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1 Introduction

The AdS/CFT correspondence [1] continues to be a source of exciting new results in gauge

and string theories. The best-studied example of the duality is the correspondence between

four-dimensional N = 4 super Yang-Mills (SYM) theory and Type IIB superstring theory

on AdS5×S5. Another example is the recently found duality between Type IIA string theory

on AdS4 × CP
3 and three-dimensional N = 6 super Chern-Simons (SCS) theory [2, 3].

Remarkably, evidence for integrability has been found both in the gauge theory [4–

14] and in the string theory [15–23] in the planar limit of large number of colors. In
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AdS5 × S5 AdS4 × CP
3

Figure 1. Graphical representation of the Y-systems [54]. Circles correspond to Y-functions. Black

nodes are the “massive” nodes which are suppressed for asymptotically large length L. For gray

circles in the corners the equation cannot be written “locally” in terms of Y’s.

SYM further intensive development [24–33] has led to complete description of anomalous

dimensions of infinitely long operators by means of the Asymptotic Bethe Ansatz (ABA)

equations [34, 35]. Similar equations were found in [37, 38] for SCS. Very recently the

integrability approach was also extended to AdS3/CFT2 dual pairs [39].

For complete solution of the planar AdS/CFT spectral problem one should be able

to solve the integrable two dimensional worldsheet theory in finite volume. The program

of applying the methods of relativistic integrable field theories for finite size spectrum of

AdS/CFT was started in [40]. In [41, 42] a generalization of the Lüscher type formula was

proposed for the first finite volume correction to the asymptotic spectrum generated by

ABA. This information, as well as experience with relativistic integrable theories [44–53],

led to the Y-system proposed in [54] for exact solution of both AdS5 × S5 and AdS4 ×CP
3

theories. As we show in this work, the proposal of [54] for ABJM theory is only valid in a

certain large subsector of the theory, and should be modified to describe the general case.

A graphical representation of the Y-systems of [54] is given in figure 1 where the Y-

functions are represented by circles. Each value of the index A, which labels the Y-functions

(functions of the spectral parameter u), corresponds to a node of this diagram. For each

node A, except the gray ones, the Y-system equation has the form

Y +
A Y

−
A =

∏

B(1 + YB)
∏

C(1 + 1/YC)
, (1.1)

where Y ±
A = YA(u ± i/2) and the index B (resp. C) labels the nodes connected to the A

node by horizontal (resp. vertical) lines.1

1For the gray node the equations cannot be written as functional equations in terms of Y ’s. In many

cases it is convenient to parameterize the Y-functions in terms of T-functions, which satisfy the Hirota

functional equation. The “non-local” equation for the gray nodes is replaced (see for example [54]) by a

“local” one in terms of T-functions.
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In this paper we argue that in the AdS4/CFT3 case equation (1.1) for black nodes

(figure 1, on the right) should be replaced by rather unusual equations

Y +
◮a
Y −

◭a
=

1 + Y△a

(1 + 1/Y◭a+1)(1 + 1/Y◮a−1)
, a > 1, (1.2)

Y +
◭a
Y −

◮a
=

1 + Y△a

(1 + 1/Y◮a+1)(1 + 1/Y◭a−1)
, a > 1, (1.3)

Y +
◮1
Y −

◭1
=

1 + Y⊗
(1 + 1/Y◭2)

, Y +
◭1
Y −

◮1
=

1 + Y⊗
(1 + 1/Y◮2)

, (1.4)

while all the other Y-system equations of [54] need not be changed.2 Notice that for the

case Y◮a = Y◭a the new equations (1.2)–(1.4) coincide with the ones originally proposed

in [54].

Once the Y-functions are found the energy of the state can be computed from

E =
∑

∫ ∞

−∞

du

2πi

∂ǫmir
a (u)

∂u
log(1 + Y mir

◮a
)(1 + Y mir

◭a
) +

K4
∑

j=1

ǫph(u4,j) +

K4̄
∑

j=1

ǫph(u4̄,j) , (1.5)

where uj are the exact Bethe roots given by

Y ph
◭1

(u4,j) = −1 , Y ph
◮1

(u4̄,j) = −1 , (1.6)

and ǫ is the single magnon dispersion introduced in (2.6) (see section 3.3 for more details).

In the AdS5 case the Y-system passes some nontrivial tests – in [54] the 4-loop per-

turbative result [55, 56] was reproduced,3 and more recently a comparison was made at

5 loops in [58]. In [59, 60, 62] the Y-system was also shown to be consistent with the

thermodynamic Bethe ansatz (TBA) approach.4

The TBA equations, describing the ground state energy, do not lead to any nontrivial

dependence of that energy on the coupling since the ground state is protected by super-

symmetries. In [60] an extension of these equations was proposed to describe the excited

states. These equations were solved numerically in [65] for the first non-trivial Konishi

operator [66–68], giving for the first time the anomalous dimension of a non-protected

operator in a wide range of values of the ’t Hooft coupling λ for a 4D gauge theory in the

2With the following identification between Y-functions of [54] and new Y-functions: Y 4
a,0 = Y◭

a
, Y 4̄

a,0 =

Y◮
a

3Technically the derivation of [54] is very similar to [43], where the 4-loop perturbative results were

reproduced for the first time.
4 In [62] the Y-system was only obtained in the interval −2g < u < 2g. At the same time the authors

of [62] failed to get the Y-system of [54] for |u| > 2g and the discrepancy was stated. The reason of this

misunderstanding is that some of the Y-functions have branch points at u = ±2g ± i
2

with branch cuts

going to ±∞± i
2
, parallel to the real axis. Thus for real u the quantity Y (u+ i

2
)Y (u− i

2
) can be understood

for instance as Y (u + i
2
− i0)Y (u − i

2
+ i0) or Y (u + i

2
+ i0)Y (u − i

2
+ i0). The first prescription (chosen

in [62]) leads to the discrepancy whereas the second does not. Note that the problem is only present for

real u i.e. for measure zero subset of the complex plane. Any prescription which preserves continuity leads

to agreement with [54]. In [63] (after private communication with P.Vieira) the issue was resolved.
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planar limit. The numerical results also indicate agreement with the string prediction [69].5

The results of [65] disagree in the sub-leading 1/λ1/4 order with two string computations [72,

73] and [71] which also disagree with each other and are based on rather strong assumptions.

In [71] a truncated model is considered whereas [72, 73] assumes the applicability of the

quasiclassics in the small charge limit. We hope that a first principles calculation can be

done using Berkoviz’s pure spinor formalism [76].

Another very recent test of the Y-system of [54] for AdS5/CFT4 was done at strong

coupling [70]. An analytical solution of the Y-system was found for generic classical string

motion inside AdS3×S. It was shown to agree with the quasi-classical one-loop spectrum to

all orders in wrapping providing thus a deep structural test of the Y-system in the regime

where the ABA fails completely.

In this paper we apply the technique of TBA for the AdS4 × CP
3 theory to test the

Y-system we propose. We also present the general asymptotic infinite length solution of

the Y-system. The asymptotic solution is very important since it allows to establish a

correspondence between the exact solution of the Y-system and the physical states of the

theory. It can be also used at weak coupling where it is a good approximation to study the

leading wrapping effects. In addition, we find strong coupling solutions of the Y-system in

two cases and compare results with the quasi-classical string spectrum thus testing deeply

the structure of the Y-system to all orders in wrapping.

2 Asymptotic large L solution of Y-system

The asymptotic spectrum of the theory can be found using asymptotic Bethe ansatz (ABA)

techniques. In this section we describe the ABA equations of [37] and link them with the

Y-system formalism by presenting the general asymptotic solution of the Y-system. That

solution extends the one of [54].

In the asymptotic regime the counting of the states is very clear and well established.

One can analytically continue the solution of the Y-system from the asymptotic regime,

where the solution is explicit, to finite volume. Usually this continuations is unique (see for

example [77]) and allows to fix the solution of Y-system. Technically at the moment it is not

known how to perform this procedure for the general excited state in AdS/CFT. We show

how to apply this general method [77] for the “sl(2)” subsector and also at strong coupling.

2.1 Asymptotic Bethe ansatz equations for physical AdS4/CFT3

Here we present the asymptotic Bethe equations for the AdS4/CFT3 theory, which were for

the first time obtained in [37]. We will also introduce some notation useful for the sequel.

5Much later the equations of [65] were rederived by another group [103]. The authors of [103] confirmed

the validity of the equations at least in the range of the coupling 0 < λ < 700 where a numerical solution was

obtained. The perturbation theory for the world-sheet sigma model in the formulations of [76] is naturally

organized in powers of 1/
√

λ and thus the value λ ∼ 700 should already give the asymptotic of E(λ) with

a good precision especially when an appropriate extrapolation procedure is applied. This holds assuming

the analyticity of E(λ) for real positive values of λ which is however doubted in [103].
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First we define the Zhukowski variable x(u):

x+
1

x
=

u

h(λ)
, (2.1)

where h(λ) is some unknown function of the ’t Hooft coupling λ. It should have the

following asymptotics at weak coupling and strong coupling:

h(λ) = λ+ h3λ
3 + O

(

λ5
)

=
√

λ/2 + h0 + O
(

1√
λ

)

. (2.2)

Recently the coefficient h3 = −8+2ζ2 was computed directly from the Super-Chern-Simons

perturbation theory [13, 14]. At strong coupling the situation is less clear: in [75] and [78]

the coefficient h0 was argued to be 0 whereas in [109] some evidence was given in favor

of a different value − log 2
2π (see also [74]). Hopefully this issue could be analyzed from

world-sheet sigma model first principles calculation like in [79, 80].

