Cai et al. BMC Bioinformatics 2013, 14(Suppl 12):52
http://www.biomedcentral.com/1471-2105/14/512/S2

BMC
Bioinformatics

RESEARCH Open Access

A novel subnetwork alignment approach predicts
new components of the cell cycle regulatory
apparatus in Plasmodium falciparum

Hong Cai'", Changjin Hong?", Timothy G Lilburn®", Armando L Rodriguez'*, Sheng Chen?, Jianying Gu®,
Rui Kuang®’, Yufeng Wang"®"

From |EEE International Conference on Bioinformatics and Biomedicine 2012
Philadelphia, PA, USA. 4-7 October 2012

Abstract

Background: According to the World Health organization, half the world’s population is at risk of contracting
malaria. They estimated that in 2010 there were 219 million cases of malaria, resulting in 660,000 deaths and an
enormous economic burden on the countries where malaria is endemic. The adoption of various high-throughput
genomics-based techniques by malaria researchers has meant that new avenues to the study of this disease are
being explored and new targets for controlling the disease are being developed. Here, we apply a novel
neighborhood subnetwork alignment approach to identify the interacting elements that help regulate the cell
cycle of the malaria parasite Plasmodium falciparum.

Results: Our novel subnetwork alignment approach was used to compare networks in Escherichia coli and P.
falciparum. Some 574 P. falciparum proteins were revealed as functional orthologs of known cell cycle proteins in E. coli.
Over one third of these predicted functional orthologs were annotated as “conserved Plasmodium proteins” or “putative
uncharacterized proteins” of unknown function. The predicted functionalities included cyclins, kinases, surface antigens,
transcriptional regulators and various functions related to DNA replication, repair and cell division.

Conclusions: The results of our analysis demonstrate the power of our subnetwork alignment approach to assign

functionality to previously unannotated proteins. Here, the focus was on proteins involved in cell cycle regulation. These
proteins are involved in the control of diverse aspects of the parasite lifecycle and of important aspects of pathogenesis.

Background

Written descriptions of the symptoms of malaria have
existed for over 4,000 years and evidence for the existence
of the genus Plasmodium has been recovered from amber
approximately 30 million years old [1]. Thus, the disease
has probably evolved alongside its hosts since the emer-
gence of the first humans in Africa. In 2010, it was esti-
mate that 660,000 people died from malaria. This estimate
probably represents a conservative number, as reporting of
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the disease is extremely variable from one region to
another; generally, the regions with the highest incidence
of malaria also have the weakest mechanisms for reporting
and recording cases.

Malaria is caused by protozoan parasites from the Genus
Plasmodium. Different species tend to infect different host
species. Five species infect humans; the two most wide-
spread species are P. vivax and P. falciparum. The latter
species is the most lethal. P. falciparum has a complex life
cycle that spans the arthropod vector and human host.
Upon transfer from the vector to the human host, the
parasite first infects the liver. After maturation in the liver,
the parasite infects red blood cells. In this so-called RBC
stage, the symptoms of malaria become acute.
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A number of antimicrobial drugs have been developed
over the years, notably chloroquine and artemisinin. How-
ever, in the past decades, the effectiveness of all these
drugs has been significantly reduced due to the evolution
of drug-resistant parasites, with the exception of artemisi-
nin. Recently, however, evidence has emerged that resis-
tance to artemisinin has appeared and is beginning to
spread. Therefore, it is essential that new drug targets be
identified and the development of new genomics-based
technologies is key to this task. Genome sequences from
P. falciparum [2] and other Plasmodium spp. [3-7] have
been completed and these have facilitated numerous stu-
dies on, for example, parasite transcription [8-19], transla-
tion [20-29], metabolism [30-34], protein-protein
interactions [35-38], and epigenetic regulation [39-42].
The data from these studies have, in turn, laid the ground-
work for systems biology oriented studies of the networks
associated with parasite development, survival, pathogen-
esis, and virulence [43-46].

