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1 Introduction

One of the main interests of the AdS/CFT correspondence [1] lies in the possibility of

studying strongly coupled systems by mapping them into higher-dimensional gravitational

models and establishing a dictionary between both theories. Applications range from the

study of strongly coupled quark-gluon plasma to condensed matter theory (e.g. see [2, 3]

for recent reviews), and recently, such ideas have been used in order to gain a better

understanding of superconductors [4–6]. On the gravity side, the study of holographic

superconductors involves charged black holes with nontrivial hair and a planar horizon.

In order to mimic the nonzero condensate behavior of the superconductor, the black hole

is required to develop hair at low temperature that should disappear at higher tempera-

ture via some thermodynamic phase transition. In the simplest case, this will correspond

to having a planar and bald AdS-Reissner-Nordström (AdS RN) black hole at high tem-

perature that spontaneously generates hair at low temperatures. However, this task is

non-trivial and is rendered difficult by various no-hair theorems, see e.g. [7]. Nevertheless,

scalar fields nonminimally coupled to gravity have proven to be an interesting laboratory

in order to avoid such no go theorems. Indeed, as shown independently by Bekenstein [8]

and Bocharova, Bronnikov and Melnikov [9], conformal scalar fields nonminimally coupled

to Einstein gravity support geometric black hole configurations. However, the solution
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suffers from the fact that the scalar field diverges at the horizon [9, 10] making its physical

interpretation and the problem of its stability a subject of debate [11, 12]. A way of cir-

cumventing the divergence of the scalar field at the horizon is to introduce a cosmological

constant, whose effect is to precisely push this singularity behind the horizon. In presence

of a positive cosmological constant, the topology of the horizon remains unchanged [13],

whereas a negative cosmological constant requires the horizon to be hyperbolic [14]. These

solutions have been generalized in [15] by considering a more general potential term. It

must be stressed that, in all cases, the nonminimal coupling parameter ξ is always the con-

formal one in four dimensions, that is ξ = 1
6 , and the horizon topology is either spherical or

hyperbolic. However, as shown recently, the black hole potential can be tuned by the addi-

tion of p-form fields [16], and, in particular, the event horizon of the AdS black holes with

a conformally coupled scalar can be forced to be planar by introducing a pair of axionic

(3-form) fields [17]. This partially solves the latter problem although then one can question

the meaning of these additional axionic fields persisting even for the bald black holes.

Is the additional conformal symmetry, when ξ = 1
6 , essential to the construction of

these black holes, or does it only make their construction easier? What can one say

for nonminimally coupled scalars, with ξ 6= 1
6? Up to now their construction has been

impossible, at least for spherical and hyperbolic horizon black holes. The purpose of this

article is to make progress on this front by presenting planar black hole solutions with

an arbitrary value of the nonminimal coupling parameter ξ of the scalar field. To our

knowledge,1 these are the first exact black hole solutions with ξ 6= 1
6 .

As we shall see, this task may be achieved choosing an appropriate potential for the

scalar field, and supplementing the theory with suitable extra fields, following [17]. Specif-

ically, we consider a self-interacting scalar field nonminimally coupled to Einstein gravity

with a negative cosmological constant, together with a standard Maxwell term and two

three-form fields nonminimally coupled to the scalar field. The distinctive form of the

scalar potential is such that the theory allows for exact AdS solutions with a stealth scalar

field for any ξ, with the scalar field also being homogeneous in the boundary directions.

The metric of such solutions is locally AdS, and a nontrivial scalar field is floating on top of

them without backreacting on the geometry. This phenomenon has been known for some

time for 2 + 1 dimensional AdS gravity [18, 19], in Minkowski background [20] and in D-

dimensional AdS [21]. In cosmological context, stealth fields have been studied in [22, 23].

Our starting step is the self-interacting potential presented in [24, 25] (in the context of

pure radiation constraints on AdS wave backgrounds) which allows solutions with Poincaré

metric and a stealth field [21]. Asking in addition that the field is homogeneous in the flat

boundary directions relates the coupling constants in the scalar potential,2 leaving us with

the potential U(Φ) depending on the couplings (ξ, b).3 Finally, we turn on two nonmini-

1The only exception being in 2+ 1 dimensions, where a BTZ black hole solution with a stealth nonmin-

imally coupled scalar field, with arbitrary coupling ξ, has been constructed in [19].
2In the notation of [24, 25], this condition reads λ1 = λ2

2. Here, we define b = λ2 and use it as the single

coupling constant remaining in U(Φ) in the rest of this article.
3We are grateful to E. Ayón-Beato, C. Mart́ınez, R. Troncoso and J. Zanelli for pointing this out and

sharing their results [21].

– 2 –



J
H
E
P
1
0
(
2
0
1
3
)
0
1
5

mally coupled three-form fields in the spirit of [16], and we find a two-parameter family of

exact static solutions, valid for any nonminimal coupling ξ 6= 1
4 , in which we also allow for

a nontrivial Maxwell field.

The general form of these solutions is rather complicated, and a comprehensive analysis

is outside the scope of this article and not of actual interest. What we will do instead, is

to point out some interesting subfamilies for which the algebraic expression of the metric

simplifies, and show that they generically represent well-behaved, locally asymptotically

AdS (for 0 < ξ < 1/4) spacetimes containing a planar black hole. Not surprisingly, the

particular couplings that we will examine actually correspond to conformal couplings in

some space-time dimension other than 4. We will furthermore generalize the case ξ = 1/6

to an additional two parameter family of solutions.

The special value ξ = 1
4 of the nonminimal coupling needs a separate treatment,

because the self-interacting potential U(Φ) is singular for that value of the coupling. Only

when b = 1 has it a finite limiting potential, that depends now logarithmically on the scalar

field. Again, a couple of 3-form fields prove providential to construct AdS black holes with a

planar horizon. The peculiarity of these solutions is that their gravitational field is localized

to a region close to the event horizon, leaving in the asymptotic region only an exponential

tail hinting at the presence of the black hole. Interestingly, ξ = 1/4 is the limiting value

of the conformal coupling for a large number of spacetime dimensions D, limit for which

gravity localizes [26]. It would be interesting to investigate this observation further.

The paper is organized as follows. In the next section, we introduce the action of our

model, derive the corresponding field equations and present a family of exact solutions.

Section 3 is devoted to the properties of the solutions (black holes nature, event horizon

and singularities). We will consider particular nonminimal couplings in order to discuss

the properties of the solutions. In the following section, we will see that the solutions of a

scalar field nonminimally coupled with axionic fields can be seen as originated from a stealth

configuration given by a scalar field nonminimally coupled to an AdS background. From

this perspective, we will see that the axionic fields arise naturally as a good candidate. This

will allow us to determine the particular form of the nonminimal coupling of the axionic

fields. Finally, in the last section we address some future extensions of the present work.

