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1 Introduction

Neutrino physics is nowadays quite an active field of research, from several directions.

These include nuclear physics (neutrinoless double beta decay, matter effects, response

functions of weak currents in nuclei), particle physics (neutrino detection, neutrino oscil-

lations, Standard Model extensions, Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix,

CP violation, lepton number violation, sterile neutrinos), astrophysics (neutrino production

in stars, supernovae dynamics, neutrino telescopes), cosmological (dark energy, inflation,
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primordial neutrinos), and even more speculative ones such as using neutrinos for com-

munication through quantum channels. More importantly, these are not separated fields,

rather they are closely interconnected in such a way that advances in one fields sheds light

on all other fields as well [1–14].

On the other hand, CP violation remains as a challenging subject [15–23] since its

discovery fifty years ago [24] and subsequent observation of direct CP violation [25, 26].

CP violation plays a key role in the understanding of baryo- and leptogenesis [27–29], time-

reversal violation (through CPT invariance) or the electric dipole moments of particles [30].

There is no generally accepted explanation for the non-violation of CP symmetry in the

strong interaction sector [31]. In the electroweak sector, CP violation enters through the

flavor mixing complex mass matrices of the fermions, the Cabibbo-Kobayashi-Maskawa

(CKM) matrix for quarks [32] and the PMNS matrix for leptons [33–35]. The CKM matrix

elements are currently known with some precision and the CP-violating phase turns out

to be rather small [36]. For the PMNS matrix, the angles are being measured in current

experiments [37–40] while no information is currently available for the phases on which CP

violation depends.

In the present work, we deal with the effective action of the Standard Model (extended

to include neutrino masses) and more concretely with its CP violating component. By

effective action here we refer to the functional obtained by integration of the fermions

(quarks and leptons) in the theory. Such functional depends on the configurations of the

unintegrated fields in the Standard Model, namely, the gauge bosons (W±, Z0, photon

and gluons) and the Higgs field. The effective action so defined, Γ, is a complicated gauge

invariant functional of these bosonic fields. In order to organize this functional we adopt a

local expansion, namely, classifying the terms by their number of covariant derivatives,

Γ =

∫

d4x
∑

i

giOi(x). (1.1)

The quantities Oi(x) stand for the possible local operators (monomials) that can be con-

structed using the available fields, restricted by gauge and Lorentz covariance, etc. The

gi are the couplings of these operators in the effective action of the (extended) Standard

Model. Each operator has a certain number of covariant derivatives. In this counting

the gauge fields count as one derivative, therefore (barring the Higgs field) the operators

are essentially classified by their mass dimension.1 We aim at the computation of the

couplings to the leading (lowest dimensional) operators which are CP odd. The effective

action has been modeled before in the literature, assuming phenomenological values or

estimates for the couplings to non-renormalizable operators, with the purpose of studying

electroweak baryogenesis or electric dipole moments of particles [41–46]. At variance with

this phenomenological approach, our purpose here is to carry out a direct calculation of the

couplings using a strict derivative expansion starting from the Standard Model Lagrangian.

1Of course, the mass dimension carried by the Higgs field is relevant for the (non) renormalizability of

the operators. The Higgs field is properly included in our calculation below, we merely disregard it in our

classification of operators.
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The specific motivation for this calculation comes from the observation by Smit [47]

that CP violation needs not be parametrically small in the Standard Model. It is well-

known that CP violation, even if allowed in the Standard Model through the Kobayashi-

Maskawa mechanism, is a rather elusive phenomenon. For quarks or Dirac neutrinos it

requires the participation of at least three generations to have a non vanishing result. This

is best summarized by the Jarlskog determinant which involves the CKM matrix through a

very specific combination, the Jarlskog invariant [48], and the quarks masses also in a very

specific combination,
∏

i<j=u,c,t(m
2
i −m2

j )
∏

i<j=d,s,b(m
2
i −m2

j ). The Jarlskog determinant

is a twelfth degree polynomial in the masses which must be present, as a factor, in any CP

violating contribution [49]. If the Jarlskog determinant is simply compensated with the

appropriate power of v, the Higgs vacuum expectation value, one obtains extremely small

ratios: the dimensionless ratio obtained by dividing by v12 gives a number as small as 10−24

for quarks. This is a parametrically small result that comes from assuming a perturbative

treatment for the fermion masses. The observation in [47] is that, instead of polynomials

one should expect rational functions (plus logarithms) of the fermion masses and this may

lead to a substantial increase in the estimate of the strength of the couplings to CP violating

operators at zero temperature (the only case we consider throughout this work).

Calculations along these lines were carried out for quarks and dimension six operators

in [50] for the P odd sector only, and in [51] for the two parity sectors and including also the

Higgs field. Unfortunately, the results of the two groups, obtained by two different methods,

are mutually incompatible. The result obtained in [51], has been reproduced in [52] using

the same method as in [51] and also in [53], this time using the same method as in [50]. The

couplings to selected dimension eight operators have been obtained in [53] and [54]. For

Dirac particles these are the first instances of P odd CP violating contributions. Extensions

to finite temperature have been addressed in [52, 54].

In those calculations one indeed finds a large enhancement in the value of the couplings,

as compared to perturbative estimates. Such larger couplings would have an impact on

the viability of cold electroweak baryogenesis scenarios [52, 55, 56]. Ultimately, the en-

hancement comes from the fact that the typical scale in the coupling is not set by value

of the Higgs condensate but rather by the quark masses themselves and some of them are

relatively small.2 However, the precise combinations of masses are not obvious without

a detailed calculation. For dimension six operators, what is actually found is that the

coupling comes from a loop momentum integral which would be afflicted by infrared (IR)

divergences for massless u, d and s quarks. As a consequence, finite but different results

are obtained depending on how the ratios between light quark masses are taken in that

massless limit.

The coupling to dimension six CP violating operators just discussed does not have a

contribution from leptons in the strict Standard Model, where neutrinos are massless. In

fact, the leptonic loop exactly preserves CP symmetry for massless neutrinos. Nevertheless,

the scheme used for quark applies quite directly to massive neutrinos of Dirac type. The

2Equivalently, disregarding the very disparate scales in the values of the Yukawa couplings is not a good

enough estimate.
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small neutrino masses calls for an investigation of how the possible IR divergencies affect

the couplings in the leptonic sector. In some sense the leptonic case is cleaner than the

quarkonic one, as gluonic corrections (which start at dimension 8) are not present. On the

other hand, the information on neutrino masses and the PMNS matrix is currently less

complete than for quarks. In addition, neutrinos may have mass terms of Majorana type

that can be accommodated in the Standard Model invoking a seesaw mechanism [57–60]. It

is of interest to investigate how the small masses of Majorana type reflect on the couplings

to CP violating operators. This requires a full new determination of the couplings, as the

Dirac results can not be directly adapted to describe the Majorana case. In this work

we consider these two cases, pure Dirac and pure Majorana neutrinos, with three light

flavors although some of the formulas are more general. As we show, the induced CP

violating operators have at least dimension six. The mixed case, with mass terms of Dirac

and Majorana type simultaneously, is also interesting as it allows dimension four CP odd

operators but it is beyond the scope of the present work.

Section 2 reviews aspects of chiral gauge fermions with Dirac mass terms. There we

present a new derivation of the technique first introduced in [61] to reduce normal and

abnormal parity components of the fermionic effective action to a gauge covariant Klein-

Gordon approach, based on the operator K. In the second part of that section we adapt

the previous approach to include Majorana mass terms, in addition to the Dirac mass ones,

in such a way that the effective action also follows from the determinant of K.

In section 3 we spell out how the the previous formalism applies to the leptonic sector

of the Standard Model. Before restricting ourselves to the cases of pure Dirac or pure

Majorana neutrino masses, in the second part of the section we briefly discuss the general

case of mixed Dirac plus Majorana masses.

Section 4 discusses the extraction of the CP odd component of the effective action with

an analysis on the types of allowed contributions. There it is shown that also for Majorana

neutrinos the leading CP violating terms are of dimension six, with fourW fields. However,

a new lepton-number violating mechanism is present in the Majorana case, which works

even for two generations, in addition to the usual Kobayashi-Maskawa mechanism already

present in the Dirac neutrino or quark cases. New mechanisms are found in the mixed

Dirac-Majorana case which involves no charged gauge bosons.

The operator K for the Standard Model with Dirac or Majorana neutrinos is con-

structed in detail in section 5. A direct application of the definition of K in the Majorana

case leads to expressions with inverse powers of the neutrino mass matrix, although they

dissappear from the final amplitudes. In that section we show how to remove these inverse

powers directly from the K operator, from which the effective action follows.

Section 6 describes the explicit computation of the effective action in the CP odd sector,

for the lowest dimensional operators. The calculation is based on the technique of covariant

symbols [62, 63, 79] which directly delivers covariant operators in the derivative expansion.

In that section the allowed operators are listed together with relations among them from

integration by parts, Bianchi identities or transference of Lorentz indices from “metric”

type to “exterior algebra” type. Explicit results for the couplings are given in terms of

momentum integrals involving masses and the PMNS matrix. Analytical regularities in

the results are discussed there.
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Section 7 is devoted to analyzing the results obtained in the previous section. The

new invariants that emerge in the Majorana case, in addition to the usual Jarlskog invari-

ant, are identified. Taking advantage of the small neutrino masses, reliable approximate

formulas are derived for the couplings of Dirac type and Majorana type. The formulas are

particularized for three typical scenarios considered in the literature, namely, quasi degen-

erate neutrino masses, and normal and inverted hierarchies. Numerical estimates for the

couplings to CP violating operators are given for each of the scenarios. For Dirac neutri-

nos, it is shown that the different light-heavy patterns in the quark and lepton sectors, as

regards to weak isospin, imply a suppression of lepton contributions as compared to quarks

contributions. At the same time, for Majorana neutrinos new operators are activated at

leading order in the P violating sector.

Section 8 summarizes our conclusions.

2 Dirac and Majorana chiral gauge fermions

2.1 Dirac fermions

We start by reviewing Dirac chiral gauge fermions since eventually Majorana fermions

will be reduced to this case. We closely follow the exposition in [51] and use the same

conventions, so further details can be looked up in that reference. For convenience we work

in Euclidean space. The rules to go back and forth between Minkowskian and Euclidean

spaces can be found in [51].

For Dirac fermions we consider a generic Lagrangian of the form

L(x) = ψ̄(x)Dψ(x)

= ψ̄R /DRψR + ψ̄L /DLψL + ψ̄LmLRψR + ψ̄RmRLψL
(2.1)

where

DL,R
α = ∂α + V L,R

α (2.2)

and V L,R
α (x) and mLR(x) and mRL(x) are external bosonic fields which are matrices in the

internal space of the fermions. (Euclidean) unitarity requires

mLR(x) = m†
RL(x), V †

L,R(x) = −VL,R(x). (2.3)

In the chiral representation of the Dirac gammas, ψR and ψ̄L have only upper components,

and ψL and ψ̄R have only lower components. The fermionic sector of the Standard Model

fits in the scheme of eq. (2.1) when all fermions are of Dirac type [51]. Later below we

show that it also can accommodate Majorana fermions.

Integration of the fermionic fields provides the effective action Γ:

Z =

∫

DψLDψRDψ̄LDψ̄R e
−

∫
d4xL(x) = DetD,

Γ[mLR,mRL, VL, VR] = − logZ = −Tr logD.

(2.4)

This functional just sums all one-loop Feynman graphs with the fermion running on the

loop with bosonic external fields attached to it. In this paper by effective action we will
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always mean the one-loop effective action from integration of the fermions, and not the

full effective action which would include higher loop graphs with internal gauge and Higgs

boson lines.

The effective action is invariant under CP transformations

mLR(x) → m∗
LR(x̃), mRL(x) → m∗

RL(x̃),

VR,α(x) → παβV
∗
R,β(x̃), VL,α(x) → παβV

∗
L,β(x̃), (2.5)

with παβ = diag(1,−1,−1,−1), x̃α = παβxβ .

The effective action can be naturally separated into its parity preserving and parity

violating components,

Γ = Γ+ + Γ−. (2.6)

Γ− and Γ+ are the components with and without the Levi-Civita pseudotensor, respectively.

As a consequence of CPT invariance, Γ+ is purely real and Γ− is purely imaginary, in

Euclidean space [64]. Therefore, modulo ultraviolet (UV) ambiguities,

Γ± = −1

2
(Tr logD± Tr logD†). (2.7)

The Lagrangian L(x) is invariant under local chiral transformations. To expose the

chiral properties it will prove convenient to write the Lagrangian in matricial form, namely,

L(x) =
(

ψ̄L ψ̄R

)

(

mLR /DL

/DR mRL

)(

ψR
ψL

)

. (2.8)

Chiral gauge transformations take the form

D → DΩ =

(

Ω†
L(x) 0

0 Ω†
R(x)

)

D

(

ΩR(x) 0

0 ΩL(x)

)

(2.9)

where ΩL,R(x) are unitary matrices in internal space.

When ΩL = ΩR (vector transformations) D y DΩ are related by a similarity transfor-

mation, as a consequence they have the same spectrum and the same effective action. In

the general chiral case the two effective actions Γ(D) and Γ(DΩ) have equal UV convergent

contributions, since these are unambiguously fixed by the Lagrangian, but may differ in UV

divergent ones. More specifically, from eq. (2.7) it follows that Γ+ can be obtained from the

determinant of DD†. This latter operator transforms under a similarity transformation,

DD† →
(

Ω†
L(x)

Ω†
R(x)

)

DD†

(

ΩL(x)

ΩR(x)

)

, (2.10)

and so it can be regularized in a chirally invariant manner. On the contrary Γ− has a chiral

variation, the chiral anomaly, which cannot be consistently removed [65–67]. The chiral

anomaly is saturated by the gauged Wess-Zumino-Witten action (WZW) action [68, 69],

and the remaining terms in Γ− are chirally invariant. Denoting by Γc the chirally invariant

component of Γ, one has

Γ+ = Γ+
c , Γ− = Γ−

c + ΓgWZW. (2.11)

– 6 –
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The anomalous gauged WZW is known in closed-form and, as we will argue below, it

gives no contribution to CP violation, with either Dirac or Majorana neutrinos.