Network alignment is a popular systems biology
method [47-55]. However, because the malaria parasite is
only distantly related to other, more completely under-
stood model organisms, the utility of this approach may
be cast in doubt. About 60% of the open reading frames
in P. falciparum are annotated as “hypothetical proteins”
[2] simply because homology transfer of information
about individual proteins is not possible across extended
evolutionary distances. To tackle this problem, we
recently developed a neighborhood subnetwork align-
ment algorithm [56], which is focused on the similarities
between functional modules, in other words, on the
interactions among proteins rather than on individual
proteins. We define a neighborhood subnetwork as the
set of nodes (proteins) reachable from a central protein
via a small number of edges in a protein-protein interac-
tion (PPI) network. A proof-of-concept study predicted
previously unrecognized transcriptional regulators
involved in diverse facets of the parasite life cycle [43]. In
this paper, we use the subnetwork alignment approach to
uncover candidate proteins with roles in cell cycle regula-
tion, several of which are potential drug targets. As our
knowledge of the mechanics of the cell cycle deepens, so
will our ability to influence parasite survival in the host
and our ability to identify key drug targets.

Results and discussion

Neighborhood subnetwork alignments predicted 574
proteins that are associated with cell cycle regulation in
malaria parasite

The cell cycle of the malaria parasite differs significantly
from that of other model eukaryotic organisms. There is
no direct correspondence between schizogony, during
which the parasite undergoes multiplication, and the typi-
cal G1, S, G2 and M phases of the cell cycle in crown
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eukaryotes. In addition, the parasite’s cell cycle features
asynchronous nuclear divisions, organellar segregation,
and morphogenesis of daughter merozoites. A thorough
sequence similarity-based search by Doerig and Chakra-
barti predicted a list of proteins that might be involved in
the cell cycle [57], including cyclins, cyclin-dependent
kinases, proteins critical for cell division and signal trans-
duction. In a previous study, we used a variational Baye-
sian expectation maximization (VBEM) approach to reveal
the dynamics of the parasite cell cycle network, and to
infer regulatory relationships based on time-series tran-
scriptomic data [58]. The results from that study exposed
gaps in our cell cycle network model. Here we use our
subnetwork alignment approach to try and fill these gaps.

We predicted that 574 proteins in P. falciparum were
functional orthologs of known cell cycle proteins in E. coli
(Additional File 1). Over 34% of these predicted functional
orthologs were annotated as “conserved Plasmodium pro-
teins” or “putative uncharacterized proteins” of unknown
function.

The set of functional orthologs is involved in key
biological processes

Table 1 shows representative functional categories pre-
dicted for the cell cycle-associated protein set as revealed
by Gene Ontology (GO) enrichment analysis. These func-
tional categories are part of some of the most important
mechanisms governing the growth and survival of the
parasite. Some of the more interesting functional groups
are discussed in the following sections.

1. Cyclin

Our subnetwork alignment approach predicted PFL1330c
to be a putative cyclin [58]. Cyclins are a family of proteins
with expression levels that oscillate during the cell cycle;
the synthesis and degradation of cyclins control the activ-
ity of cyclin-dependent kinases and accurate transition of
key cell cycle points. Yeast two-hybrid (Y2H) experiments
[37] have shown that PFL1330c has physical interaction
with an apical sushi protein (ASP) (PFD0295c¢), which has
an adhesive “sushi” domain and thought to have a role in
the merozoite invasion process.

2. Kinases

Signal transduction plays a key role in managing the
complexity of the cell cycle [59,60]. Figure 1 shows eight
kinases (in yellow) that were predicted by the subnetwork
alignments and the proteins that are directly associated
with them. Three protein kinases have been implicated in
cell cycle regulation:

(1) PIMAP1 (PF14_0294) is a homolog of mitogen-acti-
vated protein kinase (MAPK) [61]. This kinase is believed
to be a central member of the MAPKKK cascade and may
be related to parasite responses to a variety of exogenous
or endogenous stimuli or environmental stresses. PIMAP1
has three PPI partners: (a) a serine/threonine protein
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Table 1 Representative P. falciparum proteins that were predicted to be involved in cell cycle regulatory network.