An appendix is devoted to the extension of these results in arbitrary dimension.

2 Action, field equations and solutions

In four dimensions, we consider the following action

S=

∫

d4x
√−g

(

R−2Λ

16πG
− ǫ(Φ)

12

2
∑

i=1

H(i)
µνρH

(i)µνρ− 1

2
∂µΦ∂

µΦ− ξ

2
RΦ2−U(Φ)−FµνF

µν

16π

)

,

(2.1)

where the constant Λ = −3/ℓ2 represents the negative cosmological constant, Fµν stands

for the Maxwell strength, Φ is a scalar field nonminimally coupled with gravity through

the nonminimal coupling parameter ξ, and U(Φ) is a potential that depends on the scalar
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field, whose expression reads

U(Φ) =
Φ2

8πGl2

[

3ξ(1− 6ξ) +
2ξ2

(1− 4ξ)2

(

2(1− 6ξ) + bΦ
1−4ξ
2ξ

)2]

, (2.2)

with b a coupling constant. Note that when b = 0, we have simply a Φ2 mass potential,

with the notable exception of conformal coupling occurring at ξ = 1/6. In addition, we

have two exact three-forms

H(i) =
1

3!
H(i)

µνρdx
µ ∧ dxν ∧ dxρ, i = 1, 2 (2.3)

originating from two Kalb-Ramond potentials. These forms are nonminimally coupled to

the scalar field through the coupling function ǫ given by

ǫ(Φ) =
(1− 8πGξΦ2)2

f(
√
8πGΦ)

, (2.4)

where we have defined the function f(x) depending on two coupling constants σ1 and σ2 by

f(x) = (1− 6ξ)(1− 4ξ)(1− ξx2)2 + 2ξ
(

1− 4ξ − ξx2
)

−σ1ξ
2

(

1

1− 4ξ
− ξx2

)

x
1
ξ
−2 + 16σ2ξ

3x
1
2ξ . (2.5)

We will see in a later section how the choice of this potential comes about.

The field equations obtained by varying the action with respect to the different dy-

namical fields yield

Gαβ − 3

ℓ2
gαβ = 8πGTαβ , ∇µ

(

ǫ(Φ)H(i)µαβ
)

= 0, (2.6)

�Φ = ξRΦ+
dU(Φ)

dΦ
+

1

12

dǫ(Φ)

dΦ

2
∑

i=1

H
(i)
αβγH

(i)αβγ , ∇µF
µν = 0, (2.7)

where the corresponding energy-momentum tensor is defined by

Tαβ = ∇αΦ∇βΦ− gαβ

(

1

2
gµν∇µΦ∇νΦ+ U(Φ)

)

+ ξ (gαβ�−∇α∇β +Gαβ) Φ
2 (2.8)

+ ǫ(Φ)
2
∑

i=1

(

1

2
H(i)

αµνH
(i)µν
β − 1

12
gαβH

(i)
µνρH

(i)µνρ

)

+
1

4π

(

FαγF
γ

β − 1

4
gαβFµνF

µν

)

.

It is clear from these different expressions that the special case ξ = 1
4 must be treated

separately; this will be done below. Hence, for a nonminimal coupling parameter ξ 6= 1
4 ,

the theory is completely determined by the four coupling constants (ξ, b, σ1, σ2), and an

exact solution is given by

ds2 = −F (r)dt2 +
dr2

F (r)
+

r2

ℓ2
(dx21 + dx22), Φ(r) =

1√
8πG

(ar + b)
−2ξ
1−4ξ

H(i) =
p√

8πG (1− 4ξ)2ℓ2ǫ(Φ)
dt ∧ dr ∧ dxi, F = − q

r2
dt ∧ dr. (2.9)
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The lapse function F (r) and the constant a are given by

F (r) =
r2

ℓ2
− p2(ar + b)

4ξ
1−4ξ

(ar + b)
4ξ

1−4ξ − ξ

(

1 +
2Gµ

r
− Gq2

p2r2

)

, a =
1

Gµ
(b− σ2) . (2.10)

This family of solutions is completely determined by the three integration constants (µ, p, q)

related to mass, electric and axionic charges respectively, and subject to the constraint

q2 =
p2µ2G

(b− σ2)2

(

2bσ2 − b2 − σ1
2(1− 4ξ)

)

, (2.11)

hence effectively yielding a two-parameter family of solutions. The constant (r, t) sections

are flat.

Finally, we note that the µ → 0 limit of this solution is finite if 0 < ξ < 1/4, and

gives a black hole solution with vanishing scalar and Maxwell fields, and lapse function

F (r) = r2/ℓ2 − p2, first obtained in [16]. Also, choosing

ξ =
1

6
, b =

√

2αℓ2

8πG
, σ1 = −1

9
, σ2 = 0, (2.12)

we recover precisely the conformally coupled solution of [17], with exactly the same nota-

tion.

Special value ξ = 1

4
: the previous expressions clearly make no sense when ξ = 1

4 .

Indeed, to find solutions for this particular value of the coupling, the potential U(Φ) as

well as the ǫ(Φ) function have to be modified to acquire a logarithmic dependence on the

scalar field. They are given by

U(Φ) =
1

32πGℓ2
Φ2

(

3 + 2 ln

(

Φ

b

)2

+ 6 ln

(

Φ

b

)

)

, (2.13)

where b is a constant, and

ǫ(Φ) =

(

8πGΦ2 − 4
)2

f(
√
8πGΦ)

, (2.14)

with

f(Φ) = 2Φ2 ln

(

Φ

b

)[

4 ln

(

Φ

b

)

− Φ2

]

+4
(

Φ2 − 4
)

+σ1Φ
2

[

8 ln

(

Φ

b

)

−
(

Φ2 − 4
)

]

. (2.15)

For this theory, a solution is given by

ds2 = −F (r)dt2 +
dr2

F (r)
+

r2

ℓ2
(dx21 + dx22), Φ(r) =

b ear√
8πG

,

H(i) =
p

2
√
8πG ℓ2ǫ(Φ)

dt ∧ dr ∧ dxi, F = 0, (2.16)

where the lapse function and the constant a take the form

F (r) =
r2

ℓ2
− p2

b2e2ar − 4

(

1 +
µ

r

)

, a =
σ1 − 1

µ
. (2.17)
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Note that, in contrast with the other values of ξ, this solution cannot accommodate an

electrically charged Maxwell field, and we always have F = 0. Hence the theory is fully de-

termined by two couplings (b, σ1), and the solutions are determined by the two integration

constants (µ, p).

