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Abstract
Background: Mitochondria (mt) contain their own autonomously replicating DNA, constituted
as a small circular genome encoding essential subunits of the respiratory chain. Mt DNA is
characterized by a genetic code which differs from the standard one. Interestingly, the mt genome
of nematodes share some peculiar features, such as small transfer RNAs, truncated ribosomal
RNAs and - in the class of Chromadorean nematodes - unidirectional transcription.

Findings: We present the complete mt genomic sequence (16,791 bp) of the plant-parasitic
nematode Radopholus similis (class Chromadorea). Although it has a gene content similar to most
other nematodes, many idiosyncrasies characterize the extremely AT-rich mt genome of R. similis
(85.4% AT). The secondary structure of the large (16S) rRNA is further reduced, the gene order
is unique, the large non-coding region contains two large repeats, and most interestingly, the UAA
codon is reassigned from translation termination to tyrosine. In addition, 7 out of 12 protein-coding
genes lack a canonical stop codon and analysis of transcriptional data showed the absence of
polyadenylation. Northern blot analysis confirmed that only one strand is transcribed and
processed. Furthermore, using nucleotide content bias methods, regions for the origin of
replication are suggested.

Conclusion: The extraordinary mt genome of R. similis with its unique genetic code appears to
contain exceptional features correlated to DNA decoding. Therefore the genome may provide an
incentive to further elucidate these barely understood processes in nematodes. This
comprehension may eventually lead to parasitic nematode-specific control targets as healthy
mitochondria are imperative for organism survival. In addition, the presented genome is an
interesting exceptional event in genetic code evolution.

Background
Nematodes are one of the largest phyla of multicellular
animals on earth with over 20,000 described species. The

burrowing nematode Radopholus similis infects numerous
(sub)tropical crops and is considered as one of the most
damaging pests on banana. Recently transcriptomic

Published: 24 September 2009

BMC Research Notes 2009, 2:192 doi:10.1186/1756-0500-2-192

Received: 28 July 2009
Accepted: 24 September 2009

This article is available from: http://www.biomedcentral.com/1756-0500/2/192

© 2009 Jacob et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

https://core.ac.uk/display/81895927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19778425
http://www.biomedcentral.com/1756-0500/2/192
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Research Notes 2009, 2:192 http://www.biomedcentral.com/1756-0500/2/192
sequence data of this parasite were studied and several
'expressed sequence tags' (ESTs) originated from genes of
the mitochondrial (mt) genome [1]. Mitochondria are
found in all eukaryotic cells and provide the cell with
energy through the process of oxidative phosphorylation.
Originating from an ancestral endosymbiotic α-proteo-
bacterial species [2], they still contain a haploid, autono-
mously replicating genome of relatively short length, in
nematodes ranging from 12.5 kb to 26 kb [3]. To date,
complete mt genomes of 31 nematode species are availa-
ble in GenBank: 9 of the Enoplean class and 22 (mostly
comprising animal-parasitic nematodes) of the Chroma-
dorean class. The mt gene products are usually 2 ribos-
omal RNAs, 22 transfer RNAs and 12-13 intronless
protein-coding genes which encode crucial subunits in
respiratory complexes I, III, IV and V. Mt genomes of nem-
atodes differ in some aspects from other metazoan mt
genomes. The compact nematode mt genomes usually
lack ATPase subunit 8, and contain shortened rRNA mol-
ecules and truncated tRNAs. Nearly all nematode mt
tRNAs lack one arm, either the TΨC arm which is replaced
by the 'TV-replacement loop', or the DHU arm which is
replaced by D-replacement loops [3,4]. In addition, in
nematodes of the class Chromadorea (containing most

important parasitic nematodes), all mt genes are unidirec-
tionally transcribed from one strand.