Equation (2.1) admits two solutions, and we define two branches of the function x(u),

which are called “mirror” and “physical”:

xph(u) =
1

2

(

u

h
+

√

u

h
− 2

√

u

h
+ 2

)

, xmir(u) =
1

2

(

u

h
+ i

√

4 − u2

h2

)

. (2.3)

Here, by
√
u we denote the principal branch of the square root. This definition of mirror

and physical branches is the same as in the AdS5/CFT4 case [57, 60], with the AdS5/CFT4

coupling g replaced by h(λ). Above the real axis, the mirror and physical branches coincide.

xph(u) is obtained by analytical continuation from the upper half plane to the plane with

the cut (−2h, 2h), and xmir(u) — by continuation to the plane with the cut (−∞,−2h) ∪
(2h,+∞). The AdS4/CFT3 Bethe equations [37] for the original (physical) theory are

written in terms of xph(u), while the mirror Bethe equations we conjecture include xmir(u),

in analogy with the AdS5/CFT4 case [57] (see section 3). In sections 4 and 5 we use the

mirror branch of x if its argument is a free variable, and the physical branch for x(uj),

with uj being the Bethe roots.

In the physical ABA equations of [37] there are five types of Bethe roots: u1, u2, u3, u4

and u4̄. Conserved local charges (the heights Hamiltonians) in AdS4/CFT3 are expressed

in terms of the momentum-carrying roots u4 and u4̄:

Qn =

K4
∑

j=1

qn(u4,j) +

K4̄
∑

j=1

qn(u4̄,j) , qn =
i

n− 1

(

1

(x+)n−1
− 1

(x−)n−1

)

, (2.4)

where we have used general notation

f±(u) ≡ f(u± i/2), f [+a] ≡ f(u+ ia/2). (2.5)

In particular, string state energies in AdS4 ×CP
3 or operator anomalous dimensions in the

dual gauge theory are obtained from E = h(λ)Q2.
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The momentum and energy which correspond to a single Bethe root u4 or u4̄ are

given by

p =
1

i
log

x+

x−
, ǫ =

1

2
+ h(λ)

(

i

x+
− i

x−

)

, (2.6)

and the charge Q1 is the sum of all momenta:

Q1 =

K4
∑

j=1

p(u4,j) +

K4̄
∑

j=1

p(u4̄,j). (2.7)

To write the Bethe equations in compact form, we introduce the following notation:

R
(±)
l =

Kl
∏

j=1

x(u) − x∓l,j

(x∓l,j)
1/2

, Rl =

Kl
∏

j=1

(x(u) − xl,j) , (2.8)

B
(±)
l =

Kl
∏

j=1

1/x(u) − x∓l,j

(x∓l,j)
1/2

, Bl =

Kl
∏

j=1

(1/x(u) − xl,j) , (2.9)

Ql(u) ≡
Kl
∏

j=1

(u− ul,j), Sl(u) ≡
Kl
∏

j=1

σBES(x(u), xl,j) (2.10)

where σBES is the Beisert-Eden-Staudacher dressing kernel [37]. The Bethe equations of [37]

in sl2 favored grading have the form6

+ 1 = e−
1
2
iQ1

Q+
2 B

(−)
4 B

(−)

4̄

Q−
2 B

(+)
4 B

(+)

4̄

∣

∣

∣

∣

∣

u1,k

,

−1 =
Q−−

2 Q+
1 Q

+
3

Q++
2 Q−

1 Q
−
3

∣

∣

∣

∣

u2,k

,

+1 = e
1
2
iQ1

Q+
2 R

(−)
4 R

(−)

4̄

Q−
2 R

(+)
4 R

(+)
4̄

∣

∣

∣

∣

∣

u3,k

, (2.11)

+1 = e
1
2
iQ1e−Lip(u4,k) B

+
1 R

+
3 Q

++
4 R

−(−)
4 R

−(−)
4̄

B−
1 R

−
3 Q

−−
4 R

+(+)
4 R

+(+)
4̄

S4S4̄

∣

∣

∣

∣

∣

u4,k

,

+1 = e
1
2
iQ1e−Lip(u4̄,k) B

+
1 R

+
3 Q

++
4̄
R

−(−)
4 R

−(−)
4̄

B−
1 R

−
3 Q

−−
4̄
R

+(+)
4 R

+(+)

4̄

S4S4̄

∣

∣

∣

∣

∣

u4̄,k

,

where L is the length of the effective spin chain, and corresponds to the string momentum

or length of the operator in the CS theory. The above equations describe the spectrum

correctly in the limit L→ ∞. We stress again that in those equations the physical branch

xph of the function x should be used in all places, e.g. inside expressions (2.8), (2.9), (2.10)

for Bl, Rl and Sl.

6Here, as well as when constructing the asymptotic solution of Y-system, one should be careful with the

sign ambiguity in the square root factors inside e
1

2
iQ1 and Bl, Rl.
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The Bethe roots are additionally constrained by the zero momentum condition

1 =

K4
∏

j=1

x+
4,j

x−4,j

K4̄
∏

j=1

x+
4̄,j

x−
4̄,j

⇔ Q1 = 2πm. (2.12)

2.2 General asymptotic solution

As we mentioned in the beginning of this section the asymptotic (large L) solution of the

Y-system plays an important role in the whole Y-system construction. It allows to link

a particular solution of the Y-system with an actual state of the theory. The asymptotic

solutions are in one-to-one correspondence with the solutions of ABA equations.

In many cases one can analytically continue a solution from asymptotically large vol-

ume to finite volume. In [70] another way to inject information about the state of the

theory was proposed: demanding that the exact functions Yas approach the formal asymp-

totic solution for infinite a or s.7 Then one can still use the same counting of the states

as in the ABA even for finite volumes.8 This prescription was shown to work especially

successfully in the strong coupling scaling limit [70], which we describe below.

In view of its importance we will review the construction of [54] for the asymptotic

large L solution of the Y-system in this section and extend it to the case Y◭ 6= Y◮. To

distinguish the asymptotic Y functions from the exact ones we use the bold font:

Y△a =
T+

a,1T
−
a,1

Ta+1,1Ta−1,1
− 1, 1/Y©s =

T+
1,sT

−
1,s

T1,s+1T1,s−1
− 1 (2.13)

Y◭a ≃
(

x[−a]

x[+a]

)L

Ta,1

a−1
2
∏

n=− a−1
2

Φ
θE
na

4 (u+ in)Φ
θO
na

4̄
(u+ in) , (2.14)

Y◮a ≃
(

x[−a]

x[+a]

)L

Ta,1

a−1
2
∏

n=− a−1
2

Φ
θO
na

4 (u+ in)Φ
θE
na

4̄
(u+ in) (2.15)

where θE
na is 0 for even and 1 for odd terms in the product:

θE
na ≡

{

1, n+ a−1
2 is even

0, n+ a−1
2 is odd

(2.16)

and θO
na ≡ 1 − θE

na. The factors Φ4(u) and Φ4̄(u) are constructed in such a way that the

ABA equations (2.11) for the momentum carrying nodes are given by Yph
◭1

(u4,j) = −1 and

Yph
◮1

(u4̄,j) = −1. This leads to (using that T1,1(u4,j) = −Q+
3 /Q

−
3 )

Φ4(u) = S4S4̄

B
(+)+
4 R

(−)−
4̄

B+
1 B

−
3

B
(−)−
4 R

(+)+

4̄
B−

1 B
+
3

e−iQ1/2 , Φ4̄(u) = S4S4̄

B
(+)+
4̄

R
(−)−
4 B+

1 B
−
3

B
(−)−
4̄

R
(+)+
4 B−

1 B
+
3

e+iQ1/2 .

(2.17)

7 This should give the same result as analytical continuation in L. Usually, variations of Y’s in L vanish

at large a and s. The values of the Bethe roots inside the asymptotic solution should be equal to their

exact values e.g. Y ph
◭
1

(u4,j) = −1. One should study this point in more detail.
8One cannot exclude completely that this procedure fails for some particular small volumes.
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The Ta,s functions which enter the definitions of Ya,s can be computed from the generating

functional [82–84]

W=

[

1 − Q−
1 B

(+)+R(+)−

Q+
1 B

(−)+R(−)−
D

]

1
[

1 − Q+
3 Q−−

2 R(+)−

e
1
2 iQ1Q−

3 Q2R(−)−
D

] [

1 − Q−
1 Q++

2 R(+)−

e
1
2 iQ1Q+

1 Q2R(−)−
D

]

[

1 − Q+
3

Q−
3

D

]

(2.18)

where D = e−i∂u is the shift operator and R = R4R4̄, B = B4B4̄. Expansion of this

generating functional yields eigenvalues of the su(2|2) transfer matrices:

W =

∞
∑

s=0

T1,s(u+ i1−s
2 )Ds , W−1 =

∞
∑

a=0

(−1)aTa,1(u+ i1−a
2 )Da . (2.19)

In appendix B we also present the expressions for the asymptotic solution after the

duality transformation, which exchanges the sl(2) and su(2) sectors. One can see from

those formulas that for u4,j = u4̄,j the asymptotic solution exactly conicides with the one

proposed in [54].

