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Abstract
Background: Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an
informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert
these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective
metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal
transduction circuit in the stramenopile Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt) F.J.R.
Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary
homologues.

Results: Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-
component His-to-Asp (designated Tsg1/Trg1) pair in this stramenopile (golden-brown alga). These data represent the first
documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are
lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal
protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs
within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent
with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription.
The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-
like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues
interact with a sigma 70 (σ70) subunit (encoded by rpoD) of a eubacterial type polymerase. Sequence analysis of H. akashiwo rpoD
showed this nuclear-encoded gene has a well-defined 4.2 domain, a region that augments RNA polymerase interaction with
transcriptional regulatory proteins and also serves in -35 promoter recognition. The presence/loss of the His-to-Asp pairs in
primary and secondary chloroplast lineages is assessed.

Conclusion: His-to-Asp signal transduction components are found in most rhodophytic chloroplasts, as well as in their putative
cyanobacterial progenitors. The evolutionary conservation of these proteins argues that they are important for the maintenance
of chloroplast homeostasis. Our data suggest that chloroplast gene transcription may be impacted by the interaction of the His-
to-Asp regulator protein (which is less frequently lost than the sensor protein) with the RNA polymerase σ70 subunit.
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Background
One of the simplest mechanisms for controlling gene
transcription response to environmental cues is mediated
through a "two component" or "His-to-Asp" signal trans-
duction system. In its most minimal configuration, this
system is composed of two polypeptides, a sensor kinase
and a response regulator protein that communicate via
phosphotransfer events [reviewed in [1,2]]. A phosphoryl
group is moved from a conserved histidine residue within
the sensor kinase protein to an aspartic acid residue on its
cognate response regulator. The response regulator
impacts transcriptional activity by influencing promotor
selection via its interaction with selected DNA targets [3]
and with RNA polymerase [4,5]. His-to-Asp signal trans-
duction systems were first characterized in Escherichia coli
[6-8]. In eubacteria, 0 to more than 300 His-to-Asp pro-
teins have been shown to occur [see [9-11] for discus-
sion]. Recent complete genome sequencing endeavours
document that the cyanobacterial genomes of Syne-
chocystis sp. PCC 6803 and Anabaena sp. PCC 7120 con-
tain about 80 and 208 general signal transduction
proteins, respectively [12,13].

Given the endosymbiotic origin of plastids from a cyano-
bacterial-like ancestor [14,15], it is not surprising that
genes for His-to-Asp signal transducers have been found
encoded in chloroplasts. In this study, the wall-less, uni-
cellular alga Heterosigma akashiwo is used as a model sys-
tem for analyzing a chloroplast-encoded, two-
component, signal transduction system. Each H. akashiwo
cell contains approximately 30 discoidal chloroplasts
[16]. These organelles are surrounded by four mem-
branes, indicative of their serial endosymbiotic origin
from a putative rhodophytic ancestor [14,17]. As an obli-
gate autotroph, H. akashiwo is dependent on chloroplast
function for survival and responds to changing environ-
mental cues by rapidly altering transcript levels within the
plastid [18,19]. Run-on analysis clearly demonstrates that
the changes in mRNA abundance are largely due to tran-
script initiation [19].

This report presents data suggesting that the Heterosigma
akashiwo response regulator component [20] of a His-to-
Asp signal transduction circuit interacts with a nuclear-
encoded sigma 70 (σ70) subunit of a eubacterial-like RNA
polymerase to modulate chloroplast gene transcription.
We propose that this simplified two-component/σ70 –
partnership found in H. akashiwo may offer insight to a
mechanism by which chloroplast gene transcription is
controlled in certain algal taxa.

Results
Tsg1 – a sensor kinase protein
The Heterosigma akashiwo chloroplast genome [21] con-
tains a single His-to-Asp sensor kinase (transcriptional

sensor gene 1, tsg1). The presence of a chloroplast
encoded His-to-Asp sensor kinase gene is not universal in
stramenopiles or other plastid-containing organisms
(Table 1). A tsg1 homologue is found in the haptophyte
Emiliania huxleyi (annotated as dfr) but not in the chloro-
plasts of the bacillariophytes Odontella sinensis, Phaeodac-
tylum tricornutum and Thalassiosira pseudonana, the
pelagophyte Aureoumbra lagunensis, the cryptophyte Guil-
lardia theta, and the glaucophyte Cyanophora paradoxa. In
rhodophytes, a tsg1 homologue is encoded in the chloro-
plasts of Cyanidium caldarium (ycf26), Gracilaria tenuistipi-
tata var. liui (dfr), Porphyra purpurea (ycf26) and P. yezoensis
(hypothetical chloroplast protein 26), but is absent in
Cyanidioschyzon merolae. No tsg1 genes have been identi-
fied in any chlorophyte or charophyte examined to date.

The predicted amino acid sequence of Heterosigma akash-
iwo Tsg1 (43 kDa) has a shorter N terminus than that
observed in rhodophytic algal sensor proteins and similar
proteins found in cyanobacteria (Figure 1). Tsg1 lacks the
transmembrane and HAMP domains [22] observed in
some cyanobacterial and all chloroplast-encoded rhodo-
phytic homologues (Figure 1), but it maintains the
regions that contain the HisKA and HATPase domains.
The Tsg1 protein has a weak PAS domain (Pfam e-value
5.4 and SMART [23,24] e-value 6.03 × 102) that aligns
with the well defined PAS domains of sensor kinases from
Porphyra purpurea, Gracilaria tenuistipitata var. liui, Cyanid-
ium caldarium, and Synechocystis sp. PCC 6803 (Figure 1).

The Heterosigma akashiwo Tsg1 kinase domain (Figure 1)
displays a highly conserved H box (histidine phosphor-
ylation site) whose consensus amino acid array HELRTP
identifies this protein as a Type 1 (subtype B) histidine
kinase [25]. Excellent sequence fidelity of the histidine
kinase ATP binding site is also maintained for the N, G1,
F and G2 motifs, including the conserved glycine G3 at its
terminus [9,25,26]. The H to N distance between the his-
tidine of the H box and the asparagine of the kinase
domain is indicative of histidine kinase subtypes [25]. The
116 amino acid residues that lie between H and N in H.
akashiwo Tsg1 and its homologues in the rhodophytic and
chromophytic taxa are consistent with a Type 1 sensor
protein identity. Nine lysine and three arginine residues
contribute to the net positively charged amino acid
sequence between the histidine kinase and ATPase
domains in the H. akashiwo protein. Tsg1 of both H. akash-
iwo and rhodophytes shows close sequence similarity to
the proteins Hik33 and NblS that serve as monitors of
environmental stress in cyanobacteria [27,28].

Trg1 – a winged helix-turn-helix protein
Two identical copies of trg1 were found on the chloroplast
genome of Heterosigma akashiwo, one on each copy of the
inverted repeat. The distribution of trg1 is varied among
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disparate taxa (Table 1). The trg1 gene has not been found
in the pelagophyte Aureoumbra lagunensis. This gene is also
missing from both the nuclear and chloroplast genomes
of Thalassiosira pseudonana and Phaeodactylum tricornutum
as well as the chloroplast genome of Odontella sinensis. A
single copy of the trg1 gene has been identified in the
chloroplast genomes of the haptophyte Emiliania huxleyi
(ycf27), the cryptophyte Guillardia theta (ycf27), and the
rhodophytes Cyanidioschyzon merolae (ycf27), Gracilaria
tenuistipitata var. liui (ompR), Porphyra purpurea (ycf27), P.
yezoensis (hypothetical chloroplast protein 27), Porphyrid-
ium aerugineum (ompR) and Rhodella violacea (orf246;
ompR homolog), whereas the glaucophyte Cyanophora par-
adoxa, has one full copy (ycf27) and a partial fragment of
this gene (orf27). The rhodophyte Cyanidium caldarium
chloroplast encodes two complete copies of trg1 (ompR
and ycf27), though these genes are relatively divergent
from each other (E-value 2.0 × 10-78). Interestingly, a trg1-
like gene (ycf27) has been identified in the plastid genome
of the charophyte Chlorokybus atmophyticus.