Results and discussion
The complete mt genome of R. similis was amplified in
three overlapping fragments, with the complete assembly
being 16,791 bp [EMBL:FN313571] (figure 1), which was
confirmed by southern blot (additional file 1). With an
AT-content of 85.4%, it is the most AT-rich nematode mt
genome sequenced to date, and the first complete mt
genome of a Chromadorean plant-parasite (hereby disre-
garding the highly atypical multipartite mitochondrial
genome of Globodera sp. [5]). All genes are unidirection-
ally transcribed from the coding strand, which has an
asymmetrical nucleotide composition of 52.9% T, 32.5%
A, 10.2% G and 4.4% C and is also referred to as the heavy
strand. A quarter of the genome is non-coding, compris-
ing two large repeat regions. Similar to other described
nematode mt genomes, 22 tRNAs have been predicted
ranging from 51 nt to 59 nt in length (additional file 2).
All anticodons are conserved in nematodes, except for the
UCG anticodon of tRNAArg, which is common in other
metazoans, but deviates from the ACG anticodon used by
most Chromadorean nematode mt genomes (table 1).
Contrary to other nematodes, 2 nucleotides occur instead

Table 1: Relative synonymous codon usage (RSCU) and number of codons per 1000 codons (NC1000) in the protein coding genes of 
the mitochondrial genome of R. similis.

AA codon RSCU* NC1000 AA codon RSCU NC1000 AA codon RSCU NC1000 AA codon RSCU NC1000

F TTC 0.003 0.295 S2 TCA 1.009 8.267 Y TAC 0.000 0.000 C TGC 0.000 0.000
TTT 1.997 179.805 TCC 0.000 0.000 TAT 1.368 38.382 TGT 2.000 6.200

L2 TTA 3.436 152.938 TCG 0.108 0.886 TAA 1.632 45.763 W TGA 1.721 10.924

TTG 0.564 25.096 TCT 2.883 23.620 Stop TAG 1.000 1.48 TGG 0.279 1.771

L1 CTA 0.696 1.181 P CCA 1.231 4.724 H CAC 0.041 0.295 R CGA 0.296 0.590
CTC 0.000 0.000 CCC 0.000 0.000 CAT 1.959 14.172 CGC 0.000 0.000

CTG 0.174 0.295 CCG 0.154 0.590 Q CAA 1.267 5.610 CGG 0.000 0.000
CTT 3.130 5.314 CCT 2.615 10.038 CAG 0.733 3.248 CGT 3.704 7.381

I ATC 0.006 0.295 T ACA 0.678 2.952 N AAC 0.023 0.590 S1 AGA 0.932 10.038
ATT 1.994 100.384 ACC 0.000 0.000 AAT 1.977 51.668 AGC 0.055 0.590

M ATA 1.716 53.440 ACG 0.068 0.295 K AAA 1.448 22.439 AGG 0.137 1.476
ATG 0.284 8.857 ACT 3.254 14.172 AAG 0.552 8.562 AGT 2.877 31.001

V GTA 1.117 14.762 A GCA 0.596 2.067 D GAC 0.000 0.000 G GGA 0.722 7.676
GTC 0.089 1.181 GCC 0.085 0.295 GAT 2.000 18.010 GGC 0.028 0.295

GTG 0.268 3.543 GCG 0.000 0.000 E GAA 1.460 13.581 GGG 0.167 1.771
GTT 2.525 33.363 GCT 3.319 11.515 GAG 0.540 5.019 GGT 3.083 32.772

* RSCU is the number of times a particular codon is observed relative to the number of times a codon would be observed in the absence of any 
codon usage bias. Based on a total of 3378 codons.
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of one between the DHU and the anticodon arm in some
R. similis tRNAs. In those tRNA species, the DHU arm is on
both sides bordered by uracil (occurring in 8 tRNAs; addi-
tional file 2).

Another characteristic feature is the occurrence of three
instead of two nucleotides between the amino-acyl accep-
tor stem and the DHU arm (occurring in 10 tRNAs). Two
rRNA genes (12S and 16S) were identified on the mt
genome. The 12S rRNA gene (or rrnS) is 692 bp long,
comparable to other nematode mitochondrial 12S rRNA
genes (698 ± 33 bp) (additional file 3). The boundaries of
this gene were validated through a CT-RT-PCR technique
(additional file 4). The secondary structure of this rRNA

revealed similar topology as other published nematode
12S rRNA structures [6-9]. In contrast, the large subunit
rRNA (16S rRNA or rrnL) is 840 bp in length, which is
considerably smaller than the average of 943 ± 57 bp for
other nematodes. The reductions in the overall compara-
ble structure compared to other nematodes are indicated
by arrows in figure 2. Most conserved nucleotides in nem-
atode mt rRNAs are generally found in loops and not in
stems (figure 2 and additional file 3), which is in agree-
ment with observations that interacting proteins often
bind to loops [10]. Many nucleotides involved in the P
site and A site of the ribosome are conserved; however,
conserved residues in the G3 stem, which has been impli-
cated as part of the exit site, are absent [8].