In the next subsection we expand the asymptotic solution in the scaling strong cou-

pling limit.

2.3 Asymptotic solution in scaling limit

The scaling limit is the strong coupling limit λ → ∞ where the number of Bethe roots

M and the operator length L go to infinity as
√
λ. The Bethe roots xj are distributed

along cuts C on the complex plane x in this limit [81]. These cuts can be understood as

branch cuts of a 10-sheet Riemann surface which corresponds to a certain function. One

can interpret them as the eigenvalues of the classical monodromy matrix, which are usually

written as λa = e−iqa , with qa being the so called quasi-momenta. Similarly to [37] for the

η = −1 grading we get

q2 = Lx/h+Q2x
x2−1 +H1 − H̄4 − H̄4̄ + H̄3

q3 = Lx/h−Q1

x2−1
−H2 +H1 + H̄3 − H̄2

q4 = Lx/h−Q1

x2−1
−H3 +H2 + H̄2 − H̄1

q1 = Lx/h+Q2x
x2−1 +H4 +H4̄ −H3 − H̄1

q5 = +H4 −H4̄ + H̄4 − H̄4̄

qa = −q11−a , a = 6, . . . , 10 ,

(2.20)

where the resolvents Ha have the form

Ha(x) =
∑

j

x2

x2 − 1

1

x− xa,j
, H̄a(x) = Ha(1/x) .

In these terms the Bethe equations (2.11) are equivalent to the condition that the two

eigenvalues of the monodromy matrix are equal along the branch cut

qi(x+ i0) − qj(x− i0) = 2πn , x ∈ C . (2.21)

– 8 –
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We can now simplify (2.18) for strong coupling. First of all we notice that the shift

operator D becomes a formal expansion parameter. Then we use

Q−
1 B

(+)+R(+)−

Q+
1 B

(−)+R(−)−
≃ exp

[

−i
(

H1 −H4 −H4̄ + H̄1 + H̄4 + H̄4̄

)]

Q+
3 Q

−−
2 R(+)−

e
1
2
iQ1Q−

3 Q2R(−)−
≃ exp

[

−i
(Q1 + xQ2

x2 − 1
+H2 −H3 − H̄3 + H̄2 −H4 −H4̄

)]

Q+
1 Q

−−
2 R(+)−

e
1
2
iQ1Q−

1 Q2R(−)−
≃ exp

[

−i
(Q1 + xQ2

x2 − 1
+H2 −H1 − H̄1 + H̄2 −H4 −H4̄

)]

Q+
3

Q−
3

≃ exp
[

+i
(

H3 + H̄3

)]

. (2.22)

The generating functional (2.18) becomes

W =
(1 − λ1d)(1 − λ2d)

(1 − λ3d)(1 − λ4d)
, (2.23)

where we have redefined the formal expansion parameter in the following way

d = exp

[

i

(

Lx/h+ xQ2

x2 − 1
+H4 +H4̄ − H̄1 + H̄3

)]

D . (2.24)

Expanding the generating function (2.23) we get

T1,s =
λ4

s−1(λ4 − λ1)(λ4 − λ2) − λ3
s−1(λ3 − λ1)(λ3 − λ2)

λ4 − λ3

(

d

D

)s

(2.25)

Ta,1 = (−1)a
λ1

a−1(λ1 − λ3)(λ1 − λ4) − λ2
a−1(λ2 − λ3)(λ2 − λ4)

λ1 − λ2

(

d

D

)a

.

It is now straightforward to compute Y△a and Y©s from (2.13). Note that the factors
(

d
D

)s

and
(

d
D

)a
are irrelevant here and thus Y△a are rational functions of λa only!

Moreover, using the relation

(

x−

x+

)L

Φ4(u) ≃ exp

[

−i
(

xL/h+ xQ2

x2 − 1
+ 2H4̄ − H̄4 + H̄4̄ − H̄1 + H̄3

)]

, (2.26)

and the same relation with 4 and 4̄ exchanged, we obtain expressions for the massive nodes:

Y◭a = (−λ5)
−ωa

λ1
a−1(λ1 − λ3)(λ1 − λ4) − λ2

a−1(λ2 − λ3)(λ2 − λ4)

λ1 − λ2
,

Y◮a = (−λ5)
+ωa

λ1
a−1(λ1 − λ3)(λ1 − λ4) − λ2

a−1(λ2 − λ3)(λ2 − λ4)

λ1 − λ2
, (2.27)

which are again written solely in terms of the eigenvalues of the classical monodromy

matrix! Here, we have introduced ωa, which is defined to be 1 for odd a and zero for even a.
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3 TBA equations for AdS4/CFT3

In this section we derive the Thermodynamic Bethe ansatz equations for AdS4/CFT3.

Let us first describe the general form of the TBA method [102] (see a nice introductory

paper [57]). We start with an integrable quantum field theory in 1+1 dimensions, on a

circle of circumference L. The partition function of this theory at temperature 1/R is

Z(L,R) =
∑

k

e−REk(L), (3.1)

and in the limit R→ ∞, R≫ L we have

Z(L,R) ∼ e−RE0(L), (3.2)

where E0(L) is the ground state energy. Denoting by φ and ψ the bosonic and fermionic

fields, respectively, we can write the partition function as a functional integral

Z(L,R) =

∫

DφDψe−SE (3.3)

where SE is the theory’s Euclidean action. In this integral, fermionic fields are periodic

(resp. antiperiodic) in space (resp. time), while bosonic fields are periodic in both space

and time:
ψ(x+ L, t) = ψ(x, t), ψ(x, t +R) = −ψ(x, t)

φ(x+ L, t) = φ(x, t), φ(x, t+R) = φ(x, t).
(3.4)

Using this representation of the partition function, one can relate it to the Witten index

of the “mirror” theory in volume R:

W (R,L) =
∑

k

(−1)F e−LEmir
k

(R) =
∑

k

e−REk(L) = Z(L,R) . (3.5)

The mirror theory is obtained from the original one by a double Wick rotation, and F

in (3.5) is 1 for fermionic states and 0 otherwise. Introducing the mirror bulk free energy

Fmir(L), defined by the mirror theory’s Witten index at temperature 1/L,

−RLFmir(L) = lnW (R,L), (3.6)

we see that the finite volume ground state energy is related to the infinite volume mirror

free energy:

E0(L) = LFmir(L). (3.7)

The mirror theory’s infinite volume spectrum is described by the ABA equations, which

allow one to find Fmir(L) and then the original theory’s ground state energy.

To compute Fmir it is essential to know the structure of the solutions of infinite volume

mirror ABA equations. For numerous theories (see [44–53]), so-called string hypotheses

have been formulated, which describe the complexes Bethe roots form in the infinite volume

limit (simplest of those complexes are strings of roots). We will use indices A,B, ... to label

the complexes, and denote the energy and momentum of a complex by, respectively, ip∗A
and iǫ∗A, to underline that the mirror theory is obtained from the physical one by a double

Wick rotation.
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Multiplying the Bethe equations for all roots in a complex, one obtains equations

for the density ρA(u) of complexes, with u ∈ R being the center of the complex. Those

equations have the form

ρ̄A(u) + ρA(u) =
i

2π

dǫ∗A(u)

du
−KBA(v, u) ∗ ρB(v) (3.8)

where ρ̄ is the density of holes, K(v, u) ∗ f(v) ≡
∫ +∞
−∞ dvK(v, u)f(v) and summation over

B is assumed. Also, we use the normalization

∞
∫

−∞

duρA(u) =
total number of complexes of type A

R
. (3.9)

The free energy is given by the minimal value of a functional of the densities

Fmir(L) = min
∑

A

∫ ∞

−∞
du

(

(Lip∗A + hA)ρA −
[

ρA log

(

1 +
ρ̄A

ρA

)

+ ρ̄A log

(

1 +
ρA

ρ̄A

)])

,

(3.10)

with constraints (3.8) on the densities. Here, hA ≡ log[(−1)NA ] , where NA is the number

of fermionic Bethe roots in the complex A. Minimization of this functional gives the

TBA equations

logYA(u) = KAB(u, v) ∗ log[1 + 1/YB(v)] + iLp∗A + hA, (3.11)

where YA ≡ ρ̄A

ρA
and K(u, v) ∗ f(v) ≡

∫

dvK(u, v)f(v). Lastly, the free energy can be

expressed in terms of a solution of TBA equations:

Fmir(L) =
∑

A

∫

du

2πi

dǫ∗A
du

log (1 + 1/YA(u)) , (3.12)

From the free energy, one can compute the ground state energy of the physical theory

via (3.7). In addition, the TBA equations can be modified in such a way that their solutions

provide also energies of certain excited states in finite volume.