The chiral invariant reminder Γc[m,V ] is a functional of the external fields that admits

no closed-form in general. Therefore expansions, such as a the derivative expansion, must

be adopted. Nevertheless the chiral invariance of Γc implies a large simplification in the

calculations since everything can be expressed in terms of mLR and mRL, their chiral

covariant derivatives, and the field strengths,

D̂αmLR = DL
αmLR −mLRD

R
α , D̂αmRL = DR

αmRL −mRLD
L
α ,

FL,Rαβ = [DL,R
α , DL,R

β ].
(2.12)

A complete calculation of Γc to four covariant derivatives can be found in [70–72].

However, the calculation gets very involved for higher orders. As we argue below, the sixth

order is needed in the derivative expansion to pick up the leading CP violating terms of the

effective action.3 To obtain those we follow [51] and take the approach of [61], although

here we present an alternative derivation.

Consider the well-known relation [73]
∫

dnψdnψ̄ e−ψ̄Mψ+η̄ψ+ψ̄η = detM eη̄M
−1η, (2.13)

and separate the Grassman variables in two types

ψ̄Mψ =
(

ψ̄1 ψ̄2

)

(

M1,1 M1,2

M2,1 M2,2

)(

ψ1

ψ2

)

(2.14)

where the Mi,j are themselves matrices in general. By integrating first ψ1 and ψ̄1, and

then ψ2 and ψ̄2, or the other way around, the following identities are obtained

detM = detM2,2 det
(

M1,1 −M1,2M
−1
2,2M2,1

)

= detM1,1 det
(

M2,2 −M2,1M
−1
1,1M1,2

)

.
(2.15)

These identities can be applied directly to the chiral fermions in eq. (2.8):

DetD = Det(κL) = Det(κ̄R) (2.16)

with4

κL = mLRmRL − σαDLαm
−1
RLσ̄βDRβmRL ,

κ̄R = mRLmLR − σ̄αDRαm
−1
LRσβDLβmLR.

(2.17)

Here, σα and σ̄α are the Pauli and identity matrices corresponding to the chiral represen-

tation of the the Dirac gammas:

γα =

(

0 σα
σ̄α 0

)

, γ5 =

(

1 0

0 −1

)

. (2.18)

3At least for pure Dirac or Majorana neutrinos (see eq. (4.11)).
4Here we are assuming that mLR is a square and regular matrix. This is natural in parity preserving

theories but not in chiral theories. Nevertheless this case is sufficiently general for our purposes.
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To avoid working with Dirac bispinors, we introduce the operators

KL = mLRmRL − /DLm
−1
RL /DRmRL =

(

κL 0

0 κ̄L

)

,

KR = mRLmLR − /DRm
−1
LR /DLmLR =

(

κR 0

0 κ̄R

)

.

(2.19)

These two operators are related through the identity

KR = m−1
LRK

†
LmLR. (2.20)

In terms of these operators

Tr(log κL) = Tr(PR log KL), Tr(log κ̄R) = Tr(PL log KR),

PL,R =
1

2
(1∓ γ5),

(2.21)

and we finally obtain

Γc = −Tr(PR log KL) = −Tr(PL log KR) ,

Γ+
c = −1

2
Tr(logKL) = −1

2
Tr(logKR),

Γ−
c = −1

2
Tr(γ5 logKL) = +

1

2
Tr(γ5 logKR).

(2.22)

To make the identifications with Γ+
c and Γ−

c above, we have used that only γ5 introduces the

Levi-Civita pseudotensor after taking Dirac traces. On the other hand the identity (2.20)

implies that Γ+
c is purely real and Γ−

c is purely imaginary (in Euclidean space).

The usefulness of the relations (2.22) is two-fold, first, KL,R are operators of Klein-

Gordon type. While this was already the case for DD†, to obtain Γ+
c , no such operator was

available for Γ−
c before [61]. This allows a substantial simplification of the Dirac algebra

in the calculations. And second, KL,R are chiral covariant, that is,

KL → Ω†
LKLΩL, KR → Ω†

RKRΩR. (2.23)

This fact guarantees that explicit chiral gauge invariance can be maintained throughout

the calculation, also in the parity odd component of the effective action (the component

afflicted by chiral anomalies).

It is also of interest to see the relation of the operators KL,R with an effective La-

grangian of the Klein-Gordon type for the fermionic amplitudes. The propagator is given by
〈(

ψR(x)

ψL(x)

)

(

ψ̄L(x
′) ψ̄R(x

′)
)

〉

= 〈x|D−1|x′〉. (2.24)

On the other hand, the inverse Dirac operator can be written as

D−1 =

(

(mLR − /DLm
−1
RL /DR)

−1 ( /DR −mRL /D
−1
L mLR)

−1

( /DL −mLR /D−1
R mRL)

−1 (mRL − /DRm
−1
LR /DL)

−1

)

. (2.25)

– 8 –
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Comparing with the definitions of KL,R in eq. (2.19), it follows that

〈x|PRK−1
L |x′〉 = m−1

RL〈ψR(x)ψ̄L(x′)〉, 〈x|PLK−1
R |x′〉 = m−1

LR〈ψL(x)ψ̄R(x′)〉. (2.26)

Therefore the effective Lagrangian ψ̄LKLψ̃R(x), with ψ̃R ≡ m−1
RLψR, correctly describes the

propagator 〈ψRψ̄L〉, although it gives no direct information on, e.g., 〈ψLψ̄L〉, and similarly

for KR.

The manipulations leading to (2.15) and (2.22) are based on the formal identity

Tr log(AB) = Tr log(A) + Tr log(B), (2.27)

where A and B are differential or pseudodifferential operators. In fact, the determinant

of these operators contains UV divergences which have to be removed by means of some

renormalization procedure (e.g., ζ-function [74–76]). The choice of renormalization intro-

duces finite ambiguities which can give corrections to the formal identity. This is the origin

of the quantum anomalies and the gauged WZW term above. (For a careful treatment

including everything as in (2.11) see [61, 71, 77].) On the other hand, the formal identity

holds for the UV finite contributions. Within the derivative expansion, the UV convergent

terms are those of order six and higher which we will compute below for the CP odd sector.

Therefore no quantum ambiguities nor anomalies appear in the CP violating sector.

2.2 Majorana fermions

The fermion Lagrangian including Majorana mass terms is of the form5

L(x) =ψ̄R /DRψR + ψ̄L /DLψL + ψ̄LmLRψR + ψ̄RmRLψL

+
1

2
ψ̄cLmLψL +

1

2
ψ̄Lm

†
Lψ

c
L +

1

2
ψ̄cRmRψR +

1

2
ψ̄Rm

†
Rψ

c
R .

(2.28)

Here, as usual, ψcL,R ≡ Cψ̄TL,R and ψ̄cL,R ≡ −ψTL,RC†, C being the unitary matrix such that

C†γαC = −γTα . The Majorana mass complex matrices mL(x) and mR(x) are symmetric

since C is antisymmetric. Under CP and chiral gauge transformations they transform,

respectively, as

mL(x) → m†
L(x̃), mR(x) → m†

R(x̃),

mL(x) → ΩTL(x)mL(x)ΩL(x), mR(x) → ΩTR(x)mR(x)ΩR(x).
(2.29)

In the Euclidean formulation, ψL,R(x) and ψ̄L,R(x) are independent fields to be inte-

grated over. On the other hand, ψcL,R, ψ̄
c
L,R are merely auxiliary variables (ψ̄cL has the

same content as ψL, etc). The Lagrangian with Dirac and Majorana mass terms can be

5Further “Majorana” vector couplings can be considered, of the type
1

2
ψ̄

c
L /ALRψR +

1

2
ψ̄

c
R /ARLψL +H.c.,

however, such terms are not present in the Standard Model or any renormalizable theory. Renormalizability

would require these vector fields to be of gauge type and the gauge group would mix different chiralities

which is forbidden for an internal symmetry.

– 9 –
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written in matrix form using the trick of duplicating the size of the matrices, specifically

(cf. eq. (2.8))

L(x) = 1

2

(

ψTR ψTL ψ̄R ψ̄L

)











−C†mR 0 − /DT
R −mT

LR

0 −C†mL −mT
RL − /DT

L

/DR mRL Cm†
R 0

mLR /DL 0 Cm†
L





















ψR
ψL
ψ̄TR
ψ̄TL











. (2.30)

As it should be, the operator in between is antisymmetric, the fermion fields being Grass-

mann c-numbers. Functional integration on ψL,R(x) and ψ̄L,R(x) gives the Pffaffian of this

operator, which equals the square root of its determinant. Having reduced the problem to

a determinant, one can apply similarity transformations to remove C to enforce explicit

Lorentz invariance, as well as rearrangement of rows and of columns to obtain a suitable

form. Specifically, we take

L(x) = 1

2

(

ψ̄L ψ̄
c
R ψ̄R ψ̄cL

)











mLR m†
L /DL 0

mR mT
LR 0 /D∗

R

/DR 0 mRL m†
R

0 /D∗
L mL mT

RL





















ψR
ψcL
ψL
ψcR











:=
1

2
Ψ̄D2Ψ . (2.31)

It is important to remark that in eq. (2.30) /DT = γTαD
T
α , while in eq. (2.31) we use the

notation /D∗ := γαD
∗
α (no complex conjugation on the Dirac gammas). We will adopt the

same notation in what follows. Also, D∗
α = ∂α + V ∗

α and DT
α = −∂α + V T

α = −D∗
α.

As already noted the partition function equals (DetD2)
1/2, therefore

Γ[mLR,mRL,mL,mR, VL, VR] = −1

2
Tr logD2. (2.32)

The order of the fields in D2 has been chosen so that the problem of computing DetD2

is identical to that for pure Dirac fermions in eq. (2.8), with the replacements

ψL,R →
(

ψL,R
ψcR,L

)

, ψ̄L,R →
(

ψ̄L,R ψ̄cR,L

)

,

mLR →
(

mLR m†
L

mR mT
LR

)

, mRL →
(

mRL m†
R

mL mT
RL

)

, (2.33)

DLα →
(

DLα 0

0 D∗
Rα

)

, DRα →
(

DRα 0

0 D∗
Lα

)

.

In particular, the explicit results in [70–72] for the effective action of Dirac fermions can

be immediately extended to Majorana fermions using the above identifications.

The chiral transformation of D2 is given by

D2 →











Ω†
L

ΩTR
Ω†
R

ΩTL











D2











ΩR
Ω∗
L

ΩL
Ω∗
R











, (2.34)
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so the chiral invariant part of the effective action will involve the chiral covariant pieces in

eq. (2.12), plus the new chiral covariant derivatives

D̂αmL = DL∗
α mL −mLD

L
α , D̂αmR = DR∗

α mR −mRD
R
α . (2.35)

3 The (extended) Standard Model

3.1 Leptonic sector of the Standard Model

The fermionic sector of the Standard Model of particle physics, extended to include either

Dirac, Majorana or mixed neutrino masses can be accommodated in the scheme of the pre-

vious section. First we consider explicitly the general case where both Dirac and Majorana

neutrino masses are present and eventually we will restrict ourselves to the simpler cases

of pure Dirac or pure Majorana neutrino masses.

In order to apply eq. (2.31) to the leptonic sector of the extended Standard Model we

take the identifications

ψ̄L,R =
(

ν̄L,R ēL,R

)

, ψL,R =

(

νL,R
eL,R

)

, (3.1)

where eL,R(x) is the field of the charged leptons. This is a Dirac spinor as well as a vector

on generation or family space, containing the electron, muon and tau fields. Likewise,

the vector νL,R(x) represents the fields of the three left-handed neutrinos, and a certain

number Ns of right-handed ones. The dimensions of νL, νR, eL and eR are g, Ns, g and g,

respectively, where g = 3 is the number of generations.

Further, for the mass terms in eq. (2.31)

mLR = m†
RL =

(

φ
vMD 0

0 φ
vMe

)

, mL =

(

φ2

v2
ML 0

0 0

)

, mR =

(

MR 0

0 0

)

. (3.2)

MD andMe are constant complex matrices in generation space representing the Dirac mass

matrices of neutrinos and charged leptons, respectively. Similarly ML and MR are the

Majorana mass matrices of left and right handed neutrinos, respectively. The dimensions

of MD, Me, ML and MR are g ×Ns, g × g, g × g and Ns ×Ns, respectively.

We adopt the unitary gauge throughout. φ(x) is the neutral Higgs field in that gauge

and v its vacuum expectation value. The coupling of the mass terms to the Higgs field

adopted here takes into account that ν̄RνL and ēReL are SU(2) doublets, as the Higgs,

while ν̄cLνL is a triplet and ν̄cRνR is a singlet [59].

Finally, the covariant derivatives in eq. (2.31), take the following form in the Standard

Model:

DL
α =

(

Dν
α + Zα W+

α

W−
α De

α − Zα

)

, DR
α =

(

Dν
α 0

0 De
α

)

. (3.3)

W±
α represent the fields of the charged bosons and Zα the field of the Z0. For convenience

we have included the SU(2) × U(1) couplings in the gauge fields. The relation to the

canonically normalized fields (denoted with tilde) is as follows [51, 78]

W±
α =

1√
2
gW̃±

α , Zα =
1

2

g

cos θW
Z̃α =

1

2
gW̃ 3

α − 1

2
g′B̃α, (3.4)
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Quantity Complex CP

conjugation

φ φ φ

W±
α −W∓

α −W∓
α

Zα −Zα −Zα
ϕα ϕα ϕα
F eαβ −F eαβ −F eαβ
ǫµναβ ǫµναβ −ǫµναβ
U U∗ U∗

Table 1. Transformation of various quantities (Euclidean version) under complex conjugation and

CP. The derivatives of the fields follow the same rules as the fields themselves.

where B̃α is the gauge field of the weak hypercharge U(1) group and θW the weak angle.

On the other hand, Dν and De are covariant derivatives, corresponding to the remaining

gauge freedom within the unitary gauge. Specifically,

Dν
α = ∂α, Aνα = 0,

De
α = ∂α +Aeα, Aeα = −g′B̃α = −eÃα + 2 sin2 θW Zα,

(3.5)

where Ãα is the photon field and −e the electron electric charge. In the following we will

work with Zα and De
α as basic variables, but it should be remembered that Zα also appears

in De
α when the final results are expressed in terms of the physical fields Z̃α and Ãα.