Overview of the organization of the circular mt DNA of R. similisFigure 1
Overview of the organization of the circular mt DNA of R. similis. The arrow indicates direction of transcription. 
Genes and non-coding regions are indicated: in white, the protein-coding and rRNA genes, in gray, the tRNA genes called by 
their amino acid symbol (S1: Ser-AGN, S2: Ser-UCN, L1: Leu-CUN, L2: Leu-UUR). Bold and italic numbers indicate non-coding 
and overlapping nucleotides between neighboring genes, respectively. The pattern-filled part represents the large non-coding 
region, divided in five regions as explained in the text. The repeat region of 302 bp is filled with large checkers and the 26 bp 
repeat region is filled with small checkers. The black lines at the inner periphery of the ring represent EST sequences, with 
UAG stop codons indicated by little black triangles. The colored bar code-like circles represent the nucleotide content of the 
coding strand, differing intensities corresponding to different content (red: thymine, blue: adenine, green: guanine, purple: cyto-
sine). The positions of secondary structures depicted in figure 4 are indicated by light-gray balks perpendicular to the circle. 
The predicted origins of replication for the heavy (OriH) and light strand (OriL) are indicated (see figure 5).
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The mt genome contains 12 protein-coding genes (PCGs),
lacking - as the majority of nematode mt genomes - the
ATPase subunit 8 gene. To our surprise, we discovered that
the UAA codon, which encodes translation termination
according to the standard invertebrate mitochondrial
genetic code, was abundant in all open reading frames of
the 12 PCGs. Based on alignments with other nematode
mt proteins, UAA encodes for tyrosine in the R. similis mt
genome [11]. The UAAStop to UAATyr reassignment was
confirmed for another Radopholus species (R. arabocof-
feae) based on a sequenced mtDNA fragment (additional
file 5). This genetic code change has never been confirmed
in any other animal genus. Though a similar codon reas-

signment was once reported for the planarian Dugesia
japonica [12], subsequent studies could not confirm this
finding [13]. Thus until now, the UAAStop to UAATyr
reassignment is unique for the mt genome of Radopholus.
The sole Stop codon in use, UAG, could only be inferred
for 5 PCGs: nad4L, cox3, nad1, atp6 and nad5. Of the
remaining genes, nad6 is separated from the subsequent
nad4L by a single thymine. This is often called a 'truncated
stop', as it can form a complete canonical UAA stop codon
after polyadenylation [14]. Intriguingly, this could not be
the case for Radopholus due to the codon reassignment.
Absence of stop codons is a very uncommon feature in
mitochondrial genes. However, it has been shown that

Predicted secondary structure of the 16S rRNA gene of R. similisFigure 2
Predicted secondary structure of the 16S rRNA gene of R. similis. Watson-Crick base pairing and G:U base pairing is 
indicated by a line and a dot, respectively. Numbering of helices is according to De Rijk et al. [29] and other published nema-
tode mt rRNA structures. Binding sites for the amino-acyl of tRNAs (A), peptidyl-transferase (P), or both (AP) as defined by 
Noller [30] and Hu [6] are indicated. Compared to other nematode 16S rRNAs, shaded nucleotides are conserved in at least 
90% of the cases, while arrows indicate remarkable deletions.
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mitochondria of humans, plants and dinoflagellates are
capable of translating templates lacking Stop codons [15-
17]. The inferred start codons are UUG (2), AUA (5),
AUG, AUU (2) and UUA (2), all of which have been
reported before in nematode mt genomes. Northern blot
using 3 different probes specifically hybridizing to cytB
(no stop codon), nad5 (UAG stop codon) and cox1 (no
stop codon) revealed that the transcripts of these genes are
processed into monocistronic transcripts, although the
length appears larger than expected (1.4 kb instead of 1.0,
2.2 instead of 1.5, 2.2 instead of 1.6, for cytB, nad5 and
cox1, respectively; see figure 3). This observation can not
be explained easily, but it may point to a modification of
mRNA molecules that affects their migration in denatur-
ing agarose gels. Probing with the corresponding sense
probes revealed no signals (data not shown). We con-
clude that exclusively the heavy strand is transcribed,
eventually producing monocistronic transcripts lacking
stop codons as a template for protein synthesis. Investigat-
ing EST data, 623 ESTs were aligned to the mt genome.
The ESTs cover 7,971 bp (47.5%) of the mt genome.
Remarkably, the majority (n = 581) is derived from 12S
rRNA, pointing to a higher expression level and/or higher
stability compared to other mt genes. None of the mt ESTs
contain a poly(A) tail and - in remarkable contrast to the
northern blot results - large parts of the mt genome are
contiguously covered by EST data, crossing gene borders
(figure 1). Only one EST cluster aligned to a gene bound-
ary by starting exactly at the 5' end of tRNAGlu (addi-