3.1 Ground state TBA equations for AdS4/CFT3

We first present, as a conjecture, the ABA equations for the mirror of AdS4/CFT3 theory.

Like the physical Bethe equations [37], those equations involve Bethe roots u1, u2, u3, u4, u4̄,

with all roots except u2 being fermionic. The only roots which carry energy or momentum

are u4 and u4̄. For a single root, we denote energy by ip∗1, and momentum by iǫ∗1, where

p∗1 =
1

i
log

x+

x−
, ǫ∗1 =

1

2
+ h(λ)

(

i

x+
− i

x−

)

. (3.13)

Here, and everywhere in section 3 unless otherwise stated, we use the mirror branch of the

function x(u). Note that p∗1 (resp. ǫ∗1), evaluated in physical instead of mirror kinematics,

coincides with the momentum (resp. energy) of a single Bethe root in the physical the-

ory [37]. This is in accordance with the fact that the mirror theory is obtained from the
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physical one by a double Wick rotation. The momentum/energy in mirror and physical

AdS5/CFT4 are related in a similar way.

The mirror Bethe equations we propose are written in terms of the functions

Bl, Rl, Sl, Ql, which were introduced in section 2 (note that x in them should now be

understood as xmir). The equations for u1, u2 and u3 are:

1 =
Q+

2 B
(−)
4 B

(−)

4̄

Q−
2 B

(+)
4 B

(+)
4̄

∣

∣

∣

∣

∣

u1,k

, −1 =
Q−−

2 Q+
1 Q

+
3

Q++
2 Q−

1 Q
−
3

∣

∣

∣

∣

u2,k

, 1 =
Q+

2 R
(−)
4 R

(−)

4̄

Q−
2 R

(+)
4 R

(+)
4̄

∣

∣

∣

∣

∣

u3,k

(3.14)

The r.h.s. of the equations for u1 and u3 is not always unimodular, because B
(±)
l (u) and

R
(±)
l (u) have cuts on the real axis. However, in the thermodynamic limit (see below)

the single fermion roots u1, u3 are distributed [62] within the interval −2h < u1 < 2h,

−2h < u3 < 2h, and unimodularity of the r.h.s then follows. Note that no conditions have

to be imposed on the u1, u3 roots which are parts of pyramid complexes △n, as the terms

containing cuts cancel during fusion of Bethe equations. This can be seen from the fact

that the kernels K(u, v) in TBA equations (see below) for interactions involving pyramids

are real for real u, v and have no cuts on the real axis.

The equations for momentum-carrying roots are:

− 1 = eRǫ∗1(u4,k)

(

B+
1 R

+
3 Q

++
4 R

−(−)
4 R

−(−)

4̄

B−
1 R

−
3 Q

−−
4 R

+(+)
4 R

+(+)
4̄

)

S4S4̄

(

x+
4,k

x−4,k

)

K1−K3
2 K4

∏

j=1

√

√

√

√

x+
4,j

x−4,j

K4̄
∏

j=1

√

√

√

√

x+
4̄,j

x−
4̄,j

(3.15)

for u = u4,k, and for u = u4̄,k we have

− 1 = eRǫ∗1(u4̄,k)

(

B+
1 R

+
3 Q

++
4̄
R

−(−)

4̄
R

−(−)
4

B−
1 R

−
3 Q

−−
4̄
R

+(+)
4̄

R
+(+)
4

)

S4̄S4

(

x+
4̄,k

x−
4̄,k

)

K1−K3
2 K4

∏

j=1

√

√

√

√

x+
4,j

x−4,j

K4̄
∏

j=1

√

√

√

√

x+
4̄,j

x−
4̄,j

.

(3.16)

Note that the combination

Smir
l (u) ≡

Kl
∏

j=1

σmir(x(u), xl,j) =

Kl
∏

j=1

√

√

√

√

x+
l,jx

−

x−l,jx
+
σBES(x(u), xl,j) = Sl(u)

Kl
∏

j=1

√

√

√

√

x+
l,jx

−

x−l,jx
+

(3.17)

is a unimodular function (see [60, 61]). By σBES(x(u), xl,j) we denote the usual Beisert-

Eden-Staudacher dressing kernel analytically continued from Imu > i/2 between the

branch points u = ±2h + i/2.9 The above equations are similar to the Bethe equations

for physical ABA (2.11). The difference is in the choice of the mirror branch of x(u),

interchange of the energy and momentum (with multiplication by i) and various factors of
√

x+/x−, tuned in such a way that the right-hand sides are unimodular functions. This

prescription is based on the corresponding conjecture in the AdS5/CFT4 case [57].

In the thermodynamic limit, solutions of the above ABA are described by complexes

of Bethe roots. Among those complexes are ©n,△n,⊕,⊗, which are the same complexes as

9“Physical” choice of the branch corresponds to analytical continuation to the plane with the cut [−2h+

i/2, 2h + i/2]. In the “mirror” kinematics all cuts should go through infinity.
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©n: string of roots : u2 = u+ ij, j = −n−2
2 , . . . , n−2

2

: : u3 = u+ ij, j = −n−1
2 ,. . . ,n−1

2

△n: pyramid : u2 = u+ ij, j = −n−2
2 , . . . , n−2

2

: : u1 = u+ ij, j = −n−3
2 ,. . . ,n−3

2

⊕ : single fermion root : u1 = u

⊗ : single fermion root : u3 = u

◭n : Odd-Even complex : u4 = u+ ij when θE
jn = 1, j = −n−1

2 , . . . , n−1
2

: : u4̄ = u+ ij when θO
jn = 1

◮n : Even-Odd complex : u4 = u+ ij when θO
jn = 1, j = −n−1

2 , . . . , n−1
2

: : u4̄ = u+ ij when θE
jn = 1

Table 1. Complexes of Bethe roots.

u4

u
4̄

Odd-Even complexes ◭5 and ◭4 Even-Odd complexes ◮5 and ◮4

Figure 2. Strings of alternating roots on the {Reu, Imu} plane. Black circles denote u4 roots,

gray circles denote u4̄ roots. Vertical spacing between roots is i.

in the mirror AdS5/CFT4 (see [64]). In addition, the momentum-carrying roots u4 and

u4̄ form two new types of complexes, which we call Odd-Even and Even-Odd. They were

recently considered in [85]. Those complexes are real-centered strings of alternating u4 and

u4̄ roots, adjacent roots being spaced by i. In the Odd-Even complex, the lowest root of

the string on the complex plane is u4, while in the Even-Odd complex, the lowest root is

u4̄ (see figure 2). The list of all complexes is given in the table 1.

Here, u ∈ R denotes the center of a complex, notation j = −n−1
2 , . . . , n−1

2 means that

j takes the values −n−1
2 ,−n−3

2 , . . . , n−3
2 , n−1

2 , and θ’s were defined in (2.16).

The energy (in our notation ip∗A, with index A taking the values {©n,⊕,⊗,△n,◭n,◮n})
which corresponds to a complex is the sum of energies of the roots in a complex, and the

same is true for momentum. We have p∗◭n
= p∗◮n

= p∗n, ǫ∗◭n
= ǫ∗◮n

= ǫ∗n, where

p∗n(u) ≡ 1

i
log

x[+n]

x[−n]
, ǫ∗n(u) ≡ n

2
+ h(λ)

(

i

x[+n]
− i

x[−n]

)

, (3.18)

while for other complexes, p∗A and ǫ∗A are zero. Note also that the only complexes with odd

number of fermion roots are those denoted by ⊕, ⊗, ◭2n−1 and ◮2n−1. Hence in our case the
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A\B ©m ⊕ ⊗ △m ◭m ◮m

©n +Kn−1,m−1 −Kn−1 +Kn−1 0 0 0

⊕ −Km−1 0 0 +Km−1 −B(01)
1m −B(01)

1m

⊗ −Km−1 0 0 +Km−1 −R(01)
1m −R(01)

1m

△n 0 −Kn−1 +Kn−1 +Kn−1,m−1 −R(01)
nm − B(01)

n−2,m −R(01)
nm − B(01)

n−2,m

◭n 0 B(10)
n1 −R(10)

n1 −R(10)
nm − B(10)

n,m−2 −T ‖
nm −T ⊥

nm

◮n 0 B(10)
n1 −R(10)

n1 −R(10)
nm − B(10)

n,m−2 −T ⊥
nm −T ‖

nm

Table 2. Integration kernels for TBA equations.

quantity hA in (3.11) has to be log(−1) for these complexes and log(+1) otherwise.

Applying the fusion procedure to the mirror ABA equations,10 we find that in our

case, kernels KAB entering (3.11) are given by table 2. Some of those kernels are the same

as in the AdS5/CFT4 case [60], and we list them in appendix A. The new kernels are

T ‖
nm ≡ B(11)

nm + S̃nm −K‖
nm, (3.19)

T ⊥
nm ≡ B(11)

nm + S̃nm −K⊥
nm, (3.20)

where

K‖
nm(u, v) ≡

n−1
2
∑

l=−n−1
2

m−1
2
∑

k=−m−1
2

K2(u− v + i(l − k))
(

θE
lnθ

O
km + θO

lnθ
E
km

)

, (3.21)

K⊥
nm(u, v) ≡

n−1
2
∑

l=−n−1
2

m−1
2
∑

k=−m−1
2

K2(u− v + i(l − k))
(

θE
lnθ

E
km + θO

lnθ
O
km

)

. (3.22)

Let us also introduce the functions YA, which will turn out to be the functions which

enter the Y-system:

{

Y©n , Y⊕,
1

Y⊗
,

1

Y△n

,
1

Y◭n

,
1

Y◮n

}

≡ {Y©n ,Y⊕,Y⊗,Y△n ,Y◭n ,Y◮n} (3.23)

(We recall that YA ≡ ρ̄A

ρA
.)