Double scaling limits: it is worth mentioning that simpler but different families of

solutions can be obtained as double scaling limits of the previous configurations. When

ξ 6= 1/4, we can take the limit σ2 → b, µ → 0, keeping the ratio a = (b − σ2)/Gµ fixed.

The resulting configuration is finite, solves the equations of motion with coupling σ2 = b,

and consists in the fields (2.9) with lapse function and constraint given by

F (r) =
r2

ℓ2
− p2(ar + b)

4ξ
1−4ξ

(ar + b)
4ξ

1−4ξ − ξ

(

1− Gq2

p2r2

)

, q2 =
p2

Ga2

(

b2 − σ1
2(1− 4ξ)

)

. (2.18)

This family of solutions is completely determined by the two integration constants (a, p).

A similar double scaling limit can be taken when ξ = 1/4. It is obtained from the

solution (2.16)–(2.17) taking the limit σ1 → 0, µ → 0 while keeping the ratio a fixed. The

resulting family of solutions is again given by (2.16), together with

F (r) =
r2

ℓ2
− p2

b2e2ar − 4
, (2.19)

and the parameter a, in addition to p, being now an arbitrary integration constant.

3 Analysis of the solutions

In this section, we will provide an analysis of the solutions obtained in the previous section.

Our study is not exhaustive because of the complexity of the different expressions involved

to describe the solutions. We will start by giving some general comments concerning the

black hole nature of the solutions and the location of their event horizon. We will also

discuss, in more detail, special values of nonminimal coupling parameter, which would cor-

respond to the conformal coupling in D = 3, 4, 5 and D = 6 dimensions (i.e. ξ = 1
8 ,

1
6 ,

3
16 and ξ = 1

5), as well as the minimal case ξ = 0 and the case ξ = 1
2 , which corresponds

to a non decaying linear scalar field. The last subsection is devoted to the particular case

ξ = 1
4 , for which the potentials in the theory become logarithmic and where only uncharged

electrical solutions will be presented. We will assume ξ ∈
[

0, 14
]

throughout the section,

with the only exception of the ξ = 1
2 case.

3.1 General comments

First of all, turning off the axionic fields by setting p = 0, the solutions reduce to AdS

stealth configurations: indeed the lapse functions (2.10) and (2.17) become F (r) = r2/ℓ2,

and the geometry is that of AdS, in Poincaré coordinates.4 The scalar field Φ(r) keeps

a nontrivial radial profile, but nevertheless does not backreact on the metric. Also, the

4This generalizes the observation made in [17] for the special case (2.12) to arbitrary values of the

couplings.
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constraint (2.11) requires the Maxwell field to vanish on these stealth configurations. There-

fore, we can understand the solutions (2.9) and (2.16) as the result of turning on the two

3-form fields in a gravitational stealth background. In many cases, as we will presently

show, these 3-forms will also induce a planar event horizon, leading to regular, locally AdS

black hole geometries.

Condition (2.11) obviously constrains the parameters in our action. The integration

constant q is real if and only if

|b− σ2| ≤
√

σ2
2 −

σ1
2(1− 4ξ)

. (3.1)

In particular, q = 0 whenever the above bound is saturated namely at

b = σ2 ±
√

σ2
2 −

σ1
2(1− 4ξ)

. (3.2)

In order for the scalar field to decay at infinity we have that 0 < ξ < 1/4. We will restrict

ourselves to these values of ξ and will only examine the extra case ξ = 1/2 which gives

us a linear scalar field diverging at infinity in section 3.6. This latter case will be treated

as a paradigm of a non-decaying scalar. Suppose then that the scalar does decay and is

therefore a decreasing function for large enough r. We start by looking at the asymptotes

of the lapse function F (r), which can be conveniently written as

F (r) =
r2

ℓ2
− p2Φ−2

Φ−2 − 8πGξ

(

1 +
2Gµ

r
− Gq2

p2r2

)

. (3.3)

Clearly, as r → ∞, F (r) diverges quadratically, and the spacetime is asymptotically locally

AdS. What are the possible singularities for finite r? To begin with, the scalar field explodes

at rΦ = − Gµb
b−σ2

. This is the type of singularity encountered in the BBMB solution [8, 9].

The metric is not singular there but the scalar field is. Furthermore, the effective Newton

constant5 diverges for r = rN defined by Φ−2(rN ) = 8πGξ. This is the denominator

in F (r) and will yield a genuine spacetime singularity. A notable exception happens for

the conformal case ξ = 1/6 with σ1 = −1/9 and σ2 = 0, see (2.12). In this case, the

singularity in r = rN due to the denominator vanishing cancels out with the last term in

the parenthesis of F (r), thus providing a regular solution at this point for the conformal

frame [17], rendering it special and better behaved in general. The singularity, absent

in the metric in the conformal frame, however, reappears in the minimal frame as the

metric conformal factor is zero there. Therefore the apparent cancelation is in fact a red

herring and one must be careful in order to interpret this solution as a genuine black hole.

Only when this curvature singularity is hidden by the event horizon6 rN < r+, we have

a legitimate black hole. In the conformal frame this is reflected in the black hole entropy

naively becoming negative when r+ < rN , despite the spacetime being regular. Either way,

in the generic case, the singularity in r = rN is present in the general expression for F (r).

Last but not least there is the usual black hole singularity at r = 0. Now we determine

5Defined by Geff = G/(1− 8πGξΦ2).
6We call r+ the largest root of F (r).
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which of these singularities we hit first. This will be the endpoint of spacetime for each

case. First of all, given the bounds on ξ, we have that rΦ < rN . Hence suppose first that

rΦ > 0, i.e. that the scalar explodes before hitting r = 0. Then r = rN is the spacetime

singularity, and the endpoint of spacetime. Given the asymptotic behavior at infinity, if

F (r) → −∞ at r = rN , then we have at least one zero of F (r) and hence an event horizon

cloaking the singularity. This is true if in a neighborhood of r = rN we have that

1 +
2Gµ

r
− Gq2

p2r2
> 0, (3.4)

which translates into the condition

σ1 > 2(1− 4ξ)
(

2ξ
1−4ξ
4ξ σ2 − ξ

1−4ξ
2ξ

)

. (3.5)

In the limiting case when we have the equality in the previous relation, a cancelation occurs

in F (r), similar to the one we observed for ξ = 1/6, σ1 = −1/9 and σ2 = 0. When this re-

lation is satisfied, the metric is regular in r = rN . For the conformal ξ = 1/6 coupling, this

happens when σ1 = −1
9 +

2
√
6

9 σ2. Hence, whenever rN ≥ 0 and the above condition (3.5) is

fulfilled, we have a black hole solution with at least one event horizon. The situation is more

delicate when rN < 0. Then for q 6= 0 the lapse function F (r) → +∞ much like the RN

solution and only for big enough mass parameter we will get a black hole with this time at

least two horizons. Obtaining the condition for this to happen is straightforward but alge-

braically tedious due also to the additional condition (2.11), and we will not examine it here.