Western analysis was used to demonstrate that the Trg1
protein is expressed in vivo. Data shown in Figure 2 con-
firmed the presence of Trg1 protein in exponentially
growing Heterosigma akashiwo cells that were harvested at
L3 of a 12 h light:12 h dark growth cycle. An expected pro-

tein band of 27 kDa was present when cell extracts were
exposed to post-bleed antiserum (Day 50; Figure 2 lane 4)
and was absent in the lane exposed to preadsorption con-
trol (Figure 2 lane 2) and prebleed antiserum (Figure 2
lane 6). These data confirmed that the low abundance
message for the trg1 gene [20] is translated into a protein
product.

Response-regulatory proteins, such as Trg1, contain a
receiver domain and a DNA recognition domain. The
DNA recognition domain affects gene expression by inter-
acting with both DNA and with RNA polymerase [29,30].
The inferred amino acid sequence of Heterosigma akashiwo
Trg1 was compared with Trg1-like sequences from Ther-
motoga maritima (OmpR) and Escherichia coli (OmpR and
PhoB) for which tertiary structures have been determined
[30-33]. A number of conserved regions are shared among
these sequences both within the receiver domain and
DNA binding domain (Figure 3).

Comparison of Heterosigma akashiwo Trg1 and Thermotoga
maritima OmpR shows good three-dimensional similarity
(Figure 4). To gain insight into H. akashiwo Trg1-RNA
polymerase structure/function relationship as a possible
transcriptional regulator of chloroplast genes, we con-
structed a model of the DNA binding domain for this pro-

Table 1: Distribution of sensor kinase and response regulatory proteins in photosynthetic plastids.

Taxon/Organism Sensor Kinase 
Copy Number

Sensor Kinase 
Accession Number

Response Regulator 
Copy Number

Response Regulator Accession 
Number

Raphidophyte
Heterosigma akashiwo 1 EF115378 2 CAB46638

Pelagophyte
Aureoumbra laguensis 0 NP 0 NP

Bacillariophyte
Odontella sinensis 0 NP 0 NP
Phaeodactylum tricornutum 0 NP 0 NP
Thalassiosira pseudonana 0 NP 0 NP

Haptophyte
Emiliania huxleyi 1 YP_277392 1 YP_277359

Cryptophyte
Guillardia theta 0 NP 1 NP_050679

Glaucophyte
Cyanophora paradoxa 0 NP 2 NP_043139, NP_043243 (partial)

Rhodophyte
Cyanidioschyzon merolae 0 NP 1 NP_849001
Cyanidium caldarium 1 AAF12904 2 Q9TLQ4, CAA44458
Gracilaria tenuistipitata var.liui 1 YP_063707 1 YP_063539
Porphyra purpurea 1 AAC08278 1 NP_053968
Porphyra yezoensis 1 YP_537073 1 YP_537039
Porphyridium aerugineum -- NP 1 CAA44464
Rhodella violacea -- NP 1 AAA62132

Charophyte
Chlorokybus atmophyticus 0 NP 1 ABM87971

The dashed lines (--) indicate that the complete chloroplast genome for that taxon is not available, so the presence or absence of the gene is 
unknown. NP indicates not present.
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tein. Because T. maritima lacks the α2-α3 polymerase loop,
our model of this region is based on available three-
dimensional structures for OmpR and PhoB. OmpR has
an X-ray generated structure [32] at 1.95 Å resolution (10
PC) whereas the PhoB report represents an NMR (1QQI)
derived structure [30]. Structures of OmpR and PhoB have
been previously compared, and our observations are
based upon that comparison [31]. The most notable dif-
ferences between OmpR and PhoB occur in the putative
eubacterial-like RNA polymerase contact loop (α2-α3
region) and at the loop between helix α3 and strand β5.
The higher sequence similarity between Trg1 and PhoB in
the α2-α3 region leads us to believe that PhoB is a better

structure model for residues 130–208 and similarly
OmpR for residues 209–231 (Figures 3 and 4). Thus, we
constructed a chimeric model from these two portions,
which yielded satisfactory internal and external environ-
ments for most residues.

Mutational analysis of the PhoB "RNA polymerase loop"
region shows that the amino acids W184, G185, V190 and
D192 are needed for successful association of this
response regulator protein with the σ70 subunit of
prokaryotic RNA polymerase [30]. The first two of these
amino acids are present in Trg1 (as is V183) but V190 is
conservatively replaced by I192, and the D192 has been

Sequence comparison of Heterosigma akashiwo Tsg1 with putative homologues in rhodophytic plastids and a cyanobacteriumFigure 1
Sequence comparison of Heterosigma akashiwo Tsg1 with putative homologues in rhodophytic plastids and a 
cyanobacterium. Putative homologues of Tsg1 from Heterosigma akashiwo (accession number EF115378), Emiliania huxleyi 
(YP_277392), Porphyra purpurea (AAC08278), Gracilaria tenuistipitata var.liui (YP_063707), Cyanidium caldarium (AAF12904), and 
Synechocystis sp. PCC 6803 (BAA16687) are compared. The HAMP, PAS, HisKA, and HATPase domains are boxed. The H-box 
which contains the histidine residue, site of phosphorylation, N, G1, F, G2, and G3 sites are bolded.

HAMP domain

PAS domain

HisKA domain

HATPase domain

H

N

G1 F G2 G3

Heterosigma      ----------------------------------------------------------------------------------------------------
Emiliania        ---------------MILNLKYFLGYLNKLWLNFRLQTKLILASTFFISIGISGLAFWSANLIQQETLFNKIRLANDVTVLLGANLISL--TSENDYKGI
Porphyra         MFSFRNQQVLTFVSSLSTFVTIILNHLKKWWSDVTLRTRLMAMTTLMVSLLMSSLTFWTLTSIQQETRLIDNRFGKDLSLLLAVNITPI--LEGDNYLQL
Gracilaria       -------------------MYSKILEISSKFDFKINFSRFIVFITLMISVIMSSLTFWSLTMLQEDLMIADKRFCKDLGFLLASSIIDS--SEMNKQKDI
Cyanidium        ---------------------MRKFHKLYIHTNIGGQFQTINLLVFIISLLISTSISLFVNSLNNNATVIKEATIHDILALINSDFNLHREALVNQRLQS
Synechocystis    --------MGTSVSNPTAILQTMQGFLRKWWSEFNLQTRLMAAATLVVSLLMSGLTFWAVNTIQEDAQLVDTRFGRDVGLLLAANVAPM--IADKNLTEV

Heterosigma      ----------------------------------------------------------------------------------------------------
Emiliania        LPLCERFYKNSPNIKYIIFFDSKNKQTYGVPFTYSELTSKFL-LQTKGESPYSDP-----IKVNT-----------SLLLRSKGNEVGTVIVGINSSQNL
Porphyra         QQFIEHFYLSTSSIRYILVFNADGQIYYSIPFSSETAINFFS-LSEYNCFRNENHYFSNTPIVNTNNRLQGEVIDIIIPLSKEKKLLGILNIGINSNPTL
Gracilaria       AYFLEKIYLSTASIRYILYFDQNGSLLLGLPIYNTKIQNILQ-LHQNLLQLDNKEFLFNTPLINSSKLLNNNIIDIIIPLTKAGHNLGSLDLGIDVN-IR
Cyanidium        TFFCQTLYASITEFESLAVFSHEGLLYCVPSFNSKDVNKIEDNFQFSYLNLLQKMFRLNIHFPLIHTSLKGYGRYLTQAFVILNMANRDQPMLFVEVEFT
Synechocystis    ARFSSRFYENTSNIRYMIYADPSGKIFFGIPYSEETVQNSLT-LERRIELPQIDPHNFDQPFVRQHHTPNGDVTDVFIPLQYQGKFLGVLAIGINPNPAA

Heterosigma      -----------------------------------------------------------------------MINQVRRISFLKDSKIYKATKLTSLEIIV
Emiliania        ITNSKLVRTLLVIIVLIFWLTLILGAMINAITITGPLSELRKGIRRVADGNFSHKINLVFNGELGDLILQFNDMGKKLQKYEEKNIDQLLSEKIKLESLV
Porphyra         TTSSQLTRDVSVAVFISIWLMVILGAAFNAFTITRPIRELLTGVKNIASGDFYQRIDLPFGGELGALIFNFNEMAERLEKYEQQNVEKLTSEKAKLETLV
Gracilaria       FSSSRLIRDLSIFVFVLVWLMLFIGVAFNTLSVATPQKKLLLGIQNIASGNFNQRLTVPVNYQLSTLIISFNEMAEKLQSYEKKNVDKIISEKTKLETIV
Cyanidium        SNFFYWPLQLFSLVFLMTWFIILLGGILNSLTIIKPIKELLAGIRNISTGNFEQKIFLPFEGQIGELIFSFNNMAERLKNYDYKSKEELSSAKAKAEVLV
Synechocystis    VNSSNLTRDVTIAVFISIWVMVILGAVFNALTITQPIKELLLGVKNIAAGNFKQRITLPFGGELGELIVNFNEMAERLERYEAQNIEELTAEKAKLDTLV

