arc
length σ , and its opposite angle, the spherical longitude ω,
are related to the equivalent quantities on the ellipsoid, the
distance s, and longitude λ, by (Rapp 1993, Eqs. (1.28) and
(1.170))

s

b
=

σ∫

0

√
1 + k2 sin2 σ ′ dσ ′ = I1(σ ), (7)

λ = ω − f sin α0

σ∫

0

2 − f

1 + (1 − f )
√

1 + k2 sin2 σ ′ dσ ′

= ω − f sin α0 I3(σ ), (8)

where

k = e′ cos α0. (9)

See also Eqs. (5.4.9) and (5.8.8) of Helmert (1880). The ori-
gin for s, σ, λ, and ω is the point E , at which the geodesic
crosses the equator in the northward direction, with azimuth
α0. The point P can stand for either end of the geodesic AB
in Fig. 1, with the quantities β, α, σ, ω, s, and λ acquiring a
subscript 1 or 2. I also define s12 = s2 − s1 as the length of
AB, with λ12, σ12, and ω12 defined similarly. (In this paper,
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α2 is the forward azimuth at B. Several authors use the back
azimuth instead; this is given by α2 ± π .)

Because Eqs. (7) and (8) depend on α0, the mapping
between the ellipsoid and the auxiliary sphere is not a global
mapping of one surface to another; rather the auxiliary sphere
should merely be regarded as a useful mathematical tech-
nique for solving geodesic problems. Similarly, because the
origin for λ depends on the geodesic, only longitude dif-
ferences, e.g., λ12, should be used in converting between
longitudes relative to the prime meridian and λ.

In solving the spherical trigonometrical problems, the fol-
lowing equations relating the sides and angles of N E P are
useful:

α0 = ph(|cos α + i sin α sin β| + i sin α cos β), (10)

σ = ph(cos α cos β + i sin β), (11)

ω = ph(cos σ + i sin α0 sin σ), (12)

β = ph(|cos α0 cos σ + i sin α0| + i cos α0 sin σ), (13)

α = ph(cos α0 cos σ + i sin α0), (14)

where i = √−1 and ph(x + iy) is the phase of a complex
number (Olver et al. 2010, §1.9.i), typically given by the
library function atan2(y, x). Equation (10) merely recasts
Eq. (5) in a form that allows it to be evaluated accurately
when α0 is close to 1

2π . The other relations are obtained by
applying Napier’s rules of circular parts to N E P .

The distance integral, Eq. (7), can be expanded in a Fourier
series

I1(σ ) = A1

(

σ +
∞∑

l=1

C1l sin 2lσ

)

, (15)

with the coefficients determined by expanding the integral in
a Taylor series. It is advantageous to follow Bessel (1825, §5)
and Helmert (1880, Eq. (5.5.1)) and use ε, defined by

ε =
√

1 + k2 − 1√
1 + k2 + 1

or k = 2
√

ε

1 − ε
, (16)

as the expansion parameter. This leads to expansions with
half as many terms as the corresponding ones in k2. The
expansion can be conveniently carried out to arbitrary order
by a computer algebra system such as Maxima (2009) which
yields

A1 = (1 − ε)−1
(

1 + 1
4ε2 + 1

64ε4 + 1
256ε6 + · · ·

)
, (17)

C11 = − 1
2ε + 3

16ε3 − 1
32ε5 + · · · ,

C12 = − 1
16ε2 + 1

32ε4 − 9
2048ε6 + · · · ,

C13 = − 1
48ε3 + 3

256ε5 + · · · ,

C14 = − 5
512ε4 + 3

512ε6 + · · · ,

C15 = − 7
1280ε5 + · · · ,

C16 = − 7
2048ε6 + · · · . (18)

This extends Eq. (5.5.7) of Helmert (1880) to higher order.
These coefficients may be inserted into Eq. (1.40) of Rapp
(1993) using

B j =
{

A1, for j = 0,

2A1C1l , for j = 2l, with l > 0,
(19)

where here, and subsequently in Eqs. (22) and (26), a script
letter, e.g., B, is used to stand for Rapp’s coefficients.

In the course of solving the direct geodesic problem
(where s12 is given), it is necessary to determine σ given
s. Vincenty solves for σ iteratively. However, it is simpler to
follow Helmert (1880, §5.6) and substitute s = bA1τ into
Eqs. (7) and (15), to obtain τ = σ +∑

l C1l sin 2lσ ; this may
be inverted, for example, using Lagrange reversion, to give

σ = τ +
∞∑

l=1

C ′
1l sin 2lτ, (20)

where

C ′
11 = 1

2ε − 9
32ε3 + 205

1536ε5 + · · · ,

C ′
12 = 5

16ε2 − 37
96ε4 + 1335

4096ε6 + · · · ,

C ′
13 = 29

96ε3 − 75
128ε5 + · · · ,

C ′
14 = 539

1536ε4 − 2391
2560ε6 + · · · ,

C ′
15 = 3467

7680ε5 + · · · ,

C ′
16 = 38081

61440ε6 + · · · . (21)

This extends Eq. (5.6.8) of Helmert (1880) to higher order.
These coefficients may be used in Eq. (1.142) of Rapp (1993)
using

D j = 2C ′
1l , for j = 2l, with l > 0. (22)

Similarly, the integral appearing in the longitude equation,
Eq. (8), can be written as a Fourier series

I3(σ ) = A3

(

σ +
∞∑

l=1

C3l sin 2lσ

)

. (23)

Following Helmert (1880), I expand jointly in n and ε, both
of which are O( f ), to give