From the general formula in eq. (2.12) the following field strengths can be constructed:

W+
αβ := Dν

αW
+
β −W+

β D
e
α = ∂αW

+
β −AeαW

+
β ,

W−
αβ := De

αW
−
β −W−

β D
ν
α = ∂αW

−
β +AeαW

−
β ,

F eαβ := [De
α, D

e
β ] = ∂αA

e
β − ∂βA

e
α,

Zαβ := Dν
αZβ − ZβD

ν
α = ∂αZβ .

(3.6)

Let us emphasize that the tensors W±
αβ and Zαβ just defined are not antisymmetric.

The properties of these fields under complex conjugation and CP follow from eqs. (2.3)

and (2.5). They are summarized in table 1.

3.2 Neutrinos with mixed Dirac-Majorana mass terms

The main topic of the paper is Majorana and Dirac neutrinos. Nevertheless, for future

reference, in the rest of this section we briefly review the case of general neutrino mass

matrices. For simplicity we set φ(x) = v in this discussion and assume that there are no

accidental mass degeneracies and no fermion is massless.

Certainly, one can rotate the lepton fields by means of constant unitary matrices so

that the eqs. (3.2) and (3.3) are unchanged except that Me is replaced by a diagonal

and positive matrix me. Once this choice is taken, the neutrino mass matrices can be
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diagonalized by means of a unitary transformation as follows
(

M∗
L MD

MT
D MR

)

= U
(

m1 0

0 m2

)

UT , U =

(

A B

D C

)

, U−1 = U†, (3.7)

so that the matrices m1,2 are diagonal and positive. A and C are square submatrices but

need not be unitary.

If these rotations are applied to the fermion fields the structure in eq. (2.31) is not

preserved, since right and left handed fields are mixed. However the form in eq. (2.8) still

holds, with

mLR = m†
RL =











0 0 m1 0

0 me 0 0

m2 0 0 0

0 0 0 me











,

DL
α =











Dν
α +A†AZα A†W+

α A†BZα 0

AW−
α De

α − Zα BW−
α 0

B†AZα B†W+
α Dν

α +B†BZα 0

0 0 0 De,∗
α











,

DR
α =











Dν
α −BTB∗Zα 0 −BTA∗Zα −BTW−

α

0 De
α 0 0

−ATB∗Zα 0 Dν
α −ATA∗Zα −ATW−

α

−B∗W+
α 0 −A∗W+

α De,∗
α + Zα











.

(3.8)

Here the fermion fields of eq. (2.8) correspond to ψR = (νR, eR, ν
c
L, e

c
L), ψL =

(νL, eL, ν
c
R, e

c
R), ψ̄R = (ν̄R, ēR, ν̄

c
L, ē

c
L), and ψ̄L = (ν̄L, ēL, ν̄

c
R, ē

c
R). (For simplicity, we denote

rotated and unrotated lepton fields with the same symbols, as we are not using them in

the rest of the paper.)

It is noteworthy that the Dirac operator in eq. (3.8) is independent of the submatrices

C and D in U . In addition, the determinant of that Dirac operator, and consequently

its effective action, is unchanged if the matrices A and B are subject to the following

transformations:

(A,B) → (V AVA, V BVB), V = diag(eθ1 , . . . , eθg), VA, VB = diag(±, . . . ,±). (3.9)

(Here g denotes the number of generations, and the diagonal matrices VA, and VB have

dimension g and Ns, respectively.)

In the limit of large MR keeping MD and ML finite, B vanishes and A becomes

unitary. In this case the neutrinos with mass m2 (denoted νR above) completely decouple

and only left-handed neutrinos remain. This is equivalent to assuming neutrinos with pure

Majorana masses (i.e., MD = 0) from the beginning. If in addition to large MR, ML = 0

is also assumed, m1 is small, which is the well-known seesaw mechanism to account for

the small masses of the neutrinos [57–60]. The coupling to the Higgs field assumed in

eq. (3.2) is also consistent with this scenario. The coupling between charged and neutral

leptons takes the form ēLA /W−νL, therefore, in this limit, A is identified with the PMNS

matrix [33–35] usually denoted by U in the literature [36].
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U †W+

UW−

eL

eL

eR

νL

νcL

νL

U ∗W+

UTW−

νcL

νcL
νL

ecL

ecR

ecL

Figure 1. Mechanisms present in Γ2. Gauge bosons are inwards.

4 CP odd component of the effective action

As said, the effective action Γ[mLR,mRL,mL,mR, VL, VR] in eq. (2.32) is invariant under

a full CP transformation applied to all external fields. In the Standard Model the physical

CP transformation refers to the gauge fields and Higgs (and to fermions but these are

integrated out in the effective action) while the fermion mass matrices are unchanged. So,

to identify the even and odd components of Γ under CP, one can look for the symmetric and

antisymmetric components when the gauge fields and Higgs are CP-transformed or, more

conveniently, when the mass matrices are CP-transformed. From eqs. (2.5) and (2.29), the

latter amounts to

ML →M∗
L, MR →M∗

R, MD →M∗
D, Me →M∗

e . (4.1)

After diagonalization, for Majorana or Dirac neutrinos, the previous transformation

amounts to

U → U∗ (CP transformation). (4.2)

For pure Majorana neutrinos (A = U and B = 0 in eq. (3.8)) or pure Dirac neutrinos

(A = 0 and B = U), it follows that the presence of U is always tied to a charged current

vertex. Therefore, the CP violating component of Γ must contain W± fields, and in equal

number of W+ and W−, in order to fulfill electric charge conservation, since there are no

other charged external fields. Thus we will consider an expansion of the effective action in

powers of the W± fields:

Γ =

∞
∑

n=0

Γ2n, (4.3)

where Γ2n contains n W+W− pairs.

From the previous discussion it follows that Γ0 cannot have a CP violating component.

The same is true of Γ2. Indeed, within the formulation on the Dirac operator of the previous

section, the two possible types of Feynman graphs for Γ2 are those displayed in figure 1.

It is sufficient to consider one of them since they are related by conjugation and give the

same result. In generation space, a typical graph has a structure

G(U) = tr(U †f1(me)Uf2(mν)), (4.4)
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from the vertices U †W+ and UW−, and f1(me) and f2(mν) are diagonal matrices from

the propagators. Under CP,

G(U) → G(U∗) = tr
(

UT f1(me)U
∗f2(mν)

)

= tr
(

(

UT f1(me)U
∗f2(mν)

)T
)

= tr
(

f2(mν)U
†f1(me)U

)

= G(U).
(4.5)

This result was to be expected: Γ2 is structurally identical for Majorana and Dirac neu-

trinos, or even for leptons and quarks. As is well-known, the insertion of just one W+

and one W− in the quark loop does not allow the quarks to visit the three generations,

which is the minimum required to have CP violation with Dirac particles [32]. Beyond Γ2

it is no longer true that the Feynman graphs involving Majorana and Dirac neutrinos have

necessarily the same structure. In the Majorana case, fermionic number violating terms

appear in Γ4 that allow to break CP even for two generations.

Of course, to reach the conclusion that Γ2 is CP even it is crucial that we are considering

only the one-loop effective action. It is perfectly possible to write CP violating operators

of the type W+W−. For instance

Zα(W
+
α W

−
ββ +W+

ββW
−
α ), ǫµναβW

+
µνW

−
αβ . (4.6)

The first one is parity even, the second one is parity odd. Our previous argument implies

that such operators require Feynman graphs with internal gauge boson lines, and this

amounts to going beyond one-loop.

We will further use the notation Γ2n+d to indicate the component of the effective action

composed of operators with n W+W− pairs and a total of 2n+ d Lorentz indices carried

by the fields. So the two operators in eq. (4.6) are of the type 2 + 2. Within a covariant

derivative expansion, 2n+ d is the order of the operator, that is, the number of derivatives

it carries (in this counting each gauge field or derivative counts as order 1, the Higgs field

is of order 0). Equivalently, 2n+d is the dimension of the operator (counting the operator

φ/v as dimensionless). In an even-dimensional spacetime d is always even.

We have just argued that Γ0+d and Γ2+d are CP even for any value of d. It is easy

to see that the components Γ2n+0 are also CP even. Indeed, no CP odd operator can be

written using only W± with no other gauge fields nor derivatives [51]. Since operators

of the type 2n + d > 4 are UV convergent in four dimensions, this implies that all UV

divergent terms of the effective action are CP even. This includes the gauged WZW term

which has dimension four. The first contribution to CP violation comes from the dimension

6 operators in Γ4+2 (as said Γ6+0 is CP even). These are the operators to be considered

in this work, specifically for Majorana neutrinos. Γ4+2 for quarks have been computed

in [51, 52]. Some operators of the type 4 + 4 have been calculated for the quark sector

in [53] and those of the type 6 + 2 in [54].

The effective action can be expanded in the form

Γ =

∫

d4x
∑

k

(

v

φ(x)

)dk−4

gkOk(x), (4.7)
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U ∗W+

UW−
UTW− ν

ν

e+ e−

U †W+

ν

ν

e−e−

UW−

U †W+UW−

U †W+

Figure 2. Mechanisms involved in Γ4a (left panel) and Γ4b (right panel). Gauge bosons are inwards.

where the Ok represent local operators of dimension dk = 2n+ d, constructed with gauge

fields and their derivatives, as well as derivatives of the Higgs field. The gk are the corre-

sponding couplings and they depend on the lepton mass matrices. The couplings come as

integrals over the momentum of the fermion running in the loop. If underivated φ(x) are

not included in the operators, they should go in the couplings. However, for Dirac neutri-

nos, the dependence on underivated φ follows from dimensional counting since the Higgs

couples as the fermion masses, and this produces the explicit dependence shown in (4.7).

For Majorana neutrinos, this is no longer true and the gk, as defined in (4.7), still retain

some dependence on φ(x) from the neutrino masses.

An operator Ok is even under charge conjugation if and only it is hermitian, therefore

the CP odd operators are antihermitian in the parity even sector and hermitian in the

parity odd one (table 1). Recalling that Γ+ is real and Γ− is imaginary, it follows that

the couplings of CP violating operators are purely imaginary. The same conclusion follows

from noting that in Euclidean space no factor i (imaginary unit) is generated through

the Feynman rules, momentum integration or tracing of Dirac gammas, hence gk will be

imaginary if and only if it is antisymmetric under U → U∗.

As said, the first term with a CP odd component is Γ4. The two mechanisms involved

there are displayed in figure 2 and they correspond to two types of momentum integrals,

Ia and Ib,

Ika,ne,nν ,n′

e,n
′

ν
= Im

∫

d4p

(2π)4
(p2)k/2 tr

(

Nne
e Nnν

ν Nn′

e
e Nn′

ν
ν

)

,

Ikb,ne,nν ,n′

e,n
′

ν
= Im

∫

d4p

(2π)4
(p2)k/2 tr

(

Nne
e mνN

nν
ν N∗

e
n′

emνN
n′

ν
ν

)

,

(4.8)

where the exponents ne, nν , n
′
e, n

′
ν are natural numbers,

Ne = U † 1

p2 +m2
e

U, Nν =
1

p2 +m2
ν

, (4.9)

and me and mν denote the positive and diagonal mass matrices of charged and neutral

leptons, respectively. The CP odd sector only makes use of the imaginary parts of the
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νL

−ATA∗Z0
A†AZ0

Figure 3. Graph contributing to CP violation with only neutral particles, provided the neutrinos

have mixed Dirac-Majorana masses.

integrals. For these integrals, the following symmetries are easily established

Ika,ne,nν ,n′

e,n
′

ν
= −Ika,n′

e,nν ,ne,n′

ν
= −Ika,ne,n′

ν ,n
′

e,nν
,

Ikb,ne,nν ,n′

e,n
′

ν
= +Ikb,n′

e,nν ,ne,n′

ν
= −Ikb,ne,n′

ν ,n
′

e,nν
.

(4.10)

Using the relations (11.6) and (11.7) of [51], the basic momentum integrals required to

obtain Ia and Ib can be reduced to contour integrals which are easily computed by residues.

Before closing this section, we remark that the necessity of charged gauge bosons in

the fermion loop to produce CP violation follows from the fact that the complex mass

matrices are summarized into me, mν and U . The first two are real and the latter appears

though the operator ēU /W−ν and its hermitian conjugate. This is true for pure Dirac or

pure Majorana neutrinos, but it no longer holds in the general case of mixed Dirac and

Majorana masses. Indeed, using the couplings in eq. (3.8) one can construct CP odd graphs

involving no charged boson. One such graph is displayed in figure 3. The driving operator

there is of the type

iǫµναβZµνZαβ Im tr(A†Af1(mν)A
TA∗f2(mν)), (4.11)

where f1(mν) and f2(mν) are real and diagonal mass matrices. Here mν refers to m1 of

eq. (3.7). Similar terms appear with m2 and B at this fourth order. These operators can

give a CP violating contribution for g ≥ 2 and Ns ≥ 1. Of course, in the limiting Dirac or

Majorana cases A and B are unitary or zero and these couplings vanish.

The operator in (4.11) is P odd and of dimension 4, so the coupling would be loga-

rithmically UV divergent, however, the dimension 4 refers only to the derivatives. In fact,

the Higgs field is present in mν . After expanding in powers of the fluctuation of the Higgs

field, φ − v, the order zero is a total derivative and the higher orders in φ − v are non

renormalizable and UV convergent.

5 Operator K for Majorana neutrinos

The case of Dirac fermions has been addressed in [51] for quarks. The results obtained

there translate almost immediately to the case of Dirac neutrinos, therefore we give more

details of the derivation of the Majorana case, which is also more involved.
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We consider pure Majorana left-handed neutrinos, that is, MD = 0. Hypotheti-

cal right-handed neutrinos can be disregarded since they decouple from the other fields.

In this case, the Lagrangian in the form given in eq. (2.31), with the identifications in

eqs. (3.1)–(3.3), depends on the following Dirac operator

DM =

ν̄L
ēL
ēcR
ēR
ν̄cL
ēcL



















0 M∗
L 0 Dν + Z W+ 0

Me 0 0 W− De − Z 0

0 0 MT
e 0 0 D∗

e

De 0 0 0 M †
e 0

0 Dν − Z −W− ML 0 0

0 −W+ D∗
e + Z 0 0 M∗

e



















eR νcL ecL νL eL ecR

(5.1)

The fields associated to each row and column of the matrix are also displayed. The rows

and columns associated to the fields νR, ν̄R, ν
c
R and ν̄cR have been dropped.

