
J
H
E
P
0
8
(
2
0
1
4
)
1
2
1

Published for SISSA by Springer

Received: June 19, 2014

Accepted: July 26, 2014

Published: August 21, 2014

Linear quivers and N = 1 SCFTs from M5-branes

Ibrahima Baha and Nikolay Bobevb

aInstitut de Physique Théorique, CEA/Saclay,
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1 Introduction

Quiver gauge theories provide an interesting and very rich class of quantum field theories

which arise naturally in string theory from branes placed at singularities or various brane

intersections, see for example [1–3].

In this paper we study a particular class of quiver gauge theories with N = 1 super-

symmetry which are built out of N = 1 and N = 2 vector multiplets as well as ordinary

matter multiplets. The quiver diagram encoding the field content of our theories has linear

shape and hence we dub our theories linear quivers. A key point in the construction is

that we arrange the matter content of the theory and the superpotential such that we are

left with precisely one non-anomalous U(1) flavor symmetry in addition to the U(1)R R-

symmetry. This is in the spirit of the field theory constructions in [4–6] and we will utilize

many of the insights in these papers. We argue that the IR dynamics of the linear quivers

is controlled by a set of interacting fixed points. A particular linear combination of the

two global U(1)’s is then the superconformal R-symmetry in the IR. We find this linear

combination using a-maximization [7]. This in turn facilitates the calculation of the central

charges of the IR fixed points as well as the dimensions of some protected operators.

Even though our discussion is inspired in part by the constructions in [4–6], we em-

phasize that we will not be using the strongly coupled isolated TN SCFT introduced in [8]

as a building block for our quivers. The TN itself can be defined by decoupling a set of

N = 2 vector multiplets and hypermultiplets from linear quivers that preserve N = 2
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supersymmetry [8, 9]. One of the motivations for studying the N = 1 linear quivers is to

find possible N = 1 generalizations of the TN SCFT. We do not find such a generalization

here but we believe that our construction is a useful step in this direction.

The construction of the linear quivers we study can be phrased entirely in the language

of field theory without any reference to string theory or branes. However there are very

natural type IIA constructions with D4- and NS5-branes which at low energies realize

precisely the dynamics of our linear quivers. These brane constructions are in the spirit

of [10] and are instrumental in understanding and interpreting the rules for building our

linear quivers. Equipped with the type IIA picture we can follow the approach of [10]

and [8, 11] and take an M-theory limit. The linear quivers can then be thought of as an

N = 1 twisted compactification of the (2, 0) theory on the world-volume of M5-branes on a

punctured sphere. This limit allows also for a nice geometrization of many of the properties

of the field theories of interest. Moreover it opens the way for anN = 1 generalization of the

large class of N = 2 SCFTs constructed from M5-branes on Riemann surfaces [8, 10, 11].

Many examples of such 4D N = 1 theories have already been discussed in the literature, see

for instance [4–6, 12–15]. However we believe that the efforts so far only scratch the surface

of a large structure underlying the space of 4D N = 1 SCFT’s arising from M5-branes.

The structure of this note is as follows. In the next section we present our setup and

the rules for constructing linear quivers. In section 3 we study their IR dynamics, argue

that the theories flow to SCFTs and calculate the central charges and sueprconformal R-

symmetry of the fixed points. The intersecting brane configurations in type IIA string

theory, which at low energies realize the linear quivers, are discussed in section 4 and their

M-theory limit is presented in section 5. We end with some comments and a few problems

for the future in section 6.

Note added: while we were preparing the manuscript the preprint [16] appeared on the

arXiv. There is some overlap between part of our results and the discussion in section 3

of [16].

2 Linear quivers

2.1 Setup and symmetries

The aim of this paper is to understand the IR dynamics of linear quivers with gauge group

G which is a product of `− 1 copies of SU(N)

G =

`−1∏
i=1

SU(N) . (2.1)

The general quiver we have in mind is illustrated in figure 1. The matter content of the

field theory is encoded in the shaded quiver diagram as follows

• Shaded circles correspond to SU(N) gauge groups with N = 1 vector multiplets.

There are n1 of them.
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Figure 1. A general linear quiver. The shaded and unshaded circles denote N = 1 and N = 2

vector multiplets respectively. The lines connecting them are hypermultiplets in the bifundamental

of the SU(N) gauge groups at the two ends of the line. The boxes at both ends of the quiver

represent two sets of N hypermultiplets in the fundamental of the SU(N) gauge group.

• Unshaded circles correspond to SU(N) gauge groups with N = 2 vector multiplets,

i.e. an N = 1 vector multiplets with an adjoint chiral superfield. There are n2 of

them.

• Lines between circles correspond to SU(N)×SU(N) bifundamental hypermultiplets.

There are `− 2 of them.

• The boxes at the end of the quiver diagram correspond to two sets of N hypermul-

tiplets in the fundamental representation of the two end SU(N) gauge groups.

We have a total of n1 + n2 = ` − 1 gauge groups and ` hypermultiplets. We use Vi to

denote the ith gauge group, with i = 1 corresponding to the left most circle. Let φi
denote the chiral adjoint in the ith vector multiplet. If the ith vector multiplet is N = 1

there is no φi field. As usual, the hypermultiplets consist of a pair of chiral superfields in

conjugate representations, we denote the full hypermultiplet as Hi = (Qi, Q̃i) with i = 0

corresponding to the left box and i = ` corresponding to the right box.