In the subsections that follow we will in particular examine two cases: the case b = 0

and secondly the case in which the “common root condition” is fulfilled. The latter case

will be possible when we have integral powers appearing in (2.10). Then we will ask that

the numerator and denominator in F within the last parenthesis (2.10) have a common

root. For the former case we can already get a useful overall picture of the solutions setting

b = 0. Several interesting things happen then. For a start, the scalar field explodes at the

geometric singularity r = rΦ = 0. Also, the scalar potential U(Φ) is a Φ2 mass term,

except when ξ = 1/6 for which case we have no potential at all. Finally, q real imposes

that σ1 < 0, whereas σ2 6= 0. Lastly, we note that the lapse function becomes

F (r) =
1

1− 8πGξΦ2

[

r2

ℓ2
− p2

(

1 +
2Gµ

r
− Gq2

p2r2

)

− ξ

ℓ2
a

−4ξ
1−4ξ r

2− 4ξ
1−4ξ

]

, (3.6)

and that it behaves in a similar way to the one of the hyperbolic AdS RN black hole,7 with

the addition of the last term due to the scalar field secondary hair. For ξ = 1/2 this term

dominates at large r over the cosmological constant term. For ξ = 1/8 we get a linear term

in r. Then, for ξ = 1/6 we get a constant term affecting the horizon curvature just like the

axions. Last but not least, for ξ = 3/16 and ξ = 1/5 we get an effective mass and charge

term respectively. In fact, note that setting ξ = ξD with

ξD =
D − 2

4(D − 1)
, (3.7)

7Note that the metric in the minimal frame is given by g̃µν =
(

1− 8πGξΦ2
)

gµν , and the overall,

monotonic conformal factor is absent from the lapse function (3.6) in that frame. Thus, the horizon

structure in the minimal frame is set by the term in square brackets of (3.6).
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we pick up the cases of conformal coupling in D spacetime dimensions. Naturally, since

our solution is four-dimensional, our scalar field Φ is conformally coupled only for ξ = 1/6,

i.e. ξ = ξ4. Note, however, that for these values of ξ the exponents appearing in F (r) (2.10)

are precisely 4ξ
1−4ξ = D − 2. These integer powers single out the ξ = ξD cases as special

and make the analysis of the solution far easier. As the value of ξ increases, the scalar field

decays more slowly at infinity. It is interesting to note that the values ξ = 1/8, 1/6, 3/16,

and ξ = 1/5 correspond to the conformal coupling in 3, 4, 5 and 6 spacetime dimensions

respectively. Also, ξ = 1/4 is the value of the conformal coupling (3.7) in the limit of

infinitely many spacetime dimensions. We can now attack these special cases in turn.

3.2 The conformal coupling case

The scalar field is conformally coupled for the value of ξ = 1/6 in four dimensions. In order

for q to be real we have

|b− σ2| ≤
√

σ2
2 −

3σ1
2

, (3.8)

and the lapse function takes the form

F (r) =
r2

ℓ2
− p2

(

1 +
Gµb

r(b− σ2)

)2






1−

2Gµσ2

b−σ2

[

r + Gµ
b−σ2

(b− 1
12σ2

− 3σ1
4σ2

)
]

(

r + Gµb
b−σ2

)2
− G2µ2

6(b−σ2)2






, (3.9)

for generic σ1,2 and b. In the previous section, we saw how the solution behaves for b = 0.

The only case with a known black hole solution corresponds to putting σ1 = −1/9 and

σ2 = 0 but b 6= 0 [17]. This is when a simplifying cancelation occurs in F (r). In order to

see this and to generalize this solution we ask that the numerator and denominator in F

within the last parenthesis have a common root. As we saw earlier, this is achieved for

σ1 = −1

9
± 2

√
6

9
σ2, (3.10)

and we then get,

F (r) =
r2

ℓ2
− p2

(

1 +
Gµb

r(b− σ2)

)2
(

1−
2Gµσ2

b−σ2

r + Gµ
b−σ2

(b± 1√
6
)

)

. (3.11)

This is the common root condition and we will apply it extensively for each particular

coupling.8 Note now that indeed if we take additionally σ2 = 0 we get the previously found

black hole solution that extends the MTZ black hole to the case of a planar horizon [17].

From here stem two particular cases which both have q = 0 given by (3.2), namely b = ∓ 1√
6

and b = ∓ 1√
6
+ 2σ2. In fact note that the permitted range of b, defined by (3.8), is in-

between these values. The former value gives the lapse function,

F (r) =
r2

ℓ2
− p2

(

1 +
2Gµ

r
+

G2µ2b

(b− σ2)r2
− 2G3µ3b2σ2

(b− σ2)3r3

)

, (3.12)

8A similar simplification occurs for the coupling potential ǫ(Φ).
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and the solution is locally asymptotically AdS. Note that although q = 0 the metric still

behaves as if it were electrically charged. Additionally however, we pick up a term in 1/r3.

Taking σ2 = ∓ 1
2
√
6
gives us a perfect cube. The other value yields a more complicated

lapse function, but still describes a black hole.

Finally, let us suppose now that there is no potential for the scalar field, i.e. we set

b = 0 and hence σ1 ≤ 0 in order for q2 ≥ 0. The solution takes the form

F (r) =

(

1− G2µ2

6σ2
2r

2

)−1 [
r2

ℓ2
−
(

G2µ2

6ℓ2σ2
2

+ p2
)

− 2p2Gµ

r
− 3G2σ1p

2µ2

2σ2
2r

2

]

. (3.13)

It is easy to see that F (r) is that of AdS RN with a constant term9 that depends on µ, p

and σ2. This term, in absence of matter fields, must vanish for a planar black hole [28–30],

but allowing for the three-form fields it can be made negative [16]. Interestingly, tuning the

coupling σ2 of the three-form, we can make it positive for these new black holes, effectively

producing a planar AdS black hole with a lapse function mimicking the one of a spherical

black hole.