Functional category PlasmoDB accession number Annotation
Cyclin PFL1330c Cyclin-related protein, Pfcyc-2
Cell differentiation PFEO375w cell differentiation protein, putative (CAF40)
Chromosome organization PFEO450w Chromosome condensation protein, putative
PF11_0062 Histone H2B
Mitosis PF13_0050 HORMA domain protein, putative
DNA repair MAL7P1.145 Mismatch repair protein pms1 homologue, putative;
PF10_0114 DNA repair protein RAD23, putative
PF08_0126 DNA repair protein rad54, putative
DNA replication PF07_0023 DNA replication licensing factor mcm?7 homologue, putative
PFLO580w DNA replication licensing factor MCM5, putative
MAL7P1.21 Origin recognition complex subunit 2, putative
PFE1345¢ Minichromosome maintenance protein 3, putative
Regulation of cell cycle PFO7_0047 AAA family ATPase, CDC48 subfamily (Cdc48)
PFL1925w Cell division protein FtsH, putative
Protein phosphorylation PFCO105w Serine/threonine protein kinase, putative
MAL13P1.278 Serine/threonine protein kinase, putative
PF14_0294 Mitogen-activated protein kinase 1
PFCO755c¢ Protein kinase, putative
PF11_0464 Ser/Thr protein kinase, putative
PF11_0156 Ser/Thr protein kinase
PF11_0239 Calcium-dependent protein kinase, putative
PFL1370w NIMA-related protein kinase, Pfnek-1
Proteolysis PF14_0517 Peptidase, putative
MAL13P1.184 Endopeptidase, putative
PFL1635w Ulp1 protease, putative
PF10_0150 Methionine aminopeptidase
Cytoskeleton MAL8P1.146 filament assembling protein, putative
Heat shock PFI0875w Heat shock protein 70 (HSP70) homologue
PFLO565w Heat shock protein DNAJ homologue Pfj4
PF11_0351 Heat shock protein hsp70 homologue
PF11_0188 Heat shock protein 90, putative
PF07_0029 Heat shock protein 86
PF08_0054 Heat shock 70 kDa protein
PFB0595w Heat shock 40 kDa protein, putative
PFI0355¢ ATP-dependent heat shock protein, putative
Pathogenesis PFC0005w Erythrocyte membrane protein 1, PEEMP1
PFIO005w Erythrocyte membrane protein 1, PFEMP1
PFD0005wW Erythrocyte membrane protein 1, PFEMP1
PFO8_0103 Erythrocyte membrane protein 1, PFEMP1
PFL0935¢ Erythrocyte membrane protein 1, PfEMP1
PFLOO05SW Erythrocyte membrane protein 1, PFEMP1
PFB1055¢ Erythrocyte membrane protein 1, PFEMP1
PF11830c Erythrocyte membrane protein 1, PfEMP1
Microtubule cytoskeleton organization and activity PFCO165w Spindle pole body protein, putative
PFO7_0104 Kinesin-like protein, putative
Transcriptional regulation PF10_0143 Transcriptional coactivator ADA2 (ADA2)
PFD0985w AP2/ERF domain-containing protein PFD0985w
PFL1085w Transcription factor with AP2 domain, putative

PF11_0442 Transcription factor with AP2 domain, putative
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Table 1 Representative P. falciparum proteins that were predicted to be involved in cell cycle regulatory network.
(Continued)

.