The quivers of interest possess large global symmetry in addition to the N = 1 super-

symmetry. There is an SU(N) flavor symmetry acting on the end hypermultiplets and a

U(1) flavor symmetry for each Hi and φi. There is also an overall R-symmetry. The global

symmetry is therefore

SU(N)× SU(N)×U(1)`+n2 ×U(1)R . (2.2)

We denote the U(1) symmetries acting on the hypermultiplets as Ji and those acting on

the chiral adjoints (when they are present) as Fi. We normalize the charges as

Ji(Qj) = Ji(Q̃j) = δij , Fi(φj) = δij . (2.3)

Some of these global U(1) symmetries suffer from chiral anomalies. Each gauge group yields

one anomaly constraint and therefore we can construct n2+1 anomaly free U(1)’s. We also

have an anomaly free R-symmetry denoted as R0. We can choose the charge assignments

for the R-symmetry as

R0(Qi) = R0(Q̃i) =
1

2
, R0(φi) = 1 . (2.4)
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(a) (b)

Figure 2. A simple linear quiver with ` = 3 (a) and its Seiberg dual when there is no superpotential

turned on (b). After Seiberg duality the mesons charged under the N = 2 vector multiplet are

represented as a fundamental hypermultiplet and a chiral adjoint.

2.2 Quivers without superpotential

Without any superpotential terms, we expect the quiver to break into n2+1 smaller quivers

in the IR. The one-loop beta functions for the gauge group couplings are

b0(V
N=2
i ) = 0 , b0(V

N=1
i ) = −N . (2.5)

The gauge couplings for the N = 2 gauge groups are marginal. Without any superpotential

terms we expect these gauge couplings to be marginally irrelevant [17]. As a result the

N = 2 gauge groups are non-dynamical and therefore the quiver breaks up at these sites

in the IR to yield n2 + 1 smaller quivers.

To illustrate this point, we consider the simple quiver in figure 2(a) and try to follow

the dynamics as we flow to the IR. From the one-loop beta functions in (2.5), we expect

the N = 1 vector in figure 2(a) to become strongly coupled while the N = 2 vector stays

weakly coupled. We can then Seiberg dualize at the N = 1 node. The gauge group will

still be SU(N) since Nf = 2Nc locally. After the Seiberg duality the mesons of the electric

theory become fundamental fields charged under the N = 2 gauge group. These “mesons”

will decompose into N hypermultiplet in the fundamental representation of the SU(N)

N = 2 vector multiplet and an adjoint chiral superfield. The resulting quiver is depicted

in figure 2(b). There is also a superpotential term generated which couples the new fields

to the bifundamental hypermultiplets at the N = 1 vector multiplet. The one loop beta

function for the N = 2 gauge group is then

b0(V
N=2
i ) = 2N . (2.6)

The gauge coupling is therefore irrelevant and the N = 2 vector multiplet has no interesting

dynamics in the IR. We expect the N = 2 vectors adjacent to the N = 1 vectors in

the general linear quiver in figure 1 to behave in the same way. Thus in the absence of

superpotential terms the general linear quiver of figure 1 will break into n2 + 1 decoupled

smaller quivers. Our discussion fits well with the known fact that N = 2 vector multiplets

coupled to Nf = 2Nc matter run free in the IR when the N = 2 superpotential term is not

present [18].
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2.3 Quivers with superpotential

We are interested in situations where the IR dynamics of the quivers in figure 1 is non-

trivial. More precisely we will argue that for appropriate choice of the superpotential the

physics in the IR is governed by an N = 1 superconformal field theory.

We can avoid the problem of having the quiver break apart by turning on superpotential

terms. At N = 1 sites, we turn on

W i
N=1 = βi(Qi−1Q̃i−1)(Q̃iQi) , (2.7)

where βi are arbitrary complex numbers. At N = 2 sites, we can turn the superpotential

W i
N=2 = αiLφi(Qi−1Q̃i−1) + αiRφi(Q̃iQi) , (2.8)

where αiL,R are complex numbers. The superpotential terms in (2.7) and (2.8) generate

masses for the extra fields introduced after the Seiberg duality depicted in figure 2(b).

These superpotential prevents the marginal N = 2 gauge coupling from running free. We

now study the quiver in figure 1 with these superpotential terms.

The superpotential terms in (2.7) and (2.8) preserve the R0 R-symmetry, and break

all but one of the anomaly free flavor U(1) symmetries of the linear quiver. In order

to find this U(1), we need to understand how the chiral anomaly is cancelled at a given

gauge group site. At the ith node of the quiver, the local combination Ji−1 − Ji is always

anomaly free. If the site contains a chiral adjoint then there is an additional anomaly free

local U(1) given by Ji−1 + Ji − 2Fi. The superpotential terms at the N = 2 sites in (2.8)

break the former local U(1). The lesson is that the charges of the hypermultiplets flip

sign across N = 1 vectors and stay the same across N = 2 vectors. We can thus assign

to each hypermultiplet a sign σi = ±1 and follow the rule that N = 1 (N = 2) vector

multiplets connect hypermultiplets of different (same) sign. The non-anomalous global

U(1) symmetry can then be written as

F =
∑
Hi

σiJi −
∑
Vi

(σi−1 + σi)Fi , (2.9)

where the first sum is over all hypers and the second one is over all vectors. It is straightfor-

ward to check that this is the only anomaly free flavor U(1) preserved by the superpotential

terms in (2.7) and (2.8). In general there will be p J ’s with σi = 1 and q J ’s with σi = −1.

These parameters are constrained to obey p+ q = `. This setup and rules are very similar

to the ones used for the generalized N = 1 quivers constructed in [4–6].