Heterosigma      HNLDEEFLILNLNLKIVYRNDDFNSNLNKNFE-NVFLNYFEYNSAALILFKIKNSLREIQQSS--------------------YASKTAIIFYTNYEKAY
Emiliania        GTITEGALLLDSSLKLVLVNDAAIKIFSWEKKKNLIGSKLWEHLPRPLQKRMFESLEKMIRTS--------------SNQVFYSALQTTPDNNKPKFFRI
Porphyra         STIADGAILLDKDLRVILVNRTAIENFGWEGK-NIAGSIIVDYLPEDINQQLFPILNDIIRKN-------------FLEQSICETQEICIKLQKNYKKTF
Gracilaria       SLIAEGTILIDAELRILFVNKKAQEIFNWFNI-DLTGGYICSYLPIHINEALLPILNNLVQSS-------------YISTNKSQTEEICINLDYNSRKIC
Cyanidium        STIADGAILLNDKLEIILINSKAKEIFNCEFL-DLLGVGIDRFLPKNLQSSVMPSLKHLAKST-------------HVDFLPVVLSGLDLVFPAKGRRKI
Synechocystis    STIADGAMLVDTNLQLLLVNPTARRLFAWENK-PIIGENLLENLPPEITAQLTQPLRELAADQGSLLFSPGHGPQEEEQDKTYAPEEFRISLTQPFPRTI

Heterosigma      KQILLIISVLIKD--ERILIKIKDITKKVCATKRKAKLLNNISHELRTPLFNIQSFIETLTRYINKLEKQNIKEFLMITKNEVLRLNKLVNTILEISKVQ
Emiliania        LLKLVYESQELISRPKGIAITIQDCTKELELNQARNRFMSNISHELRTPLFSIRSFIDTTQEYSYTLTTQQKYQFLETVSLESNRLTRLVNNILNLSRLD
Porphyra         RVLLTTVLDHKYSILKGIAMTIQDRTQEVELNEIKNQFISNVSHELRTPLFNIRSFLETLYEYHDSLDDSQKLEFLAIANKETGRLTRLVNDVLDLSRLE
Gracilaria       RFLLTTLLDRILKVLTGVVIIIQDISKEAKLNEAKNQFIGNISHELRTPLCNIGSFLETLIDYNSTLKEKEKINFLTIANNETKRLSSLVNDILDLSVLE
Cyanidium        KIFLNQVLSKSNNKVLGISLIIRDITQEVELSLAKNYFISNISHELRTPLFNIKSFVETLEDYDRILTRKQKLSFLKTIHKEADRLTRLVDNLLNLSAIK
Synechocystis    RLMLTQVLDQNRENLRGIVMTVQDITREVELNEAKSQFISNVSHELRTPLFNIKSFIETLSEFGEDLSEVERKEFLETANHETDRLSRLVNDVLDLSKLE

Heterosigma      SNNS---KLFDIVDIIRIINQLLKIYSIRVKKKKIKLKRNIKLKTQYILTKNQLILQILDNLLANAFKFSLSNSQIILRAYTIKGINNIEK--------T
Emiliania        YIKL---NSFEPVDLNDVITKAATNFYLFAGEKKIIFTTNAKPNLALVQGNVDLITQVLVNLIGNSLKFTYPQGEILLRAYPLRKSLGNK---------I
Porphyra         SDQE---YTLQPTDLVSAVEQTIRTYQLSAKDKRIDLHIDIEQNLQCVLGNYNLILQILANLVVNSLKFTHPNGIIILRAYTVDDLKTETEVQHFNSQKV
Gracilaria       SEHD---YKLDYIDLTQILYNVVNTFQITANKNNIRLIVELEKNITYVFAHESSILQVISNLLNNALKFSPYHSLIIVRVYKLICNNTFTSHIHN-RDLV
Cyanidium        PKQNNFLHSFYLFNLRILIYDTILPYQIKLQNKKIITYVELENGLPEIFANYDLLFQAVSNLINNAIKFSYIGSLISIRVFTLKKRQVGGVS------IV
Synechocystis    SSKI---YQLDAVDLYQLIEQSLRSYQLNAKDKQLQLEKILDPDLPFALGNYDLLLQVMTNLIGNSFKFTKAGGKIIVRAYPLHRSNLRAEDGPG---LV

Heterosigma      RLEIGDLGIGISKKYQLTIFKRFFRIEEEIKIVYGTGLGLNIVKKILQKYKIDFYLSTSANEGTIFLLDFKPVK*-------
Emiliania        RIEISDTGIGISPIFRKIIFNRFSREENEVHNLTGTGLGLAIVESILKEHNSRIYVLTKQHVGSIFWFDLNV*---------
Porphyra         RVEICDNGIGISRKNQERIFARFLRIENYVHTLEGTGLGLSIVKNIIQKHNSEIHLYSELKNGSCFFFDLMIAKDE*-----
Gracilaria       RVEILDQGIGIAEEDQKIIFDRFVRVENNIHTLEGTGLGLSIVKNILAKYKISVNVQSQLNVGTSIWFNLKYVS*-------
Cyanidium        RVEISDSGIGIDMSRSSEVFERFSRIDNKSYALQGTGVGLFLAKNIIEQHHSRILMHSQLSYGSTFFFDLTF*---------
Synechocystis    RVEISDTGIGIDPEDQAAIFERFYRVENRVHTLEGTGLGLSIVKNIIAKHQSQIHLVSEVGVGTTFWFDLAVYQSMLMVVG*

Figure 1
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replaced with a non-conservative I194 (Figure 3). Similar
to observations in Heterosigma akashiwo Trg1, conserva-
tion of a PhoB-like domain is found within the response
regulator α2-α3 loops of some cyanobacteria and proteo-
bacteria, as well as in chloroplasts (Table 2). The observa-
tion that the H. akashiwo Trg1 α2-α3 loop is two amino

acids longer than that seen in PhoB and OmpR suggests
that either the response regulator may interact with a
undescribed RNA polymerase subunit or the RNA
polymerase subunit itself may also be modified.

Presence of rpoD in Heterosigma akashiwo
Data presented above support the hypothesis that Heter-
osigma akashiwo Trg1 interacts with a σ70-like subunit of a
eubacterial-like RNA polymerase. Sequence analysis of H.
akashiwo revealed the presence of a nuclear-encoded rpoD
gene. The presence of both a signal peptide sequence and
a putative stromal targeting domain on the amino termi-
nus of the RpoD protein supports the hypothesis that this
protein is chloroplast-targeted (Table 3). Although H.
akashiwo RpoD lacks the autoinhibitory 1.1 region, it
retains the highly conserved functional domains (1.2, 2.1
– 2.4, 3.0 – 3.2 as well as 4.1 and 4.3) that have been elu-
cidated for eubacterial homologues ([34]; Figure 5). Most
striking in the context of this study is the extensive main-
tenance of sequence identity within domains 4.1 and 4.2
among phylogenetically diverse organisms (Figure 5).
This domain is responsible for interaction with transcrip-
tional regulator proteins and with the -35 promotor array
[34-36].

Phylogenetic analyses of rpoD/σ70 have been published
for some eubacteria [4,37-40], and land plants [41,42].
We attempted to generate a phylogeny to place Heter-
osigma akashiwo rpoD among other photosynthetic eukary-
otes (bacillariophytes, cryptophytes, glaucophytes,
rhodophytes, chlorophytes, and charophytes). Since this

Sequence comparison of Heterosigma akashiwo Trg1 with select bacterial response regulatorsFigure 3
Sequence comparison of Heterosigma akashiwo Trg1 with select bacterial response regulators. The Heterosigma 
akashiwo Trg1 sequence (accession number CAB46638) was aligned with Escherichia coli PhoB (P03025), E. coli OmpR (P08402) 
and Thermotoga maritima OmpR (1KGSA). Receiver and DNA binding domains are underlined and overlined, respectively. 
Within the receiver domain, the phosphorylation site is indicated by an asterisk (*). Within the DNA binding domain, the RNA 
polymerase binding site (α2-α3 loop) is boxed and bolded.