10an important assumption here is monotonicity
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We can write the TBA equations for the ground state in the following way:

log Y⊗ = +Km−1 ∗ log
1 + 1/Y©m

1 + Y△m

+ R(01)
1m ∗ log(1 + Y◭m)(1 + Y◮m) + iπ (3.24)

log Y⊕ = −Km−1 ∗ log
1 + 1/Y©m

1 + Y△m

− B(01)
1m ∗ log(1 + Y◭m)(1 + Y◮m) − iπ (3.25)

log Y△n = −Kn−1,m−1 ∗ log(1 + Y△m) −Kn−1�∗ log(1 + Y⊗) (3.26)

+
(

R(01)
nm + B(01)

n−2,m

)

∗ log(1 + Y◭m)(1 + Y◮m)

log Y©n = Kn−1,m−1 ∗ log(1 + 1/Y©m) +Kn−1�∗ log(1 + Y⊗) (3.27)

log Y◭n = −iLp∗n + T ‖
nm ∗ log(1 + Y◭m) + T ⊥

nm ∗ log(1 + Y◮m) + iπn (3.28)

+R(10)
n1 �∗ log(1 + Y⊗) +

(

R(10)
nm + B(10)

n,m−2

)

∗ log(1 + Y△m)

log Y◮n = −iLp∗n + T ‖
nm ∗ log(1 + Y◮m) + T ⊥

nm ∗ log(1 + Y◭m) + iπn (3.29)

+R(10)
n1 �∗ log(1 + Y⊗) +

(

R(10)
nm + B(10)

n,m−2

)

∗ log(1 + Y△m)

where ∗ denotes integration over the second variable, as in (3.11). Summation over the

repeated index m is assumed with m ≥ 2 for △m and ©m, and m ≥ 1 for ◭m,◮m.

Range of integration for fermions is limited to −2h < u < 2h. Notice that from (3.24)

and (3.25) we can see that 1
Y⊕ is the analytical continuation of Y⊗ across the cut u ∈

(−∞,−2h) ∪ (2h,+∞). For the convolutions with fermions we introduce the convolutions

�∗ which should be understood in the sense of a B-cycle (see [60]), e.g.

Kn−1�∗ log(1 + Y⊗) ≡
∫ 2h

−2h
dvKn−1 log

1 + Y⊗
1 + 1/Y⊕

, (3.30)

R(n0)
�∗ log(1 + Y⊗) ≡

∫ 2h

−2h
dv
[

R(n0) log(1 + Y⊗) − B(n0) log(1 + 1/Y⊕)
]

.

Remarkably, the combination B(11)
nm + S̃nm, which is part of the kernels T ⊥

nm and T ‖
nm,

has only two branch cuts for each of the variables u and v. This follows from the integral

representation

S̃nm(u, v)+B(11)
nm (u, v) = (3.31)

−
∞
∑

a=1

∫

[

B(10)
n1 (u,w+ia/2)B(01)

1m (w−ia/2, v)+B(10)
n1 (u,w−ia/2)B(01)

1m (w+ia/2, v)
]

dw,

which can be derived using the results obtained in [60, 61] (see appendix A). As a conse-

quence, the functions Y◭n(u) and Y◮n(u) (see (3.28), (3.29)) should not have branch cuts

for −in/2 < Imu < in/2.

In the next section we will establish a relation between the above equations and the

AdS4/CFT3 Y-system.

3.2 Y-system from TBA equations

In this section we show that solutions of ground state TBA equations satisfy the

AdS4/CFT3 Y-system (1.2)–(1.4) described in the introduction. This derivation of the
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Y-system is similar to the AdS5/CFT4 case [60]. First, we identify the YA functions in

TBA equations with the Y-system functions Ya,s. We set

{Y©n , Y⊕, Y⊗, Y△n} = {Y1,n, Y2,2, Y1,1, Yn,1} . (3.32)

Let us introduce the discrete Laplacian operator

∆Kn(u) ≡ Kn(u+ i/2 − i0) +Kn(u− i/2 + i0) −Kn+1(u) −Kn−1(u).

Following [60], we apply this operator to the l.h.s. of the TBA equations, acting on the free

index n and the free variable u. The action of this Laplacian on some of our kernels has

been computed in [60]:

∆Kn(u) = δn,1δ(u) (3.33)

∆Knm(v − u) = ∆R(11)
nm (v, u) = δn,m+1δ(v − u) + δn,m−1δ(v − u) (3.34)

∆R(01)
nm (v, u) = ∆R(10)

nm (v, u) = δn,mδ(v − u) (3.35)

∆Bnm = 0, ∆S̃nm = 0 . (3.36)

The new kernels T ‖
nm and T ⊥

nm satisfy relations of a new type, which are not written in

terms of the Laplacian:

T ⊥
nm(u+ i−i0

2 , v)+T ‖
nm(u− i−i0

2 , v)−T ‖
n+1,m(u, v)−T ⊥

n−1,m(u, v)=−δn,m−1δ(u−v) (3.37)

T ‖
nm(u+ i−i0

2 , v)+T ⊥
nm(u− i−i0

2 , v)−T ⊥
n+1,m(u, v)−T ‖

n−1,m(u, v)=−δn−1,mδ(u−v) .

Using those identities, we obtain from the TBA equations a set of simpler equations for

the functions YA. This closely follows [60]. For example, applying the Laplacian to the

l.h.s of (3.27), we get

log
Y +

©n
Y −

©n

Y©n+1Y©n−1
= log(1 + 1/Y©n+1)(1 + 1/Y©n−1) , n > 2 (3.38)

or, equivalently,

log Y +
©n
Y −

©n
= log(1 + Y©n+1)(1 + Y©n−1) , n > 2. (3.39)

For n = 2 we obtain

log Y +
©2
Y −

©2
= log

(1 + Y⊗)(1 + Y©3)

1 + 1/Y⊕
. (3.40)

Equations (3.24) and (3.26) can be treated in a similar way. We get an equation for Y⊗

log Y +
⊗ Y −

⊗ = log
(1 + Y©2)(1 + Y◭1)(1 + Y◮1)

1 + 1/Y△2

, (3.41)

and also equations for Y△n :

log
Y +
△n
Y −
△n

Y△n+1Y△n−1

= log
(1 + Y◭n)(1 + Y◮n)

(1 + Y△n+1)(1 + Y△n−1)
, n > 2 (3.42)

log
Y +
△2
Y −
△2

Y△3

= log
(1 + Y⊕)(1 + Y◭2)(1 + Y◮2)Y⊗

(1 + Y△3)(1 + Y⊗)
(3.43)

− log Y⊗Y⊕+
∑

m

(R(01)
1m − B(01)

1m ) ∗ log(1 + Y◭m)(1 + Y◮m)
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Moreover, adding up eqs. (3.24), (3.25) we find that

log Y⊗Y⊕ =
∑

m

(R(01)
1m − B(01)

1m ) ∗ log(1 + Y◭m)(1 + Y◮m). (3.44)

Therefore, in eq. (3.43) all summands except the first one cancel, and that equation takes

the compact form

log Y +
△2
Y −
△2

= log
(1 + Y⊕)(1 + Y◭2)(1 + Y◮2)

(1 + 1/Y△3)(1 + 1/Y⊗)
. (3.45)

Equations for Y◭n , Y◮n are obtained from (3.28), (3.29) in a similar way with the use of

new identities (3.37), and they are precisely equations (1.2)–(1.4) which were given in the

introduction:

log Y +
◮n
Y −

◭n
= log

1 + Y△n

(1 + 1/Y◭n+1)(1 + 1/Y◮n−1)
, n > 1 (3.46)

log Y +
◭n
Y −

◮n
= log

1 + Y△n

(1 + 1/Y◮n+1)(1 + 1/Y◭n−1)
, n > 1, (3.47)

while for n = 1

log Y +
◮1
Y −

◭1
= log

1 + Y⊗
(1 + 1/Y◭2)

, log Y +
◭1
Y −

◮1
= log

1 + Y⊗
(1 + 1/Y◮2)

. (3.48)

3.3 Integral equations for excited states

As we have shown above the equations (3.24)–(3.29) contain important structural infor-

mation about the Y-system. However, those equations do not make much sense when

understood literally since they describe the ground state which is protected by super-

symmetry, and the Y-functions are degenerate in this case. There is a way to extend these

equations to excited states, with the Y-functions becoming very nontrivial. For the case