One can also contemplate the addition of the superpotential term of the form

W i
N=1 = γi(Q̃iQi)

2 , (2.10)

for any set of complex numbers γi. This superpotential breaks the U(1) symmetry denoted

by F in (2.9). As we will discuss below when the superpotential (2.10) is turned on, the

theory always flows to the same IR fixed point. Only when we arrange all the coefficients

γi to vanish we find the extra U(1) global symmetry in (2.9) which allows for an interesting

family of interacting SCFTs in the IR. We now proceed to study this family of fixed points.
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3 IR dynamics

In this section we will assume that the IR dynamics of the linear quivers with the su-

perpotential terms in (2.7) and (2.8) is controlled by a superconformal field theory and

perform a number of consistency checks of this claim. Our main calculation tool will be

the knowledge of the global symmetries together with a-maximization [7].

3.1 Central charges and R-symmetry

If the linear quiver flows to an IR SCFT there should be a superconformal R-symmetry

which we can determine by using a-maximization [7]. Once we know this R-symmetry,

we can determine dimensions of chiral operators and check unitarity bounds. We can also

compute the central charges of the theory.

If we have a superconformal fix point, the a and c central charges are given by the ’t

Hooft anomalies associated with the superconformal R-symmetry [19], RN=1

a =
3

32

(
3TrR3

N=1 − TrRN=1

)
, c =

1

32

(
9TrR3

N=1 − 5TrRN=1

)
. (3.1)

The linear quivers admit a one-parameter family of R-symmetries which are linear combi-

nations of R0 and F
Rε = R0 +

1

2
εF . (3.2)

The real number ε is apriori unknown. Each Rε yields an a(ε) via (3.1). The superconformal

R-symmetries maximizes the function a(ε) and thus uniquely determines the value of ε [7].

Now we proceed with the calculation of the ’t Hooft anomalies from the vector and matter

multiplets of the linear quiver.

The charges of the superfields are

Rε(Qi) = Rε(Q̃i) =
1

2
(1 + εσi) , and Rε(φi) = 1− 1

2
ε(σi−1 + σi) . (3.3)

The ’t Hooft anomalies are

TrR3
ε (Hi) =

1

4
N2(εσi − 1)3 , TrRε(Hi) = N2(εσi − 1) , (3.4)

for the ith hypermultiplet and

TrR3
ε (Vi) = (N2 − 1)

[
1− 1

8
ε3(σi−1 + σi)

3

]
,

TrRε(Vi) = (N2 − 1)

[
1− 1

2
ε(σi−1 + σi)

]
,

(3.5)

for the ith vector multiplet.

We can write the total anomaly by summing over all fields in the quiver and obtain

TrR(H) = `N2 (zε− 1) ,

TrR3(H) =
1

4
`N2

(
z(3ε+ ε3)− (1 + 3ε2)

)
,

(3.6)
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for the hypermultiplets, and

TrR(V ) = (N2 − 1) (`− 1− ε(z`− κ)) ,

TrR3(V ) = (N2 − 1)
(
`− 1− ε3(z`− κ)

)
,

(3.7)

for the vector multiplets. We have defined two new parameters

z =
p− q
`

, and κ =
1

2
(σ0 + σ`) , (3.8)

these parameters are important for labeling different SCFTs.

The trial central charge a(ε) is

a(ε) =
3

4 · 32

[
3A3ε

3 − 9A2ε
2 +A1ε+A0

]
, (3.9)

where

A3 = 4κ(N2 − 1) + z`(4− 3N2) , A2 = N2` ,

A1 = z`(9N2 − 4)− 4κ(N2 − 1) , A0 = `N2 + 8(N2 − 1)(`− 1) .
(3.10)

The function a(ε) is maximized at ε = εm with

εm =
3A2 −

√
9A2

2 −A1A3

3A3
. (3.11)

The ’t Hooft anomalies at the superconformal fix points are given by

TrRN=1 = `N2 (zεm − 1) + (N2 − 1) (`− 1− εm(z`− κ)) , (3.12)

TrR3
N=1 =

1

4
`N2

(
z(3εm + ε3m)− (1 + 3ε2m)

)
+ (N2 − 1)

(
`− 1− ε3m(z`− κ)

)
,

where εm is given in (3.11). The a and c central charges can be easily deduced from the

expressions in (3.1).

Each theory in the IR is labelled by the discrete parameters {κ, z, `,N} and the central

charges depend only on these parameters. It is natural to conjecture that all linear quivers

with the same values of the parameters {κ, z, `,N} are dual to each other and flow to the

same IR SCFT.

The parameter εm is odd under (z, κ) → (−z,−κ), therefore the ’t Hooft anomalies

and the central charges are invariant under such transformation. From the definitions of z

and κ in (3.8) we observe that there are three choices for κ, {−1, 0, 1}, and |z| is bounded

above, |z| ≤ 1. Without lost generality, we can restrict z to the range 0 ≤ z ≤ 1. This

correspond to restricting the parameters p and q to obey q ≤ p.

3.2 Consistency checks

Unitarity bound. A consistency check for the validity of a-maximization and for the

claim that there is an IR SCFT is to make sure that chiral operators satisfy the unitarity

bound, i.e.