3.3 Case of ξ = 1/8

In this case the value of ξ corresponds to the conformal coupling in 3 dimensions. Here,

although the coupling is not conformal in four dimensional spacetime, the lapse function

F (r) simplifies considerably,

F (r) =
r2

ℓ2
−

p2
(

1 + Gµb
r(b−σ2)

)

r
(

r + Gµ
b−σ2

(b− 1
8)
)

(

r2 + 2Gµr − Gq2

p2

)

, (3.14)

where q is well defined if and only if

|b− σ2| ≤
√

σ2
2 − σ1. (3.15)

When the inequality is saturated we have q = 0. The common root condition is obtained

for 4σ1 = σ2 − 1
16 . The solution then simplifies to,

F (r) =
r2

ℓ2
− p2

(

1 +
2Gµ(b− σ2 +

1
16)

r(b− σ2)
+

G2µ2b(b− 2σ2 +
1
8)

r2(b− σ2)2

)

. (3.16)

The lapse function is that of a hyperbolic RN AdS black hole for the relevant mass and

charge which depend on the theory parameters. Note in particular that setting q = 0 does

not mean the absence of a charge-like term for the black hole. Here also note that the

coupling function ǫ(Φ), given in (2.5), simplifies to

ǫ(Φ) =
4

1
8

(

σ2 − 1
16

)

Φ2 + 1
. (3.17)

9Also dubbed curvature term, since it corresponds to the curvature of the transverse space [27].

– 10 –



J
H
E
P
1
0
(
2
0
1
3
)
0
1
5

The coupling ǫ(Φ) is constant for σ2 = 1/16, which gives us,

F (r) =
r2

ℓ2
− p2

(

1 +
Gµb

r(b− 1
16)

)2

. (3.18)

This is the ξ = 1/8 version of the conformal case studied in [17].

The other interesting case is to take b = 0 upon which we have that σ1 ≤ 0 and that

our potential U(Φ) ∼ Φ2 is a mass term. The lapse function can be written with ease

from (3.6) and corresponds to a quartic in r. Imposing simply 4σ1 = σ2 − 1
16 , we get

F (r) =
r2

ℓ2
− p2 − 2Gµ

r

(

1− 1

16σ2

)

, (3.19)

the lapse function of the hyperbolic AdS black hole [27, 31].

3.4 Cases ξ = 3/16 and ξ = 1/5

When ξ takes the above values we have the conformal coupling for five- and six-dimensional

spacetime respectively. The general expression is complicated and we will just consider a

U(Φ) ∼ Φ2 potential i.e. we will restrict ourselves to b = 0. When ξ = 3/16 the lapse

function takes the form,

F (r) =
1

1 + 3
16

(

Gµ
σ2r

)3

(

r2

ℓ2
− p2 − Gµ

r

(

2p2 − 3G2µ2

16σ3
2

)

− 2p2G2µ2σ1
σ2r2

)

. (3.20)

For Gµ
σ2

≥ 0 this solution has the same horizon structure as the hyperbolic version of AdS

RN with the relevant mass and charge which get shifted around according to our theory.

When ξ = 1/5 the solution takes a similar form,

F (r) =
1

1− 1
5

(

Gµ
σ2r

)4

(

r2

ℓ2
− p2 − 2Gµp2

r
−
(

Gµ

σ2r

)2(G2µ2

5σ2
2l

2
+

5p2σ1
2

)

)

. (3.21)

Again, this looks very similar to the hyperbolic AdS RN but here we have to be slightly care-

ful since the singularity occurs at finite r. In fact we have to make sure that the numerator

remains negative as we approach this singularity. Another difference here is that it is the

charge term which is shifted by the couplings rather than the mass term in the former case.

3.5 Minimal coupling to gravity ξ = 0

When gravity is minimally coupled we notice that the three-forms are also minimally

coupled and the potential U(Φ) is trivial. The scalar field is a constant that can be set to

zero without loss of generality (since it is massless). The solution we then obtain is that

of the planar axionic black hole found in [16].
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3.6 Case of a linear scalar field, ξ = 1

2

Up to now we discussed only cases where the scalar field decays at infinity. We will consider

now the case where the scalar field is linear. Since our theory in nonminimally coupled

this case may still present some interest. Anyway, it is a typical prototype of a diverging

scalar solution at infinity and we wish to investigate its characteristics in order to have a

full picture of the solutions for arbitrary ξ. We have that ξ = 1/2. The charge q is well

defined if and only if, |b−σ2| ≤
√

σ2
2 +

σ1
2 . Proceeding as before we ask for a common root

condition and obtain σ1 = 4(1±
√
2σ2). The lapse function reads,

F (r) =
r2

ℓ2
+

2

r2

(

pGµ

b− σ2

)2 r + µG
b−σ2

(

b∓
√
2− 2σ2

)

r + µG
b−σ2

(

b∓
√
2
) . (3.22)

Note then when σ2 = 0 there is a naked singularity since F is strictly positive. To remedy

this we keep σ2 6= 0. Let s take here for simplicity the case where the above inequality

is saturated, b = ±
√
2. We then have q = 0, and the metric lapse function is that of an

asymptotically locally AdS black hole,

F (r) =
r2

ℓ2
+

2p2

r2

(

Gµ

b− σ2

)2

− 4σ2p
2

r3

(

Gµ

b− σ2

)3

. (3.23)

3.7 Special value ξ = 1

4

This case can be easily studied exhaustively, and presents a new exotic behavior. First, if

σ1 = 1 the scalar field is constant and the metric has lapse function

F (r) =
r2

ℓ2
− p2

b2 − 4
− p2

b2 − 4

µ

r
, (3.24)

and is singular for |b| < 2, but when |b| > 2 it represents a planar AdS black hole, with the

lapse of an hyperbolic black hole. In this respect it behaves similarly to the planar black

holes with 3-form fields presented in [16].

The situation is more intriguing when a > 0, that is for σ1 > 1 and µ > 0:10 in this case,

the metric in the asymptotic region differs from the Poincaré metric by exponentially small

corrections only. Also, the function F (r) has a positive root when |b| > 2, and the spacetime

therefore contains a black hole. Hence, the solution is exponentially close to the AdS ground

state in the asymptotic region of the black hole, with the gravitational field confined in

a region of size set by µ/(σ1 − 1) around the event horizon. In particular, the ADM

mass of this black hole vanishes. Finally, note that the value of the scalar field diverges

exponentially in the asymptotic region; this should however not be a cause of concern,

since it behaves as a stealth field for the AdS metric, and does not backreact on the metric.

Somewhat more surprisingly, the scalar field is also such that it shields the 3-form field from

the metric, by cancelling, up to exponentially small terms, all the stress tensor components

of the 3-form fields stress tensor, leaving the asymptotic Poincaré region unperturbed.

10An alternative possibility for a > 0 is to have σ1 < 1 and µ < 0. This case is slightly more complex,

and does not add much to the discussion, so we will ignore it in this article.
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4 Derivation of the action and the solution

The scalar potential U(Φ), as well as of the function ǫ(Φ) dictating the coupling of the

axions to the scalar Φ, have rather complicated expressions, and thus seem unnatural.