PFE0840c Transcription factor with AP2 domain, putative
PFO7_0126 Transcription factor with AP2 domain, putative
PF10_0075 Transcription factor with AP2 domain, putative
PFL1900w Transcription factor with AP2 domain, putative
PFLO465¢ Zinc finger transcription factor (Krox1)
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Figure 1 A graph showing the proteins associated with kinases predicted to be involved in cell cycle regulation. Square nodes represent the
kinases. Node size is proportional to the degree of the connectivity of the node. Nodes are colored according to their functional classification in the
eggNOG database [79]. The COG categories are [80] (J) Translation, ribosomal structure and biogenesis, (A) RNA processing and modification,

(K) Transcription, (L) Replication, recombination and repair, (B) Chromatin structure and dynamics, (D) Cell cycle control, cell division, chromosome
partitioning, (Y) Nuclear structure, (V) Defense mechanisms, (T) Signal transduction mechanisms, (M) Cell wall/membrane/envelope biogenesis, (N) Cell
motility, (2) Cytoskeleton, (W) Extracellular structures, (U) Intracellular trafficking, secretion, and vesicular transport, (O) Posttranslational modification,
protein turnover, chaperones, (C) Energy production and conversion, (G) Carbohydrate transport and metabolism, (E) Amino acid transport and
metabolism, (F) Nucleotide transport and metabolism, (H) Coenzyme transport and metabolism, () Lipid transport and metabolism, (P) Inorganic ion
transport and metabolism, (Q) Secondary metabolites biosynthesis, transport and catabolism, (R) General function prediction only, and (S) Function
unknown. Confidence scores for the interactions among the nodes (S values from STRING [81]) were divided into three groups - low (0.150-0.399),
medium (0.400-0.700) and high (0.701-0.999); the groups are represented by thin, medium and heavy lines, respectively.
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kinase (SRPK1) (PFC0105w). PfSRPK plays a role in
mRNA splicing machinery [62]. Gene disruption of SRPK
in the rodent parasite P. berghei suggested that it is essen-
tial during male gamete formation [63]. (b) myosin A
(PF13_0233) is a component in the linear motor that pro-
motes merozoite motility in invasion. (c) MAL7P1.132, a
conserved Plasmodium protein of unknown function. This
protein was recently annotated as a putative kinase [64].

(2) PfNek-1(PFL1370w) encodes a NIMA -related kinase
and it is considered to be a potential antimalarial target. A
recent study based on reverse genetics showed that it is
required for the asexual cycle in red blood cells and it has
sexual specificity (expression in male gametocyte) [65].
PfNek-1 is shown by yeast 2-hybrid assay to pool with a
conserved hypothetical protein PFC0345w. Both proteins
have abundant expression at the schizont stage.

(3) cdc2-related protein kinase 4 (CRK4) (PFC0755c)
[57], was observed as a phospho-protein in the schizont
stage of P. falciparum-infected red blood cells. Y2H
showed that it has a direct interaction with an AAA family
ATPase.

The most highly connected kinase predicted to be
involved in the cell cycle is the serine/threonine protein
kinase PfCLK-3 (PF11_0156) with 28 association partners.
Ten proteins were pooled by Y2H experiments [37],
including a rhoptry neck protein 3 (RON3), a splicing fac-
tor 3A subunit, eukaryotic translation initiation factor
3 subunit 10, a chloroquine resistance marker protein
(CRMP), syntaxin involved in vesicle exocytosis, an export
protein, and five conserved hypothetical proteins, indicat-
ing PfCLK-3’s involvement in merozoite invasion, splicing,
translation and trafficking. Global kinome analysis sug-
gested that PfCLK3 is likely to be essential for parasite
schizogony in RBCs [28].

A calcium-dependent protein kinase 6 (PfCDPK®6)
(PF11_0239) was predicted to be involved in cell cycle reg-
ulation by subnetwork alignment. Previous phenotypic
analysis showed that CDPK®6 plays a role in sporozoite for-
mation and invasion of hepatocytes [66]. This kinase is
associated with 11 other proteins verified by Y2H assays.
Two of the association partners are likely involved in cell
cycle regulation as well: a putative Ndc80 protein func-
tions in spindle checkpoint signaling for kinetochore orga-
nization and movements, and a putative Snf2-related CBP
activator (SRCAP) for base excision repair and chromo-
some remodeling. PfCDPKG6 is also associated with PfBetl
in SNARE complex for secretion, a putative protein loca-
lized to rhoptry that might be related to merozoite inva-
sion process, a liver-stage antigen, a ubiquitin domain
containing protein, and five hypothetical proteins.