A3 = 1 − ( 1
2 − 1

2 n
)
ε −

(
1
4 + 1

8 n − 3
8 n2

)
ε2

−
(

1
16 + 3

16 n + 1
16 n2

)
ε3 − ( 3

64 + 1
32 n

)
ε4

− 3
128ε5 + · · · , (24)

C31 = ( 1
4 − 1

4 n
)
ε +

(
1
8 − 1

8 n2
)

ε2+
(

3
64 + 3

64 n − 1
64 n2

)
ε3

+
(

5
128 + 1

64 n
)

ε4 + 3
128ε5 + · · · ,
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Table 1 The parameters for the WGS84 ellipsoid used in the exam-
ples. The column labeled “Eq.” lists the equations used to compute the
corresponding quantities

Qty. Value Eq.

a 6 378 137 m Given

f 1/ 298.257 223 563 Given

b 6 356 752.314 245 m (1)

c 6 371 007.180 918 m (60)

n 0.001 679 220 386 383 70 (2)

e2 0.006 694 379 990 141 32 (3)

e′2 0.006 739 496 742 276 43 (4)

C32 =
(

1
16 − 3

32 n + 1
32 n2

)
ε2 +

(
3

64 − 1
32 n − 3

64 n2
)

ε3

+ ( 3
128 + 1

128 n
)
ε4 + 5

256ε5 + · · · ,

C33 =
(

5
192 − 3

64 n + 5
192 n2

)
ε3 +

(
3

128 − 5
192 n

)
ε4

+ 7
512ε5 + · · · ,

C34 = ( 7
512 − 7

256 n
)
ε4 + 7

512ε5 + · · · ,

C35 = 21
2560ε5 + · · · . (25)

This extends Eq. (5.8.14) of Helmert (1880) to higher order.
These coefficients may be inserted into Eq. (1.56) of Rapp
(1993) using

A j =
{

A3, for j = 0,

2A3C3l , for j = 2l, with l > 0.
(26)

The equations given in this section allow the direct geo-
desic problem to be solved. Given φ1 (and hence β1) and α1

solve the spherical triangle N E A to give α0, σ1, and ω1 using
Eqs. (10)–(12). Find s1 and λ1 from Eqs. (7) and (8) together
with Eqs. (15) and (23). (Recall that the origin for λ is E in
Fig. 1.) Determine s2 = s1 +s12 and hence σ2 using Eq. (20).
Now solve the spherical triangle N E B to give α2, β2 (and
hence φ2), and ω2, using Eqs. (12)–(14). Finally, determine
λ2 (and λ12) from Eqs. (8) and (23). A numerical example of
the solution of the direct problem is given in Table 2 using
the parameters of Table 1.

3 Differential quantities

Before turning to the inverse problem, I present Gauss’ solu-
tion for the differential behavior of geodesics. One differen-
tial quantity, the reduced length m12, is needed in the solution
of the inverse problem by Newton’s method (Sect. 4) and an
expression for this quantity is given at the end of this section.
However, because this and other differential quantities aid in
the solution of many geodesic problems, I also discuss their
derivation and present some of their properties.

Table 2 A sample direct calculation specified by φ1 = 40◦, α1 = 30◦,
and s12 = 10 000 km. For equatorial geodesics (φ1 = 0 and α1 = 1

2 π ),
Eq. (11) is indeterminate; in this case, take σ1 = 0

Qty. Value Eq.

φ1 40◦ Given

α1 30◦ Given

s12 10 000 000 m Given

Solve triangle N E A

β1 39.905 277 146 01◦ (6)

α0 22.553 940 202 62◦ (10)

σ1 43.999 153 645 00◦ (11)

ω1 20.323 718 278 37◦ (12)

Determine σ2

k2 0.005 748 029 628 57 (9)

ε 0.001 432 892 204 16 (16)

A1 1.001 435 462 362 07 (17)

I1(σ1) 0.768 315 388 864 12 (15)

s1 4 883 990.626 232 m (7)

s2 14 883 990.626 232 m s1 + s12

τ2 133.962 660 502 08◦ s2/(bA1)

σ2 133.921 640 830 38◦ (20)

Solve triangle N E B

α2 149.090 169 318 07◦ (14)

β2 41.697 718 092 50◦ (13)

ω2 158.284 121 471 12◦ (12)

Determine λ12

A3 0.999 284 243 06 (24)

I3(σ1) 0.767 737 860 69 (23)

I3(σ2) 2.335 343 221 70 (23)

λ1 20.267 150 380 16◦ (8)

λ2 158.112 050 423 93◦ (8)

λ12 137.844 900 043 77◦ λ2 − λ1

Solution

φ2 41.793 310 205 06◦ (6)

λ12 137.844 900 043 77◦

α2 149.090 169 318 07◦

Consider a reference geodesic parametrized by distance
s and a nearby geodesic separated from the reference by an
infinitesimal distance t (s). Gauss (1828) showed that t (s)
satisfies the differential equation

d2t (s)

ds2 + K (s)t (s) = 0, (27)

where K (s) is the Gaussian curvature of the surface. As a
second order, linear, homogeneous differential equation, its
solution can be written as

t (s) = AtA(s) + BtB(s),
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Fig. 3 The definitions of m12 and M12 are illustrated in a and b.
A geometric proof of Eq. (29) is shown in c; here AB and A′ B ′ are par-
allel at B and B ′, B AB ′ = dα1, B B ′ = m12 dα1, AA′ = M21m12 dα1,
and finally AB ′ A′ = M21 dα1, from which Eq. (29) follows

where A and B are (infinitesimal) constants and tA and tB

are independent solutions. When considering the geodesic
segment spanning s1 ≤ s ≤ s2, it is convenient to specify

tA(s1) = 0,
dtA(s)

ds

∣
∣
∣
∣
s=s1

= 1,

tB(s1) = 1,
dtB(s)

ds

∣
∣
∣
∣
s=s1

= 0,

and to write

m12 = tA(s2), M12 = tB(s2).