tional file 6). Attempts to ascertain PCG boundaries using
CT-RT-PCR failed. Besides some indels in poly(T) tracts,
barely any sequence difference between the mt DNA and
ESTs were present - except for 12S rRNA. Three different
EST clusters align to this gene, containing 549, 18 and 2
ESTs respectively, with differences of 0, 2.4 and 7.5%
respectively. Some transcriptomic data match parts of the
non-coding region, often called the control or AT-region
in nematode mt genomes. Based on sequence features, the
control region in the mt genome of R. similis was artifi-
cially divided into five sub-regions (figure 1 and 4). Char-
acteristic for the first part are poly-thymine and poly-
adenine stretches, resulting in a high AT content of 87.6%.
Some of the poly-T stretches are separated by a single G
nucleotide, a motif which is found in several other nema-
tode control regions [4,18,19]. A remarkably large and
nearly perfect stem loop of 126 bp ends the first region.
The second region of 460 bp runs until the small repeat
region. This region is enriched in GC nucleotides (81.2%
AT), which are concentrated in a 225 bp region and can
adapt a stable secondary structure (figure 4A). The third
region (84.0% AT) contains a repeat region of 806 bp in
which a 26 bp motif is repeated 31 times. The fourth
region is an AT-rich sequence part (87.5% AT) of 944 bp
with unique features such as a roughly equal G- and C-
content and a remarkable stretch of 6 C nucleotides. The
sequence surrounding this sextuple C-motif can fold into
stable secondary structures (figure 4C). The control region
ends with another repeat region of 1,208 bp, containing a
302 bp sequence directly repeated 4 times. This repeat
region partly overlaps with the adjacent tRNASerAGN. In
contrast to Caenorhabditis elegans and Ascaris suum, no
runs of AT dinucleotides are found in the control region
[20]. Fourteen other smaller non-coding regions were
found interspersed in between the genes. Although most
are small (ranging from 1 to 15 bp), one is 65 bp in length
and located between tRNAMet and tRNAThr. This region
is solely composed of AT nucleotides and can form a sec-
ondary structure (figure 4D).

Mt DNA replication is an asymmetrical process, in which
the heavy strand replication initiation precedes that of the
light strand. Hence some sequence parts of mt genomes
spend more time single stranded, a state in which the
DNA is more prone to deaminations of cytosine to uracil,
and to a lesser extent of adenine to hypoxanthine [21].
The subsequent accumulation of T and G (at the expense
of C and A, respectively) in these regions can provide
information about the origins of replication [22]. In this
way, the light strand origin of replication is predicted to
be located in secondary structures surrounding the sextu-
ple C motif (figure 1 and 5). Analysis of the relative
amount of T and G versus A and C, on complete sequence
as well as on nucleotides of the third codon positions,
showed a pattern that could only be explained by assum-
ing two different origins of replication [21]. Based on

Northern blot on mt RNA of R. similisFigure 3
Northern blot on mt RNA of R. similis. A. cox1 antisense 
probe. Hollow arrowhead indicates 2.2 kb. Expected length 
is 1.6 kb. B. nad5 antisense probe. Expected length is 1.5 kb. 
C. cytB antisense probe. Black arrowhead indicates 1.4 kb. 
Expected length is 1.0 kb. Probing with sense probes gave no 
detectable signals in all cases (data not shown).
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these observations, we hypothesize that the origin of the
heavy strand is located in the cox2 gene (figure 5).
Although for nematodes nothing is known on this issue,
our data suggest a similar mode of action for mt replica-
tion as other Metazoa, with origins of replications corre-
lated to secondary structures in the DNA. The predicted
OriL is located at the region harboring the sextuple C
motif and surrounding secondary structures, and the pre-
dicted OriH lies in the vicinity of two tRNA genes, which
could function as replication origins as observed in Verte-

brates [23]. However, no clear similarity between the sec-
ondary structures reported for other nematodes (see for
example [9]) and those of R. similis was found.