∆ =
3

2
RN=1 ≥ 1 . (3.13)

– 7 –
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The charges for the fundamental fields in terms of the trial R-symmetry are

RN=1(Qi) =
1

2
(1 + εmσi) , and RN=1(φi) = 1− 1

2
εm(σi−1 + σi) . (3.14)

The lowest dimensional gauge invariant operators that can be constructed from these are

mesons from the hypermultiplets and mass terms for the chiral adjoints. Their charges are

RN=1(QiQ̃i) = 1 + εmσi , RN=1(φ
2
i ) = 2− εm(σi−1 + σi) . (3.15)

The unitarity bound is obeyed when

− 1

3
≤ εm ≤

1

3
. (3.16)

One can check that εm in (3.11) always lies within this range for the allowed ranges of

the parameters {κ, z, `,N}. The bounds in (3.16) are saturated by z = −1 (lower) and

z = 1 (higher).

Hofman-Maldacena bound. We can also check a number of non-trivial bounds obeyed

by the central charges of any N = 1 SCFT. It is not hard to show that for all allowed

values of the parameters {κ, z, `,N} both a and c are positive. One can also show that the

Hofman-Maldacena bound for N = 1 SCFT’s [20] is obeyed, i.e.

1

2
≤ a

c
≤ 3

2
. (3.17)

In fact for the linear quivers studied here we find a narrower range

1

2
≤ a

c
≤ 1 . (3.18)

The lower bound is obtained by setting ` = 1. For this case, there are no vector multiplets

and one has z = 1. The central charges for ` = 1 are

c = 2a =
N2

12
+ (1− κ)

N2 − 1

24
. (3.19)

When κ = 1 the central charge is just that of an SU(N) × SU(N) bifundamental hyper-

multiplet. This is not surprising since ` = z = 1 for κ = 1 is precisely the theory of a 4D

SU(N) × SU(N) bifundamental hypermultiplet. When κ = 0 or −1, the theories are also

free. They correspond to a 4D SU(N)× SU(N) bifundamental hypermultiplet with chiral

superfields in the adjoint of SU(N).1 There is one extra adjoint superfield for κ = 0 and

two extra adjoint superfields for κ = −1. This is also consistent with the fact that the

lower limit of the Hofman-Maldacena bound (3.17) is saturated by free chiral superfields.

The upper bound in (3.18) is saturated in the large ` limit. The theories in this

limit may admit holographic duals. It is amusing that none of our SCFTs have a > c.

This may not be too surprising after recalling that upper limit of the Hofman-Maldacena

bound (3.17) is saturated by free vector multiplets and in the linear quivers we cannot

isolate a limit in which the effective degrees of freedoms are only vectors.

1We thank the referee for emphasizing this point.
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Large N limit. In the large N limit for κ = 0 one finds

a =
N2

64

((1 + 3z2)3/2 + 9z2 − 1)`− 12z2

z2
,

c =
N2

64

((1 + 3z2)3/2 + 9z2 − 1)`− 8z2

z2
.

(3.20)

For κ = ±1 in the large N limit the expressions for the central charges are unwieldy but

one again finds that for finite ` one has a 6= c. It is interesting that in the large N and

large ` limit (keeping z fixed) one finds

a = c =
`N2

64

((1 + 3z2)3/2 + 9z2 − 1)

z2
. (3.21)

Note that the dependence on z in this limit is precisely the same as the one found in the

large N limit for the SCFTs studied in [5, 6]. The fact that we have a = c in this limit

also suggests that these SCFTs may admit a holographic dual description in type IIA or

11D supergravity. Curiously for ` = 4(g− 1)N/3 we get exactly the same numerical values

of the central charges as for large N limit of the theories in [5, 6] coming from hyperbolic

Riemann surfaces.

Universal RG flow. It was shown in [21] that if a UV SCFT withN = 2 supersymmetry

is deformed by a mass term for the chiral adjoint in the N = 2 vector multiplet and the

theory flows to an N = 1 SCFT in the IR then there is a universal relation between the

central charges in the IR and UV given by

aIR =
9

32
(4aUV − cUV) , cIR =

1

32
(−12aUV + 39cUV) . (3.22)

One can show that these identities are obeyed if the UV theory is the one with z = 1 and

κ = 1 and the IR one is the one with z = 0 and κ = 0. These theories are precisely the

two theories for which one does not need a-maximization as a result of which the central

charges are rational and it is natural to conjecture that they are related by the universal

RG flow of [21]. The exact expressions for the central charges are

az=0,κ=0 =
3

128
[N2(9`− 8)− 8(`− 1)] , cz=0,κ=0 =

1

128
[N2(27`− 16)− 16(`− 1)] ,

az=1,κ=1 =
1

24
[N2(6`− 5)− 5(`− 1)] , cz=1,κ=1 =

1

12
[N2(3`− 2)− 2(`− 1)] ,

and it is easy to check that they obey (3.22).

3.3 Dualities and conformal manifold

The SCFTs obtained from the linear quivers are labelled by four parameters, {κ, z, `,N}.
For a given SCFT, we can find more than one way to construct the UV linear quiver by

changing the relative number ofN = 2 andN = 1 vector multiplets. We, therefore, observe

an interesting version of Seiberg duality for these SCFTs. A similar duality was observe in

the field theory constructions of the SCFTs in the IR of M5-branes on Riemann surface [5,

– 9 –
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Figure 3. A configuration of intersecting D4- and NS5-branes which corresponds to a linear quiver.

The horizontal black lines represent a stack of N D4-branes extended along the x6 direction. The

vertical black lines are the v NS5-branes extended along x4,5. The blue lines represent the w NS5-

branes extended along x7,8. All branes extend along the 4D space-time directions x0,1,2,3 and are

localized at x9 = 0.

6, 14]. Unlike the M5-brane constructions, we have explicit Lagrangian description for the

linear quiver theories and thus one can study and understand these dualities in greater

detail. We leave this detailed analysis for the future.