α2-α3

*          .         .         .         .         .         .         .         .
Heterosigma trg1         1 MKKSSKYKILVVDDQLYIRKILSKRLKILGYEVLTTQSGEEAIKLCSFFCPDLIILDIMLCGINGYEVCSKIRSSS---DVP
Escherichia coli phoB    1 MAR----RILVVEDEAPIREMVCFVLEQNGFQPVEAEDYDSAVNQLNEPWPDLILLDWMLPGGSGIQFIKHLKRESMTRDIP
E.coli ompR              1 MQE--NYKILVVDDDMRLRALLERYLTEQGFQVRSVANAEQMDRLLTRESFHLMVLDLMLPGEDGLSICRRLRSQSN--PMP
Thermotoga ompR          1 -----NVRVLVVEDERDLADLITEALKKEXFTVDVCYDGEEGXYXALNEPFDVVILDIXLPVHDGWEILKSXRESGV--NTP

        .         .         .         .         .         .         .         .
Heterosigma trg1        80 IIFISALDKLSNQLKGFRIGGNDFIVKPFSIDEIEEKILLRLKN-------ENNKEKSTIRIHNFEINLIKKVLIRNSEIFL
Escherichia coli phoB   79 VVMLTARGEEEDRVRGLETGADDYITKPFSPKELVARIKAVMRRI------SPMAVEEVIEMQGLSLDPTSHRVMAGEEPLE
E.coli ompR             79 IIMVTAKGEEVDRIVGLEIGADDYIPKPFNPRELLARIRAVLRRQANELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMP
Thermotoga ompR         76 VLXLTALSDVEYRVKGLNXGADDYLPKPFDLRELIARVRALIRR-------KSESKSTKLVCGDLILDTATKKAYRGSKEID

           .         .         .         .         .         .         .         .
Heterosigma trg1       155 LTPTETKLLKVFLLEKNKILTRKTIIKRVWGFNYSSHIDIRVVDVYISKLRVKIEDDPTNPQILKTIRGIGYKFYSK*----
Escherichia coli phoB  155 MGPTEFKLLHFFMTHPERVYSREQLLNHVWGTNVY--VEDRTVDVHIRRLRKALEPG-GHDRMVQTVRGTGYRFSTRF*---
E.coli ompR            161 LTSGEFAVLKALVSHPREPLSRDKLMNLARGREYS--AMERSIDVQISRLRRMVEEDPAHPRYIQTVWGLGYVFVPDGSKA*
Thermotoga ompR        151 LTKKEYQILEYLVXNKNRVVTKEELQEHLWSFDDE--VFSDVLRSHIKNLRKKVDKG-FKKKIIHTVRGIGYVARDE*----

Figure 3

Western blot showing the expression of Trg1 in Heterosigma akashiwoFigure 2
Western blot showing the expression of Trg1 in Het-
erosigma akashiwo. Total soluble proteins were separated 
on NuPAGE Novex Bis-Tris gel and probed with preadsorp-
tion control (lane 2), anti-Trg1 peptide antiserum, day 50 
(lane 4) and preinjection antiserum, day 0 (lane 6). A band of 
the expected estimated size of 27 kDa is present in the anti-
Trg1 peptide lane 4, but not in the two negative controls 
(preadsorption and day 0). Lanes 1, 3, and 5 contain "Magic 
Mark Western" protein standard.
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comparison yielded few regions that could be confidently
aligned, the resulting trees were consistently poorly sup-
ported as measured by bootstrap values and posterior
probabilities (results not shown). A consistent phyloge-
netic result, however, was the placement of H. akashiwo
rpoD as sister to one of the six rpoD/Sig sequences that had
been annotated from the complete nuclear genome of
Thalassiosira pseudonana [43].

A number of problems common in phylogenetic infer-
ence could explain our difficulty in generating a robust
phylogeny. These include problems associated with parol-
ogy, lineage sorting and horizontal gene transfer [for dis-
cussion see [44,45]], long-branch attraction [46], and rate
heterogeneity among lineages [47].

Discussion
Most plausibly, the prokaryotic ancestor(s) of eukaryotic
chloroplasts were fully equipped with their own multifac-
eted signal transduction circuitry [14,48], as observed in
cyanobacterial and proteobacterial genomes which
encode multiple sensor kinase/response regulator pairs
[11,12,49]. Since the chloroplast must respond to both
extra- and intra-cellular cues, one might anticipate strict
conservation of these signal transduction arrays. How-
ever, given the observations that fewer sensor/response

circuits exist in intracellular bacterial pathogens than in
free-living representatives [50], one may argue that a
reduction in the ancestral plastid genome size after endo-
symbiosis may have driven the loss of chloroplast-
encoded His-to-Asp regulatory arrays (see Table 1).

The chloroplast genomes (Table 1) of several rhodophytic
algae [51-56], the glaucophyte Cyanophora paradoxa [57],
the haptophyte Emiliania huxleyi [58], the cryptophyte
Guillardia theta [59], and the charophyte Chlorokybus atmo-
phyticus [60] have been shown to encode the response reg-
ulator gene and in some, the sensor kinase gene for the
His-to-Asp proteins. The presumptive loss of the sensor
kinase seen in some chloroplast genomes may suggest
that under such a circumstance, the regulatory protein
may be governed by nuclear-encoded sensor kinases or by
yet undescribed accessory proteins that are either of
nuclear or chloroplast origin [see [9] for discussion]. The
occurrence of this signalling array is less well documented
in stramenopiles. The chloroplast genome of the raphido-
phyte Heterosigma akashiwo encodes a single response reg-
ulator and its cognate sensor kinase [[20] and this study],
but the chloroplast genomes of representatives within the
bacillariophytes and the pelagophytes lack both proteins
of this two-component system [61,62]. More than 75
green plant (~9 chlorophyte and ~66 charophyte) chloro-
plast genomes have been sequenced. Of these only the
charophyte Chlorokybus atmophyticus encodes a response
regulator protein. It should be noted, however, that par-
tial footprints of (laterally transferred?) prokaryotic His-
to-Asp transduction pairs have been identified in some
green-plant nuclear genomes [63-66]. Such truncated His-
to-Asp constructs have been shown to signal mitogen-acti-
vated protein kinase cascades, which cause the differential
regulation of targeted genes [63,67].

The taxonomic distribution of this gene-pair is poorly
understood. Complete chloroplast genomes are few, espe-
cially in species-rich lineages that are represented by only
a small number of complete chloroplast genomes (e.g.,
the bacillariophytes). Whether the maintenance of the
His-to-Asp signal transduction apparatus in the chloro-
plast corresponds to established phylogenies remains to
be determined. One might anticipate that the chloroplasts
of chromophytic algae would retain this His-to-Asp array
since they are the product of a serial endosymbiotic event,
which involved a rhodophytic algal ancestor. Unfortu-
nately, data for the diverse taxonomic assemblage of
chromophytes has been both minimal and conflicting.
The presence of the His-to-Asp array in Heterosigma akash-
iwo appears to reflect the retention of an ancestral signa-
ture. Whether the loss of the His-to-Asp pair in
bacillariophyte chloroplast DNA represents a derived gen-
otype, remains an open question. Regardless of phyloge-
netic profile, the evolutionary retention of all or part of a

Molecular model of Heterosigma akashiwo Trg1Figure 4
Molecular model of Heterosigma akashiwo Trg1. Struc-
tural model of the DNA recognition domain of Trg1 (shown 
in yellow) based on the defined partial structures of 
Escherichia coli OmpR (grey), PhoB (white), and the complete 
receiver-regulator structure from Thermotoga maritima (blue) 
reveals important similarities. The predicted Trg1 model 
closely resembles that of OmpR, particularly in the putative 
DNA binding region (α3 helix). Notably, the predicted Trg1 
structure for the putative RNA polymerase interaction site 
(α2-α3 loop, red) more closely matches that of PhoB. The 
phosphorylation site is shown as a purple sphere.
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His-to-Asp signal transduction circuit in some distantly
related algal chloroplasts strongly suggests that this bio-
chemical mechanism must play an important role in the
maintenance of chloroplast homeostasis.