Methods
DNA extraction and LD-PCR
R. similis was cultured as decribed in [1]. On 500 ng of
total phenol/chloroform extracted DNA from approxi-
mately 10,000 nematodes, LD-PCR was performed using
a combination of Expand Long Range dNTP Pack (Roche,

Summary of potential secondary structures in the non-coding regionsFigure 4
Summary of potential secondary structures in the non-coding regions. C and G nucleotides are shaded. A. GC-rich 
patch located before the short repeat region (9108..9335); B. large stem loop with A-rich 'bulge', with EST evidence indicated 
by dashed line (arrow: 5' start) (8906..9036); C. The sextuple C motif located in the sequence between the two repeat regions 
(10498..10729); D. AT-rich non-coding region between tRNAMet and tRNAThr (12611..12675); E. local GC-rich region, sur-
rounded by AT-rich sequences, located in the sequence between the two repeat regions (10855..10963). A stretch of 8 A 
nucleotides at the 3' end is similar as described by Hu [6] and Jex [7].
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Mannheim, Germany) and Phusion High-Fidelity DNA
Polymerase (Finnzymes, Espoo, Finland) with gene spe-
cific primers based on EST sequences [1] (see additional
file 6). PCRs were done following the manufacturer's
instructions in 50 μL reaction mixtures, containing 6%
DMSO. All fragments were directly sequenced.

Extraction of mitochondria
Approximately 400 μL packed nematodes (approximately
200,000 nematodes) were washed with sterile demineral-
ized water, and brought into 1 mL sucrose buffer (300
mM sucrose, 30 mM Tris, and 10 mM EDTA, pH7.9). With
the aid of a Teflon pestle and some sand, a nematode
homogenate was obtained and centrifuged for 5 min at
500 g. The supernatant was further purified by additional
centrifugation for 5 min at 1000 g. A pellet of mitochon-
dria was obtained by centrifuging the supernatant at
15,000 g for 45 min. Obtained mitochondria were used
immediately.

Mitochondrial RNA extraction
The mitochondria were dissolved in 200 μL Trireagent
(Sigma, St. Louis, MO, USA), and incubated for 1 h at RT.
The solution was three times sonicated at the lowest set-
ting for 2 sec while keeping on ice (Branson Sonifier 250,
Danbury, USA). After incubation for 15 min at room tem-
perature, 40 μL chloroform was added and the tube was
vigorously shaken by hand. Further RNA extraction steps
were performed following the manufacturer's instruc-
tions.

CT-RT-PCR
Mt RNA was circularized using T4 RNA ligase (Fermentas,
St. Leon-Rot, Germany), using 1 μg mt RNA in a total vol-
ume of 20 μL, following the manufacturer's instructions.
After incubation for 1 h at 37°C, the volume was adjusted
to 200 μL with demineralized water, and RNA purified by
standard phenol/chloroform extraction. After resuspen-
sion in 20 μL demineralized water, the circularized RNA
was used for the reverse transcriptase reaction using
SuperScript II (Invitrogen, Carlsbad, CA, USA) following
manufacturer's instructions and a reverse-oriented gene-
specific primer located at the 5' end of the gene (see addi-
tional file 4 and 7). The resulting cDNA was subjected to
nested PCR using gene-specific primers. PCR products
were ligated into the pGEM-T vector (Promega, Wiscon-
sin, USA) and transformed into E. coli DH5α cells. Posi-
tive clones were selected on LB plates supplemented with
carbenicilin (100 μg/ml) and inserts were sequenced.

Northern blot
Mt RNA was separated on a 1× MOPS 1% formaldehyde
agarose gel and blotted (downward capillary) onto
Hybond-N+ membrane (Amersham, Uppsala, Sweden).
RNA probes were generated from plasmids containing

fragments of cox1, cytB and nad5 as template (see addi-
tional file 7 for primers) using Riboprobe kit (Promega)
in presence of 32P-labeled nucleotides. Hybridization was
done overnight at 56°C, and after washing, signals were
visualized using a fluor imager FLA-5100 (Fujifilm,
Tokyo, Japan).