We can compute the dimension of the conformal manifold for the IR SCFTs using the

method of Leigh-Strassler [22] (see [17] for a modern incarnation of this method). There

are ` − 1 complex gauge couplings, n1 complex superpotential couplings from the N = 1

vectors and 2n2 complex couplings from the N = 2 vectors. The number of constraints are

given by the number of anomalous U(1)’s which is `+n2. This yields a total of `−1 exactly

marginal complex parameters. If we allow the superpotential terms associated to the box

hypermultiplets in the linear quiver that break the global SU(N) × SU(N) symmetry the

conformal manifold would be even larger since then one finds 2(N2− 1) additional exactly

marginal parameters.

4 Type IIA construction

The linear quivers, above, can be obtained in type IIA string theory as the low energy and

weak coupling limit of intersecting D4- and NS5-branes. This construction is very similar

to the N = 2 linear quivers studied in [10]. We take the ten space-time coordinates to be

x0,1,··· ,9, with x0 being time. We consider N coincident D4-branes extended along x0,1,2,3,6
and sitting at the point x4,5,7,8,9 = 0. We add p non-coincident NS5-branes extended

along x0,1,2,3,4,5 and localized at x7,8,9 = 0. Each of these branes is also localized at a

point x6 = xα6 , where α is an integer in the set {1, . . . , p}. We also add q non-coincident

NS5-branes extended along x0,1,2,3,7,8, localized at x4,5,9 = 0 and each of them sitting at

a point x6 = xβ6 , where β is an interger in {1, . . . , q}. The total number of NS5-branes is

then ` = p+ q. We do not assume any particular ordering of the NS5-branes along the x6
direction. We illustrate an example of a brane configuration of this type in figure 3.

We introduce the complex coordinates v = x4 + ix5 and w = x7 + ix8 and call the

NS5-branes extended along x4,5, v-branes, and those along x7,8, w-branes. Between any

two adjacent NS5-branes, there is a suspended stack of N D4-branes. At long distances and

weak coupling, there is a four-dimensional SU(N) gauge theory, living on the non-compact
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part of the D4-brane worldvolume, x0,1,2,3, describing the dynamics.2 If the NS5-branes

are parallel (both are v-branes or w-branes) there is an additional SU(N) chiral adjoint

superfield at low energies corresponding to the freedom of sliding the D4’s along the NS5-

branes in the v or w directions. Thus between two parallel NS5-branes we obtain a full

N = 2 SU(N) vector multiplet. If the two adjacent NS5-branes are perpendicular (one is

a v-brane and the other is a w-brane) we cannot slide the D4’s without a cost in energy,

therefore there is only a N = 1 SU(N) vector multiplet describing the dynamics at low

energies. At a given NS5 site, there are strings between adjacent D4-branes. At low

energies and weak coupling, they are described by bifundamental hypermultiplets. Finally,

there are two semi-infinite stacks of D4-branes connected to the NS5-branes at the two

ends of the brane system. The gauge groups associated to these D4-branes are frozen and

thus we are left with two sets of N hypermultiplets in the fundamental representation of

SU(N) coming from the strings at the NS5-branes at the two ends. It is now clear that this

collection of intersecting branes realizes the gauge fields and matter content of the linear

quivers described in section 2.

The map between the field theory and brane constructions can be made more precise.

It is clear that to each bifundamental hypermultiplet there is an associate NS5-brane. The

hypermultiplets with σi = 1 in section 2 can be associated with the v-branes, and the

hypermultiplets with σi = −1 can be associated with the w-branes. There is a U(1)v
and a U(1)w symmetry acting on the v and w plane respectively. These U(1)’s manifest

themselves in the quiver as local U(1) R-symmetry acting on the hypermultiplets and chiral

adjoints. In terms of the symmetries defined in section 2 we have

R0 = U(1)v + U(1)w , F = U(1)v −U(1)w . (4.1)

In the weak coupling limit, the inverse gauge coupling of the gauge field between

two adjacent NS5-branes is proportional to the distance between them [10]. Since we

are free to pick the positions of the NS5-branes, the distances between the branes are

marginal parameters. At strong coupling, we cannot describe the gauge couplings in this

way since the branes recombine at the intersections. However, as we move far way from the

intersection region, superconformal symmetry imposes the condition that the NS5-branes

should not bend [10]. Thus the asymptotic behaviour of the NS5-branes must stay the

same as in the weak coupling limit. The distances between the branes, far away from the

intersection region, must correspond to exactly marginal parameters. If we have ` NS5-

branes then there are `− 1 distances we can freely choose and thus exactly `− 1 marginal

parameters. These parameters are real but as discussed in [10] and in the next section when

we take the M-theory limit the distance along the M-theory circle x10 naturally complexifies

the x6 distance and leads to ` − 1 complex marginal parameters. This coincides with the

counting of marginal couplings in the field theory discussed in section 3.3. The brane

picture makes it also clear that the IR theory is insensitive to the particular ordering

of NS5-branes of type v and w as long as their number is kept fixed. This is one more

2The gauge theory on the worldvolume of N coincident D4-branes is U(N). As discussed in detail

in [10] due to the presence of the NS5-branes a U(1) subgroup decouples and one is left with an SU(N)

gauge group.
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manifestation of the fact that the IR SCFTs are labelled only by the parameters {κ, z, `,N}
and different UV constructions with the same values of these parameters should result in

dual descriptions of the same theory.