ML and Me are complex 3× 3 matrices which we assume to be regular (any massless

case should be obtained as a limit) and ML is symmetric. The diagonalization of these

mass matrices is addressed below.

In eq. (5.1) the contraction of fourvectors with the Dirac gamma matrices is understood

and not explicitly displayed. In addition, to avoid clumsiness we have included the Higgs

field factors in the mass matrices, so ML really stands for (φ/v)2ML and Me stands for

(φ/v)Me. This means that ML,e are not constant, rather

[∂µ,ML] = 2ϕµ(x)ML, [∂µ,Me] = ϕµ(x)Me, (5.2)

where we have introduced the auxiliary Higgs field

ϕµ(x) :=
∂µφ(x)

φ(x)
. (5.3)

Before proceeding let us make a small digression. It is clear that DM above contains

some redundant information, since the duplication of the charged lepton field (first eL,R
and ēL,R and then ecL,R and ēcL,R), being of Dirac type, is not strictly necessary. Indeed,

the Lagrangian can be written in matrix form as

L(x) =
(

ν̄L ν̄
c
L ēL ēR

)











1
2(Dν + Z) 1

2M
∗
L W+ 0

1
2ML

1
2(Dν − Z) 0 0

W− 0 De − Z Me

0 0 M †
e De





















νL
νcL
eL
eR











=
(

ν̄L ν̄
c
L ēL ēR

)











1
2(Dν + Z) 1

2mν U †W+ 0
1
2mν

1
2(Dν − Z) 0 0

UW− 0 De − Z me

0 0 m†
e De





















νL
νcL
eL
eR











.

(5.4)

In the second form me and mν are diagonal and positive, namely, by takingML = U∗mνU
†

in the basis in which Me is diagonal. This form of the Lagrangian is of course correct,
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Figure 4. Feynman graph corresponding to eq. (5.5).

however, it involves both real and complex Grassman fields. As a consequence the effective

action is not obtained as the determinant of the associated Dirac operator. For instance,

such determinant does not contain contributions with U and UT simultaneously, which are

actually present in the effective action (namely, through the integrals Ib in (4.8)). These

terms are correctly generated by the Lagrangian in eq. (5.4) taking into account that the

Wick contraction of νL and νcL is not vanishing (see figure 4):

(ēLUW
−νL)(ν̄Lmνν

c
L)(ēLUW

−νL) ∼ ēLUW
−f(mν)U

TW−ecL. (5.5)

On the contrary, within the formalism based on (5.1) only contractions of the type ψψ̄

(rather than ψψ or ψ̄ψ̄) are required. We find it preferable to duplicate all fields thereby

reducing the calculation of the effective action to that of a determinant.

Coming back to (5.1), since DM is of the general form in eq. (2.8) we can proceed to

construct the auxiliary operators KL,R of eq. (2.19). As already noted, the two operators

contain the same information for UV convergent contributions to the effective action. In

what follows we use KL. The inverse of mRL is readily obtained:

m−1
RL =







0 M−1
L 0

M †
e
−1 0 0

0 0 M∗
e
−1






. (5.6)

A straightforward calculation then gives

KL=







M†
LML−(Dν+Z)(Dν−Z+2ϕ) −W+(De + ϕ) (Dν + Z)W−M−1

L M∗
e

−W−(Dν − Z + 2ϕ) MeM
†
e − (De−Z)(De+ϕ) W−W−M−1

L M∗
e

D∗
eW

+M∗
e
−1ML 0 MT

e M
∗
e −D∗

e(D
∗
e+Z+ϕ)






.

(5.7)

In terms of KL, the effective action is given by

Γ = −1

2
Tr(PR logKL) (5.8)

– 19 –



J
H
E
P
0
8
(
2
0
1
4
)
1
5
6

where the factor 1/2 is that in eq. (2.32), and it takes into account that all fields have been

duplicated in order to achieve a Lagrangian formally of Dirac type (that is, with effective

action directly related to the determinant of the differential operator).

We remark that the matrix elements displayed in (5.7) are themselves 4× 4 matrices

in Dirac space and g × g matrices in generation space, for g generations. Also, the fields

naturally involved there are (νcL, eR, e
c
L) and (ν̄L, ēL, ē

c
R). More precisely, from eq. (2.26)

(adapted to include the duplication required by Majorana terms) it follows that the prop-

agator of these fields is correctly reproduced by the effective Lagrangian

Leff(x) =
(

ν̄L ēL ē
c
R

)

KL







M−1
L νcL

M †
e
−1eR

M∗
e
−1ecL






. (5.9)

Since for the effective action all we needed is Det(PRKL), there remains the freedom

to apply similarity transformations to KL to obtain a more convenient form. To this end,

we multiply KL on the left by the matrix φ−1diag(ML,ML,M
∗
e ), and its inverse on the

right. This produces the equivalent operator

K1 =







MLM
†
L −Dν+Dν− −W+De Dν+W

−

−W−Dν− MLMeM
†
eM

−1
L −De−De W−W−

D∗
eW

+ 0 M∗
eM

T
e −D∗

eD
∗
e+






, (5.10)

where we have defined the following shorthands

Dν± ≡ Dν ± (Z − ϕ), De± ≡ De ± (Z + ϕ), D∗
e± ≡ D∗

e ± (Z + ϕ). (5.11)

Below we will also make use of the notation

X(n) ≡ φ−nXφn, D(n)
µ = φ−nDµφ

n = Dµ + nϕµ, (5.12)

where X is a generic quantity and in particular Dµ = ∂µ + Vµ is any derivative operator.

It is noteworthy that in the neutrino sector only the combination Z − ϕ appears, and

only Z+ϕ in the charged sector, and moreover, the same property holds true for the Dirac

case [51]. We have no a priori explanation for this regularity. One should note however

that this property needs not translate immediately to the effective action since new ϕµ can

be generated through the φ dependence contained in ML and Me.

For comparison, we quote here the similar operator KL for Dirac neutrinos [51]:6

KDirac =

(

MDM
†
D −Dν+Dν −W+De

−W−Dν MeM
†
e −De−De

)

, (5.13)

where Dν = ∂ and the Dirac neutrino mass matrixMD includes a factor φ/v. When this is

regarded as an effective Lagrangian, the fermion fields involved in this matrix are (ν̄L, ēL)

and

(

M−1
D νR

M−1
e eR

)

.

6We have applied a similarity transformation K → φKφ−1 to the matrix of eq. (7.1) of [51], in order to

enforce the dependence Z ± ϕ for the neutrino (up) and charged (down) sectors.
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To proceed with the Majorana case we bring the fermion masses to a diagonal form:

ML = AmνA
T , Me = BmeC, U := B†A∗. (5.14)

Here A, B, C are suitable constant unitary matrices such that mν and me are positive

diagonal matrices (which include factors (φ/v)2 and φ/v, respectively). Multiplying K1

in (5.10) by diag(A†, A†, A†) on the left, and its inverse on the right, produces the equivalent

matrix (also denoted by K1)

K1 =







m2
ν −Dν+Dν− −W+De Dν+W

−

−W−Dν− mνU
†m2

eUm
−1
ν −De−De W−W−

D∗
eW

+ 0 UTm2
eU

∗ −D∗
eD

∗
e+






. (5.15)

The determinant of K1 is unchanged by transformations of U of the type

U → diag(eθ1 , · · · , eθg)Udiag(±, . . . ,±), (5.16)

and these are the unique allowed transformations if masses are not degenerated.

If the expression in (5.15) is used directly in the calculation of the effective action,

inverse powers ofmν appear in intermediate steps, although eventually they can be removed

in every single case. In order to obtain directly the expressions without m−1
ν , we proceed

as follows. First we define the following propagators

Gν :=
(

m2
ν −Dν+Dν−

)−1
,

Ge := U †
(

m2
e −De−De

)−1
U,

G∗
e := UT

(

m2
e −D∗

eD
∗
e+

)−1
U∗.

(5.17)

In terms of these, the matrix K1 can be expressed as

K1 =







G−1
ν −W+De Dν+W

−

−W−Dν− mνG
(2)
e

−1m−1
ν W−W−

D∗
eW

+ 0 G∗
e
−1






. (5.18)

Here G
(2)
e = φ−2Geφ

2. This amounts to shifting De → D
(2)
e = De + 2ϕ, and comes about

from De−De = mνD
(2)
e−D

(2)
e m−1

ν in (5.15). Next, we define a new matrix K2 by appending

to K1 a factor on the right

K2 = K1







1 0 −GνDν+W
−

0 1 0

0 0 1






. (5.19)

Clearly, the determinant of the appended factor is unity, hence DetK2 = DetK1, and the

effective action remains unchanged. An explicit calculation produces:

K2 =







G−1
ν −W+De 0

−W−Dν− mνG
(2)
e

−1m−1
ν mνW

−G′
νW

−mν

D∗
eW

+ 0 G∗
e
−1 −D∗

eW
+GνDν+W

−






, (5.20)
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where we have introduced a modified neutrino propagator

G′
ν :=

(

m2
ν −D

(−2)
ν− D

(2)
ν+

)−1
, (5.21)

and we have made use of the identity

1 +Dν−GνDν+ = mνG
′
νmν . (5.22)

The sought for form of K with no inverse powers of mν is obtained by multiplying K2

by diag(m−1
ν ,m−1

ν , 1) on the left, and its inverse on the right:

K :=







G
(2)
ν

−1 −W+D
(2)
e 0

−W−D
(2)
ν− G

(2)
e

−1 W−G′
νW

−mν

D∗
eW

+mν 0 G∗
e
−1 −D∗

eW
+GνDν+W

−






. (5.23)

This is our final form of the operator K for Majorana neutrinos. Let us emphasize that K

provides the chiral invariant part of the lepton-induced effective action for any number of

W ’s and for all sectors, P even or odd and CP even or odd, and its use is not restricted to

a derivative expansion.

We note that all manipulations used above contain only blocks with an even number

of Dirac matrices, so no problem arises from the presence of the factor PR in the trace

in (5.8). The same remark applies for the next section.

6 Effective action in the CP odd sector

6.1 Γ4 for Majorana and Dirac neutrinos

The effective action is given by

Γ = −1

2
Tr(PR logK). (6.1)

In order to use this form for the CP odd sector we will expand the right-hand side in powers

of W±. To this end let us express K in the form

K = K0(1−∆1 −∆2), (6.2)

with

K0 =







G
(2)
ν

−1 0

0 G
(2)
e

−1 0

0 0 G∗
e
−1






,

∆1 =







0 G
(2)
ν W+D

(2)
e 0

G
(2)
e W−D

(2)
ν− 0 0

−G∗
eD

∗
eW

+mν 0 0






, ∆2 =







0 0 0

0 0 −G(2)
e W−G′

νW
−mν

0 0 G∗
eD

∗
eW

+GνDν+W
−






.

(6.3)
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In this way (once again using formal manipulations which are justified at the order we are

working, due to UV convergence)

Tr(PR logK) = Tr(PR logK0)−
∞
∑

n=1

1

n
Tr(PR(∆1 +∆2)

n). (6.4)

As has been shown in section 4, the first term that can contribute to CP violation

is of order 4 in powers of W±. This selects the terms (with the notation [∆1]1,2 =

G
(2)
ν W+D

(2)
e , etc.)

Tr(PR logK)4 = −Tr

(

PR

(

1

4
∆4

1 +
1

2
∆2

2 +∆2
1∆2

))

(6.5)

= −Tr

(

PR

(

1

2
([∆1]1,2[∆1]2,1)

2 +
1

2
([∆2]3,3)

2 + [∆1]1,2[∆2]2,3[∆1]3,1

))

.

Explictly,

Γ4 =
1

2
Tr

(

PR

[

1

2

(

G(2)
e W−D

(2)
ν−G

(2)
ν W+D(2)

e

)2
+

1

2

(

G∗
eD

∗
eW

+GνDν+W
−
)2

+G(2)
ν W+D(2)

e G(2)
e W−G′

νmνW
−G∗

eD
∗
eW

+mν

])

.

(6.6)

The two terms with factors one half have a similar structure and they are actually

equal. This can be shown by applying transposition to the second term, plus the relations

/D∗
e
(n)T = C−1 /D(−n)

e C, /D
(n)
ν±

T = C−1 /D
(−n)
ν∓ C, /W±T = −C−1 /W±C,

G∗
e
(n)T = C−1G(−n)

e C, G(n)
ν

T = C−1G(−n)
ν C.

(6.7)

In summary, for Majorana neutrinos, the terms of the effective action with exactly four

charged gauge bosons can be expressed as

Γ4,M =
1

2
TrPR

[

(

Ge /W
− /Dν−Gν /W+ /De

)2
+G(2)

e /W−G′
νmν /W−G∗

e /D
∗
e /W+Gν /W+ /Demν

]

.

(6.8)

The similar expression for Dirac neutrinos is instead

Γ4,D =
1

2
TrPR

[

(

Ge /W
− /Dν G

D
ν /W+ /De

)2
]

. (6.9)

where

GDν :=
(

m2
ν − /Dν+ /Dν

)−1
. (6.10)

Here mν stands for (φ/v)mν and it is obtained fromMD = AmνD (A and D being unitary

matrices). Ge is the same as before, with U = B†A∗ and Me = BmeC, as in eq. (5.14).

The effective action for Majorana neutrinos contains two types of terms

Γ4,M = Γ4,a + Γ4,b. (6.11)

The terms in Γ4,a follow a mechanism similar to that of the Dirac case, namely, the

charged bosons alternate along the fermion loop, W−W+W−W+ (see figure 2, left panel).
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In fact, the expressions of Γ4,a and Γ4,D are identical for contributions not involving Zµ nor

ϕµ and so in this case they give the same contributions.7 On the other hand, the mechanism

in Γ4,b is of the type W−W−W+W+ (see figure 2, right panel) thereby violating fermionic

number conservation. This is the mechanism responsible for neutrinoless double beta decay.

The presence of such mechanism is particularly clear in the operator K from the matrix

element [K]2,3 = /W−G′
ν /W−mν in (5.23).