Y◭a = Y◮a = Y•a , u4,j = u4̄,j similarly to [60] we propose, as a conjecture, the following set
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of equations:

log Y⊗ = +Km−1 ∗ log
1 + 1/Y©m

1 + Y△m

+ 2R(01)
1m ∗ log(1 + Y•m) + 2

[

log
R

(+)
4

R
(−)
4

]

+ iπ (3.49)

log Y⊕ = −Km−1 ∗ log
1 + 1/Y©m

1 + Y△m

− 2B(01)
1m ∗ log(1 + Y•m) − 2

[

log
B

(+)
4

B
(−)
4

]

− iπ (3.50)

log Y△n = −Kn−1,m−1 ∗ log(1 + Y△m) −Kn−1 ∗ log
1 + Y⊗

1 + 1/Y⊕
(3.51)

+2
(

R(01)
nm + B(01)

n−2,m

)

∗ log(1 + Y•m)

+2







n−1
2
∑

k=−n−1
2

log
R

(+)
4 (u+ ik)

R
(−)
4 (u+ ik)






+ 2







n−3
2
∑

k=−n−3
2

log
B

(+)
4 (u+ ik)

B
(−)
4 (u+ ik)







log Y©n = Kn−1,m−1 ∗ log(1 + 1/Y©m) +Kn−1 ∗ log
1 + Y⊗

1 + 1/Y⊕
(3.52)

log Y•n = J log
x[−n]

x[+n]
− B(10)

n1 ∗ log(1 + 1/Y⊕) + R(10)
n1 ∗ log(1 + Y⊗) (3.53)

+
(

R(10)
nm + B(10)

n,m−2

)

∗ log(1 + Y△m)

+
(

2S̃nm −R(11)
nm + B(11)

nm

)

∗ log(1 + Y•m) +







n−1
2
∑

k=−n−1
2

log Φ4(u+ ik)






+ iπn

where J = L + K4, Φ4 is given by (2.17) (with B±
1 , B

±
3 in that expression replaced by

unity) and the exact positions of the Bethe roots are determined by

Y ph•1 (u4,j) = −1, j = 1, . . . ,K4 . (3.54)

The label “ph” here means that one should analytically continue the equation for Y•1 to the

physical sheet, like it was done for the first time in [65]. The Bethe roots are additionally

constrained by a condition imposed on total momentum (the trace cyclicity condition). We

can write this constraint in a form similar to (1.5):

∞
∑

a=1

∫ ∞

−∞

du

2πi

∂pmir
a (u)

∂u
log(1+Y mir

◭a
)(1+Y mir

◮a
)+

K4
∑

j=1

pph(u4,j)+

K4̄
∑

j=1

pph(u4̄,j) = 2πm, m ∈ Z

(3.55)

(recall that the momentum p(u) was introduced in (3.13)). This expression can be simplified

in our case, as Y◭a = Y◮a = Y•a and u4,j = u4̄,j.

Note that in equations for excited states, in the terms without convolutions the branch

xph should be used for x(u4,j) and xmir should be used for x(u) with u being the free vari-

able.

Strictly speaking these equations are only valid for some particular values of λ and

configurations of roots. In other cases the equations may require some modification. This

question is usually subjected to case-by-case study (see e.g. [96–98]).
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In general the procedure is the following - one can start from a sufficiently large L or

small λ where the terms with log(1+Y◭n) are irrelevant and the asymptotic solution of [54]

should be a good approximation. The condition (3.54) can be discarded for a while, and

one should find such a configuration of the roots u4,j (usually they are sufficiently close

to the origin in this case) that the asymptotic solution satisfies the equations for excited

states we proposed above. After that the equations should be analytically continued in

L, λ and u4,j.

This procedure in general is rather complicated, however our experience with the

Konishi operator in AdS5/CFT4 [65] tells us that one can probably use the equations

above as they are from λ = 0 to very large λ’s. At the same time the Y-system functional

equations are not affected by these modifications and they are more suitable for the strong

coupling analysis [70]. Moreover, they are not restricted to the “sl(2)” subsector.

The possibility that some singularities could collide with the integration contours and

modify the equations when some parameters (such as the coupling) are changed was studied

in detail in [96–98]. For AdS/CFT, this issue was mentioned in [65], and following that

proposal, such a possibility was explored in [103] for AdS5/CFT4.
11

4 Solution of the Y-system in the scaling limit

In this section we obtain a solution of the AdS4/CFT3 Y-system in the strong coupling

scaling limit, considering the sl(2) subsector. In this case, the Y-functions which correspond

to the momentum-carrying roots are equal. We show that the spectrum obtained from the

Y-system is in complete agreement with the results from quasiclassical string theory.

4.1 Y-system equations in the scaling limit

In the scaling limit the Y-system simplifies in several important ways. In this section and

section 5 we use rescaled rapidities z = u
2h(λ) (similarly to [70]), and since h(λ) → ∞, we

can neglect shifts in the arguments in the l.h.s. of the Y-system equations.12 Hence with

1/h2 precision the Y-system becomes a set of algebraic, instead of functional, equations.

Moreover, for the sl(2) subsector Y◭a = Y◮a. Also, only z4,k and z4̄,k Bethe roots are

introduced (see (1.6)), and they coincide pairwise: z4,k = z4̄,k. Denoting Y•a ≡ Y◭a we get

11In [103] an attempt was also made to estimate the “critical” values of the ’t Hooft coupling - values

for which the equations for excited states should be modified by extra terms. The result from [103] is

λcritical ≃ 774. The method used in that work is based on the asymptotic solution [54] of the Y-system.

The asymptotic solution works perfectly for very small and very large values of the coupling, however it very

badly approximates the exact Y-functions for λ ∼ 700. Thus the only reasonable estimate at the moment

for the critical value is λ > 700, from the results of [65], where no singularity was found in numerical studies

of the TBA equations in the range 0 < λ < 700.
12This simplification of the Y-system involves certain subtleties, as the shifts in the argument of the

Y-functions cannot be neglected close to the branch cuts. This issue can be treated in our case in the same

way as in [70].
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three infinite series of equations

Y 2
©s

= (1 + Y©s+1)(1 + Y©s−1) , s = 3, 4, . . . , (4.1)

Y 2
△a

=
(1 + Y•a)2

(1 + 1/Y△a+1)(1 + 1/Y△a−1)
, a = 3, 4, . . . , (4.2)

Y 2•a
=

(1 + Y△a)

(1 + 1/Y•a+1)(1 + 1/Y•a−1)
, a = 2, 3, . . . , (4.3)

plus four more equations

Y 2
△2

=
(1 + Y⊕)(1 + Y•2)2

(1 + 1/Y△3)(1 + 1/Y⊗)
, (4.4)

Y 2
©2

=
(1 + Y©3)(1 + Y⊗)

(1 + 1/Y⊕)
, (4.5)

Y 2
⊗ =

(1 + Y©2)(1 + Y•1)2
(1 + 1/Y△2)

, (4.6)

Y 2•1 =
(1 + Y⊗)

(1 + 1/Y•2)
. (4.7)

Together with the Y-system, we have to solve the non-local equation

log Y⊗Y⊕ = 2
∞
∑

m=1

(R(01)
1m −B(01)

1m ) ∗ log(1 + Y•m) + 2 log
R

(+)
4 B

(−)
4

R
(−)
4 B

(+)
4

, (4.8)

which can be obtained by adding up (3.50) and (3.49) (it corresponds to the gray node in

figure 1, right). Introducing the following notation

Gk(x) =
1

h

Mk
∑

j

1

x− xk,j

x2
k,j

x2
k,j − 1

, k = 4, 4̄ (4.9)

fk(z) = exp
(

− iGk

(

x(z)
)

)

, f̄k(z) = exp
(

+ iGk

(

1/x(z)
)

)

, (4.10)

where the mirror branch of x is used for x(z) and the physical branch for xk,j (this choice

of branches is used by default in sections 4 and 5), following [70] we can write the non-local

equation in the form

F =
1

f f̄

∞
∏

n=1

(1 + Y•n)2 (4.11)

where

F ≡ Y⊕Y⊗, f(z) = f2
4 (z), f̄(z) = f̄2

4 (z). (4.12)

Note that, similarly to [70], the Bethe roots have to satisfy the constraint

Q1 = 2πm+ O(1/h), m ∈ Z , (4.13)

where

Q1 =

M4
∑

j=1

1

i
log

x+
4,j

x−4,j

+

M4̄
∑

j=1

1

i
log

x+
4̄,j

x−
4̄,j

≃
M4
∑

j=1

x4,j

h(x2
4,j − 1)

+

M4̄
∑

j=1

x4̄,j

h(x2
4̄,j

− 1)
. (4.14)

This condition reflects the cyclicity symmetry of single trace operators. Its consistency with

the other equations remains to be checked, and we assume that equation to be satisfied.
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4.2 Asymptotics of Y-functions

The Y-system equations should be supplemented by boundary conditions on the functions

Ya,s, i.e. by their large a, s asymptotics. In our case, similarly to AdS5/CFT4 (see [70]), we

demand that Y△a and Y•a have the same asymptotics as the L → ∞ solution, which was

constructed in section 2. As for the functions Y©s , we demand that their large s asymptotics

is polynomial in s, which is true for the L→ ∞ solution as well.