The functional roles of other predicted kinases are largely
unknown. PF11_0464 is a putative serine/threonine protein
kinase. A gene disruption attempt suggested that it is likely
essential for the parasite RBC stage [28]. This protein is
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associated with two proteins required for 60S ribosomal
subunit biogenesis (60S ribosomal protein L6-2 and nucleo-
lar GTP-binding protein 1), and a pseudogene of surface-
associated interspersed gene 13.1 (SURFIN13.1), which was
implicated in the invasion process. MAL13P1.278 (PfArk3)
is a putative serine/threonine kinase in the aurora-related
kinase (ARK) family. This family of kinases has been impli-
cated in regulation of endocytosis and of the actin skeleton
[67]. PfArk3 has a weak association with an erythrocyte
membrane protein 1, PFEMP1 (PFB1055) that may be
related to mitotic recombination.

3. Proteins implicated in cell division, chromosome
organization, and DNA replication

Our analysis has implicated a number of other predicted
proteins in the cell division, mitosis, chromosome organi-
zation, and DNA replication processes. PFE0450w, a puta-
tive chromosome condensation protein that forms part of
the ATP-dependent chromatin remodeling complex [68],
was predicted to be associated with cell cycle regulation.
As shown in Figure 2, are 16 proteins associated with
PFE0450w. Eight of these associations have been verified
by Y2H, a set that includes two tat-binding proteins perti-
nent to proteasome activities, a pre-mRNA splicing factor,
an eukaryotic translation initiation factor 3 subunit 10,
and three conserved Plasmodium proteins with unknown
function. Perhaps the most important association sug-
gested by our analysis is its link with the high molecular
weight rhoptry protein 2 (RhopH2). Rhop2 is localized in
the rhoptries of schizonts and plays a role in cytoadher-
ence and merozoite invasion of the red blood cell [69].
Several key components including DNA replication licen-
sing factors and an origin recognition complex subunit
were predicted by our subnetwork alignment.

4. DNA repair proteins

The cell cycle is also involved in involving DNA repair
mechanisms that ensure genome integrity. A putative DNA
repair protein RAD23 (PF10_0114) was predicted to have
92 protein-protein association partners (Figure 3), 22 of
which have been demonstrated to be direct Y2H physical
interactions. This protein is a member of an escort complex
for proteasome-mediated degradation of non-native ER
proteins. Other suggested interactors with RAD23 include
heat shock chaperone proteins, ATP-dependent proteases,
serine-threonine kinases, and secreted proteins that have
been implicated in stress responses, signaling cascades, and
protein sorting and trafficking.

5. Transcriptional regulators

Seven parasite-specific ApiAP2 transcription factors were
predicted to have a role in cell cycle regulation, under-
scoring the importance of transcriptional regulation.
ApiAP2 proteins are gaining recognition as attractive
drug targets due to their critical roles in the parasite life
cycle and their distant evolutionary relationship to the
host, implying a diminished possibility of side-effects for
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Figure 2 The proteins associated with a putative chromosome condensation protein PFE0450w. Node size is propomonal to the degree
of the connectivity of the node. The visualization is as for Figure 1.

humans [70]. The ApiAP2 protein with the highest degree
of connectivity in the cell cycle regulatory network is
PFD0985w (Figure 4). Its 17 association partners play ver-
satile roles in epigenetic regulation, kinetochore organiza-
tion, host cell entry and adhesion, secretion, and protein
degradation by the ubiquitin-proteasome system [45]. The
roles of another ApiAP2 protein (PF07_0126) can be
inferred from its associations with 15 proteins that are
related to transcriptional regulation, chromatin remodel-
ing, replication, and repair. This protein has interactions
with multiple signaling molecules including a calcium-
dependent protein kinase and a ligand protein in the 14-3-
3 family.