To understand how they where chosen, and how they lead to the general solutions (2.9)

and (2.16), recall that we observed in the previous section that these solutions are axionic

excitations on top of an AdS stealth background. As explained in the introduction, the

most general scalar potential allowing for such configurations is the one presented in [24].

Moreover, since we want to construct planar black holes, we need to start from a back-

ground configuration sharing the same symmetries: the stealth scalar field Φ can thus

depend on the radial Poincaré coordinate r only. This further constrains the potential

U(Φ) to assume the form (2.2) [21].

Next, we need to add the two 3-form fields to the action, engineering the coupling ǫ(Φ)

to the scalar field so that the integrability properties are maintained. For simplicity, we

will only consider the electrically neutral case; the addition of the Maxwell term to the

action being trivial. Starting from a stealth configuration on the AdS background given

by a scalar field nonminimally coupled with a self-interaction potential precisely given

by (2.2). By definition, the AdS stealth configuration has a nontrivial scalar field whose

energy-momentum tensor evaluated on an AdS background identically vanishes,

Gαβ + Λgαβ = T stealth

αβ = 0, �Φ = ξRΦ+
dU(Φ)

dΦ
, (4.1)

T stealth

αβ = ∇αΦ∇βΦ− gαβ

(

1

2
∇γΦ∇γΦ+ U(Φ)

)

+ ξ (gαβ�−∇α∇β +Gαβ) Φ
2,

where the potential U(Φ) is given by (2.2). The static stealth configuration in four dimen-

sions with planar base manifold reads [21]

ds20 = −r2dt2 +
dr2

r2
+ r2(dx21 + dx22), Φ(r) = (ar + b)

−2ξ
1−4ξ . (4.2)

Note that the stealth equations (4.1) can be viewed as a particular solution of the equations

associated to the variation of the following action

Sstealth =

∫

d4x
√−g

[R− 2Λ

16πG
− 1

2
∂µΦ∂

µΦ− ξ

2
RΦ2 − U(Φ)

]

. (4.3)

Let us now operate a Kerr-Schild transformation on the Poincaré metric (4.2), with a

null and geodesic vector given by l = dt− dr
r2
. The transformed metric ḡµν is

ds̄2 = ds20 +Mr2F1(r) l ⊗ l. (4.4)

Redefining the time coordinate according to

dt → dt− Mr2F1(r)

r4(1−MF1(r))
dr, (4.5)

the metric becomes

ds̄2 = −r2
(

1−MF1(r)
)

dt2 +
dr2

r2
(

1−MF1(r)
) + r2

(

dx21 + dx22
)

. (4.6)
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In these different expressions, M stands for a constant and F1(r) is a metric function to

be determined.

The idea is now to see what kind of extra matter can act as a source of the metric

background (4.6) in order to solve Einstein equations11

Ḡαβ + Λḡαβ = T̄ stealth

αβ + T̄ extra

αβ , (4.7)

where T̄ extra

αβ will correspond to the stress tensor associated to the extra matter source. In

order to answer this question, it is interesting to appreciate the effects of the Kerr-Schild

transformation on the gravitational equations. Defining

Eαβ = Gαβ + Λgαβ − T stealth

αβ , (4.8)

we have that Eαβ vanishes for a stealth solution, but when evaluated on the Kerr-Schild

metric (4.6), it is easy to prove that

Ētt = Σ ḡtt, Ērr = Σ ḡrr, Ēii = σ ḡii, (4.9)

where Σ and σ are functions of the radial coordinate r, F1, F
′
1 and F ′′

1 . All we need to do,

to solve the gravitational field equations (4.7), is to add extra fields to the action, such that

on-shell their combined stress tensor T̄ extra

αβ evaluates to Ēαβ on the Kerr-Schild metric (4.6),

compensating thus precisely these extra terms. This problem has been thoroughly analyzed

in [16] with free fields, where it was shown that the problem can be solved introducing one

extra three-form field strength for each spacelike direction on the horizon. Turning on only

the electric component with one single leg along horizon directions, and distributing these

legs isotropically on the horizon, one obtains an aggregated stress tensor with the same

algebraic structure as Ēαβ . Here we see that, despite the presence of interaction, we can

apply the same trick and produce the desired stress tensor.

This works as follows. We add to the starting action (4.3) an extra kinetic term for

two axionic fields H(1) and H(2), one for each independent direction on a four-dimensional

planar horizon,

Sextra = −
∫

d4x
√−ḡ

(

ǫ(Φ)

12

2
∑

i=1

H
(i)
abcH

(i)abc

)

, (4.10)

with ǫ(Φ) defining their coupling to the scalar. The corresponding stress tensor is

T̄ extra

αβ = ǫ(Φ)
2
∑

i=1

(

1

2
H

(i)
αbcH

(i)bc
β − 1

12
ḡαβH

(i)
abcH

(i)abc

)

, (4.11)

while the field equation that follow for the 3-forms are given by

∇̄α

(

ǫ(Φ)H(i)αβγ
)

= 0. (4.12)

Next, we need to switch on the 3-forms without breaking the Poincaré symmetry of the

AdS boundary. This is achieved by allowing them to generate a purely electric field, with

11The bar notation is used to stress that the quantities are computed with respect to the transformed

metric (4.6).

– 14 –



J
H
E
P
1
0
(
2
0
1
3
)
0
1
5

single non vanishing components H(1)
trx1

and H(2)
trx2

. Imposing the equation of motion (4.12),

and matching the integration constants to ensure the isotropy of the resulting stress tensor,

we obtain

H(i) =
p

ǫ
dt ∧ dr ∧ dxi, i = 1, 2, (4.13)

where p is an integration constant. These fields finally produce a total stress tensor of the

form required to solve Einstein’s equations,

T̄ extra

tt = − p2

ǫr2
ḡtt, T̄ extra

rr = − p2

ǫr2
ḡrr, T̄ extra

ii = 0. (4.14)

Combining these relations with those of (4.9), we see that in order to obtain a solution

of the Einstein equations (4.7) in the background (4.6), the function σ must vanish while

ǫ = − p2

Σr2
. The first condition σ = 0 yields a second-order differential equation for the

metric function F1 whose integration allows to determine Σ. Finally, expressing the radial

coordinate in term of the scalar field (4.2) as

r =
Φ

4ξ−1
2ξ − b

a

permits to express the function ǫ as a function of the scalar field Φ, giving equation (2.4).

This explains how the special 3-form coupling to the scalar was imposed by the re-

quirement of having planar black holes. The latter can be seen to emerge from stealth

solutions when the axionic fields are switched on, and can be generated through a Kerr-

Schild transformation.