In the past, there have been many constructions of N = 1 field theories that use

intersecting D4- and NS5-branes, see for example [3, 23–29]. In all of the these constructions

one starts with some brane configuration involving parallel NS5-branes which preserves

N = 2 supersymmetry and break this to N = 1 by rotating the adjacent parallel NS5-

branes at some angle. From the field theory point of view, this rotation corresponds to

giving mass to the adjoint chiral superfield in some N = 2 vector multiplet. Integrating out

these chiral adjoints generates superpotential terms of the type (2.10) for hypermultiplets.

In the constructions here, we explicitly turn off these superpotential terms by choosing the

NS5-branes which are not parallel to be orthogonal to each other. This choice preserves the

additional U(1) flavor symmetry (2.9) which in turn is responsible for the rich IR dynamics

and the family of SCFT’s arising from the linear quivers.

As discussed in some detail in [10] in the strong coupling limit we can describe the

system of intersecting branes in M-theory. We discuss this next.

5 Uplift to M-theory

In the M-theory limit the space-time becomes eleven-dimensional and the extra coordinate

x10 is in the shape of a circle. Both the D4- and NS5-branes in the IIA construction, uplift

to M5-branes in M-theory. The NS5-branes become M5-branes localized on the x10 circle

while the D4-branes are obtained by compactifying M5-branes on the circle. As emphasized

in [10] the x6 direction naturally combines with the x10 direction into a complex coordinate

s =
x6 + ix10

R
, or t = exp(−s) , (5.1)

where R is the radius of the M-theory circle.

In the M-theory uplift of our type IIA brane construction, the D4-branes branes become

M5-branes wrapped on an infinite cylinder (or sphere with two punctures) with complex

coordinate t. The NS5-branes become M5-branes which intersect this cylinder at points.

The surface wrapped by the M5 branes is a holomorphic curve in C3. After a conformal

transformation, we can view this curve as a punctured sphere embedded in C3. The two

ends of the cylinder (or sphere with two punctures) are two maximal punctures (we use the

language of Gaiotto [8]) that corresponds to the intersection with two sets of N M5 branes.

There are also simple punctures on the sphere corresponding to uplifted NS5-branes which

intersect the sphere at ` points. The brane system in M-theory thus becomes a set of N

coincident M5-branes wrapping a two-sphere with two maximal punctures and ` simple

punctures. The normal bundle to the two sphere is not the cotangent bundle as in [8, 10]

but corresponds to a more general embedding in C3 as discussed in [5, 6]. This more general

normal bundle results in breaking of N = 2 supersymetry to N = 1.

An important ingredient in our construction is the presence of two species of punctures

corresponding to the fact that some of the punctures come from the uplift of v NS5-

branes and some come from w NS5-branes. In the field theory description, this choice is

– 12 –
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Figure 4. The sphere with seven minimal and two maximal punctures which corresponds to ` = 7.

We have taken four minimal punctures of type v or σ = +1 (in black) and three minimal punctures

of type w or σ = −1 (in blue). We have κ = 1 (two black maximal punctures) on the left, κ = −1

(two blue maximal punctures) in the middle and κ = 0 (one black and one blue maximal puncture)

on the right.

parametrized by the parameter σi = ±1 which we can now assign to each puncture. We

choose to denote the punctures corresponding to σ = 1 with a black dot and the ones with

σ = −1 with a blue dot, see figure 4. We have p black dots and q blue ones for a total

of p + q = ` minimal punctures. In the field theory there is an additional parameter κ

which labels different theories. This parameter encodes information about the maximal

punctures (denoted by dots with a circle in figure 4) which also come in two species (again

labeled by blue and black in figure 4). When κ = ±1, the maximal punctures are of the

same kind (either blue or black). When κ = 0, they are of different kind (one blue and one

black). In figure 4 we illustrate a particular example of a punctured sphere for different

values of κ.

The parameters which determine the IR SCFTs uniquely are {κ, z, `,N}, for example

only these parameters enter in the central charge. This fact has the nice geometric inter-

pretation that the relative positions of the punctures on the sphere do not change the IR

theory and should correspond to exactly marginal parameters in the SCFT. We are free to

move the punctures around as long as we do not collide them. We recover different weak

coupling limits when we move the punctures far away from each other. These different

limits corresponds to the quivers in the field theory that have different number of N = 2

and N = 1 vector multiplets for fixed values of {κ, z, `,N}. This geometric picture suggests

that all linear quivers with the same {κ, z, `,N} are dual to each other and flow to the

same SCFT in the IR.

The M5-brane picture also suggests the existence of some new SCFTs which can be

used as building blocks for constructing more general N = 1 theories. One can begin with

some Lagrangian N = 2 or N = 1 theory and using the brane construction described above

realize it in terms of M5-branes on a punctured Riemann surface. Then one can simply

change the coloring of some of the punctures and in this way “construct” new N = 1

SCFTs. In general these new theories will not have a known Lagrangian description.

The theories when κ = z = ±1 and any positive ` and N correspond to having

all punctures (minimal and maximal) of the same type. These theories preserve N = 2
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supersymmetry. They admit additional weak couplings limits where the two maximal

punctures are brought close to each and this is one way of defining and extracting field

theoretic properties of the N = 2 TN theory [8, 9]. It is natural to wonder whether there

is a way of defining N = 1 generalizations of the TN theory which can be isolated in a

similar way by decoupling some vectors and hypers in the quivers with general values of

{κ, z, `,N}. We will not offer any specific procedure to achieve this here but would like

to point out that one way to study this might be to take limits where the two type of

punctures introduced here collide in a controlled way.