The quantity m12 is the reduced length of the geodesic
(Christoffel 1868). Consider two geodesics which cross at
s = s1 at a small angle dα1 (Fig. 3a); at s = s2, they will
be separated by a distance m12 dα1. Similarly I call M12 the
geodesic scale. Consider two geodesics which are parallel at
s = s1 and separated by a small distance dt1 (Fig. 3b); at
s = s2, they will be separated by a distance M12 dt1.

Several relations between m12 and M12 follow from the
defining equation (27). The reduced length obeys a reciproc-
ity relation (Christoffel 1868, §9), m21+m12 = 0; the Wrons-
kian is given by

W (M12, m12)(s2) = M12
dm12

ds2
− m12

dM12

ds2
= 1; (28)

and the derivatives are

dm12

ds2
= M21, (29)

dM12

ds2
= −1 − M12 M21

m12
. (30)

The constancy of the Wronskian follows by noting that its
derivative with respect to s2 vanishes; its value is found by
evaluating it at s2 = s1. A geometric proof of Eq. (29) is
given in Fig. 3c and Eq. (30) then follows from Eq. (28).

With knowledge of the derivatives, addition rules for m12

and M12 are easily found:

m13 = m12 M23 + m23 M21, (31)

M13 = M12 M23 − (1 − M12 M21)
m23

m12
, (32)

M31 = M32 M21 − (1 − M23 M32)
m12

m23
, (33)

where points 1, 2, and 3 all lie on the same geodesic.
Geodesics allow concepts from plane geometry to be gen-

eralized to apply to a curved surface. In particular, a geodesic
circle may be defined as the curve which is a constant geode-
sic distance from a fixed point. Similarly, a geodesic parallel
to a reference curve is the curve which is a constant geodesic
distance from that curve. (Thus a circle is a special case of a
parallel obtained in the limit when the reference curve degen-
erates to a point.) Parallels occur naturally when considering,
for example, the “12-mile limit” for territorial waters which
is the boundary of points lying within 12 nautical miles of a
coastal state.

The geodesic curvature of a parallel can be expressed in
terms of m12 and M12. Let point 1 be an arbitrary point on
the reference curve with geodesic curvature κ1. Point 2 is
the corresponding point on the parallel, a fixed distance s12

away. The geodesic curvature of the parallel at that point is
found from Eqs. (29) and (30),

κ2 = M21κ1 − (1 − M12 M21)/m12

m12κ1 + M12
. (34)

The curvature of a circle is given by the limit κ1 → ∞,

κ2 = M21/m12. (35)

If the reference curve is a geodesic (κ1 → 0), then the cur-
vature of its parallel is

κ2 = −(1 − M12 M21)/(M12m12). (36)

If the reference curve is indented, then the parallel intersects
itself at a sufficiently large distance from the reference curve.
This begins to happen when κ2 → ∞ in Eq. (34).

The results above apply to general surfaces. For a geode-
sic on an ellipsoid of revolution, the Gaussian curvature of
the surface is given by

K = (1 − e2 sin2 φ)2

b2 = 1

b2(1 + k2 sin2 σ)2
. (37)

Helmert (1880, Eq. (6.5.1)) solves Eq. (27) in this case to
give

m12/b =
√

1 + k2 sin2 σ2 cos σ1 sin σ2

−
√

1 + k2 sin2 σ1 sin σ1 cos σ2

− cos σ1 cos σ2(J (σ2) − J (σ1)), (38)
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M12 = cos σ1 cos σ2 +
√

1 + k2 sin2 σ2√
1 + k2 sin2 σ1

sin σ1 sin σ2

− sin σ1 cos σ2(J (σ2) − J (σ1))√
1 + k2 sin2 σ1

, (39)

where

J (σ ) =
σ∫

0

k2 sin2 σ ′
√

1 + k2 sin2 σ ′ dσ ′

= s

b
−

σ∫

0

1
√

1 + k2 sin2 σ ′ dσ ′

= I1(σ ) − I2(σ ). (40)

Equation (39) may be obtained from Eq. (6.9.7) of Helmert
(1880), which gives dm12/ds2; M12 may then be found from
Eq. (29) with an interchange of indices. In the spherical limit,
f → 0, Eqs. (38) and (39) reduce to

m12 = a sin σ12 = a sin(s12/a),

M12 = cos σ12 = cos(s12/a).

The integral I2(σ ) in Eq. (40) may be expanded in a Fou-
rier series in similar fashion to I1(σ ), Eq. (15),

I2(σ ) = A2

(

σ +
∞∑

l=1

C2l sin 2lσ

)

, (41)

where

A2 = (1 − ε)
(

1 + 1
4ε2 + 9

64ε4 + 25
256ε6 + · · ·

)
, (42)

C21 = 1
2ε + 1

16ε3 + 1
32ε5 + · · · ,

C22 = 3
16ε2 + 1

32ε4 + 35
2048ε6 + · · · ,

C23 = 5
48ε3 + 5

256ε5 + · · · ,

C24 = 35
512ε4 + 7

512ε6 + · · · ,

C25 = 63
1280ε5 + · · · ,

C26 = 77
2048ε6. (43)

4 Inverse problem

The inverse problem is intrinsically more complicated than
the direct problem because the given included angle, λ12 in
Fig. 1, is related to the corresponding angle on the auxiliary
sphere ω12 via an unknown equatorial azimuth α0. Thus, the
inverse problem inevitably becomes a root-finding exercise.