It is also noteworthy that, from CPT invariance one expects that W+ and W− should

play similar roles. The symmetry between W+ and W− is explicit in the Dirac operator

of eq. (5.1) but it is not manifest in K. As noted we could have started from KR. In this

case the roles of the charged bosons would be reversed. The symmetry is restored in Γ4

and certainly in the final results.

6.2 Method of covariant symbols

The actual calculation of the terms Γ4+2 has been done using the method of covariant

symbols [62, 63, 79]. Quite simply, for any operator of the type f(D,M), where the D are

covariant derivatives and the M(x) are matrices in internal space, such as that in eq. (6.8),

the functional trace can be expressed as

Tr f(D,M) =

∫

ddxddp

(2π)d
trf(D̄, M̄). (6.12)

tr refers to internal degrees of freedom, pµ is the fermion loop momentum, and D̄ and M̄

are the covariant symbols of D and M . These are gauge covariant operators which are

multiplicative with respect to x and contain derivatives with respect to p, namely,

M̄ =
∞
∑

n=0

in

n!

(

D̂α1
· · · D̂αnM

)

∂pα1
· · · ∂pαn

,

D̄µ = ipµ +
∞
∑

n=1

inn

(n+ 1)!

(

D̂α1
· · · D̂αnDµ

)

∂pα1
· · · ∂pαn

,

(6.13)

with ∂pα = ∂/∂pα and D̂αX = [Dα, X], in particular, D̂αDµ = Fαµ. The crucial property

of the covariant symbols, besides being manifestly gauge covariant and multiplicative as

operators, is that they define a representation of the algebra of operators, that is, f(X,Y ) =

f(X̄, Ȳ ). Therefore, one can simply compute the symbols of the basic blocks and use them

in the full expression.

In our case an application of the method of covariant symbols in (6.8) produces

Γ4,a =

∫

d4xd4p

(2π)4
1

2
tr
[

PR

(

Ḡe /̄W
−
/̄Dν−Ḡν /̄W

+
/̄De

)2 ]

Γ4,b =

∫

d4xd4p

(2π)4
1

2
tr
[

PR Ḡ
(2)
e /̄W

−
Ḡ′
ν m̄ν /̄W

−
Ḡ∗
e /̄D

∗

e /̄W
+
Ḡν /̄W

+
/̄De m̄ν

]

,

(6.14)

7This refers to the explicit Zµ. The Z
0 field appears also in De together with the photon field, eq. (3.5).

Unfortunately, the Dirac results in [51] cannot be directly adapted to Γ4,a when Higgs or Z0 are present

by means of some clever redefinition of the fields there.
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where tr refers to Dirac and flavor spaces. The covariant symbols of the basics operators

in (6.14) are displayed in appendix A.

We want to work out the leading CP violating terms, that is, those driven by operators

of lowest dimension, which are those in Γ4+2. Therefore, in (6.14) we select contributions

with exactly two derivatives, where each D̂µ, Zµ or ϕµ counts as one derivative.

Using the covariant symbols in appendix A, the calculation of the effective action

proceeds from (6.14) by i) removing all momentum derivatives, applying them either on

the right or the left, ii) taking an angular average over the momenta, iii) evaluating the

Dirac gamma traces, iv) factoring each term into a momentum integral (involving the

mass matrices) and an operator (involving the external fields and their derivatives), v)

rearranging indices in the operators, including Bianchi identities (namely, [D̂α, D̂β]X =

[Fαβ , X]), vi) using integration by parts, and vii) using identities between momentum

integrals to simplify the final result. At step iv) the CP odd terms can be already isolated

by selecting the antihermitian/hermitian part of the operators in the P even/odd sectors.

The calculation has been repeated using the method of ordinary symbols [80, 81] as a check

of the results.

6.3 Allowed operators and their couplings

To express the results we introduce two bases of CP odd operators, one with parity even

operators and another with parity odd ones. They are displayed in tables 2 and 3. In the

operators of the parity odd sector, the labels a and s denote antisymmetric and symmetric

Lorentz indices, respectively. So for instance

W+
a W

+
s W

−
a W

−
s Za ϕa ≡ ǫµναβW

+
µ W

+
ρ W

−
ν W

−
ρ Zα ϕβ. (6.15)

Operators with W± carrying more than one derivative have been excluded from the bases,

as those operators can be eliminated through integration by parts.

Identities from integration by parts exist among the operators. To establish such

relations, one should take into account that the Higgs field φ is present in the momentum

integrals, through the mass terms, and this may produce new ϕµ dependences not explicit

in eq. (6.8),

0 =

∫

d4x trD̂µ(IOµ) =

∫

d4x tr

(

ϕµφ
∂I

∂φ
Oµ + ID̂µOµ

)

. (6.16)

To make things simpler, we have assumed that the coupling between mass and Higgs is

predominantly of the type mi → φmi (Dirac particles). In this case φ (∂I/∂φ) = −2I for

operators of dimension 6. It should not go unnoticed that this is an approximation taken

on otherwise exact relations, imposed on us by the need to avoid cumbersome expressions.

It only affects the Majorana neutrino case in terms with ϕµ.
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A+
1 W+

α W
+
α W

−
ββW

−
γγ − c.c. A+

21 W+
α W

+
β W

−
α W

−
β Zγγ

A+
2 W+

α W
+
α W

−
βγW

−
βγ − c.c. A+

22 W+
α W

+
β W

−
α W

−
γ Zβγ − c.c.

A+
3 W+

α W
+
α W

−
βγW

−
γβ − c.c. A+

23 W+
αβW

+
γ W

−
α W

−
β Zγ − c.c.

A+
4 W+

α W
+
β W

−
αβW

−
γγ − c.c. A+

24 W+
α W

+
β W

−
αβW

−
γ ϕγ − c.c.

A+
5 W+

α W
+
β W

−
αγW

−
βγ − c.c. A+

25 W+
αβW

+
γ W

−
α W

−
γ Zβ − c.c.

A+
6 W+

α W
+
β W

−
αγW

−
γβ − c.c. A+

26 W+
α W

+
β W

−
αγW

−
β ϕγ − c.c.

A+
7 W+

α W
+
β W

−
γαW

−
γβ − c.c. A+

27 W+
αβW

+
β W

−
α W

−
γ Zγ − c.c.

A+
8 W+

ααW
+
β W

−
βγW

−
γ − c.c. A+

28 W+
α W

+
β W

−
αγW

−
γ ϕβ − c.c.

A+
9 W+

ααW
+
β W

−
γβW

−
γ − c.c. A+

29 W+
αβW

+
γ W

−
β W

−
γ Zα − c.c.

A+
10 W+

αβW
+
α W

−
βγW

−
γ − c.c. A+

30 W+
α W

+
β W

−
γαW

−
β ϕγ − c.c.

A+
11 W+

αβW
+
γ W

−
βγW

−
α − c.c. A+

31 W+
αβW

+
α W

−
β W

−
γ Zγ − c.c.

A+
12 W+

α W
+
α W

−
β W

−
β Zγγ A+

32 W+
α W

+
β W

−
γαW

−
γ ϕβ − c.c.

A+
13 W+

α W
+
α W

−
β W

−
γ Zβγ − c.c. A+

33 W+
ααW

+
β W

−
β W

−
γ Zγ − c.c.

A+
14 W+

α W
+
α W

−
β W

−
γ ϕβγ − c.c. A+

34 W+
α W

+
β W

−
γγW

−
α ϕβ − c.c.

A+
15 W+

ααW
+
β W

−
γ W

−
γ Zβ − c.c. A+

35 W+
α W

+
α W

−
β W

−
β Zγϕγ

A+
16 W+

α W
+
α W

−
ββW

−
γ ϕγ − c.c. A+

36 W+
α W

+
α W

−
β W

−
γ ZβZγ − c.c.

A+
17 W+

αβW
+
α W

−
γ W

−
γ Zβ − c.c. A+

37 W+
α W

+
α W

−
β W

−
γ Zβϕγ − c.c.

A+
18 W+

α W
+
α W

−
βγW

−
β ϕγ − c.c. A+

38 W+
α W

+
α W

−
β W

−
γ ϕβϕγ − c.c.

A+
19 W+

αβW
+
β W

−
γ W

−
γ Zα − c.c. A+

39 W+
α W

+
β W

−
α W

−
β Zγϕγ

A+
20 W+

α W
+
α W

−
βγW

−
γ ϕβ − c.c. A+

40 W+
α W

+
β W

−
α W

−
γ Zβϕγ − c.c.

Table 2. List of P even and CP odd operators of the type 4 + 2.

A−
1 W+

a W
+
asW

−
a W

−
as A−

14 W+
a W

+
s W

−
a W

−
s Zaa

A−
2 W+

a W
+
asW

−
a W

−
sa + c.c. A−

15 W+
a W

+
aaW

−
a W

−
s Zs + c.c.

A−
3 W+

a W
+
saW

−
a W

−
sa A−

16 W+
a W

+
s W

−
a W

−
aaϕs + c.c.

A−
4 W+

a W
+
aaW

−
a W

−
ss + c.c. A−

17 W+
a W

+
s W

−
a W

−
asZa + c.c.

A−
5 W+

a W
+
asW

−
s W

−
aa + c.c. A−

18 W+
a W

+
asW

−
a W

−
s ϕa + c.c.

A−
6 W+

a W
+
saW

−
s W

−
aa + c.c. A−

19 W+
a W

+
s W

−
a W

−
saZa + c.c.

A−
7 W+

s W
+
aaW

−
s W

−
aa A−

20 W+
a W

+
saW

−
a W

−
s ϕa + c.c.

A−
8 W+

a W
+
aaW

−
s W

−
as + c.c. A−

21 W+
a W

+
aaW

−
s W

−
s Za + c.c.

A−
9 W+

a W
+
aaW

−
s W

−
sa + c.c. A−

22 W+
a W

+
aaW

−
s W

−
s ϕa + c.c.

A−
10 W+

aaW
+
aaW

−
s W

−
s + c.c. A−

23 W+
a W

+
s W

−
s W

−
aaZa + c.c.

A−
11 W+

a W
+
s W

−
aaW

−
as + c.c. A−

24 W+
a W

+
s W

−
s W

−
aaϕa + c.c.

A−
12 W+

a W
+
s W

−
aaW

−
sa + c.c. A−

25 W+
a W

+
s W

−
a W

−
s Zaϕa

A−
13 F eaaW

+
a W

+
s W

−
a W

−
s

Table 3. List of P odd and CP odd operators of the type 4 + 2.
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With this proviso, the following by-parts integration relations are found among the P

even operators

0 = A+
1 −A+

3 − 2A+
8 + 2A+

10 − 2A+
16 + 2A+

18,

0 = A+
4 −A+

6 −A+
9 +A+

11 + 2A+
26 − 2A+

34,

0 = A+
24 +A+

26 −A+
32 −A+

34,

0 = A+
12 + 2A+

19 − 2A+
35,

0 = A+
13 +A+

15 +A+
17 + 2A+

27 − 2A+
37,

0 = A+
14 +A+

16 +A+
18 − 2A+

28 − 2A+
38,

0 = A+
21 + 2A+

29 − 2A+
39,

0 = A+
22 +A+

23 +A+
25 +A+

31 +A+
33 − 2A+

40.

(6.17)

Likewise, for the P odd operators one finds the relations

0 = 2A−
1 −A−

5 +A−
11 −A−

13 − 2A−
18,

0 = 2A−
1 −A−

2 +A−
4 +A−

5 − 1

2
A−

10 −A−
22,

0 = A−
5 − 2A−

7 +A−
11 +A−

13 − 2A−
24,

0 = A−
14 +A−

17 −A−
23 + 2A−

25.

(6.18)

In addition, the P odd operators are not independent due to the four-dimensional

identity

Xµ,a,a,a,a −Xa,µ,a,a,a +Xa,a,µ,a,a −Xa,a,a,µ,a +Xa,a,a,a,µ = 0. (6.19)

As a consequence, the following relations exist

0 = −A−
1 +A−

2 −A−
3 −A−

5 +A−
6 −A−

7 ,

0 = −2A−
1 +A−

2 −A−
4 −A−

5 +A−
8 ,

0 = −A−
1 +A−

3 −A−
4 −A−

5 −A−
7 +A−

9 ,

0 = −1

2
A−

10 −A−
11 +A−

12,

0 = A−
15 −A−

17 +A−
19 −A−

21 −A−
23,

0 = A−
16 −A−

18 +A−
20 +A−

22 −A−
24.

(6.20)

The effective actions Γ±
4+2,a and Γ±

4+2,b for Majorana neutrinos and Γ±
4+2,D for Dirac

ones can be expressed in the form

Γ+
4+2,a =

∫

d4x
v2

φ2

∑

k

ig+a,kA
+
k , Γ−

4+2,a =

∫

d4x
v2

φ2

∑

k

ig−a,kA
−
k ,

Γ+
4+2,b =

∫

d4x
v2

φ2

∑

k

ig+b,kA
+
k , Γ−

4+2,b =

∫

d4x
v2

φ2

∑

k

ig−b,kA
−
k , (6.21)

Γ+
4+2,D =

∫

d4x
v2

φ2

∑

k

ig+D,kA
+
k , Γ−

4+2,D = 0.
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g+a,1 −1
4a1 g+a,10 −1

6a1 g+a,20
1
2a1 − 5

3a2 g+a,33 −2a1

g+a,2
5
6a1 g+a,11 −2

3a1 g+a,22 −2
3a1 g+a,34

1
3a1 − 2

3a2

g+a,3 − 1
12a1 g+a,12

1
6a1 g+a,24 a1 − 2

3a2 g+a,35
20
3 a1 +

2
3a2

g+a,5 −1
3a1 g+a,13

1
3a1 g+a,26 −1

3a1 − 2
3a2 g+a,36 4a1

g+a,6
4
3a1 g+a,15 2a1 g+a,28 −a1 + 2

3a2 g+a,37
4
3a2

g+a,7 −a1 g+a,16
5
3a1 +

1
3a2 g+a,30 −a1 + 2a2 g+a,38 4a1

g+a,8
1
6a1 g+a,17 −2a1 g+a,31 2a1 g+a,39 −8

3a1

g+a,9
2
3a1 g+a,18 −8

3a1 +
1
3a2 g+a,32 3a1 − 2

3a2 g+a,40 −8
3a2

Table 4. Non vanishing couplings for Γ+
4+2,a.

g+b,2 −b1 + b2 g+b,16 −5
2b1 + 4b2 g+b,28 4b1

g+b,8 b1 g+b,17
7
2b1 − 3b2 g+b,35 10b1 − 15b3 + 2b4 − b5

g+b,10 −1b1 g+b,18
5
2b1 − 4b2 g+b,36 −4b3

g+b,12
3
4b1 +

1
2b2 g+b,20

13
2 b1 − 4b2 − 2b4 + b5 g+b,37 −8b1 + 12b2

g+b,15 −7
2b1 + 3b2 g+b,27 −4b1 g+b,38 −2b1 + 8b2

Table 5. Non vanishing couplings for Γ+

4+2,b.

g−a,14
2
3a1 g−a,16 2a1 g−a,21 −1

3a1 g−a,24 −2a1

g−a,15 −2
3a1 g−a,18 −2

3a1 g−a,22
5
3a1 g−a,25 −8

3a2

Table 6. Non vanishing couplings for Γ−
4+2,a.

g−b,10
1
2b1 g−b,21

1
2b1 − b2 g−b,22 −1

2b1

Table 7. Non vanishing couplings for Γ−
4+2,b.