5 Conclusions

In this paper, we have considered a four-dimensional action for a scalar field nonminimally

coupled to gravity and axionic fields. We have exhibited, for the first time, a general

class of field configurations solving the equations of motion for arbitrary values of the

nonminimal coupling, which we noted ξ. It consists in a two-parameter family of solutions

including mass, electric and axionic charge, and a relation in between them. For 0 ≤
ξ ≤ 1

4 , these solutions are asymptotically locally AdS, and contain a planar black hole for

appropriate ranges of the parameters. Our theory has, apart from ξ, three more couplings

parameterizing the relevant scalar potential and axionic coupling in the action.

We have shown that these solutions can be viewed as the response of an AdS stealth

background configuration to the inclusion of axionic charges, and they can be generated

through a Kerr-Schild transformation. The stealth configurations develop a planar horizon

when the 3-form fields are switched on, yielding regular black hole geometries. It would

be interesting to understand the role of these axionic fields better, and their relation to

gravitational stealth configurations. The thermodynamic proprieties of the above family

should also be investigated in order to better understand their relevant phases and con-

sider potential holographic applications. In order to go further in this direction, one needs

however to understand first the role played by the axions in the holographic picture, for

they are essential in order to get planar horizons.
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We should note that one can write the solutions in the minimal frame with ease since

the minimally coupled metric is simply given by g̃µν =
(

1− 8πGξΦ2
)

gµν . The action itself

however, and in particular the conformally transformed scalar field, are in general not given

analytically. We found that higher or lower dimensional conformal couplings simplify the

relevant solutions. Apart from the 4-dimensional conformal coupling, we studied the rele-

vant ξ couplings associated to 3, 5, and 6 dimensions. It may be that the solutions presented

here can then be uplifted to higher dimensions. Moreover, the peculiar forms of the scalar

potential U(Φ) and the scalar-axion coupling ǫ(Φ) are very special in that they allow exact

black hole solutions. This integrability property, in light of the simplifications arising for the

above values of ξ, hints to a higher-dimensional origin of these potentials, possibly through

some generalized dimensional reduction [32, 33]. Likewise, it is enthralling to entertain the

idea that the ξ = 1
4 = ξ∞ case, for which the gravitational field is confined to a region close

to the horizon, might be linked to the large D limit of some gravitational theory [26]. We

believe that it should be possible to obtain a deeper understanding of the structure of the

action (2.1), and that it would be fruitful to pursue the research in this direction.

The solutions we have found have a rich horizon structure with Cauchy and event

horizons. Generically they present a horizon structure similar to that of a charged AdS

hyperbolic black hole. This results from the axionic fields since their charge generically

gives a negative curvature term in the lapse function. In the case where the potential is

absent and ξ = 1/6, or U ∼ Φ2 for any other ξ, there is an additional term appearing in

the lapse function with a variable role, of mass, charge, curvature, depending on the non

minimal coupling ξ (3.6). In particular for the case of conformal coupling ξ = 1/6, the

extra term plays the role of horizon curvature in the lapse function, allowing even for a

positive rather than a negative curvature term. One then may question the existence of

a de Sitter rather than an anti-de Sitter black hole with a planar topology.12 However,

closer investigation shows that, although we can find a regular static region delimited by

two horizons, the solution is never asymptoting de Sitter space.
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A Extension in arbitrary dimension

In this appendix, we generalize the solutions above to arbitrary dimension, omitting the

Maxwell term for simplicity. Also, we set the constants 8πG and ℓ to unity. Following

the same procedure as in four dimensions, we start from stealth AdS solutions, with self-

interacting scalar potential U(Φ) presented in [25], and choosing the scalar-axion coupling

ǫ(Φ) in such a way that static, exact solutions with Poincaré symmetry in the boundary

directions exist [21]. The resulting action is

S =

∫

dDx
√−g

(

R− 2Λ

2
− 1

2
∂µΦ∂

µΦ− ξ

2
RΦ2 − U(Φ)

− ǫ(Φ)

2(D − 1)!

D−2
∑

i=1

H(i)
α1···αD−1H(i)α1···αD−1

)

,

(A.1)

where Λ = −(D − 1)(D − 2)/2 is the negative cosmological constant, and where we have

introduced (D − 2) fields which are exact (D − 1)-forms H(i). The function ǫ(Φ) depends

on the scalar field Φ as

ǫ(Φ) =
(D − 2)2 (1− 4 ξ)2

(

1− ξΦ2
) D

D−2

G(Φ)
, (A.2)

with

G(Φ)=4b ξ2Φ
1−2ξ

ξ

[

8 (D−2) (D−3) (ξ−ξD−2) Φ
4ξ−1
2ξ −8 ξ (D−1) (D−4) (ξ−ξD) Φ

8ξ−1
2ξ

+ b ξ (D − 2− 8ξ)Φ2 − b (D − 2)
]

+ (D − 3) (D − 2)2 (1− 4ξ)2

+ 4ξ
[

4 (D − 1) ξ (ξ − ξD)
(

(D − 2)2 (ξ − ξD−1)− 2ξ
)

Φ4

− (D − 2)
(

2 (D − 1) (D − 3)
(

4ξ2 + ξD
)

− ξ
(

4D2 − 18D + 17
))

Φ2
]

,

and the potential term is again the potential associated to the stealth configuration on the

AdS background, and is given by [21]

U(Φ)=
ξ

(1−4ξ)2

[

2 ξ b2Φ
1−2ξ

ξ − 8 (D − 1) (ξ − ξD)
(

2 ξ bΦ
1
2ξ −D (ξ − ξD+1) Φ

2
)]

, (A.3)

where ξD, given in equation (3.7), denotes the conformal coupling in D dimensions. The

field equations read

Gµν−
(D−1)(D−2)

2
gµν=∂µΦ ∂νΦ−gµν

(

1

2
∂σΦ ∂σΦ+U

)

+ξ (gµν�−∇µ∇ν+Gµν) Φ
2

+ǫ
D−2
∑

i=1

[ 1

(D − 2)!
H(i)

µα1···αD−2H
(i)α1···αD−2
ν − gµν

2(D − 1)!
H(i)

α1···αD−1H(i)α1···αD−1

]

, (A.4a)

�Φ = ξRΦ+
dU

dΦ
+

1

2(D − 1)!

dǫ

dΦ

D−2
∑

i=1

H(i)
α1···αD−1H(i)α1···αD−1 , (A.4b)

∇µ

(

ǫH(i)µα1···αD−2

)

= 0, (A.4c)
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and a solution is given by

ds2 = −F (r) dt2 +
1

F (r)
dr2 + r2

D−2
∑

i=1

dx2i , Φ(r) = (ar + b)
2ξ

4ξ−1 ,

H(i) =
p

ǫ(Φ)
rD−4dt ∧ dr ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxD−2 (A.5)

where the metric function is

F (r) = r2 − p2

(

1− ξ (ar + b)
4ξ

4ξ−1

)
2

D−2

, (A.6)

with p and a two arbitrary integration constants.