I tackle this problem as follows: Assume that α1 is known.
Solve the hybrid geodesic problem: given φ1, φ2, and α1, find
λ12 corresponding to the first intersection of the geodesic with

the circle of latitude φ2. The resulting λ12 differs, in general,
from the given λ12; so adjust α1 using Newton’s method until
the correct λ12 is obtained.

I begin by putting the points in a canonical configuration,

φ1 ≤ 0, φ1 ≤ φ2 ≤ −φ1, 0 ≤ λ12 ≤ π. (44)

This may be accomplished swapping the end points and the
signs of the coordinates if necessary, and the solution may
similarly be transformed to apply to the original points. All
geodesics with α1 ∈ [0, π ] intersect latitude φ2 with λ12 ∈
[0, π ]. Furthermore, the search for solutions can be restricted
to α2 ∈ [0, 1

2π ], because this corresponds to the first inter-
section with latitude φ2.

Meridional (λ12 = 0 or π ) and equatorial (φ1 = φ2 = 0,
with λ12 ≤ (1 − f )π ) geodesics are treated as special cases,
since the azimuth is then known: α1 = λ12 and α1 = 1

2π ,
respectively. The general case is solved by Newton’s method
as outlined above.

The solution of the hybrid geodesic problem is straight-
forward. Find β1 and β2 from Eq. (6). Solve for α0 and α2

from Eq. (5), taking cos α0 > 0 and cos α2 ≥ 0. In order to
compute α2 accurately, use

cos α2 = +√
cos2 α1 cos2 β1 + (cos2 β2 − cos2 β1)

cos β2
, (45)

in addition to Eq. (5). Compute σ1, ω1, σ2, and ω2 using
Eqs. (11) and (12). Finally, determine λ12 (and, once conver-
gence is achieved, s12) as in the solution to the direct problem.
The behavior of λ12 as a function of α1 is shown in Fig. 4.

To apply Newton’s method, an expression for dλ12/dα1

is needed. Consider a geodesic with initial azimuth α1. If the
azimuth is increased to α1 + dα1 with its length held fixed,
then the other end of the geodesic moves by m12 dα1 in a
direction 1

2π + α2. If the geodesic is extended to intersect
the parallel φ2 once more, the point of intersection moves
by m12 dα1/ cos α2 (see Fig. 5). The radius of this parallel is
a cos β2; thus the rate of change of the longitude difference
is

dλ12

dα1
= m12

a

1

cos α2 cos β2
. (46)

This equation can also be obtained from Eq. (6.9.8b) of
Helmert (1880). Equation (46) becomes indeterminate when
β2 = ±β1 and α1 = 1

2π , because m12 and cos α2 both van-
ish. In this case, it is necessary to let α1 = 1

2π + δ and to
take the limit δ → ±0, which gives

dλ12

dα1
= −

√
1 − e2 cos2 β1

sin β1
(1 ∓ sign(cos α1)), (47)

where sign(cos α1) = − sign(δ). A numerical example of
solving the inverse geodesic problem by this method is given
at the end of the next section.
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Vincenty (1975a), who uses the iterative method of
Helmert (1880, §5.13) to solve the inverse problem, was
aware of its failure to converge for nearly antipodal points.
In an unpublished report (Vincenty 1975b), he gives a mod-

ification of his method which deals with this case. Unfortu-
nately, this sometimes requires many thousands of iterations
to converge, whereas Newton’s method as described here
only requires a few iterations.

5 Starting point for Newton’s method

To complete the solution of the inverse problem a good start-
ing guess for α1 is needed. In most cases, this is provided by
assuming that ω12 = λ12/w̄, where

w̄ =
√

1 − e2((cos β1 + cos β2)/2)2 (48)

and solving for the great circle on the auxiliary sphere, using
(Vincenty 1975a)

z1 = cos β1 sin β2 − sin β1 cos β2 cos ω12

+ i cos β2 sin ω12,

z2 = − sin β1 cos β2 + cos β1 sin β2 cos ω12

+ i cos β1 sin ω12,

α1 = ph z1, (49)

α2 = ph z2, (50)

σ12 = ph(sin β1 sin β2 + cos β1 cos β2 cos ω12 + i |z1|).
(51)

An example of the solution of the inverse problem by this
method is given in Table 3.

Table 3 First sample inverse calculation specified by φ1 =
−30.123 45◦, φ2 = −30.123 44◦, and λ12 = 0.000 05◦. Because the
points are not nearly antipodal, an initial guess for α1 is found assuming
ω12 = λ12/w̄. However, in this case, the line is short enough that the
error in ω12 is negligible at the precision given and the solution of the
inverse problem is completed by using s12 = aw̄σ12. More generally,
the value of α1 would be refined using Newton’s method

Qty. Value Eq.

φ1 −30.123 45◦ Given

φ2 −30.123 44◦ Given

λ12 0.000 05◦ Given

Determine ω12

β1 −30.039 990 838 21◦ (6)

β2 −30.039 980 854 91◦ (6)

w̄ 0.997 488 477 44 (48)

ω12 0.000 050 125 89◦ λ12/w̄

σ12 0.000 044 526 41◦ (51)

Solution

α1 77.043 533 542 37◦ (49)

α2 77.043 508 449 13◦ (50)

s12 4.944 208 m aw̄σ12
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This procedure is inadequate for nearly antipodal points
because both the real and imaginary components of z1 are
small and α1 depends very sensitively on ω12. In the corre-
sponding situation on the sphere, it is possible to determine
α1 by noting that all great circles emanating from A meet
at O , the point antipodal to A. Thus α1 may be determined
as the supplement of the azimuth of the great circle B O at
O; in addition, because B and O are close, it is possible to
approximate the sphere, locally, as a plane.