The explicit imaginary unit has been introduced so that the couplings g±t,k are all real. The

operators A±
k themselves are common for the two structures Γa and Γb, but the couplings

are sensitive to this structure.

The non vanishing couplings are collected in tables 4, 5, 6, 7, and 8. The couplings are

expressed in terms of a few independent momentum integrals (defined in (4.8)), namely,

a1 ≡ I6a,1,1,2,2, a2 ≡ I8a,1,1,2,3, b1 ≡ I2b,1,1,1,2, b2 ≡ I4b,1,1,1,3,

b3 ≡ I4b,1,1,2,2, b4 ≡ I6b,1,1,3,2, b5 ≡ I6b,2,1,2,2. (6.22)

In eq. (6.21) we have extracted the main dependence on (underivated) φ from the couplings

assuming a Dirac-type Higgs coupling in mass terms. Therefore, in the various momentum

integrals above me no longer contains the factor (φ/v) and mν contains a single factor

(φ/v) in the Majorana case and none in the Dirac case.
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g+D,1 −1
6a1 g+D,15

4
3a1 g+D,30

4
3a1 g+D,37

4
3a1

g+D,2
5
6a1 g+D,16

4
3a1 g+D,31

4
3a1 g+D,38 2a1

g+D,3 −1
6a1 g+D,17 −4

3a1 g+D,32
4
3a1 g+D,39 −8

3a1

g+D,4
2
3a1 g+D,18 −4

3a1 g+D,33 −4
3a1 g+D,40 −8

3a1

g+D,5 −1
3a1 g+D,19 −4

3a1 g+D,34 −4
3a1

g+D,6
2
3a1 g+D,20 −4

3a1 g+D,35
16
3 a1

g+D,7 −a1 g+D,29
4
3a1 g+D,36 2a1

Table 8. Non vanishing couplings for Γ+

4+2,D.

It should be noted that not all the integrals Ia and Ib are independent. The following

relations have been used to simplify the expressions:

5I6a,1,1,2,2 = 2I8a,1,1,2,3 + 2I8a,1,1,3,2 ,

3I2b,1,1,1,2 = 2I4b,1,1,1,3 + 2I4b,1,1,2,2 ,

4I4b,1,1,2,2 = 2I6b,1,1,2,3 + 2I6b,1,1,3,2 + I6b,2,1,2,2 ,

4I4b,1,1,1,3 = 3I6b,1,1,1,4 + 2I6b,1,1,2,3 + I6b,1,2,1,3 .

(6.23)

These relations follow from integration by parts in momentum space and the symmetry

or antisymmetry properties of Ia and Ib (more detailed information, such as U being a

unitary matrix in Ne, is not required).

6.4 Discussion of the analytical results

The expressions given for the effective action are in Euclidean space. With the conventions

of [51], the expressions in Minkowskian space take exactly the same form except for the

two following modifications: ǫµναβ → iǫµναβ (in Γ−) and Zµ → iZµ (as well as Zµν → iZµν ,

etc). The meaning of the symbols changes to conform to the Minkowskian conventions,

and so (W+)∗µ = W−
µ and Zµ, ϕµ and F eµν are real. The resulting real-time effective

action is real, both for the parity even and odd components. The true effective action

(in Minkowski space) has an imaginary part when the vertex functions contained in it are

above the unitarity thresholds. In our calculation we are always below thresholds since the

derivative expansion is an expansion around zero four-momentum.

The set of operators is common to the effective actions obtained from integration of

leptons or from integration of quarks. For each operator, the total coupling is obtained by

adding the quark and lepton contributions. Also, the operators do not distinguish between

the couplings of type Ia, which corresponds to alternating charged bosons along the loop,

W+W−W+W−, and those of type Ib, with structure W+W+W−W−, which is exclusive

for Majorana neutrinos. The total coupling to a given operator is obtained by adding its

type Ia and type Ib contributions. Integrals of the two types Ia and Ib appear in parity

even and parity odd operators.

For Dirac neutrinos, as for quarks, all the couplings to P odd operators vanish in the

CP sector. The single more interesting result found here is that Majorana neutrinos would
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produce C even P odd terms in Γ4+2. This can be obtained without recourse to Z or Higgs

fields, namely,
1

2
ib1ǫµναβ(W

+
µνW

+
αβW

−
ρ W

−
ρ + c.c.) . (6.24)

This term corresponds to A−
10 and the coupling is purely of Majorana type (Ib). Further

operators of types Ia and Ib are allowed if Z and ϕ are included.8 It is also interesting

that this term can be used to show that CP would be violated, for generic values of U and

the masses, in a two generations scenario. Of course, the same would not be true for Dirac

neutrinos or quarks, which require at least three generations.

An inspection of the results shows that F eµν is not present. For P even terms this follows

from the fact that the only 4+2 operator one can write involving F eµν is F
e
µνW

+
µ W

+
α W

−
ν W

−
α ,

which is CP even. On the other hand, in the P odd sector the unique operator with F eµν is

A−
13 and it is CP odd, however, it can be eliminated using integration by parts.

The effective action for Dirac neutrinos is formally identical to that obtained for quarks

in [51]. The calculation there was carried out for generic gauge connections Auµ and Adµ
(which in the Standard Model take the values Au = −(2/3)Ae and Ad = +(1/3)Ae), and so

it includes the leptonic case for Dirac neutrinos by setting Au = 0 Ad = Ae. Since F
u
µν , F

d
µν

do not appear in the formulas, the results are formally equal. Moreover, the derivatives of

the charged gauge fields are also equal since Ad−Au = Ae. As said the final operators are

common to leptons and quarks. The difference between the CP violating effective actions

induced by quarks and Dirac leptons comes only from the difference in the mass matrices

(i.e., U and masses). We dwell on this in section 7.4.

For Majorana neutrinos, the term Γ±
4+2,b is new and represents a different mecha-

nism which involves (virtual) lepton-number violation. The terms Γ±
4+2,a use the same

Kobayashi-Maskawa mechanism as quarks or Dirac neutrinos. As already noticed Γ4+2,a

coincides with Γ4+2,D modulo terms involving Z and Higgs. The explicit calculation shows

that they differ in terms depending on Z or ϕ. In particular, Γ−
4+2,a does not vanish

(whereas Γ−
4+2,D = 0) and it receives contributions from operators A−

k with k ≥ 14 (oper-

ators with Z or ϕ).

The effective action functional for Dirac neutrinos has a number of interesting regular-

ities. They are more clearly exposed by writing Γ+
4+2,D explicitly as done in eqs. (10.1-2)

of [51] (for quarks). First, there is just one coupling, a1, for all the terms. More interest-

ingly, ϕ and Z appear solely in the form ImF [ϕ + Z] (recall that (ϕ + Z)∗ = (ϕ − Z) in

Euclidean space). This suggests some kind of analytical dependence since clearly, this is

not the most general possible dependence of a functional on the two variables ϕ and Z. A

well defined pattern of dependence on Z ±ϕ was identified at the level of KDirac in (5.13),

as well as in K1 in (5.10) for Majorana neutrinos, but the implications are not obvious

since the number of ϕ’s is not preserved by subsequent manipulations.

8Ref. [50] reported a non null coupling to A−

21
for quarks, which would result in a similar coupling for

Dirac neutrinos, however that coupling has been shown to vanish in [51–53]. The calculations in [51, 52]

are based on eq. (2.22), first derived in [61], and so their method differs from that used in the calculation

of [50]. On the other hand the calculations of [47, 50, 53] follow the method given in [71] which uses the

current to reconstruct the effective action.
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It is not clear why or how, a (complex) variation in ϕ could be canceled by doing a

similar variation in the Z. We have been unable to verify whether this “symmetry” persists

in other terms of the effective action (not necessarily of the type 4 + 2 and CP odd), and

it is possible that this is just an accidental symmetry due to the low order of the terms

considered. Indeed, at the level of 4 + 2 not many terms can be written violating the

structure ImF [ϕ+ Z], essentially only those of the form W+W+W−W−(ϕ+ Z)(ϕ− Z).

We have investigated whether the structure Γ ∼ ImF [ϕ + Z] also shows up in the

effective action of the Majorana neutrinos, Γ4,M . From the results shown in the tables,

we find that the symmetry persists in Γ+
4+2,a and Γ−

4+2,b. In Γ+
4+2,b it is broken by a term

i2(b1 + b2)(A
+
38 − A+

36), and in Γ−
4+2,a it is broken by a term i(8/3)a2A

−
25. Nevertheless, to

reach a firm conclusion it would be necessary to lift the simplifying assumption φ (∂I/∂φ) =

−2I (see (6.16)) in the integration by parts, which affects the dependence on ϕµ.

Another regularity found in Γ+
4+2,D is that it has the structure

Γ+
4+2,D ∼ F0[W

+W+D̂W−D̂W−] + F1[W
+W+W−D̂W−(ϕ+ Z)]

+ F2[W
+W+W−W−(ϕ+ Z)(ϕ+ Z)] + c.c.

(6.25)

The position of the derivatives is also not the most general one, even after integration by

parts. This suggests that the (ϕ + Z) dependence could be recovered from F0 by some

kind of gauging, D̂ → D̂ + ϕ + Z, but we have been unable to establish whether such a

gauging exists.

7 Invariants and couplings

In this section we analyze the dependence on U and on the lepton masses of the results

just obtained and focus on the couplings of two concrete paradigmatic cases. Throughout

this section the diagonal mass matrices of charged leptons and neutrinos are denoted m̂e

and m̂ν , reserving me for the electron mass. Also, no factors of φ/v are implicit.

7.1 Invariants

The momentum integrals Ia and Ib contain two different structures in flavor space

Ia ∼ Im tr
(

U †f1(m̂e)Uf2(m̂ν)U
†f3(m̂e)Uf4(m̂ν)

)

,

Ib ∼ Im tr
(

U †f1(m̂e)Uf2(m̂ν)U
T f3(m̂e)U

∗f4(m̂ν)
)

.
(7.1)

The first structure is common to Dirac and Majorana cases while the second structure

is specific for Majorana neutrinos. By expanding in matrix elements, the U -dependent

tensors relevant for Ia and Ib are found to be, respectively,

J ijαβ ≡ Im (Zijα Z
ji
β ), Kij

αβ ≡ Im (Zijα Z
ij
β ), (7.2)

where

Zijα ≡ UαiU
∗
αj = Zjiα

∗. (7.3)
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Following the standard practice, the labels α, β, γ, etc, refer to the charged leptons and

i, j, k, etc, to the neutrinos with well-defined masses [36, 59]. All the algebraic properties

of the tensors J and K stem from the fact that U is unitary, and this information can

be codified in Z under the conditions that, as a matrix with respect to ij, i) Zα = Z†
α,

ii) ZαZβ = δαβZα, and tr(Zα) = 1 (i.e., the three Zα are orthogonal projectors on one-

dimensional subspaces of C3). Unfortunately these necessary and sufficient conditions are

not linear.

The tensor J is antisymmetric with respect to ij and to αβ and in fact, for g = 3, it

has only one independent component, the well-known Jarlskog invariant [48]

J ijαβ = JCP for (ijk) and (αβγ) cyclic. (7.4)

Because Zijα is invariant under phase redefinitions of the charged leptons, Uαi → eiϕαUαi,

so are J ijαβ and Kij
αβ . The symmetry of J ijαβ is larger since it is also invariant under phase

redefinitions of the neutrino fields, Uαi → Uαie
iϕi . This is also the situation for quarks.

Remarkably, although the charged leptons are Dirac fermions as the quarks, the matrix

specifically relevant for Majorana neutrinos, Kij
αβ , is still antisymmetric in the neutrino

sector, ij, but symmetric in the charged lepton sector, αβ,

Kij
αβ = −Kji

αβ = Kij
βα. (7.5)

In principle this reduces the independent components in K from 81 to 18 (for g = 3).

However, the property
∑

α Z
ij
α = δij , implies the further 9 conditions

∑

α

Kij
αβ = 0, (7.6)

which leaves just 9 linearly independent components in Kij
αβ for g = 3. There are no further

linear constraints.

For two generations J ijαβ vanishes identically (hence the need of at least three flavors to

break CP [32]) but Kij
αβ has still one non null component. As a consequence CP violation

is allowed in the two generations version of the Standard Model minimally extended to

include Majorana neutrinos [59]. We have verified that this is actually the case in our

calculation, i.e., there are no accidental cancellations, and so for instance, the coupling to

A−
10 is not zero for generic 2× 2 unitary U and generic lepton masses.

Coming back to three generations, the tensor Kij
αβ , being antisymmetric in ij, can be

arranged into three symmetric matrices with respect to αβ, a matrix for each cyclic (ij).