We propose that the Heterosigma akashiwo Tsg1/Trg1 sig-
nal transduction pair, in concert with an RNA polymerase
σ70 subunit, is involved in regulating chloroplast gene
transcription. The environmental stimulus that regulates
the signal transduction response remains elusive. The ina-
bility to create gene-knockout mutants or perform trans-
formation experiments in chromophytic algae (except
diatoms, which lack His/Asp genes) has hampered gene

expression studies that are needed to provide direct evi-
dence for the role of His/Asp systems in chloroplast func-
tion. However, one might infer function given the
similarity of the chloroplast-encoded H. akashiwo Tsg1
and the ycf26-encoded proteins of Emiliania huxleyi, Cya-
nidium caldarium, Gracilaria tenuistipitata var. liui, Porphyra
purpurea and P. yezoensis to the cyanobacterial sensor
kinases and NblS. Hik33 has been shown by deletion
studies to impact the expression of selected genes in
response to osmotic and low temperature stress
[27,68,69], while its homologue NblS is reported to serve
as a sensor of nutrient stress and high light intensity [28].
The underlying mechanism driving these physiological

Table 3: Heterosigma akashiwo signal peptides

Precursor Protein Accession Number Signal peptide Beginning of STD

RpoD EF115377 VAHCTTFAYKGSNMRSHFFFMLWSVSVAATAA FMMPGR...
Fcp1 X99697 MSLKLATLAAALMGASA FVAPNKM...
Fcp2 EF115376 VVFDLYASTIPSVNQAHKSKMSLKLATFAAALAGASA FVAPNQM...
PRK EF115375 MMYKLATLLALLPAVVA FTTSFNG...
PsbO AY130990 MKFVAVLVCLMVSAVVA FKTQRN...

Heterosigma akashiwo RNA polymerase D subunit (RpoD), fucoxanthin chlorophyll binding protein 1 (Fcp1), fucoxanthin chlorophyll binding protein 
2 (Fcp2), phosphoribulose kinase (PRK), and 33 kDa oxygen-enhancer 1 protein (PsbO) precursors showing the signal peptide and the start of 
stromal targeting domain (STD). The conserved phenalynine (F) indicating the beginning of stromal targeting domain [62, 97, 98] is marked in bold.

Table 2: Comparison of putative RNA polymerase association loop domain among prokaryotic and plastid-encoded response 
regulators.

Organism Gene Name Taxon Putative RNA Polymerase Loop Domain Accession Number

Heterosigma akashiwo trg1 raphidophyte WGFNYSSHIDIRVV CAB46638
Emiliania huxleyi ycf27 haptophyte WGYTPERYLDTRVV AAX13858
Guillardia theta ycf27 cryptophyte WGYTPERHVDTRVV AAC35613
Cyanophora paradoxa ycf27 glaucophyte WGYTPERHIDTRVV AAA81319
Cyanidioschyzon merolae ycf27 rhodophyte WGYAWPNETRVV BAC76163
Cyanidium caldarium ycf27 rhodophyte WGYKLSKHEPIADTRIV AAF12879
Cyanidium caldarium ompR rhodophyte WGYTPERHLDTRVV CAA44458
Gracilaria tenuistipitata var. liui ompR rhodophyte WGYKPERHVDTRVV YP_063539
Porphyra purpurea ycf27 rhodophyte WGYTPERHVDTRVV AAC08244
Porphyra yezoensis ycf27 rhodophyte WGYTPERHVDTRVV Q1XDC9
Porphyridium aerugineum ompR rhodophyte WGYTAERQVDTRVV CAA44464
Rhodella violacea ompR rhodophyte WGYTPERHIDTRVV AAA62132
Chlorokybus atmophyticus ycf27 charophyte WEYGNDSYIDTRVV ABM87971
Nostoc sp. PCC7120 ycf27 cyanophyte WGYTPERHVDTRVV BAB75521
Synechocystis sp. PCC6803 ycf27 cyanophyte WGYTPERHVDTRVV BAA18408
Tolypothrix sp. PCC7601 rpaB cyanophyte WGYTPERHVDTRVV AAD30119
Bacillus subtilis recM Firmicutes WGYDYFGDVRTV BAA05173
Clostridium petringens ompR Firmicutes WGYEYIGETRTV BAB80348
Lactobacillus sakei rrp3 Firmicutes WGYDYFGDVRTV AAD10263
Listeria innocua ompR Firmicutes WGYDYFGDVRTV CAC95548
Streptomyces coelicolor scrA Firmicutes WGYRHAADTRLV AAG15433
Thermotoga maritima drrA Thermotogales WGYDYYGDTRTV AAD36722
Ralstonia metallidurans czcR Proteobacteria WGVNFDTDTNVV CAA67086
Escherichia coli phoB Proteobacteria WGTNVYVEDRTV P03025
Escherichia coli ompR Proteobacteria RGREYSAMERSI P08402

The putative RNA polymerase association loop domain was identified in prokaryotic and plastid-encoded response regulators based on molecular 
modelling for Trg1, PhoB, and OmpR [31]. For easy comparison in the table – the data for Trg1, PhoB, and OmpR are bolded.
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Sequence comparison of Heterosigma akashiwo RpoD with putative homologues in chromophytic and rhodophytic algae, and a cyanobacteriumFigure 5
Sequence comparison of Heterosigma akashiwo RpoD with putative homologues in chromophytic and rhodo-
phytic algae, and a cyanobacterium. Putative homologues of RpoD from Heterosigma akashiwo (accession number 
EF115377), Thalassiosira pseudonana [43], Cyanidium caldarium (BAA11832), Cyanidioschyzon merolae [102], and Synechococcus sp. 
PCC 7942 (BAA01749) are compared. Conserved domains (1.2, 2, 3, and 4) are boxed and sub-domains (2.1–2.4, 4.1, and 4.2) 
are identified as bars above their respective boxes.

domain 1.2

domain 2

domain 3

domain 4

Heterosigma        ----------------------------------------------------------------------------------------------------
Thalassiosira      ----------------------------------------------------------------------------------------------------
Cyanidium          ------------------------------------------------MDVDYQPRSAYMIAAGSRRTQTHKCGTFEKLQEPGDPDSVLTGIILRSSEGA
Cyanidioschyzon    MFTQGRTASAEARCCRLSSDGVGFVTATLGLWRVRPLKQLDLPRAGQRLQHGKTCPGRGVRLVVAEPRLLRSCRCCANTNRSRDLGAEYALEKHGFVDGA
Synechococcus      ----------------------------------------------------------------------------------------------------

Heterosigma        ----------------------------------------------------------------------------------------------------
Thalassiosira      ---MEGCRLFRRLRRHKRSTGGVDVIIGRSRQHQHIMPNPICTHNPSQSIRSSIPLLHSQLLNNQHNTIHTASSIPCHHALVARSGIVSPVVRTASSTTA
Cyanidium          HQERSDASGLDIIIGTWSPSHRTSALVDPRGLAAYADELLAAADIDIASLTEEGGLAPQNSANQPSRISFPGSLGAYVRGLEQQYRSERMIDRAPSATEI
Cyanidioschyzon    RKLEPEANSVCAPAPLGPVARDEQREHVPKSVDSGTTPDASSGAQRTPERTGSSRRRQARAATLRVGQSTSAVPDSPLQTPLEETFVSVDNRLPVPNWEA
Synechococcus      ----------------------------------------------------------------------------------------------------

Heterosigma        ----------------------------------------------------------------------------------------------------
Thalassiosira      AMSPFTLTVQQQSLSPRRTSSSPLLPFLPRQHHSTFLSMSTMADVEITDDTITGTEYDDFDKELGGDPNMMYDDDTPSSSQSSINDDESSERSTTRSTTA
Cyanidium          ESRKSKKAALKSQNKMTSSRKETRSSSSQARARQQKGRKSEQAPGVPVHMRAGPRTKNTVTVRDPFADNQSANDGSTVPVEEVYSNSETEEAESQIESDE
Cyanidioschyzon    KHPGGPGQAHMRETTSPSAKTRSSKSVRPARQRQLSNADQRLSPTSLNDAVHKLPQGSRRSLSTNPSAVVNARWERIQDSERAADDDGPSIRELDYSEDD
Synechococcus      --------------------------------------------------MTQATELLDPALKPAETKAKRSSRKKATTAVVEPATTIAPTADVDAIDDE