The situation for an ellipsoid is slightly different because
the geodesics emanating from A, instead of meeting at a
point, form an envelope, centered at O , in the shape of
an astroid whose extent is O( f ) (Jacobi 1891, Eqs. (16)–
(17)). The position at which a particular geodesic touches
this envelope is given by the condition m12 = 0. However,
elementary methods can be used to determine the envelope.
Consider a geodesic leaving A (with β1 ≤ 0) with azimuth
α1 ∈ [ 1

2π, π ]. This first intersects the circle of opposite lat-
itude, β2 = −β1, with σ12 = ω12 = π and α2 = π − α1.
Equation (8) then gives

λ12 = π − f π cos β1 sin α1 + O( f 2). (52)

Define a plane coordinate system (x, y) centered on the antip-
odal point where 
 = f aπ cos2 β1 is the unit of length, i.e.,

λ12 = π + 


a cos β1
x, β2 = −β1 + 


a
y. (53)

In this coordinate system, Eq. (52) corresponds to the point
x = − sin α1, y = 0 and the slope of the geodesic is − cot α1.
Thus, in the neighborhood of the antipodal point, the geode-
sic may be approximated by

x

sin α1
+ y

cos α1
+ 1 = 0, (54)

where terms of order f 2 have been neglected. Allowing α1

to vary, Eq. (54) defines a family of lines approximating the
geodesics emanating from A. Differentiating this equation
with respect to α1 and solving the resulting pair of equations
for x and y gives the parametric equations for the astroid,
x = − sin3 α1, and y = − cos3 α1. Note that, for the order-
ing of points given by Eq. (44), x ≤ 0 and y ≤ 0.

Given x and y (i.e., the position of point B), Eq. (54) may
be solved to obtain a first approximation to α1. This prescrip-
tion is given by Helmert (1880, Eq. (7.3.7)) who notes that
this results in a quartic which may be found using the con-
struction given in Fig. 6. Here C O D and B E D are similar
triangles; if the (signed) length BC is μ, then an equation for
μ can be found by applying Pythagoras’ theorem to C O D:

x2

(1 + μ)2 + y2

μ2 = 1,

OC

B E

D

μ

1

−y/μ

−y
−x/(1+μ)

−x

α
2

α
1

Fig. 6 The solution of the astroid equations by similar triangles. The
scaled coordinates of B are (x, y); O is the point antipodal to A. The
line BC D, which is given by Eq. (54), is the continuation of the geo-
desic from AB with C being its intersection with the circle β = −β1
and D its intersection with the meridian λ = λ1 + π . The envelope of
lines satisfying C D = 1 gives the astroid, a portion of which is shown
by the curves

which can be expanded to give a fourth-order polynomial in
μ,

μ4 + 2μ3 + (1 − x2 − y2)μ2 − 2y2μ − y2 = 0. (55)

Descartes’ rule of signs shows that, for y �= 0, there is one
positive root (Olver et al. 2010, §1.11.ii) and this is the solu-
tion corresponding to the shortest path. This root can be found
by standard methods (Olver et al. 2010, §1.11.iii). Equa-
tion (55) arises in converting from geocentric to geodetic
coordinates, and I use the solution to that problem given by
Vermeille (2002). The azimuth can then be determined from
the triangle C O D in Fig. 6,

α1 = ph(y/μ − i x/(1 + μ)). (56)

If y = 0, the solution is found by taking the limit y → 0,

α1 = ph
(
±

√
max(0, 1 − x2) − i x

)
. (57)

Tables 4, 5 and 6 together illustrate the complete solution of
the inverse problem for nearly antipodal points.

6 Area

The last geodesic algorithm I present is for geodesic areas.
Here, I extend the method of Danielsen (1989) to higher
order so that the result is accurate to round-off, and I recast
his series into a simple trigonometric sum.

Let S12 be the area of the geodesic quadrilateral AF H B
in Fig. 1. Following Danielsen (1989), this can be expressed
as the sum of a spherical term and an integral giving the
ellipsoidal correction,

S12 = S(σ2) − S(σ1), (58)

S(σ ) = c2α + e2a2 cos α0 sin α0 I4(σ ), (59)
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Table 4 Second sample inverse calculation specified by φ1 =
−30◦, φ2 = 29.9◦, and λ12 = 179.8◦. Because the points are nearly
antipodal, an initial guess for α1 is found by solving the astroid prob-
lem. Here μ is the positive root of Eq. (55). If y = 0, then α1 is given
by Eq. (57). The value of α1 is used in Table 5

Qty. Value Eq.

φ1 −30◦ Given

φ2 29.9◦ Given

λ12 179.8◦ Given

Solve the astroid problem

x −0.382 344 (53)

y −0.220 189 (53)

μ 0.231 633 (55)

Initial guess for α1

α1 161.914◦ (56)

where

c2 = a2

2
+ b2

2

tanh−1 e

e
(60)

is the authalic radius,

I4(σ ) = −
σ∫

π/2

t (e′2) − t (k2 sin2 σ ′)
e′2 − k2 sin2 σ ′

sin σ ′

2
dσ ′, (61)

t (x) = x +
√

x−1 + 1 sinh−1√x .