Moreover, the sum by columns or by rows in these matrices vanishes and this allows to use

the cyclic (αβ) components to parameterize them:

Kij =







−Kk
µ −Kk

τ Kk
τ Kk

µ

Kk
τ −Kk

e −Kk
τ Kk

e

Kk
µ Kk

e −Kk
e −Kk

µ






, Kk

γ ≡ Kij
αβ (cyclic (ijk) and (αβγ)). (7.7)

(For three generations the diagonal matrix elements Kij
αα also serve as independent param-

eters.)
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The invariance under phase redefinitions of the charged leptons removes (renders inef-

fective) three out of the nine parameters in U , leaving only 6 effective parameters in Kij
αβ ,

namely, 3 angles, one Dirac phase and two Majorana phases. (We have verified that the

6 parameters are truly effective, i.e., the nine Kk
γ fill a six-dimensional submanifold of R9

as U moves in SU(3).) This implies that not all the nine linearly independent components

Kk
γ are truly algebraically independent.

In order to find new constraints, we note that, for any (ij), the determinant of the

matrix Kij vanishes while the determinants of the three 2 × 2 submatrices are all equal.

What is not so trivial is that these determinants are actually independent of the label (ij).

Indeed,

Kij
ααK

ij
ββ −Kij

αβK
ij
βα = J ijαβJ

ij
βα = −J2

CP for i 6= j and α 6= β. (7.8)

The first equality follows just from the definitions of the tensors K and J in terms of Z

in (7.1), while the second equality requires i 6= j and α 6= β and relies on the fact that

there is just a single independent component in J ijαβ . More explictly,

Kk
eK

k
µ +Kk

µK
k
τ +Kk

τK
k
e + J2

CP = 0, k = 1, 2, 3. (7.9)

This relation implies that the nine invariants Kk
γ can be expressed in terms of six of them

plus the Jarlskog invariant, or equivalently, in terms of seven of them. The number of

independent parameters is six. This suggests that there exist a further non linear relation

among the nine invariants, presumably of polynomial type, but we have not found it.

It is interesting that a 2×2 symmetric submatrix can be identified with a bidimensional

metric and so with a ellipse (the three parameters being the two principal lengths and one

rotation angle). Each of the three Kij is equivalent to one such ellipse, and the identity

in (7.9) implies that they have the same area. It can be speculated that the missing

constraint is related to some other geometrical property of these figures.

7.2 Couplings of Dirac type

In order to analyze the couplings obtained, as regards to CP violation, we consider two

cases, one of type Ia, common to Dirac and Majorana neutrinos, and another of type Ib
for Majorana neutrinos.

For Dirac neutrinos, all the couplings are proportional to a1 so we consider this case.

The same coupling appears also for Majorana neutrinos.

a1 = I6a,1,1,2,2 = Im

∫

d4p

(2π)4
p6tr(U †N̂eUN̂νU

†N̂2
eUN̂

2
ν ) (7.10)

where the propagators N̂e,ν are diagonal matrices

N̂e = (p2 + m̂2
e)

−1, N̂ν = (p2 + m̂2
ν)

−1. (7.11)

This integral is identical to that for quarks in [51], so the results can be taken from there

in a direct way:

a1 = JCP∆ν∆eIνe, (7.12)
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where

∆ν = (m2
ν,1 −m2

ν,2)(m
2
ν,2 −m2

ν,3)(m
2
ν,3 −m2

ν1),

∆e = (m2
e −m2

µ)(m
2
µ −m2

τ )(m
2
τ −m2

e),

Iνe =

∫

d4p

(2π)4
p6

3
∏

i=1

N2
ν,i

3
∏

α=1

N2
e,α.

(7.13)

At this point approximations can be taken exploiting the big difference between the

mass scales of neutrinos and charged leptons. For a generic momentum integral with heavy

and light masses

Ilh =

∫

d4p

(2π)4
pn−4

∏

l

Nnl

l

∏

h

Nnh

h

(

0 < n < 2
∑

l

nl + 2
∑

h

nh

)

(7.14)

the effective integration range of the variable p is fixed by the light masses and the mo-

mentum can be neglected in the heavy propagators, provided the remaining integral is still

UV convergent,

Ilh =
1

∏

hm
2nh

h

Il ×
(

1 +O
(

m̄2
l /m̄

2
h

))

,

Il =

∫

d4p

(2π)4
pn−4

∏

l

Nnl

l

(

n < 2
∑

l

nl

)

.

(7.15)

For the coupling a1 this implies

a1 ≈ JCP∆̂e∆νIν , (7.16)

where

∆̂e =

(

1

m2
µ

− 1

m2
e

)(

1

m2
τ

− 1

m2
µ

)(

1

m2
e

− 1

m2
τ

)

≈ 1

m4
em

2
µ

,

Iν =

∫

d4p

(2π)4
p6N2

ν,1N
2
ν,2N

2
ν,3

(7.17)

The experimental value of the leptonic invariant JCP is not yet well determined, since

the value of the Dirac phase is not known. From its definition |JCP| ≤ 1/(6
√
3) = 0.096

and current data on the angles imply |JCP| < 0.039 [36].

The correct hierarchy of masses, namely, mν,1 < mν,3 (normal hierarchy) or mν,1 >

mν,3 (inverted hierarchy) is not yet known.9 The data on differences between square masses

are currently becoming rather precise from several neutrino oscillation experiments [37–40].

With the usual notation, ∆m2
ij = m2

ν,i − m2
ν,j , the data indicate that ∆m2

21 ≪ |∆m2
31|,

and so

∆ν ≈ ∆m2
21|∆m2

31|2. (7.18)

Specifically, ∆m2
21 = (8.7± 0.2meV)2 and |∆m2

31| = (49± 1meV)2 [36].10

9We adopt the standard choice for labeling the neutrinos, namely, mν,1 < mν,2, and mν,2 − mν,1 <

min(|mν,3 −mν,1|, |mν,3 −mν,2|).
10Note that |∆mij |

2 ≤ |∆m2

ij |, the equal sign requiring a massless neutrino.
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On the other hand, there is no precise information on the absolute values of the masses,

although the situation is rapidly changing for upper bounds on the sum of neutrino masses,

mν,1 + mν,2 + mν,3, from astrophysics data analyzed using available cosmological mod-

els [82, 83]. These bounds are in the range (0.3–1.3) eV, depending on the data and model

used [36].

Rather than computing Iν for generic values of the masses, we will consider three

typical scenarios.

a) Quasi degenerate. mν,i ≈ m̄ν ≫ |∆m2
31|1/2 (m̄ν is a fraction of eV). Using the

relation
∫

d4p

(2π)4
p2n−4

(p2 +m2)s
=

1

(4π)2
Γ(n)Γ(s− n)

Γ(s)

1

m2(s−n)
(0 < n < s), (7.19)

one obtains in this case

∆νIν ≈ 1

5

1

(4π)2
1

m̄2
ν

∆m2
21|∆m2

31|2. (7.20)

b) Normal hierarchy. mν,1 ≪ mν,2 ≈ (∆m2
21)

1/2, and mν,3 ≈ |∆m2
31|1/2. In this case

the integral Iν is of the type in (7.14), with mν,1 and mν,2 as the light masses and mν,3 as

the heavy one. An estimate of Ilh can be obtained by neglecting the light masses in the

propagator, provided the remaining integral is still IR convergent,

Ilh = Ih ×
(

1 +O
(

m̄2
l /m̄

2
h

))

,

Ih =

∫

d4p

(2π)4
pn−4−2

∑
l nl

∏

h

Nnh

h

(

n > 2
∑

l

nl

)

.
(7.21)

In our case (using (7.19))

∆νIν ≈ 1

(4π)2
∆m2

21|∆m2
31|. (7.22)

c) Inverted hierarchy. mν,3 ≪ mν,1 ≈ mν,2 ≈ (∆m2
31)

1/2. In this case mν,3 is light and

mν,1 and mν,2 are heavy in Iν and we can apply (7.21). This gives

∆νIν ≈ 1

3

1

(4π)2
∆m2

21|∆m2
31|. (7.23)

7.3 Couplings of Majorana type

Here we consider the coupling b1, typical of Ib type,

b1 = I2b,1,1,1,2 = Im

∫

d4p

(2π)4
p2tr(U †N̂eUm̂νN̂νU

T N̂eU
∗m̂νN̂

2
ν )

=
∑

i,j,α,β

Kij
αβmν,imν,j

∫

d4p

(2π)4
p2Nν,iN

2
ν,jNe,αNe,β .

(7.24)

At this point, we recall that Kij
αβ contains just nine linearly independent components

through antisymmetry in ij, and in addition

Kij
γγ = −Kij

γβ −Kij
γα = −Kk

α −Kk
β (cyclic (ijk) and (αβγ)) (7.25)
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Using the identities

Nν,iN
2
ν,j −Nν,jN

2
ν,i = (m2

ν,i −m2
ν,j)N

2
ν,iN

2
ν,j , ,

2Ne,αNe,β −N2
e,α −N2

e,β = −(m2
e,α −m2

e,β)
2N2

e,αN
2
e,β ,

(7.26)

the coupling can be written as

b1 = −
∑

k,γ

Kk
γmν,imν,j(m

2
ν,i −m2

ν,j)(m
2
e,α −m2

e,β)
2

∫

d4p

(2π)4
p2N2

ν,iN
2
ν,jN

2
e,αN

2
e,β . (7.27)

In this formula (ijk) and (αβγ) are cyclic permutations of (123) and (eµτ), respectively.

The expression contains nine integrals. For generic masses one could reduce this num-

ber to five by adding in each case the missing neutrino or charged lepton propagator squared

using the identity 1 = N2(p2 +m2)2. In the case at hand, it is preferable to exploit that

the charged leptons are much heavier than the neutrinos to factorize the expression, us-

ing (7.15). This gives,

b1 = −
∑

k,γ

Kk
γFe,γFν,k ×

(

1 +O
(

m2
ν/m

2
e

))

≈ −
∑

k

fkFν,k, (7.28)

with

Fe,γ =

(

1

m2
e,α

− 1

m2
e,β

)2

, fk =
∑

γ

Kk
γFe,γ ≈ Kk

e

m4
µ

+
Kk
µ

m4
e

+
Kk
τ

m4
e

,

Fν,k = mν,imν,j∆m
2
ij

∫

d4p

(2π)4
p2N2

ν,iN
2
ν,j ≡

1

(4π)2
∆m2

ijH(m2
ν,i/m

2
ν,j).

(7.29)

Here we have introduced the dimensionless function

H(x) = (4π)2m1m2

∫

d4p

(2π)4
p2

1

(p2 +m2
1)

2

1

(p2 +m2
2)

2
, x =

m2
1

m2
2

. (7.30)

The integral can be conveniently obtained by residues (using e.g. eqs. (11.6,7) of [51])

H(x) =
√
x
x2 − 1− 2x log x

(x− 1)3
, x > 0. (7.31)

This function increases monotonically from x = 0 to x = 1, further

H(x) = H(1/x), H(x) =
√
x+O(x3/2 log x), H(1) =

1

3
. (7.32)

At present nothing is known about the phases in U and so only bounds can be given on

the nine invariants Kk
γ . Due to symmetry in the labels, the maximum value of each |Kk

γ |,
namely 1/4, is common to all the invariants (but, of course, this extreme is not attained

simultaneously for all of them). For instance, for K2
µ it is attained for θ13 = π/4, α13 = π/2

and θ12 = θ23 = α12 = δCP = 0 (among other sets of values). Here we have used a standard

notation for the parameters in U [36].
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To estimate the effect of the neutrino factor Fν,k we take the same three scenarios

considered previously for Dirac type integrals:

a) Quasi degenerate. If the neutrino masses are similar, H(1) = 1/3 applies and this

gives

b1 ≈ −1

3

1

(4π)2
(

(f1 − f3)∆m
2
21 + (f2 − f1)∆m

2
31

)

. (7.33)

b) Normal hierarchy. In this case mν,1 ≪ mν,2 ≪ mν,3, therefore H(m2
l /m

2
h) ≈ ml/mh

applies for the three pairs of neutrino masses, yielding

b1 ≈ − 1

(4π)2
(−mν,2mν,3f1 +mν,1mν,3f2 −mν,1mν,2f3) . (7.34)

c) Inverted hierarchy. In this case mν,3 ≪ mν,1 ≈ mν,2. Now H(m2
ν,3/m

2
ν,2) ≈

mν,3/mν,2 and H(m2
ν,1/m

2
ν,2) ≈ 1/3, hence

b1 ≈ − 1

(4π)2

(

mν,2mν,3(f1 − f2)−
1

3
∆m2

21f3

)

. (7.35)

7.4 Leptons vs quarks and numerical estimates

It is very instructive to compare the behavior found for leptons with that of quarks. The

formulas for quarks are those of type Ia. Similarly to (7.12), for quarks [51]

gCP = Jq∆u∆dIud, (7.36)

however, the integral Iud (the quark analog of Iνe) is not so smooth as for leptons. For

quarks the relevant splitting between light and heavy is rather mu,md,ms ≪ mc,mb,mt

which is superficially similar to mν,i ≪ me,mµ,mτ , but while for the leptons the light

particles are all of type “up” (weak isospin +1/2), in the case of quarks the light particles

are of mixed up and down type. This is relevant for the coupling due to the structure of

the Jarlskog invariant which controls CP violation in the Kobayashi-Maskawa mechanism.

After separation of the heavy particles (making use of (7.15))

∆u∆dIud ≈
1

m2
c

(m2
s −m2

d)Iq, Iq ≡
∫

d4p

(2π)4
p6N2

uN
2
dN

2
s . (7.37)

As it turns out, as a consequence of IR divergences, the dimensionless quantity (m2
s−m2

d)Iq
is not a continuous function of the masses at mu = md = ms = 0. The directional limit

there is finite but it depends on how it is taken (i.e., on the ratios mu/ms and md/ms).

The natural choice mu,md → 0 followed by ms → 0 gives 1/(4π)2 which is close to the

exact result.