Heterosigma        -------MAVEYQYNNKNYLPQSDTMKEYVKDLRTVDMLTAQEEILLTRQIKRGMEIEKALVTLEKTLGRKPTEEEWVNFVG-LKSIDDIRKNLKRASKS
Thalassiosira      QLQSQKLEIQGRRIRANVRETGFDSMKYYMKTMGNHDLLQKNEEIILAREIQILIKWEE----------------EWANAIEPGMTVTQIKKQIRRSLRA
Cyanidium          LLDFIVEEVDPADVDLSTVEAKDDTIRSYLREIGRYQLLHPGEEIELSKQVCILMDLEQFQRSFREEHGKSPTESEWAQGCGYGDDVEKLREHIRDGRKA
Cyanidioschyzon    PSDNEPLAWETYPETPRARSSESSTLRWYLRMIGRVDMLTPEEEVSLSRQISRLLHWERKRIELHGALDRAPTDDELAEHL--GVDPERFRRNLAEARRA
Synechococcus      DSVGEDEDAAAKAKAKVRKTYTEDSIRLYLQEIGRIRLLRADEEIELARQIADLLALERIRDELLEQLDRLPSDAEWAAAV--DSPLDEFRRRLFRGRRA

Heterosigma        KSAIINANLRLVVSTAKAYQYRGVSFQDLVQEGTCGLHKATEKFDPRKGFRFSTYATWWIKQGIMRAVTDQSRVVRLPVHVHDALFHIRRAKANFWTEHL
Thalassiosira      KAALTESNLRLVISIAKRYQGRGLNMQDLCQEGTLGLTRACEKFDPERGFRFSTYATWWIKQGIMRAIADQARTIRLPVHIHDQLSIVRKAERDLQNELG
Cyanidium          KERMVTANLRLVVSIAKRYSNRGVALQDLIQEGSIGLIRGVEKFDAERGFRFSTYATWWIRQSITRAISDSSRSIRLPVHVHDTISLIRKQTKALQVELG
Cyanidioschyzon    KDRMVAANLRLVVSIAKRYMRKGLPLEDLIQEGSLGLIRAAEKFDDRRGCRFSTYATWWVKQSVMRALADQGRIVRLPVHMHDRILAVRKAARDLSIERG
Synechococcus      KDKMVQSNLRLVVSIAKKYMNRGLSFQDLIQEGSLGLIRAAEKFDHEKGYKFSTYATWWIRQAITRAIADQSRTIRLPVHLYETISRIKKTTKLLSQEMG

Heterosigma        REPTLAELAEATGLTPQKIVFYDTVKDKVSSIDKTVGIGTKTN------------SMEKSQIAISDMCKDSRNKPEETAQVESLRQDISRLINTLSPREQ
Thalassiosira      RDATKEEVAAKVGMKPDKIEFLKRASVGSISMEQELGSGKTKGSGAGTGGSKGGASGSERSFTIQDTLGDPDQKPVDMAQYRMLQDDVGRLICTLNAREQ
Cyanidium          RPPSEEEICESVGIDRAKYRLVMECSRNIVSLETPL-------------------RSGDDVHFLGESLIAPEERAEENCSRDTLRESIEKVLHCLSTRER
Cyanidioschyzon    CEPTEADICERLGISRKRLRELRSLAVQTISLESSVRFGNNQS------------GSERDRTTLADSIVHESASPEEQIELSMLREDLERSLQLLNHVEM
Synechococcus      RKPTEEEIATRMEMTIEKLRFIAKSAQLPISLETP--------------------IGKEEDSRLGDFIEADGETPEDEVAKNLLREDLEGVLSTLSPRER

Heterosigma        DVVRMRYGLDDGEIRTLEEIGSIFSVTRERVRQIEARALHKLRQPYRNHRLKGQLDSVDALFHEKAHI*
Thalassiosira      AVIRMRFGLDDGKAKTLEEIGKKFSVTRERIRQIEARALHKLRQPYRNHTVKCYANEL*----------
Cyanidium          EVIRMRFGLTDGRPRTLEEVGSRFNVTRERIRQIESKALKKLRTPAENNFLDEYLGEV*----------
Cyanidioschyzon    RVVRLRYGLDSGIAKTIDEVGALVRLPREEVRAIENAAFRKLRHTSGLVGLKDYISSLNTSAL*-----
Synechococcus      DVLRLRYGLDDGRMKTLEEIGQLFNVTRERIRQIEAKALRKLRHPNRNSILKEYIR*------------
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responses may be governed by redox and light signals for
two reasons [discussed in [27,28]]: (a) both Hik33 and
NblS possess a PAS domain, which is thought to be
involved in redox and light sensing [70] and, (b) a large
majority of the genes impacted by Hik33 and NblS are
related to photosynthesis [27,28]. It has been proposed
that redox control of gene expression is a fundamental
evolutionary selection mechanism responsible for the
maintenance of chloroplast-encoded gene regulation sys-
tems [71,72]. As shown in Figure 1, the H. akashiwo Tsg1
protein has a putative PAS domain. While the three
dimensional structure of PAS domains is conserved
among taxa, the primary protein sequences that comprise
this motif are often diverse [73]. As more types of PAS
domains are characterized, the E-value for the PAS
domain in H. akashiwo Tsg1 should become more robust.

An important difference between Heterosigma akashiwo
Tsg1 and its homologues is the absence of a transmem-
brane region and a HAMP domain. The possibility of a
split tsg1 gene was not supported by detailed analysis of
the completely sequenced H. akashiwo chloroplast
genome. The absence of a transmembrane region implies
that Tsg1 is most likely present in the stroma. Though the
majority of described Tsg1 proteins are putatively mem-
brane bound (data not shown, SMART database search
[23,24]), soluble histidine kinases have been identified
[74,75]. Studies are underway using a Tsg1 peptide anti-
body to verify the location of the protein in the cell.

Contrary to a previous report [76], our data indicate that
RpaB in the cyanobacterium Synechocystis shares not only
similarity to the ycf27 proteins in red algae but also to H.
akashiwo Trg1. The premise that ycf27 homologues are
restricted to eukaryotic algae containing phycobilisomes
[76,77] is contrary to the description of this protein in the
non-phycobilisome containing algae – Heterosigma akash-
iwo (Trg1) [20], Guillardia theta (ycf27) [59], Emiliania
huxleyi (ycf27) [58], and Chlorokybus atmophyticus
(ycf27)[60]. Nonetheless, the hypothesis that RpaB regu-
lates the synthesis of (unknown) "factors required to cou-
ple phycobilisomes to PS1 or PSII" [76,77] is consistent
with the possible role of this protein in redox/light sens-
ing.

The assignment of Heterosigma akashiwo Trg1 to the "Class
2" (or "ompR" super family) of transcriptional regulators
offers additional insight to its function in the plastid. In
prokaryotic cells, some "Class 2" proteins (such as PhoB)
regulate transcription through interaction with the σ sub-
unit of RNA polymerase [78] while others associate with
the α subunit of this enzyme [29,79]. We have identified
a PhoB-like signature for the RNA polymerase recognition
domain in Trg1 and a putative chloroplast-targeted σ70

subunit in H. akashiwo. A comparable transcriptional

mechanism appears to be present in Cyanidioschyzon mero-
lae, Cyanidium caldarium, and Guillardia theta as both
PhoB-like signatures and σ subunits have been identified
(Table 2) [55,80-83].

Sigma factors in concert with core RNA polymerase selec-
tively target chloroplast genes for transcription. For exam-
ple, the prokaryotic-like, plastid-encoded polymerases
with their associated σ factor(s) exclusively transcribe
many genes that impact the photosynthetic process
including rbcL, psbA, psbD, petB, ndhA, atpI, atpH and rps14
[84-87]. Both plastid-encoded polymerase and the phage-
like nuclear-encoded polymerase can transcribe rrnA,
atpB, clpP. It should be noted however, that these eubacte-
rial RNA polymerase-associated σ factors often interact
with regulatory proteins (such as Trg1) and this associa-
tion may further influence the transcription of specific
genes [3].