Southern blot
1.2 μg total DNA was digested with SpeI and XmnI restric-
tion enzymes, and separated by inversed field electro-
phoresis in 0.5 × TBE 1% agarose gel. After capillary blot,
hybridization was performed using the High Prime DIG
labeling Starter Kit (Roche) following manufacturer's
instructions with a probe constructed using primers
RsNADHD_2 and RsCOXI_7 (see additional file 7) cover-
ing 3,504 bp of the mitochondrial genome. The chemilu-
minescent signal was detected on a fluor imager FLA-5100
using standard settings (Fujifilm).

Annotation and nucleotide composition analysis
Combinations of BLAST searches and ClustalW align-
ments to other nematode mt genes (collected using
MitoBank2.1 [24]) were used to detect protein gene and
rRNA sequences. Folding of rRNA sequences based on
published structures was done with the aid of Mfold [25],
and structures were edited with RNAviz [26]. Predictions
of the tRNA genes by tRNAScan-SE [27], set to detect mt
nematode tRNAs, were confirmed by aligning to other
nematode mt tRNAs using LARA [28]. Analysis of nucle-
otide composition was performed with in-house perl pro-
grams. Based on Grigoriev to estimate the OriL [22], GC-
skew values (G-C/G+C) were calculated for each 5th posi-
tion in the genome using a window of 300 nt and the
cumulative values plotted. The graph followed a second
order polynomial function (R2 > 0.999), except for an off-
set starting around position 11,100, which points to OriL.
Due to deaminations occurring during on single-stranded
states caused by replication, T/C and G/A ratios increase
along mt genomes. Based on a sliding window of 244 nt
(depending on C content), the T/C, G/A and T+G/C+A
was calculated for every 10th position. The cumulative val-
ues followed a linear function (R2>0.999). The relative
difference with this function is plotted, where 1 corre-
sponds to the mean increase over the genome. Values
higher than one represent a higher than average amount
of T, G, or T+G compared to C, A, or C+A respectively. In
addition, for each gene, the different ratios were deter-
mined based on nucleotides on the third codon positions.
In this way, T/C could not be calculated for 7 genes (cox2,
cytB, nad2, nad4, nad4L and nad6) due to the lack of C.
Therefore, only T+G/C+A and G/A is plotted in figure 5D.
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Nucleotide composition analysis of the mt genome of R. similisFigure 5
Nucleotide composition analysis of the mt genome of R. similis. A. Based on a cumulative GC-skew (G-C/G+C) graph, 
the offset (vertical bar) from the fitted model (dashed line) corresponds to the location of the origin of replication of the light 
strand (OriL) [22]. B. A linear representation of the circular mt genome, with rRNA and PCGs as indicated. Black bars and 
checkers represent tRNAs and repeat regions, respectively. The predicted OriL is located near the sextuple C motif. The pre-
diction of OriH is explained in C and D. C. Due to deaminations preferably occurring during single-strandness, the ratios T/C 
(right y-axis), G/A (left y-axis) and T+G/C+A (left y-axis) differ. From these curves, in which 1 is the mean value, predictions 
about OriL and OriH can be made. The minimum of the T/C curve corresponds to the OriL, while for G/A the minimum is 
located in the tRNAs preceding nad4. These differences could be explained by different kinetics for both deamination proc-
esses [21]. The T+G/C+A measure (covering both processes) reaches a maximum at the start of cox2 and a minimum at the 
predicted OriL. From this, two replication origins could be concluded, with OriH located at the start of cox2. If OriL is at 
11,000 and OriH at 4,000, both replicases meet around 1,000 (assuming similar speeds), leaving this region single-stranded for 
a short period, causing a local minimum (star). D. The average T+G/A+C (left y-axis) and G/A (right y-axis) of the nucleotides 
at third codon positions. From cox2 on, both measures decrease with a minimum at nad6. The G/A ratio shows a pattern cor-
responding to that of T+G/A+C, as opposed to graph C, where the kinetics of the A to G mutations [21] and the natural vari-
ation cause a high level of noise in the G/A ratio.
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