It is straightforward to show that the expressions for Y-functions from section 2 can

be recast in the following form:

Y•a = (−1)a∆a f(f̄ − 1)2f̄a − f̄(f − 1)2fa

f f̄(f̄ − f)
(4.15)

Y©s(z) = (s−A)2 − 1 , Y△a =
(T − 1)2ST a−1

(ST a+1 − 1)(ST a−1 − 1)
, (4.16)

where

A =
1

f̄ − 1
+

f

f − 1
, S =

f̄(f − 1)2

f(f̄ − 1)2
, T =

f

f̄
, (4.17)

∆ = exp

(

−iLx/h−Q1

x2 − 1

)

(4.18)

while f, f̄ are given by (4.12). As for real z the quantity f(z)/f̄(z) is a pure phase, to

investigate the large a, s limit we consider Y-functions of shifted argument z− i0. We have

then
∣

∣f(z − i0)/f̄(z − i0)
∣

∣ > 1 and we get

lim
a→∞

log Y△a(z − i0)

a
= log

f̄

f
. (4.19)

Similarly,

lim
a→∞

log Y•a(z − i0)

a
= log (−∆f) . (4.20)

Conditions (4.19), (4.20) are the boundary conditions which we impose on the functions

Y△a , Y•a for finite L at strong coupling.

4.3 Solution in upper and right wings

In this section, we solve the Y-system partially, expressing the upper wing functions Y△a ,

Y•a and the right wing functions Y©s in terms of only three yet unknown functions.

Using the analogy between our Y-system and the one considered in [70], it can be

shown that the functions Y△a, Y•a can be constructed in the following way:

1 + Y△a =
T 2

a,0

Ta+1,0Ta−1,0
, 1 + Y•a =

T 2
a,1

Ta+1,1Ta−1,1
, (4.21)

where the set of functions Ta,s, which is the general solution of the Hirota equation in the

vertical strip, was found in [70]. Those functions are:

Ta,2 = 1 (4.22)

Ta,1 =
y1y2

(y1 − y2)(y1y2 − 1)

(

y1

y2
1 − 1

(

S1y
a
1 +

1

S1ya
1

)

− y2

y2
2 − 1

(

S2y
a
2 +

1

S2ya
2

))

(4.23)

Ta,0 = (T 2
a,1 − Ta+1,1Ta−1,1)/Ta,2. (4.24)
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with y1, y2, S1 and S2 being arbitrary parameters. The functions Y•a , Y△a , given by (4.21),

satisfy the Y-system equations (4.2) and (4.3) for arbitrary y1(z), y2(z), S1(z) and S2(z).

The asymptotic conditions (4.19), (4.20) fix y1 and y2:

y1 = −f4

f̄4
, y2 = ∆f4f̄4 . (4.25)

The general solution of (4.1) with polynomial large s asymptotics is (see [70])

Y©s(z) = (s−A(z))2 − 1 , (4.26)

with arbitrary A(z). Thus, the solution of our Y-system in the upper and right wings is

expressed in terms of three unknown functions S1(z), S2(z) and A(z).

4.4 Matching wings

By now, we have constructed Y©n , Y△n and Y•n for all n in terms of A(z), S1(z) and S2(z).

To find those three functions, as well as Y⊕ and Y⊗, we have to solve the five remaining

equations (4.4), (4.5), (4.6), (4.7), (4.11). Excluding Y⊕ and Y⊗, we get:

Y 2
△2

(1 + 1/Y△3)

(1 + Y•2)2
=

F

(A− 1)2
, (4.27)

1 + 1/Y△2

(1 + Y•1)2
=

1

A2

(

(A− 1)2

F
− 1

)2

, (4.28)

Y 2•1(1 + 1/Y•2) = −(A− 1)2(F − 1)

F − (A− 1)2
, (4.29)

1

f2
4 f̄

2
4

∞
∏

n=1

(1 + Y•n)2 = F (4.30)

The r.h.s. of the four equations above depends only on F (z) and A(z), and they can

be solved perturbatively in ∆, like analogous equations in [70]. Namely, we find several

terms in the expansion of unknown functions in powers of ∆, notice a simple relation

between consecutive terms, and sum up the series in ∆ assuming this relation to hold for

all terms.13 It is then easy to check that the functions obtained in this way are indeed

solutions of (4.27), (4.28), (4.29). The result is:

A =
(1+∆)((1−f4f̄4)(1−∆2f4f̄4)−∆(f4−f̄4)

2)((1+f4f̄4)(1+∆2f4f̄4)−∆(f4+f̄4)
2)

(−1+∆)(f−1)(f̄−1)(∆2f−1)(∆2f̄−1)

(4.31)

S1 =
(f − 1)f̄(∆2f̄ − 1)

f(∆2f − 1)(f̄ − 1)
(4.32)

S2 =
(f − 1)(f̄ − 1)

f f̄(∆2f − 1)(∆2f̄ − 1)
(4.33)

F =
(∆f − 1)2(∆f̄ − 1)2

(∆ − 1)4f f̄
(4.34)

13For ∆ = 0, there are several solutions of eqs. (4.27)–(4.29). We choose the one consistent with the

asymptotic solution of Y-system.
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Putting those functions into the expressions for the Y-functions (4.21), (4.26), we obtain all

the Ya,s in terms of f, f̄ and ∆ (using (4.7) to find Y⊗ and then getting Y⊕ from F = Y⊕Y⊗).

Recalling the definitions (4.12), (4.18) of f, f̄ and ∆, we see that we have found all

the Y-functions in terms of the Bethe roots. We present our solution of the Y-system in

Mathematica form in appendix C.

4.5 The spectrum from Y-system

Here we repeat the arguments of [70] to find the equation for the displacement of Bethe roots

due to the finite size effects at strong coupling. In this section we assume Y◮n = Y◭n ≡ Y•n

(the situation where this is not the case is considered in the next section). We again start

from the TBA equation for the momentum-carrying node

log Y•1 = T1m ∗ log(1+Y•m)+R(10)
�∗ log(1+Y⊗)+R(10)

�∗Km−1 ∗ log(1+Y△m)+ iΦ , (4.35)

where T1m ≡ 2S̃nm −R(11)
nm +B(11)

nm and Φ represents extra potentials in the TBA equations

for the excited states. The only difference with [70] is absence of 2’s in front of the second

and third terms. Thus we can use the same trick as in [70] to get the expression for Y•1 in

physical kinematics:

log
Y ph•1
Y ph0•1

= T ph,mir
1m ∗ log(1 + Y•m) + R(10)ph,mir

�∗ log

(

1 + Y⊗
1 + Y 0⊗

)

(4.36)

+R(10)ph,mir
�∗Km−1 ∗ log

(

1 + Y△m

1 + Y 0△m

)

+Km−1(zk − i
4h) ∗ log

(

1 + Y△m

1 + Y 0△m

)

.

Now we simply have to expand the kernels at large h and substitute Y’s. Let us denote

r(x, z) =
x2

x2 − 1

∂z

2πh

1

x− x(z)
, u(x, z) =

x

x2 − 1

∂z

2πh

1

x2(z) − 1
.

We rearrange the terms in (4.36) to evaluate the following “magic” products14

e+M0 ≡
∞
∏

m=1

(1 + Y•m)2m =
(∆2f − 1)4(∆2f̄ − 1)4

(∆ − 1)6(∆ + 1)2(∆f + 1)2(∆f̄ + 1)2(∆2f f̄ − 1)2

e−M+ ≡ 1 + Y⊗
1 + Y 0⊗

∞
∏

m=2

(

1 + Y△m

1 + Y 0△m

)m ∞
∏

m=1

1

(1 + Y•m)2m
= −(f∆ + 1)2(f f̄∆2 − 1)

(f∆2 − 1)2

e+M− ≡ 1 + 1/Y 0
⊕

1 + 1/Y⊕

∞
∏

m=2

(

1 + Y△m

1 + Y 0△m

)m−2

= − (f̄∆2 − 1)2

(f̄∆ + 1)2(f f̄∆2 − 1)
. (4.37)

We get the following corrected Bethe equation for the sl2 sector

1 =

(

x−k
x+

k

)L M
∏

j=1

x−k − x+
j

x+
k − x−j

1 − 1/(x+
k x

−
j )

1 − 1/(x−k x
+
j )
σ2(zk, zj)

× exp

[

−
∫ 1

−1

(

r(xk, z)M+ − r(1/xk, z)M− + u(xk, z)M0

)

dz

]

, (4.38)

14To compute these products we again use the z − i0 prescription to ensure their convergence. This

prescription is inherited from the TBA equation for excited states where the integration should go slightly

below the real axis.
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and the equation for the energy at strong coupling is

E =
M
∑

i=1

x2
i + 1

x2
i − 1

+

∫ 1

−1

dz

4π

z√
1 − z2

∂zM0 . (4.39)

The extra factor of 2 in the denominator under the integral is due to the single magnon

dispersion relation, which includes an extra 1/2 compared to AdS5/CFT4.

4.6 Non-symmetric strong coupling solution

In this section we present a simple strong coupling solution with Y◭ 6= Y◮. It can be used

as a test of the new structure of the Y-system which we proposed in the introduction.