Expanding the integrand in powers of e′2 and k2 and per-
forming the integral gives

I4(σ ) =
∞∑

l=0

C4l cos((2l + 1)σ ), (62)

where

C40 =
(

2
3 − 1

15 e′2 + 4
105 e′4 − 8

315 e′6 + 64
3465 e′8 − 128

9009 e′10
)

−
(

1
20 − 1

35 e′2 + 2
105 e′4 − 16

1155 e′6 + 32
3003 e′8) k2

+
(

1
42 − 1

63 e′2 + 8
693 e′4 − 80

9009 e′6) k4

−
(

1
72 − 1

99 e′2 + 10
1287 e′4) k6

+
(

1
110 − 1

143 e′2) k8 − 1
156 k10 + · · · ,

C41 =
(

1
180 − 1

315 e′2 + 2
945 e′4 − 16

10395 e′6 + 32
27027 e′8) k2

−
(

1
252 − 1

378 e′2 + 4
2079 e′4 − 40

27027 e′6) k4

+
(

1
360 − 1

495 e′2 + 2
1287 e′4) k6

−
(

1
495 − 2

1287 e′2) k8 + 5
3276 k10 + · · · ,

Table 5 Second sample inverse calculation, continued. Here λ
(0)
12

denotes the desired value of the longitude difference; Newton’s method
is used to adjust α1 so that λ12 = λ

(0)
12 . The final value of α1 is used in

Table 6

Qty. Value Eq.

φ1 −30◦ Given

φ2 29.9◦ Given

α1 161.914◦ Table 4

λ
(0)
12 179.8◦ Given

Solve triangle N E A

β1 −29.916 747 713 24◦ (6)

α0 15.609 397 464 14◦ (10)

σ1 −148.812 535 665 96◦ (11)

ω1 −170.748 966 961 28◦ (12)

Solve triangle N E B

β2 29.816 916 421 89◦ (6)

α2 18.067 287 962 31◦ (5), (45)

σ2 31.082 449 768 95◦ (11)

ω2 9.213 457 611 10◦ (12)

Determine λ12

k2 0.006 251 537 916 62 (9)

ε 0.001 558 018 267 80 (16)

λ1 −170.614 835 524 58◦ (8)

λ2 9.185 420 098 39◦ (8)

λ12 179.800 255 622 97◦ λ2 − λ1

Update α1

δλ12 0.000 255 622 97◦ λ12 − λ
(0)
12

J (σ1) −0.009 480 409 276 40 (40)

J (σ2) 0.000 313 491 286 30 (40)

m12 57 288.000 110 m (38)

dλ12/dα1 0.010 889 317 161 15 (46)

δα1 −0.023 474 655 19◦ −δλ12/(dλ12/dα1)

α1 161.890 525 344 81◦ α1 + δα1

Next iteration

δλ12 0.000 000 006 63◦

α1 161.890 524 736 33◦

C42 =
(

1
2100 − 1

3150 e′2 + 4
17325 e′4 − 8

45045 e′6) k4

−
(

1
1800 − 1

2475 e′2 + 2
6435 e′4) k6

+
(

1
1925 − 2

5005 e′2) k8 − 1
2184 k10 + · · · ,

C43 =
(

1
17640 − 1

24255 e′2 + 2
63063 e′4) k6

−
(

1
10780 − 1

14014 e′2) k8 + 5
45864 k10 + · · · ,

C44 =
(

1
124740 − 1

162162 e′2) k8 − 1
58968 k10 + · · · ,

C45 = 1
792792 k10 + · · · . (63)
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Table 6 Second sample inverse calculation, concluded. Here the hybrid
problem (φ1, φ2, and α1 given) is solved. The computed value of λ12
matches that given in the specification of the inverse problem in Table 4

Qty. Value Eq.

φ1 −30◦ Given

φ2 29.9◦ Given

α1 161.890 524 736 33◦ Table 5

Solve triangle N E A

β1 −29.916 747 713 24◦ (6)

α0 15.629 479 665 37◦ (10)

σ1 −148.809 136 917 76◦ (11)

ω1 −170.736 343 780 66◦ (12)

Solve triangle N E B

β2 29.816 916 421 89◦ (6)

α2 18.090 737 245 74◦ (5), (45)

σ2 31.085 834 470 40◦ (11)

ω2 9.226 028 621 10◦ (12)

Determine s12 and λ12

s1 −16 539 979.064 227 m (7)

s2 3 449 853.763 383 m (7)

s12 19 989 832.827 610 m s2 − s1

λ1 −170.602 047 121 48◦ (8)

λ2 9.197 952 878 52◦ (8)

λ12 179.800 000 000 00◦ λ2 − λ1

Solution

α1 161.890 524 736 33◦

α2 18.090 737 245 74◦

s12 19 989 832.827 610 m

An example of the computation of S12 is given in Table 7.
Summing S12, Eq. (58), over the edges of a geodesic poly-

gon gives the area of the polygon provided that it does not
encircle a pole; if it does, 2πc2 should be added to the result.
The first term in Eq. (59) contributes c2(α2 −α1) to S12. This
is the area of the quadrilateral AF H B on a sphere of radius c
and it is proportional to its spherical excess, α2 −α1, the sum
of its interior angles less 2π . It is important that this term be
computed accurately when the edge is short (and α1 and α2

are nearly equal). A suitable identity for α2 − α1 is given by
Bessel (1825, §11)

tan
α2 − α1

2
= sin 1

2 (β2 + β1)

cos 1
2 (β2 − β1)

tan
ω12

2
. (64)

7 Implementation

The algorithms described in the preceding sections can be
readily converted into working code. The polynomial expan-
sions, Eqs. (17), (18), (21), (24), (25), (42), (43), and (63),

Table 7 The calculation of the area between the equator and the geo-
desic specified by φ1 = 40◦, α1 = 30◦, and s12 = 10 000 km. This
uses intermediate values computed in Table 2

Qty. Value Eq.