How could the transcription of a small, select set of genes
impact chloroplast homeostasis? One might propose that
a hierarchical assembly of proteins during the formation
of molecular complexes could provide an exceptionally
efficient mechanism for regulating the quantitative and
qualitative production of molecular structures necessary
for the maintenance of chloroplast function. In the chlo-
roplast, many large functional complexes that drive oxy-
genic photosynthesis and carbon fixation are constructed
with a definitive stoichiometry that reflects the coopera-
tive interaction between plastid and nuclear genomes.
Studies suggest that protein complex formation is regu-
lated by the presence of a "dominant assembly partner"
whose presence assures the production of its assembly
associates in the correct proportions [88]. For example, a
Chlamydomonas mutant lacking the D1 protein (encoded
by psbA) expresses only minimal levels of D2 (psbB) as
well as CP47 (psbC) proteins. Similarly, mutants in CP47
(psbC) or D2 (psbB) show depressed concentrations of D1
(psbA) protein. In contrast, Chlamydomonas cells that were
mutated in CP43 (psbD) were able to assemble D1, D2
and CP47 into a stable complex. The existence of such an
assembly cascade is not restricted to photosystem II con-
struction. When cytochrome b6 (petB) or subunit IV
(petD) are not present, cytochrome f (petA) synthesis
drops to 10% of that in wild type cells. A similar synthesis
cascade appears also to occur in the biogenesis of ATP syn-
thetase, which is comprised of five subunits (α,β,γ,δ,ε).
Mutants lacking β will not accumulate any other core pep-
tide. In effect, a minimal signal transduction system
(encoded in the chloroplast) in conjunction with the σ
subunit (encoded in the nucleus) may have given the
ancestral eukaryotic cell a simple and efficient method to
integrate chimeric gene sets.
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Conclusion
We have identified a His-to-Asp signal transduction array
in the secondary endosymbiotic chloroplast of the stra-
menopile Heterosigma akashiwo. These proteins are similar
to those found in bacteria and in the chloroplast genomes
of several, though not all, algae.

This study generated a number of interesting questions.
For example, why have several of the red lineage chloro-
plasts retained all or part of the His-to-Asp signal trans-
duction system while only a single green chloroplast
lineage retained this system? Will the sensor kinase pro-
tein be more frequently missing from this pair as addi-
tional stramenopile chloroplast genomes are analyzed?
Are there undescribed chloroplast-encoded proteins that
can substitute for sensor kinases? Are all sensor kinases
triggered by the same or by different environmental cues?
What are those cues? When more than one RpoD protein
is present in an organism (e.g., Thalassiosira), does one
member of this σ70 factor family interact with the regula-
tor protein or do different sigma/response regulators form
partnerships that control the expression of specific gene
sets? With the advent of high throughput genome
sequencing, more effective bioinformatics/evolutionary
analysis as well as extensive molecular studies of cellular
processes are now possible. From the questions posed
above, it is evident that events associated with chloroplast
gene regulation will continue to provide a challenging
field for future research.

Methods
Cell culture
All algal cultures were maintained on a 12 hr light:12 hr
dark (diel) photoperiod using cool white light (60 to 80
μEm-2s-1) with continuous rotary shaking at 60 rpm. Het-
erosigma akashiwo (Hada) Hada ex Hara et Chihara (strain
CCMP-452) was originally obtained from Sarah Gibbs
(McGill University, Canada). One liter vegetative cultures
were axenically maintained on an artificial sea water
medium as previously described [20,89]. Cells were
counted using a Coulter counter (model Z2 Coulter Parti-
cle Count and Size Analyzer; Beckman Coulter, Fullerton,
CA, USA) equipped with a 100 × 120 μm aperture.

RNA isolation
Axenic Heterosigma akashiwo cultures were harvested at a
density of 5 × 105 cells/mL and a modified protocol [89]
was used to obtain total RNA from these cells. All steps
were carried out with chilled reagents and performed at
4°C. H. akashiwo cells were collected by centrifugation at
1,000 × g for 5 min. Pelleted cells were resuspended to a
concentration of 2 × 107 cells/mL in a pH 7.5 buffer that
contained 25 mM KCl, 25 mM MgCl2, and 25 mM Tris
(KMT buffer). KMT-saturated phenol was added to the
lysed cell mixture at a ratio of (1.5:1). The phenol:super-

natant mixture was inverted slowly using a rotating wheel
for 20 min, followed by centrifugation at 9,750 × g for 15
min in a fixed angled rotor. An equal volume of KMT-sat-
urated phenol:chloroform:isoamyl alcohol (75:24:1) was
added to the retrieved supernatant and the inversion-cen-
trifugation steps repeated. The supernatant was removed
and extracted twice more as described above but with
chloroform:isoamyl alcohol (24:1) at a 1:1 ratio. RNA was
precipitated by adding 2 volumes of -20°C ethanol (95%)
and chilling overnight at -20°C after which it was pelleted
at 9,750 × g for 15 min. The ethanol was decanted and the
RNA was air dried at room temperature. One mL of RNase
free water was added to the RNA and left to dissolve on ice
for 15 min. To remove DNA contamination from total
RNA used for RACE, 40 μg of total RNA was incubated
with 10 U of DNase I in a 100 μL reaction volume accord-
ing to the manufacturer's instructions (Amplification
Grade, Invitrogen, Carlsbad, CA, USA). After the 15 min
incubation period with DNase I, total RNA was purified
using the Qiagen RNeasy kit (Qiagen, Valencia, CA, USA)
following the RNeasy Mini Protocol for RNA cleanup. The
removal of DNA contaminants was monitored by visual-
izing purified RNA on a 1.5% agarose gel containing 2.2
M formaldehyde and 1X MOPS [90].

Amplification of 550 bp from rpoD
Primers were designed to conserved regions of the rpoD
gene by aligning σ factors from Cyanidium caldarium
SigC(accession number BAA25788), Guillardia theta
(BAB87262) and Thalassiosira pseudonana [43]. PCR
amplification of the partial rpoD fragment was carried out
in a 50 μL reaction that contained 100 ng of template
DNA, 10 pmole of each primer ORAC 1104 and ORAC
1105 (Table 4), 1.5 Units of Taq Polymerase, 1X Taq
polymerase buffer, 1.5 mM MgCl2 (Promega, Madison,
WI, USA), and 0.2 mM of each dNTP (Invitrogen). Initial
denaturation of DNA was at 94°C for 3 min followed by

Table 4: Primers used for PCR, RACE, and genome-walking to 
generate rpoD and tsg1 gene sequences.

Primer 
name

Sequence

PCR
M13 forward 5'-GTAAAACGACGGCCAG-3'
M13 reverse 5'-CAGGAAACAGCTATGAC-3'
ORAC 1104 5'-AGGCTGACGAAGCTTGTGCAA-3'
ORAC 1105 5'-TTCTCTACCTACGCAACATGGTGG-3'

RACE
ORAC 240 5'-GATACGGTGAAGGACAAGGTCTCATC-3'
ORAC 242 5'-CAGTGGCTTCTGCAAGCTCCGCGAG-3'

Genome 
walking

ORAC 231 5'-TACCCAAAGTCTTCTCCAGTGTAACTAGAG-3'
ORAC 230 5'-GAATTTCTTCTTGTGCCGTCAACATATCG-3'
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30 cycles of 94°C for 1 min, 50–60°C for 1 min, and
72°C for 1 min. A final extension was carried out at 72°C
for 7 min. The PCR product was separated on a 1% TBE
agarose gel and the dominant 550 bp fragment purified
using the QIAquick Gel Extraction Kit (Qiagen). The puri-
fied 550 bp product was sequenced at the University of
Washington Biochemistry Sequencing Facility using ABI
3730XL high-throughput capillary DNA Analyser
(Applied Biosystems, Forest City, CA, USA).

5' and 3' rpoD RACE
BD SMART RACE cDNA amplification kit (BD Biosciences
Clontech, Palo Alto, CA, USA) was used to extend the
known rpoD sequence. 5' and 3' RACE primers were
designed using the sequence generated from the amplifi-
cation of 550 bp rpoD fragment by PCR (see above). Total
RNA was used to synthesize 5' RACE cDNA using 5'-CDS
primer and BD SMART II A oligo primer and the 3' RACE
cDNA using 3'-RACE CDS Primer A according to the man-
ufacturer's instructions. A negative control to verify the
absence of genomic DNA was performed by the exclusion
of the reverse transcriptase. The 5' RACE cDNA and nega-
tive control were amplified with Advantage 2 PCR kit
using the universal primer mix (UPM) from the SMART-
RACE kit and ORAC 242 primer (Table 4). 3' RACE cDNA
and negative control were amplified using UPM and
ORAC 240 primers (Table 4). PCR protocol included an
initial 3 min denaturation at 94°C, and then 30 cycles at
94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min. At
the end of these cycles an additional 5 min at 72°C was
performed to complete DNA synthesis. PCR products
were purified from the reaction mixture using the
QIAquick PCR purification kit and cloned into pCR-Blunt
II-TOPO vector (Invitrogen). Randomly selected clones
grown on Luria broth kanamycin (25 μg/mL) plates were
checked for inserts using PCR. To screen for inserts, 20 μL
of the 5 mL overnight cultures (25 μg/mL kanamycin in
Luria broth) were centrifuged at 16,000 × g for 5 min and
each resuspended separately in 100 μL of ddH20. For the
PCR, 5 μL of the cell suspension was added to a 50 μL vol-
ume reaction that contained 1X PCR buffer for KOD Hot
Start DNA polymerase (EMD Biosciences, Novagen
Brand, Madison, WI, USA), 0.2 mM dNTP, 1 mM MgSO4,
20 pmole of M13 forward and reverse primers (Table 4),
and 1 U KOD Hot Start DNA polymerase. Plasmid DNA
containing inserts was isolated using Qiaprep spin Mini-
prep columns (Qiagen) according to the manufacturer's
directions. The inserts sequences were determined by dye-
terminator automated sequencing using M13 forward and
reverse primers (SigmaGenosys, The Woodlands, TX,
USA) on 5 clones each for both the 5' RACE and 3' RACE.