For the Dirac type coupling of leptons,

∆ν∆eIνe ≈
1

m4
em

2
µ

(m2
ν,1 −m2

ν,2)(m
2
ν,2 −m2

ν,3)(m
2
ν,3 −m2

ν1)Iν . (7.38)

The factor (m2
ν,3 −m2

ν,1)Iν is once again finite but not continuous in the limit mν,i → 0,

nevertheless, due to the additional factors (m2
ν,1 −m2

ν,2)(m
2
ν,2 −m2

ν,3), the full expression

has a well-defined (zero) limit as mν,i → 0.
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QD NH IH Quarks

|a1| 7.0× 10−33 1.4× 10−31 4.8× 10−32 3.8× 10−4

|b1| 7.4× 10−11 2.0× 10−11 1.2× 10−12 (1.2× 10−7)

Table 9. Upper bounds (maximal |Kk
γ | are assumed) for the coefficients of Dirac type (a1) and

Majorana type (b1) in the three neutrino scenarios: quasi degenerate (QD), normal hierarchy (NH),

and inverted hierarchy (IH). The value m̄ν = 0.1 eV has been adopted in a1 for QD neutrinos. For

quarks |gCP| is shown assuming a maximal value of Jq. The same coupling using the experimental

value of Jq is shown below, between parenthesis. Units in GeV−2.

The different behavior of quarks and leptons does not stem from differences in the

formulas, but rather from the different pattern of separation between light and heavy

particles in each case. In the case of quarks, the IR divergences (a kind of chiral enhance-

ment [47, 50, 51, 53]) allows to have a sizable CP violating effective action even for relatively

small quark masses. This idea was forwarded in [47] and first confirmed explicitly in [51].

The previous analysis does not directly extend to the couplings of Majorana type,

but we can see that also in this case the amount of CP violation in the effective action

induced by leptons is small as it depends on the small neutrino masses. At least for the

lowest dimensional operators, which are those in Γ4+2. Nevertheless, this conclusion could

change for the couplings of higher dimensional operators. As the dimension of the operator

increases, the integrals become more UV convergent, but also more IR divergent in the

massless limit, and so more sensitive to the IR regime.

Since the precise values of the neutrino masses and the PMNS matrix, including phases,

are not known yet, the couplings a1 and b1 cannot be given definite values. In order to

have a feeling of the strength of CP violation induced by leptons, we present in table 9

estimates of a1 (Dirac type) and b1 (Majorana type). These estimates are really upper

bounds obtained by taking |Kk
γ | = 1/4 and JCP = 1/(6

√
3), as well as m̄ν = 0.1 eV. For

comparison the value of gCP for quarks is also given, with Jq = 1/(6
√
3). The number in

parenthesis is gCP using the experimental value Jq = 3× 10−5 [36]. In the Majorana case,

all |fk| are estimated (or rather bounded) as f̄ ≈ 1/(2m4
e) and |fi − fj | ≈ 2f̄ .

The results shown in table 9 indicate that couplings of the type Ia are much smaller

than those of quarks. It follows that the leptonic corrections to the couplings of operators

which already have a quark contribution is extremely small. Note though that even these

small values are many orders of magnitude larger that the perturbative estimates discussed

in the Introduction, when these are applied to leptons (these give ratios as small as 10−93.)

The typical values of couplings of Majorana type are about 20 orders of magnitude

larger than those of Dirac type. This indicates that CP violation could serve as a test to

discriminate the two types of neutrino masses, provided the CP violating phases in the

PMNS matrix are not too small. The Majorana couplings are smaller that those of quarks

but these new couplings are the only ones present for parity odd operators.

Before finishing this section we want to briefly discuss the structure of the other cou-

plings, a2, b2, b3, b4 and b5 defined in (6.22).
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The relation similar to (7.12) for a2 is

a2 = I8a,1,1,2,3 = JCP∆ν∆eI
′
νe, (7.39)

with

I ′νe =

∫

d4p

(2π)4
p8

3
∑

j=1

Nν,j

3
∏

i=1

N2
ν,i

3
∏

α=1

N2
e,α. (7.40)

This quantity can be analyzed along the same lines as a1 and similar formulas are obtained

(e.g., the factor 1/5 in (7.20) becomes 1/2 for a2). So this coefficient will be of similar size

as a1 itself.

Rather than doing a detailed analysis of the coefficients it is instructive to look for

potentially large values by studying the possible IR divergences in the integrals.

Consider first the integral a1 = I6a,1,1,2,2 for leptons in the limit of small neutrino

masses. The integral has many contributions of the type

I6a,1,1,2,2 ∼
∫

d4p p6Ne,αN
2
e,βNν,iN

2
ν,j (leptons) (7.41)

and by choosing different labels of type ν and e, we would want to select the worst cases,

i.e. the most IR divergent, ones. However, one can see that this integral is IR finite as the

neutrino masses go to zero. The same conclusion follows for a2 = I8a,1,1,2,3.

If instead of leptons, the analysis of I6a,1,1,2,2 is carried out for quarks, with the masses

of u, d and s going to zero, the worse case is

I6a,1,1,2,2 ∼
∫

d4p p6NcN
2
uNsN

2
d (quarks) (7.42)

which is IR divergent at a logarithmic rate. Note that due to antisymmetry of Ia with

respect to up-like and down-like (or neutrinos and charged leptons) separately (see (4.10))

the two up-like (c and u above) and the two down-like (s and d above) must be different.

The presence of the IR divergence causes the quarks to give a larger contributions than

neutrinos in type Ia integrals.

Let us consider now the integrals of type Ib. In this case, the two neutrino labels

should still be different but the charged lepton labels can be equal. For b1 = I2b,1,1,1,2 a

typical contribution is

I2b,1,1,1,2 ∼ mν,imν,j

∫

d4p p2NeNeNν,iN
2
ν,j . (7.43)

The integral would be logarithmically IR divergent as the two neutrino masses go to zero

but this is multiplied by the product of the same masses yielding an O(m2
ν) final result. The

analysis is similar for b2 = I4b,1,1,1,3. For b3 = I4b,1,1,2,2, b4 = I6b,1,1,3,2 and b5 = I6b,2,1,2,2 the

integrals themselves are IR finite since there are additional powers of p2 but no additional

neutrino propagators, as compared to b1. Therefore, the other bi couplings are not expected

to be larger than b1. The typical scale of the couplings of type b is set by the factor

|∆m2
31|/m4

e ≈ 10−8GeV−2, while |∆m2
31|2/(m4

em
2
µ) ≈ 10−27GeV−2 sets the scale in the

couplings of type a. Compared to this, the scale of CP violation for quarks is set by the

factor 1/m2
c ≈ 1GeV−2, in dimension six operators.
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8 Summary and conclusions

In this work we have undertaken a direct calculation of the couplings to CP violating

operators as induced by the leptonic loop in the Standard Model, extended to include

neutrino masses either of pure Dirac type or pure Majorana type. The study is restricted

to leading dimension operators, which have been shown to be of dimension six, although

four dimensional CP odd operators would be obtained in the mixed Dirac-Majorana case

(see (4.11)). Our calculation is exhaustive at dimension six. The results are collected in

tables 2–8. We have confirmed that CP would be violated in a two generation scenario with

Majorana neutrinos present. Also, we show that CP odd and P odd operators are produced

at dimension six with Majorana neutrinos, while only P even operators are produced for

Dirac neutrinos.

An interesting result of the present study is the derivation of a Klein-Gordon like

operator, the operator K (see (5.23)), which describes the propagation of leptons in the

sectors 〈ψRψ̄L〉 and 〈ψLψ̄R〉, also in the Majorana case, and which produces the correct

effective action in all sectors, CP odd and CP even, and beyond the derivative expansion.

Two different mechanisms are present for Majorana neutrinos, one (type Ia) is common

to the Dirac neutrino case, and a new one (type Ib) is exclusive of the Majorana case. The

two types contribute simultaneously to the same set of CP odd operators. We have shown

that type Ia contributions are identical to those of the Dirac case when no Z or Higgs are

involved, but new terms appear when these fields are present, and in particular, P can be

violated in the CP odd sector at dimension six. At variance with this, type Ib terms allow

to break P at dimension six without requiring Higgs or Z fields.

In the discussion of the new invariants of the PMNS matrix introduced by the presence

of Majorana masses, we have been able to identify two quadratic relations among the

nine invariants and a relation with the Jarlskog invariant (see (7.9)). Because only six

parameters of the PMNS are effective in the Ib terms (the three angles, the Dirac phase

and the two Majorana phases) it follows that one more non-linear relation is missing among

the nine invariants but we have not been able to identify it.

The general expressions of the couplings, which come as momentum integrals have

been approximated in two typical cases, by exploiting the small neutrino mass, yielding

manageable formulas. Numerically we find that the couplings for Dirac neutrinos, or

more generally type Ia terms, are many (about fifty or sixty) orders of magnitude larger

that perturbative estimates, but still much smaller (by about a factor 10−28) than similar

contributions from the quark loop. The reason for this difference is not so much the small

mass of the neutrinos but the fact that the pattern of breaking between light and heavy

fermions is different in quarks and leptons, as regards to weak isospin: for quarks, the three

lightest particles, u, d and s, are of up and down mixed type, whereas for leptons the three

light neutrinos are of type up, and this is relevant for the Jarlskog determinant and the IR

structure of the couplings. For the dimension six operators we have considered, the scale of

CP violation in couplings of type Ia (Kobayashi-Maskawa mechanism) is controlled by the

factor |∆m2
31|2/(m4

em
2
µ) ≈ 10−27GeV−2 for leptons and by 1/m2

c ≈ 1GeV−2 for quarks.
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The scale of CP violation for couplings of type Ib (virtual lepton-number violation)

specific of Majorana neutrinos is set by the factor |∆m2
31|/m4

e ≈ 10−8GeV−2. Numerically,

these couplings are smaller than quark-induced terms only by about a factor 10−7, assuming

generic phases in the PMNS matrix. More importantly, some of the operators induced by

integration of the Majorana neutrinos are exclusive for this mechanism. In particular,

parity violating operators appear at dimension six for Majorana neutrinos which are not

present for Dirac neutrinos. In principle, this opens the door to distinguish between Dirac

and Majorana neutrinos in precision tests involving CP violation provided the relevant

selection rules, for the appropriate operators, can be enforced.

The main limitation of the calculations of the present type regarding phenomenology

is the use of a strict derivative expansion, which implies an expansion around zero four-

momentum for the external fields. The lifting of this restriction is a direction in which

the present work could be extended. Other directions include studying the case of mixed

Dirac and Majorana neutrino masses, which would allow to consider new operators of lower

dimension, the study of higher dimensional operators which have a different IR behavior,

and the inclusion of finite temperature effects, relevant for baryogenesis scenarios.

A Covariant and ordinary symbols

In eq. (6.14) there appear the covariant symbols of several operators. These symbols

are multiplicative with respect to x but contain derivatives with respect to pµ. These

derivatives will be indicated as ∂pα = ∂/∂pα. To compute the symbols we apply the

relations (6.13), using for each field its proper gauge connection, namely, −qAe with

q = ±1, 0, 0, for W±, Z and ϕ, respectively.

In general the covariant symbols are infinite series ordered by the number of derivatives.

For Γ4+2 we need to retain two derivatives, counting De,µ, Zµ and ϕµ as first order. The

correct number of W ’s is already selected in eq. (6.14).

Derivatives and gauge and Higgs fields.

W̄±
µ =W±

µ + iW±
αµ∂

p
α − 1

2
W±
αβµ∂

p
α∂

p
β +O(D3),

Z̄µ = Zµ + iZαµ∂
p
α +O(D3),

ϕ̄µ = ϕµ + iϕαµ∂
p
α +O(D3),

D̄e,µ = ipµ +
i

2
F eαµ∂

p
α +O(D3),

D̄∗
e,µ = ipµ −

i

2
F eαµ∂

p
α +O(D3),

D̄e±,µ = D̄e,µ ± (Z̄µ + ϕ̄µ),

D̄ν,µ = ipµ,

D̄ν±,µ = D̄ν,µ ± (Z̄µ − ϕ̄µ),

F̄ eµν = F eµν +O(D3).

(A.1)
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Mass terms.

m̄n
e = mn

e

(

1 + niϕα∂
p
α − 1

2
(nϕαβ + n2ϕαϕβ)∂

p
α∂

p
β +O(D3)

)

,

m̄n
ν = mn

ν

(

1 + 2niϕα∂
p
α − 1

2
(2nϕαβ + 4n2ϕαϕβ)∂

p
α∂

p
β +O(D3)

)

,

n = 1, 2, . . . (A.2)

Propagators. There are various propagators, Ge, G
(2)
e , G∗

e, Gν , and G′
ν . All of them

follow the scheme

Ḡ = N −NHN +NHNHN +O(D3) (A.3)

where N is of order zero and H is at least of order one in derivatives. For the various N

Ne = N (2)
e = U †(m2

e + p2)−1U,

N∗
e = UT (m2

e + p2)−1U∗,

Nν = N ′
ν = (m2

ν + p2)−1,

(A.4)

while for the H:

He = m̄2
e − /̄De− /̄De −m2

e − p2,

H(2)
e = m̄2

e − ( /̄De− + 2/̄ϕ)( /̄De + 2/̄ϕ)−m2
e − p2,

H∗
e = m̄2

e − /̄D
∗

e /̄D
∗

e+ −m2
e − p2,

Hν = m̄2
ν − /̄Dν+ /̄Dν− −m2

ν − p2,

H ′
ν = m̄2

ν − ( /̄Dν− − 2/̄ϕ)( /̄Dν+ + 2/̄ϕ)−m2
ν − p2.

(A.5)

In the formulas with expressions valid to all orders one has to expand in derivatives dropping

terms of O(D3). E.g.,

H ′
ν =m2

ν

(

4iϕα∂
p
α − (2ϕαβ + 8ϕαϕβ)∂

p
α∂

p
β

)

− i[/p, /Z + /ϕ] + [/p, γµ(Zαµ + ϕαµ)∂
p
α] + (/Z + /ϕ)2 +O(D3).

(A.6)

Alternatively one can use the method of ordinary symbols [80, 81]. In this case, the

equation similar to (6.12) is

Tr f(D,M) =

∫

ddxddp

(2π)d
trf(D + ip,M). (A.7)

After integration over pµ all covariant derivatives appear only in the form [Dµ, ], but

unlike the case of covariant symbols, these explictly covariant combinations have to be

obtained by hand (essentially moving the D’s to the right using DµX = XDµ + D̂µX).

This makes this method less systematic. It should be noted that the cyclic property of the

trace can be freely applied to writing the starting pseudodifferential operator, f(D,M),

without changing the UV convergent contributions in the final result, however, in general

such freedom is not justified for the different terms in trf(D + ip,M).
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