These solutions are the analogue of the double scaling limit solutions (2.18), and indeed

they reduce to those solutions (with q = 0) when D = 4. The reason why we obtain this

limiting solution only, effectively with µ = 0, and we do not obtain the more general

solution corresponding to the family (2.9)–(2.10), comes from the fact that the coupling

ǫ(Φ) between the scalar and p-form fields, given by (A.2), lacks the coupling constants σ1
and σ2 present in (2.4). More precisely, when D = 4 it reduces to the four-dimensional

function (2.4) with the special values σ1 = 2(1− 4ξ)b2 and σ2 = b of the couplings.

It is possible to reintroduce these two coupling constants in the D-dimensional function

ǫ(Φ), at the cost of increasing further the complexity of the expressions in this appendix.

Reintroducing σ1 would allow to obtain solutions electrically charged under the Maxwell

field, while an arbitrary coupling σ2 would push the mass parameter µ away from the zero

value of the double scaling limit. On the whole, one would obtain the generalization to

arbitrary dimension of the solution given in (2.9)–(2.10).

The reason why this cannot be achieved in closed form can be explained as follows.

Starting from the stealth configuration in arbitrary dimension, and operating a Kerr-Schild

transformation as explained in section 4, the extra components of the energy-momentum

tensor associated to the axionic fields read on-shell

T extra

tt = −p2 (D − 2)

2 ǫ(Φ)r2
gtt, T extra

rr = −p2 (D − 2)

2 ǫ(Φ)r2
grr, T extra

ii = −p2 (D − 4)

2 ǫ(Φ)r2
gii. (A.7)

Now in dimensionD 6= 4, the components along the planar direction do not vanish, T extra
ii 6=

0. This complicates further the differential equation for the lapse function, leading to an

exact solution in closed form only when we take µ = 0.

In more details, defining

F (r) = r2
(

1− p2f(r)
)

, with f(r) =
1 + h(r)

r2
(

1− ξ (ar + b)
4ξ

4ξ−1

)
2

D−2

, (A.8)

and considering the combination (D− 4)Et
t − (D− 2)Exi

xi
= 0 of Einstein’s equations (here

we define Eαβ to be the components of Einstein equations, as we did in section 4) one

yields to the following differential equation for the unknown metric function h(r),

(4 ξ−1) (D−2)
(

ξ (ar+b)
4ξ

4 ξ−1 −1
)

(

h′′r+h′ (D−2)
)

+4 aξ2r (D−4) (ar+b)
1

4 ξ−1 h′=0.

(A.9)
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In four dimensions, this equation reduces to rh′′ + 2h′ = 0, and its integration gives pre-

cisely the neutral version of the four-dimensional solution (2.10). On the other hand, for

dimensions D 6= 4, this differential equation cannot be integrated in full generality. How-

ever, it is clear that equation (A.9) admits the trivial solution h(r) = const. This constant

can be absorbed without loss of generality into p2. The resulting expression corresponds

to the solution given by (A.6) and leads to the associated function ǫ(Φ) given in (A.2).

More generally, for D 6= 4, the formal solution of the equation (A.9) is given by

h(r) = C1

∫

r−D+2
(

ξ(ar + b)
4ξ

4ξ−1 − 1
)−D−4

D−2
dr, (A.10)

and operating the change of variable x = ξ (ar + b)
4ξ

4ξ−1 as done in [24], the metric function

h(x) satisfies the following equation,

(D − 2)ξx(x− 1)

(

−x

(

x

ξ

)− 1
4ξ

+ bξ

)

h,xx

−
{

1

4

[

(D − 3) (D(4ξ − 1) + 2)x2 − (D − 2) (D(4ξ − 1)− 8ξ + 3)x
]

(

x

ξ

)− 1
4ξ

−b [(4(D − 4)ξ +D − 2)x− (D − 2)] ξ

}

h,x = 0. (A.11)

Nevertheless, there is another particular case for which an exact solution in closed form is

possible. If the constant b is set to zero, the last equation reduces to an hypergeometric

one,

x(x−1)h,xx+
(D − 3) (D (4 ξ − 1) + 2)x− (D − 2) (D (4 ξ − 1)− 8 ξ + 3)

4 (D − 2) ξ
h,x = 0, (A.12)

whose solution reads

h(x) = C1 + C2x
(D−3)(1−4ξ)

4ξ 2F1

(

D − 4

D − 2
,
(D − 3)(1− 4ξ)

4ξ
,
D(1− 4ξ) + 16ξ − 3

4ξ
;x

)

,

(A.13)

with C1 and C2 two integration constants. In this case, we recover a two-parameter family

of solutions, extending to higher dimensions the solution (2.9)–(2.10) with b = 0. The

corresponding coupling function ǫ(Φ) will have two arbitrary couplings related to C1 and

C2. To be complete, note that in four dimensions, the hypergeometric function becomes

constant and hence the solution is h(x) = C1 + C2x
(1−4ξ)

4ξ , yielding again the neutral

expression (2.10) once expressed with the variable r.

To conclude, we mention that for the particular value ξ = 1
4 , the potential becomes

U(Φ) =
1

2

(

ln

(

Φ

b

)2

+ ln

(

Φ

b

)

(D − 1) +
1

4
(D − 1) (D − 2)

)

Φ2, (A.14)

where b is the only remaining coupling constant, and the function ǫ(Φ) is given by

ǫ(Φ) =
4 (D − 2)2

(

Φ2 − 4
) D

D−2

G(Φ)
, (A.15)
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with

G(Φ) = 4Φ2 ln

(

Φ

b

)2
[

4 (D − 2)− (D − 4)Φ2
]

−
(

Φ2 − 4
)

(D − 2) (D − 3)

[

4Φ2 ln

(

Φ

b

)

+
(

Φ2 − 4
)

(D − 2)

]

.

In this case, the metric function F (r) and the scalar field Φ(r) are given by

F (r) = r2 − p2

(b2e2ar − 4)
2

D−2

, Φ(r) = bear, (A.16)

with a and p being two arbitrary integration constants and where the expression of the

p−forms is the same as the one given for ξ 6= 1
4 , (A.5). When D = 4, this is the double

scaling limit solution (2.19) with σ1 = 1.
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