Genome walking to obtain the 5' UTR region of the rpoD 
gene
High molecular weight DNA was extracted from Heter-
osigma akashiwo cells grown to a density of 1.3 × 105 cells/

mL. Harvested cells were extracted by following an on-line
protocol [91]. The cells (8.7 × 107) were resuspended in
20 ml of cold lysis buffer (20 mM EDTA, 10 mM TrisCl,
pH 8, 1% Triton X, 500 mM Guanidine-HCl, and 200 mM
NaCl). The lysate was incubated at 37°C for 1 hour with
gentle agitation. The DNA was treated with RNAse A (20
μg/mL) for 30 min at 37°C followed by Proteinase K (0.8
mg/mL) for 2 h at 50°C using gentle agitation. To remove
cell debris, this lysate was pelleted by centrifugation at
9,750 × g for 20 min and the clear supernatant was
removed. Three mL of the lysate were added to each QBT
buffer equilibrated Qiagen genomic 100 tip. The columns
were washed twice with 10 mL of buffer QC. DNA was
eluted from the genomic 100 tip with 5 mL of buffer QF
and precipitated by the addition of 0.7 volume room tem-
perature isopropanol. The DNA was pelleted by centrifu-
gation at 9,750 × g for 20 min and the air-dried pellet
resuspended in 1 mL of buffer EB (Qiagen). The DNA was
stored at 4°C to prevent shearing from freeze thawing.
The BD GenomeWalker™ Universal Kit (Clontech) was
used to make four libraries by digesting the high molecu-
lar weight DNA with DraI, EcoRV, PvuII, and StuI, fol-
lowed by DNA purification, and ligation of genomic DNA
to BD GenomeWalker™ adaptors according to the manu-
facturer's instructions. The Genome Walker libraries were
used to amplify DNA upstream of the known rpoD
sequence by using ORAC 233 primer (Table 4) and AP1
primer provided in the kit by using BD Advantage 2
Polymerase Mix according to BD GenomeWalker™ Uni-
versal procedures. A nested PCR was performed using
primer ORAC 232 (Table 4) and AP2 primer (kit primer)
as suggested in the manual. The PCR products were sepa-
rated on a 1% TAE gel and the dominant bands were
excised and purified using the Qiagen Gel extraction pro-
tocol. The purified products were cloned into TOPO TA
vector (Invitrogen) and sequenced using M13 forward
and reverse primers.

Domain analysis of Tsg1 protein and its homologues in a 
cyanobacterium and in rhodophytes
Similarity searches for Tsg1 were performed using the
NCBI protein-protein BLAST algorithm [92]. Domain
architecture analysis was carried out for the four proteins
of Figure 1 using the SMART database default parameters.
Amino acid sequences were aligned using Clustal W ver-
sion 1.83 [93] as implemented by GenomeNet Computa-
tion Service [94] with default parameters. The domains
from the SMART dataset were then used to establish the
boundaries for the PAS, HAMP, HisKA and HATPase
domains for Tsg1 in the Clustal W alignment. It was
unnecessary to make further refinements since the
domains fell into groups and few sequence gaps were
present.
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Peptide signalling and stromal targeting domains within 
rpoD transcript
The rpoD sequence, and unpublished data generated in
our laboratory for fucoxanthin chlorophyll binding pro-
tein 2, and phosphoribulose kinase transcripts were sub-
mitted to SignalP 3.0 Server [95,96] for identification of
the signal peptide. The beginning of the stromal targeting
domain was designated by the presence of a conserved
phenylalanine residue [62,97,98].

Trg1 peptide antibody and Western detection of Trg1
An oligopeptide (amino acid sequence-CDEIEEKILLR-
LKNENNKEK) unique to the Heterosigma akashiwo Trg1
sensor kinase was synthesized based on a hydrophilic
region in the amino terminal end of the Trg1 protein. Syn-
thesis and purification (85%) of this oligopeptide was
done at Lampire Biologicals (Pipersville, PA, USA). The
synthesized peptide was coupled to the carrier protein
keyhole limpet hemocyanin (KLH) through the cysteine
residue at the N-terminus of the peptide. Polyclonal anti-
bodies (IgG) were directed against Trg1 peptide in three
rabbits; each rabbit injected with 0.5 mg of purified pep-
tide in Freund's complete adjuvant. Pre-immune antisera,
collected prior to the initial injection, and total purified
antisera (day 50), were both supplied by Lampire Biolog-
icals and stored at -80°C until use.

Western blots were performed using X-Cell Sure Lock
Mini Cell and NuPAGE MOPS SDS buffer kit (Invitrogen)
according to manufacturer's instructions. Heterosigma
akashiwo cells (1.6 × 106 cells) were harvested at a density
of 1.3 × 105 cells/mL at L3 in a 12 h light:12 h dark period.
The cells were pelleted at 3,800 × g for 10 min and the
supernatant decanted. The pelleted cells were resus-
pended in 200 μL of NuPAGE lysis buffer and heated to
70°C for 10 min. The supernatant was clarified by centri-
fuging the lysed cells at 10,200 × g for 5 min at room tem-
perature. The clarified protein samples (10 μL) and 2 μL
of "Magic Mark Western" protein standard (Invitrogen)
were separated on a NuPAGE Novex Bis-Tris gel (Invitro-
gen) at 180 V for 1 hr at 20°C. Proteins were electropho-
retically transferred to BioRAD Transblot nitrocellulose
membrane (0.45 μm, BioRAD Laboratories, Hercules, CA,
USA) in NuPAGE transfer buffer with the X-Cell Blot
Module for 1 hr at 30 V at 20°C. The blot was blocked at
4°C overnight using blocking buffer (1X PBS, pH 7.0, 3%
non-fat dried milk, and 0.05% Tween-20). A preadsorp-
tion control was carried out to establish the specificity of
the polyclonal antibodies to Trg1 by exposing the post-
bleed serum (10 μL) to 2 mg of Trg1 oligopeptide over-
night at 4°C. After the overnight incubation, the
preadsorption control was centrifuged at 16,000 × g for 20
min and the supernatant removed. Blots were probed
with prebleed serum, postbleed serum, and the pread-
sorption control at a dilution of 1:500 for 1 hr at room
temperature. The membranes were treated in wash buffer

(10 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 0.05%
Tween-20) with four buffer changes of 45 min each. The
Super Signal West Pico anti-rabbit IgG detection kit
(Pierce, Rockford, IL, USA) was used to detect Trg1 pro-
tein. The blots were gently agitated at room temperature
while submersed in the diluted secondary antibody
(1:50,000). Four washes (45 min each) in wash buffer
were used to remove the unbound secondary antibody.
After washing, 3 mL of the working solution from the
Pierce kit (equal parts of stable peroxide solution and
luminal/enhancer) were combined and placed on the
membranes. The blots were placed on CL-Xposure film
(Pierce) and developed in Fischer Model K-Plus Auto-
matic X-Ray film processor (Fischer Industries Inc.,
Geneva, IL, USA) after 4 min.

Trg1 protein modelling
Three know structures were used to model Heterosigma
akashiwo Trg1: Thermotoga maritima OmpR (1 KGS),
Escherichia coli PhoB (1QQI), E. coli OmpR (1OPC) [30-
33]. Structures were obtained from the Protein Data Bank
[99,100]. Modelling was carried out with tools available
in the suite of programs in the "Molecular Operating Envi-
ronment" from the Chemical Computing Group, Mon-
treal [101].
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tsg1 – transcriptional sensor gene 1; trg1 – transcriptional
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