The involvement of PF10_0075 in ApiAP2 in cell cycle
regulation is indicated by its Y2H interactions with another
ApiAp2 protein (MAL8P1.153), a histone acetyltransferase
GCNS5 (PF08_0034), which is important for histone modifi-
cation and chromatin remodeling [71], a DNA excision
repair protein rhpl6 (PFL2440w), actin (PFL2215w) and a

putative kelch protein whose ortholog was implicated in
cytoskeletal function in Atlantic horseshoe crab, Limulus
polyphemus [72] (Figure 4).

6. Surface antigens

A group of surface antigens in the Plasmodium falciparum
erythrocyte membrane protein (PfEMP1) family (Table 1)
were predicted to be associated with the cell cycle.
Encoded by the var gene, PfEMP1 is one of the most
abundant protein families in P. falciparum. Its poly-
morphic nature leads to antigenic variation, allowing the
parasite to successfully evade the human immune systems,
thus contributing to pathogenicity and virulence.

Conclusions

We have previously developed a neighborhood subnet-
work alignment approach and here we apply this method
to predict the network components involved in cell cycle
regulation. The network components identified included
cyclins, kinases, transcriptional regulators, and cell surface
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antigens, among others. Some of these are obvious and
have already been confirmed by experimental approaches,
such as yeast two-hybrid experiments. This validates our
approach as a useful tool for in silico prediction of pre-
viously unrecognized interactors in cell cycle regulation
and suggests that the expanded set of interactors discussed
here form a new set of potential targets for drugs or
therapies.

Methods

Subnetwork querying by neighborhood alignments

The prediction of functional orthologs for the P. falci-
parum proteins has been structured as a subnetwork
querying problem. Network Querying is a technique that
searches a large “target” network of an organism to find
subnetwork regions that look similar to a given query net-
work of another organism [73,74]. The “query” network
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that we are searching against “target” network is the well-
studied functional module in a model organism. Network
Querying allows us to predict similar modules in the less
studied target organism, providing a way to relate biologi-
cal knowledge of functionality across organisms [75].
Previously, we applied a neighborhood alignment method
for subnetwork querying to predict novel transcriptional
regulators with versatile roles in the parasite life cycle [43].
We adopted the same method to identify proteins involved
in cell cycle regulation.

First a set of proteins related to cell cycle regulation
(GO:0007049: cell cycle) in E. coli were mapped onto the
its own PPI network. For each cell cycle protein a set of
“neighbors” was selected, creating a subnetwork, and by
inference, a network of subnetworks in the query network.
Conversely using the same technique, each P. falciparum
protein was mapped into its own PPI network, and a sub-
network of neighbors was constructed. To construct

neighborhood subnetworks of comparable size for align-
ment, proteins that are k hops from the central were
included and k was chosen such that the neighbor size was
under 500, unless the central protein had more than 500
neighbors.

After obtaining the neighborhood subnetworks for both
the E. coli cell cycle proteins and the P. falciparum pro-
teins, the E. coli subnetworks were combinatorically
aligned against the P. falciparum subnetworks. The central
protein of the best-aligned P. falciparum subnetwork was
labeled a functional ortholog of the proteins involved in
cell cycle regulation in E. coli .

Analysis to determine how well the P. falciparum neigh-
borhood subnetworks aligned with the E. coli neighborhood
subnetworks was done by assigning a numerical score for
each alignment by a shortest-path graph kernel to measure
the similarity between two labeled networks [76]. To
optimize the graph kernel for this specific use case; only
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paths between the central protein and other subnetwork
proteins are counted. Each shortest path through the cen-
tral protein characterizes the functional role of the protein
in the chained molecular activities along the path. As
shown in Figure 5, given two subnetworks S, with central
protein p and S, with central protein g, the shortest path
similarity function is defined as follows,