α0 22.553 940 202 62◦ Table 2

α1 30◦ Table 2

α2 149.090 169 318 07◦ Table 2

σ1 43.999 153 645 00◦ Table 2

σ2 133.921 640 830 38◦ Table 2

k2 0.005 748 029 628 57 Table 2

Compute area

I4(σ1) 0.479 018 145 20 (62)

I4(σ2) −0.461 917 119 02 (62)

S(σ1) 21 298 942.667 15 km2 (59)

S(σ2) 105 574 566.089 50 km2 (59)

S12 84 275 623.422 35 km2 (58)

are such that the final results are accurate to O( f 6) which
means that, even for f = 1

150 , the truncation error is smaller
than the round-off error when using IEEE double precision
arithmetic (with the fraction of the floating point number
represented by 53 bits). For speed and to minimize round-off
errors, the polynomials should be evaluated with the Horner
method. The parenthetical expressions in Eqs. (24), (25), and
(63) depend only on the flattening of the ellipsoid and can
be computed once this is known. When determining many
points along a single geodesic, the polynomials need be eval-
uated just once. Clenshaw (1955) summation should be used
to sum the Fourier series, Eqs. (15), (23), (41), and (62).

There are several other details to be dealt with in imple-
menting the algorithms: where to apply the two rules for
choosing starting points for Newton’s method, a slight
improvement to the starting guess Eq. (56), the convergence
criterion for Newton’s method, how to minimize round-off
errors in solving the trigonometry problems on the aux-
iliary sphere, rapidly computing intermediate points on a
geodesic by using σ12 as the metric, etc. I refer the reader
to the implementations of the algorithms in Geographic-
Lib (Karney 2012) for possible ways to address these issues.
The C++ implementation has been tested against a large set
of geodesics for the WGS84 ellipsoid; this was generated
by continuing the series expansions to O( f 30) and by solv-
ing the direct problem using high-precision arithmetic. The
round-off errors in the direct and inverse methods are less
than 15 nanometers and the error in the computation of the
area S12 is about 0.1 m2. Typically, 2 to 4 iterations of New-
ton’s method are required for convergence, although in a
tiny fraction of cases up to 16 iterations are required. No
convergence failures are observed. With the C++ implemen-
tation compiled with the g++ compiler, version 4.4.4, and
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Fig. 7 The construction of the generalized gnomonic projection as the
limit of a doubly azimuthal projection

running on a 2.66 GHz Intel processor, solving the direct
geodesic problem takes 0.88 µs, while the inverse problem
takes 2.34 µs (on average). Several points along a geodesic
can be computed at the rate of 0.37 µs per point. These times
are comparable to those for Vincenty’s algorithms imple-
mented in C++ and run on the same architecture: 1.11 µs
for the direct problem and 1.34 µs for the inverse problem.
(But note that Vincenty’s algorithms are less accurate than
those given here and that his method for the inverse problem
sometimes fails to converge.)

8 Ellipsoidal gnomonic projection

As an application of the differential properties of geode-
sics, I derive a generalization of the gnomonic projection
to the ellipsoid. The gnomonic projection of the sphere has
the property that all geodesics on the sphere map to straight
lines (Snyder 1987, §22). Such a projection is impossible for
an ellipsoid because it does not have constant Gaussian cur-
vature (Beltrami 1865, §18); nevertheless, a projection can
be constructed in which geodesics are very nearly straight.

The spherical gnomonic projection is the limit of the dou-
bly azimuthal projection of the sphere, wherein the bear-
ings from two fixed points A and A′ to B are preserved, as
A′ approaches A (Bugayevskiy and Snyder 1995). The con-
struction of the generalized gnomonic projection proceeds
in the same way (see Fig. 7). Draw a geodesic A′ B ′ such
that it is parallel to the geodesic AB at A′. Its initial sep-
aration from AB is sin γ dt ; at B ′, the point closest to B,
the separation becomes M12 sin γ dt (in the limit dt → 0).
Thus the difference in the azimuths of the geodesics A′ B
and A′ B ′ at A′ is (M12/m12) sin γ dt , which gives γ + γ ′ =
π − (M12/m12) sin γ dt . Now, solving the planar triangle
problem with γ and γ ′ as the two base angles gives the dis-
tance AB on the projection plane as m12/M12.

This leads to the following specification for the gener-
alized gnomonic projection. Let the center point be A; for
an arbitrary point B, solve the inverse geodesic problem
between A and B; then B projects to the point

x = ρ sin α1, y = ρ cos α1, ρ = m12/M12; (65)

the projection is undefined if M12 ≤ 0. In the spheri-
cal limit, this becomes the standard gnomonic projection,
ρ = a tan σ12 (Snyder 1987, p. 165). The azimuthal scale
is 1/M12 and the radial scale, found by taking the derivative
dρ/ds12 and using Eq. (28), is 1/M2

12. The reverse projection
is found by computing α1 = ph(y + i x), finding s12 using
Newton’s method with dρ/ds12 = 1/M2

12 (i.e., the radial
scale), and solving the resulting direct geodesic problem.