6 Conclusions

We have argued that a large class of linear-shaped quiver gauge theories with N = 1

supersymmetry, build out of N = 1 and N = 2 vector multiplets as well as hypermultiplets,

have interesting IR dynamics controlled by interacting N = 1 SCFTs. We calculated the

central charges of these SCFTs and provided some evidence that the linear quivers enjoy

a rich set of dualities. These dualities as well as other properties of the field theories are

encoded in a brane construction in type IIA string theory or M-theory.

There are clearly many interesting questions for further study. Here we list a few of

them.

In this paper we restricted our attention to quivers with linear shape. As pointed out

in [10] for quivers with N = 2 supersymmetry the field theory dynamics is modified when

one introduces a gauge group that gauges the two fundamental hypermultiplets denoted

by boxes in the quiver diagrams in section 2. This gauging results in a quiver with a

circular shape and it will be very interesting to perform a detailed study of such circular

quivers with N = 1 supersymmetry. It is natural to expect that these will flow to new

N = 1 SCFTs in the IR. In M-theory the circular quivers should correspond to M5-branes

wrapped on a punctured torus.

It should be possible to calculate explicitly the superconformal index of [30, 31] for the

linear quivers studied here. It should also be possible to uncover some TQFT structure,

similar to the one studied in [32, 33], underlying the superconformal index of these theories.

The geometric construction of the linear quivers discussed here in terms of M5-branes

wrapped on punctured Riemann surface paves the way for addressing a number of inter-

esting questions. In the case of N = 2 theories, explicit knowledge of the curve wrapped

by the M5-branes allowed for a derivation of the Seiberg-Witten curve of the N = 2 theory

from M-theory [10]. Recently this M5-brane construction and the curve wrapped by the

M5-branes was instrumental in the pioneering work of [8, 11] which lead to new under-

standing of the space of N = 2 theories and their properties. When we have only N = 1

supersymmetry knowledge of the curve wrapped by the M5-branes can still be useful. For

example it allowed for the description of the moduli space of SQCD in [23, 24]. Even

non-holomorphic data can be extracted from this curve as was done in [25, 26]. A natural

question arising from our construction is thus to understand in more detail the physical

information encoded in the punctured sphere wrapped by the M5-branes which leads to our

linear quivers. This may lead to a nice geometric derivation of the N = 1 curve of [34] as-
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sociated with the linear quivers. Moreover, the punctured sphere and the M5-brane picture

may provide us with non-holomorphic data, such as the Kähler potential. By considering

various degeneration limits of the punctured surface wrapped by the M5-branes one can

explore a larger space of isolated N = 1 SCFTs as done for N = 2 theories in [8]. Several

questions regarding the N = 1 curve of [34] for some generalized N = 1 quivers including

the TN theories were studied recently in [15].

As we discussed in section 3 in the large ` limit the a and c central charges of the

IR SCFTs are equal. This suggests that these theories may admit a holographic dual

description in type IIA or 11D supergravity. Gravity duals of N = 1 SCFTs arising from

M5 branes have been studied before [5, 6, 9, 35] and the underlying brane construction

played an instrumental role in the construction of these solutions. It is very likely that

the techniques for constructing AdS5 N = 1 solutions of M-theory introduced in [36], and

exploited recently in [37], will be useful in finding these supergravity solutions.

It will be very interesting if we can isolate a new N = 1 building block akin to the

TN theory by going to some special region in the conformal manifolds of our linear quiver

theories. This new theory will be interesting in its own right and may provide a new building

block for constructing N = 1 generalized quiver theories in the spirit of Gaiotto [8]. The

N = 1 analog of the TN theory may also provide the missing ingredient for the construction

of the SCFTs duals to the infinite set of AdS5 solutions of M-theory found in [5, 6].

Acknowledgments

We would like to thank Chris Beem, Francesco Benini, Ken Intriligator, Jaewon Song

and Brian Wecht for many useful discussions during the gestation stage of this project.

We acknowledge the warm hospitality provided by the Centro de Ciencias de Benasque

Pedro Pascual during the preparation of the manuscript. IB is grateful for the hospitality

and work space provided by the UCSD Physics Department and would like to thank Nick

Halmagyi for vital logistic support. NB would like to thank his family for crucial support in

the final stages of the preparation of the manuscript. IB is supported in part by ANR grant

08-JCJC-0001-0 and the ERC Starting Grants 240210 — String-QCD-BH, and 259133 —

ObservableString. The work of NB was supported in part by the DOE grant DE-FG02-

92ER-40697.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167

[INSPIRE].

[2] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

– 15 –

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/9603167
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603167
http://dx.doi.org/10.1016/S0550-3213(97)00157-0
http://arxiv.org/abs/hep-th/9611230
http://inspirehep.net/search?p=find+EPRINT+hep-th/9611230


J
H
E
P
0
8
(
2
0
1
4
)
1
2
1

[3] A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999)

983 [hep-th/9802067] [INSPIRE].

[4] I. Bah and B. Wecht, New N = 1 superconformal field theories in four dimensions, JHEP 07

(2013) 107 [arXiv:1111.3402] [INSPIRE].

[5] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann

surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

[6] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP

06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[7] K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl.

Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[8] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[9] D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories,

JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].

[10] E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500

(1997) 3 [hep-th/9703166] [INSPIRE].

[11] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB

approximation, arXiv:0907.3987 [INSPIRE].

[12] K. Maruyoshi, M. Taki, S. Terashima and F. Yagi, New Seiberg dualities from N = 2

dualities, JHEP 09 (2009) 086 [arXiv:0907.2625] [INSPIRE].