1
K (Sq.Sp) =

= 15, + I8, [] B((1,i2)sy)

v(il,i2)€S,
Where

(il i o
max | 2ECLIDEG2R2)
v(j12)es, dist(il,i2) + dist(j1,j2)
Eval(x,y)

B((i1,i2),Sp) =

E(x,y) = exp(— ) with the normalization para-
meter ¢ = 10 measures the sequence similarity between
proteins x and y based on the E-value of the sequence
alignment, and dist(x,y) is the length of the shortest
path connecting proteins x and Y in the PPI subnetwork.
The computation was done on a —log,, scale. The
method outlined here takes each pair of proteins (il,i2)
from one subnetwork and seeks the maximum ratio of
sequence similarity with respect to the closeness (short-
est path through the central protein) of the networks, in
order to identify proteins (j1,j2) in the target subnet-
work. From this algorithm, a subnetwork alignment
score is obtained by, collecting the shortest paths
between two neighborhood subnetworks, getting an
alignment score for each pair of proteins, and totaling
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all of the alignment values. This approach allows for the
summarization of the functional coherence, and distance
between two central proteins, into a numerical score by
way of evaluating the sequence similarity and the role of
the central protein between two subnetworks.

An example of how the subnetwork alignment
approach is used to predict functional orthologs is shown
in Figure 6 (annotations are shown in Additional File 2).
Although the P. falciparum protein encoded by locus
PF08_0126 (Uniprot ID Q8IAN4, a putative DNA repair
protein rad54) and E. coli protein DamX (P11557) showed
no significant homology, they did share eight pairs of
sequence and network orthologs when their PPI networks
were aligned. DamX has been shown to directly or indir-
ectly interfere with cell division in E. coli [77,78]. Despite
their low sequence similarity (BLAST E-value 663), the
network alignment evidence suggests that DamX and
QB8IAN4 are likely to be functional orthologs.

Data preparation and network analysis

Protein-protein interaction data for E. coli were down-
loaded from the IntAct database [44]. Protein association
data for P. falciparum were extracted from the STRING
database [45]. STRING assigns association confidence
scores (S), ranging from 0.15 to 0.999, based on sequence
similarity, pathway analysis [24,46], chromosome synteny,
genome organization, phylogenetic reconstruction, and
literature text mining. Cytoscape 2.8.3 was used for net-
work visualization [47]. Nodes are colored according to
their functional classification in the eggNOG database

Figure 5 Subnetwork alignment. See Methods section for the description of the algorithm.
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N
E-value = 4e-18
EIoE = e Q7KWJ1 | POABAS
Q76NN7 | P23869

E-value = 2e-19

097227 096252 POABB4
097245 | p1303s | Fvalue=8e-28
Q8IAN4 P11557 E-value = 663
E-value = 3e—15/ /
Q8ILwW1 POA7X3
E-value = 1e-5
Q8I5N5 PO6616
Q8IKB1 POA7Z4 Q8ILH3 P02413
E-value = 2e-7 E-value = 4e-15

Figure 6 An example of functional orthologs predicted by subnetwork alignment. A subnetwork alignment between E. coli (proteins
labeled in blue) and P. falciparum (proteins labeled in red). Because the subnetworks are similar and composed almost entirely of proteins with
low BLAST E-values, that is, homologous pairs, it is likely that Q8IAN4 and P11557 are functional homologs, despite their low sequence similarity.

\

[48]. NetworkAnalyzer was used to compute topological
parameters of the networks [49], with the default settings.
Gene Ontology (GO) enrichment analysis was conducted
using BiNGO [50]. The hypergeometric test was used
with the Benjamini and Hochberg false discovery rate
(FDR) correction with a significance level of 0.05.

Additional material

Additional file 1: Functional orthologs involved in cell cycle
regulation in P. falciparum. The query genome is P. falciparum, and the
target genome is E. coli. GO: Gene Ontology. BP: Biological Process. MF:
Molecular Function. CC: Cellular Component.

Additional File 2: An example of functional orthologs predicted by
subnetwork alignment. The predicted pair is shaded.
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