In order to gauge the usefulness of the ellipsoidal gno-
monic projection, consider two points on the earth B and C ,
map these points to the projection, and connect them with
a straight line in this projection. If this line is mapped back
onto the surface of the earth, it will deviate slightly from
the geodesic BC . To lowest order, the maximum deviation h
occurs at the midpoint of the line segment BC ; empirically,
I find

h = l2

32
(∇K · t)t, (66)

where l is the length of the geodesic, K is the Gaussian cur-
vature, ∇K is evaluated at the center of the projection A,
and t is the perpendicular vector from the center of projec-
tion to the geodesic. The deviation in the azimuths at the
end points is about 4h/ l and the length is greater than the
geodesic distance by about 8

3 h2/ l. In the case of an ellipsoid
of revolution, ∇K is found by differentiating Eq. (37) with
respect to φ and dividing the result by the meridional radius
of curvature to give

∇K = −4a

b4 e2(1 − e2 sin2 φ)5/2 cos φ sin φφ̂, (67)

where φ̂ is a unit vector pointing north. Bounding the magni-
tude of h, Eq. (66), over all the geodesics whose end points
lie within a distance r of the center of projection, gives (in
the limit that f and r are small)

h

r
≤ f

8

r3

a3 . (68)

The maximum value is attained when the center of projection
is at φ = ±45◦ and the geodesic is running in an east–west
direction with the end points at bearings ±45◦ or ±135◦ from
the center.

Others have proposed different generalizations of the gno-
monic projection. Bowring (1997) and Williams (1997) give
a projection in which great ellipses project to straight lines;
Letoval’tsev (1963) suggests a projection in which normal
sections through the center point map to straight lines. Empir-
ically, I find that h/r is proportional to r/a and r2/a2 for
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1000 km

2000 km

Fig. 8 The coast line of Europe and North Africa in the ellipsoidal gno-
monic projection with center at (45◦N, 12◦E)near Venice. The graticule
lines are shown at multiples of 10◦. The two circles are centered on the
projection center with (geodesic) radii of 1000 and 2000 km. The data
for the coast lines is taken from GMT (Wessel and Smith 2010) at “low”
resolution

these projections. Thus, neither does as well as the projection
derived above (for which h/r is proportional to r3/a3) at pre-
serving the straightness of geodesics.

As an illustration of the properties of the ellipsoidal gno-
monic projection, Eq. (65), consider Fig. 8 in which a projec-
tion of Europe is shown. The two circles are geodesic circles
of radii 1000 and 2000 km. If the geodesic between any two
points within one of these circles is estimated using a straight
line on this figure, the deviation from the true geodesic is less
than 1.7 and 28 m, respectively. The maximum errors in the
end azimuths are 1.1′′ and 8.6′′, and the maximum errors in
the lengths are only 5.4 and 730 µm.

The gnomonic projection can be used to solve two geo-
desic problems accurately and rapidly. The first is the inter-
section problem: given two geodesics between A and B and
between C and D, determine the point of intersection, O .
This can be solved as follows: Guess an intersection point
O(0) and use this as the center of the gnomonic projection;
define a, b, c, d as the positions of A, B, C, D in the projec-
tion; find the intersection of AB and C D in the projection,
i.e.,

o = (c × d · ẑ)(b − a) − (a × b · ẑ)(d − c)
(b − a) × (d − c) · ẑ

, (69)

where ˆ indicates a unit vector (â = a/a) and ẑ = x̂ × ŷ is in
the direction perpendicular to the projection plane. Project o
back to geographic coordinates O(1) and use this as a new
center of projection; iterate this process until O(i) = O(i−1)

which is then the desired intersection point.
The second problem is the interception problem: given a

geodesic between A and B, find the point O on the geodesic

which is closest to a given point C . The solution is similar to
that for the intersection problem; however, the interception
point in the projection is

o = c · (b − a)(b − a) − (a × b · ẑ)ẑ × (b − a)

|b − a|2 .

Provided the given points lie within about a quarter meridian
of the intersection or interception points (so that the gnomon-
ic projection is defined), these algorithms converge quadrat-
ically to the exact result.

9 Conclusions

The classical geodesic problems entail solving the ellipsoi-
dal triangle N AB in Fig. 1, whose sides and angles are
represented by φ1, φ2, s12 and α1, α2, λ12. In the direct prob-
lem φ1, α1, and s12 are given, while in the inverse problem
φ1, λ12, and φ2 are specified; and the goal in each case is to
solve for the remaining side and angles. The algorithms given
here provide accurate, robust, and fast solutions to these prob-
lems; they also allow the differential and integral quantities
m12, M12, M21, and S12 to be computed.

Much of the work described here involves applying stan-
dard computational techniques to earlier work. However, at
least two aspects are novel: (1) this paper presents the first
complete solution to the inverse geodesic problem. (2) The
ellipsoidal gnomonic projection is a new tool to solve various
geometrical problems on the ellipsoid.

Furthermore, the packaging of these various geodesic
capabilities into a single library is also new. This offers a
straightforward solution of several interesting problems. Two
geodesic projections, the azimuthal equidistant projection
and the Cassini-Soldner projection, are simple to write and
their domain of applicability is not artificially restricted, as
would be the case, for example, if the series expansion for the
Cassini-Soldner projection were used (Snyder 1987, §13);
the scales for these projections are simply given in terms of
m12 and M12. Several other problems can be readily tackled
with this library, e.g., solving other ellipsoidal trigonome-
try problems and finding the median line and other maritime
boundaries. These and other problems are explored in Kar-
ney (2011). The web page http://geographiclib.sf.net/geod.
html provides additional information, including the Maxima
(2009) code used to carry out the Taylor expansions and a
JavaScript implementation which allows geodesic problems
to be solved on many portable devices.
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