[13] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP

01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

[14] A. Gadde, K. Maruyoshi, Y. Tachikawa and W. Yan, New N = 1 dualities, JHEP 06 (2013)

056 [arXiv:1303.0836] [INSPIRE].

[15] K. Maruyoshi, Y. Tachikawa, W. Yan and K. Yonekura, N = 1 dynamics with TN theory,

JHEP 10 (2013) 010 [arXiv:1305.5250] [INSPIRE].

[16] D. Xie, M5 brane and four dimensional N = 1 theories I, JHEP 04 (2014) 154

[arXiv:1307.5877] [INSPIRE].

[17] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal

deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].

[18] M.J. Strassler, An unorthodox introduction to supersymmetric gauge theory, hep-th/0309149

[INSPIRE].

[19] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for

central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543

[hep-th/9708042] [INSPIRE].

[20] D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations,

JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

[21] Y. Tachikawa and B. Wecht, Explanation of the central charge ratio 27/32 in

four-dimensional renormalization group flows between superconformal theories, Phys. Rev.

Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].

[22] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional

– 16 –

http://dx.doi.org/10.1103/RevModPhys.71.983
http://dx.doi.org/10.1103/RevModPhys.71.983
http://arxiv.org/abs/hep-th/9802067
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802067
http://dx.doi.org/10.1007/JHEP07(2013)107
http://dx.doi.org/10.1007/JHEP07(2013)107
http://arxiv.org/abs/1111.3402
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.3402
http://dx.doi.org/10.1103/PhysRevD.85.121901
http://arxiv.org/abs/1112.5487
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5487
http://dx.doi.org/10.1007/JHEP06(2012)005
http://dx.doi.org/10.1007/JHEP06(2012)005
http://arxiv.org/abs/1203.0303
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0303
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0304128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304128
http://dx.doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
http://dx.doi.org/10.1007/JHEP10(2012)189
http://arxiv.org/abs/0904.4466
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4466
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://arxiv.org/abs/hep-th/9703166
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703166
http://arxiv.org/abs/0907.3987
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3987
http://dx.doi.org/10.1088/1126-6708/2009/09/086
http://arxiv.org/abs/0907.2625
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2625
http://dx.doi.org/10.1007/JHEP01(2010)088
http://dx.doi.org/10.1007/JHEP01(2010)088
http://arxiv.org/abs/0909.1327
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1327
http://dx.doi.org/10.1007/JHEP06(2013)056
http://dx.doi.org/10.1007/JHEP06(2013)056
http://arxiv.org/abs/1303.0836
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0836
http://dx.doi.org/10.1007/JHEP10(2013)010
http://arxiv.org/abs/1305.5250
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5250
http://dx.doi.org/10.1007/JHEP04(2014)154
http://arxiv.org/abs/1307.5877
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5877
http://dx.doi.org/10.1007/JHEP06(2010)106
http://arxiv.org/abs/1005.3546
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3546
http://arxiv.org/abs/hep-th/0309149
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309149
http://dx.doi.org/10.1016/S0550-3213(98)00278-8
http://arxiv.org/abs/hep-th/9708042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9708042
http://dx.doi.org/10.1088/1126-6708/2008/05/012
http://arxiv.org/abs/0803.1467
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1467
http://dx.doi.org/10.1103/PhysRevLett.103.061601
http://dx.doi.org/10.1103/PhysRevLett.103.061601
http://arxiv.org/abs/0906.0965
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0965


J
H
E
P
0
8
(
2
0
1
4
)
1
2
1

N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121]

[INSPIRE].

[23] E. Witten, Branes and the dynamics of QCD, Nucl. Phys. B 507 (1997) 658

[hep-th/9706109] [INSPIRE].

[24] K. Hori, H. Ooguri and Y. Oz, Strong coupling dynamics of four-dimensional N = 1 gauge

theories from M-theory five-brane, Adv. Theor. Math. Phys. 1 (1998) 1 [hep-th/9706082]

[INSPIRE].

[25] J. de Boer, K. Hori, H. Ooguri and Y. Oz, Kähler potential and higher derivative terms from

M-theory five-brane, Nucl. Phys. B 518 (1998) 173 [hep-th/9711143] [INSPIRE].

[26] J. de Boer, K. Hori, H. Ooguri and Y. Oz, Branes and dynamical supersymmetry breaking,

Nucl. Phys. B 522 (1998) 20 [hep-th/9801060] [INSPIRE].

[27] J. de Boer, K. Hori and H. Ooguri, Membrane scattering in curved space with M momentum

transfer, Nucl. Phys. B 525 (1998) 257 [hep-th/9802005] [INSPIRE].

[28] A. Giveon and O. Pelc, M theory, type IIA string and 4−D N = 1 SUSY SU(NL)× SU(NR)

gauge theory, Nucl. Phys. B 512 (1998) 103 [hep-th/9708168] [INSPIRE].

[29] S. Elitzur, A. Giveon, D. Kutasov and D. Tsabar, Branes, orientifolds and chiral gauge

theories, Nucl. Phys. B 524 (1998) 251 [hep-th/9801020] [INSPIRE].

[30] C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories,

Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

[31] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[32] A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2D topological QFT,

JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].

[33] C. Beem and A. Gadde, The N = 1 superconformal index for class S fixed points, JHEP 04

(2014) 036 [arXiv:1212.1467] [INSPIRE].

[34] K.A. Intriligator and N. Seiberg, Phases of N = 1 supersymmetric gauge theories in

four-dimensions, Nucl. Phys. B 431 (1994) 551 [hep-th/9408155] [INSPIRE].
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