We consider the limit where the massive nodes are completely decoupled from the rest

of the system. We solve the following infinite set of equations

Y◮nY◭n =
1

(1 + 1/Y◭n+1)(1 + 1/Y◮n−1)
, n > 1 (4.40)

Y◭nY◮n =
1

(1 + 1/Y◮n+1)(1 + 1/Y◭n−1)
, n > 1. (4.41)

The explicit general solution of this system with two parameters α and β is

Y◭n =















(α2−1)
2
αn

β
“

αn− α+β
αβ+1

”“

α+ 1
β

”“

αn+2−αβ+1
α+β

”

(α+β)
, n is odd

(α2−1)
2
αn

(αn−1)
“

α+ 1
β

”

(αn+2−1)(α+β)
, n is even

(4.42)

and Y◮n is obtained from Y◭n by replacing β → 1/β. We can easily compute M0 for this

solution,

eM0 =
(αβ + 1)(α + β)

(α2 − 1)2 β
(4.43)

and by matching with the asymptotic solution we identify

λ1 = α , λ2 = λ3 = λ4 = 0 , λ5 = −β . (4.44)

so that we get

eM0 =
(λ5 − λ1)(1 − λ1λ5)

(

λ2
1 − 1

)2
λ5

. (4.45)

5 One-loop strong coupling quasi-classical string spectrum

In this section we briefly describe the construction of [70], applied for the ABJM model.

The algebraic curve described in [36] can be used to compute the one-loop correction for a

generic finite gap classical string state by computing the spectrum of fluctuations around

a given solution. We assume that the one-loop shift computed from the algebraic curve

agrees with the strong coupling expansion of ABA in the limit L/h≫ 1. This assumption

was explicitly verified for the folded string in [104]. The general proof like in [105] is

still missing.
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q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

CP3 AdS4 Fermions

HeavyHeavy LightLight

Figure 3. Elementary excitations of the string in AdS4 × CP
3.

There is yet another way to compute the one-loop shift directly from the world-sheet

action which is similar to the algebraic curve computation. Whereas for the folded string

both computations give the same excitation frequencies15, for the circular string a negative

result was obtained in [109]. Recently it was shown that one should be more carefull

with the periodicity of the fermionic fields in the world-sheet approach and the corrected

derivation leads to agreement with the algebraic curve frequencies [110] so we assume all

approaches to be consistent with each other.

The pattern of excitations in the ABJM theory is quite different from that of AdS5×S5.

The string in AdS4 × CP
3 has 8 bosonic (3 modes of AdS4 and 5 of CP

3) and 8 fermionic

excitations. They are divided into heavy and light modes (see figure 3). The dispersion

relations for the heavy and light modes differ by a factor of two. We will see that this

complicated structure of heavy and light fluctuations is captured by the Y-system. As usual

the one-loop shift is given by a sum over the fluctuation energies [111]. In the algebraic curve

language the fluctuations are the small cuts (i.e. poles) connecting different sheets of the

algebraic curve qi. The poles could be placed only in certain special positions xij
n given by

qi(x
ij
n ) − qj(x

ij
n ) = 2πn . (5.1)

The quasiclassical Bohr-Sommerfeld quantization condition constrains the minimal residue

of the pole. Insertion of the pole results in displacement of the other singularities.

Moreover the pole by itself carries the energy ω(xij
n ) for the light mode and 2ω(xij

n ) for

the heavy mode where

ω(x) =
1

x2 − 1
. (5.2)

15similar analysys for the giant magnon was done in [74, 75],McLoughlin:2008ms,Gromov:2008fy
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Following [70] we first compute this second part of the one-loop shift which does not take

into account the back-reaction of the fluctuation on the large cuts. Then we have

δE0
1−loop =

1

2

∑

n

∑

light

(−1)Fijω(xij
n ) +

∑

n

∑

heavy

(−1)Fijω(xij
n ) (5.3)

where Fij = 1 for bosonic modes and −1 for fermionic. The modes are

(i, j) = (4, 5), (4, 6), (3, 5), (3, 6) , light bosonic modes (5.4)

(i, j) = (3, 7), (2, 9), (1, 9), (1, 10) , heavy bosonic modes (5.5)

(i, j) = (2, 5), (2, 6), (1, 5), (1, 6) , light fermionic modes (5.6)

(i, j) = (2, 7), (1, 7), (2, 8), (1, 8) , heavy fermionic modes (5.7)

Rewriting the sum (5.3) as an integral we get

δE0
1−loop =

∑

(ij)

∮

U+

dx

2πi
ω(x)∂xN0 (5.8)

where the integration goes over the upper half of the unit circle |x| = 1 and we denote

eN0 =
∏

light

(1 − e−ipi+ipj)Fij

∏

heavy

(1 − e−ipi+ipj)2Fij (5.9)

Note that ∂xN0 is constructed to have the residue ±1 (±2) exactly at the position of the

light (heavy) mode xij
n . More explicitly we can write

eN0 =
(λ2

1−1)2(λ2
2−1)2(λ1λ2−1)2(λ3λ4−1)2(λ3−λ5)(λ4−λ5)(λ3λ5−1)(λ4λ5−1)

(λ1λ3−1)2(λ2λ3−1)2(λ1λ4−1)2(λ2λ4−1)2(λ1−λ5)(λ2−λ5)(λ1λ5−1)(λ2λ5−1)
(5.10)

where

λa = e−iqa . (5.11)

For sl2 sector [37] there are only cuts connecting 2nd and 9th sheets so that

λ5 = 1 , λ3 = λ4 = ∆ , λ2 = ∆f , λ2 = ∆f̄ (5.12)

and (5.10) simplifies to

eN0 =
(∆ − 1)6(∆ + 1)2(∆f + 1)2(∆f̄ + 1)2(∆2f f̄ − 1)2

(∆2f − 1)4(∆2f̄ − 1)4
, (5.13)

where we recognize N0 = −M0 and (5.8) coincides precisely with the second term in (4.39)!

Then one should also take into account the back-reaction of the fluctuations. As it is

explained in detail in [70] for that one should work with the modified Bethe equations. We

need to consider only the fluctuations touching those sheets where the macroscopic cuts

are located. Hence, one of those sheets has to be the 2nd or the 9th sheet. Computing the

r.h.s of (5.9) with that restriction imposed, we get, similarly to [70],

eN+ = − (λ1λ2 − 1)(λ2
2 − 1)2

(λ2λ3 − 1)(λ2λ4 − 1)(λ2 − λ5)(λ2 − 1/λ5)
(5.14)

eN− = − (λ2
1 − 1)2(λ1λ2 − 1)

(λ1λ3 − 1)(λ1λ4 − 1)(λ1 − λ5)(λ1 − 1/λ5)
(5.15)
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and from (5.12) we get

eN+ = −(∆f + 1)2(∆2f f̄ − 1)

(∆2f − 1)2
, eN− = −(∆f̄ + 1)2(∆2f f̄ − 1)

(∆2f̄ − 1)2
(5.16)

and we recognize exactly the same structures (4.37) we got from solving the Y-system!

Finally by putting λ2 = λ3 = λ4 = 0 we obtain

eN0 =
(λ2

1 − 1)2λ5

(λ1 − λ5)(λ1λ5 − 1)
(5.17)

which is again precisely the quantity e−M0 obtained for this sector in (4.45)!

We see that the nontrivial pattern of the fluctuations is reflected in the Y-system thus

providing a direct link with the worldsheet theory. This is also a deep test of the structure

of the Y-system equations we proposed.

6 Conclusion

In this paper we refined the Y-system for the ABJM theory which was conjectured in [54].

We derived it directly through the TBA approach and then made several highly nontrivial

tests at strong coupling. In particular we constructed the general sl2 solution for the new

Y-system in the scaling limit, and also made a test for a subsector where the difference

between the old and the new Y-systems is crucial.

We also constructed the general asymptotic solution of the Y-system for arbitrary

excited states. It can be used, in particular, for the weak coupling tests of the conjecture

and as an initial configuration for numerical iterative solutions.

Note added. While we were working on the strong coupling solution, the paper [112]

appeared, with a similar Y-system and vacuum TBA equations.
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A Notation and kernels

We use the following notation for kernels in TBA equations:

Kn(u, v) ≡ 1

2πi

∂

∂v
ln
u− v + in/2

u− v − in/2
, (A.1)

Kn,m(u, v) ≡
m−1

2
∑

j=−m−1
2

n−1
2
∑

k=−n−1
2

K2j+2k+2(u, v), (A.2)

Snm(u, v) ≡ 1

2πi

∂

∂v
log σBES(x[+n](u), x[−n](u), x[+m](v), x[−m](v)) (A.3)

S̃nm(u, v) ≡ Snm(u, v) +
ni

2
P(m)(v) (A.4)

B(ab)
nm (u, v) ≡

n−1
2
∑

j=−n−1
2

m−1
2
∑

k=−m−1
2

1

2πi

∂

∂v
log

b(u+ ia/2 + ij, v − ib/2 + ik)

b(u− ia/2 + ij, v + ib/2 + ik)
(A.5)

R(ab)
nm (u, v) ≡

n−1
2
∑

j=−n−1
2

m−1
2
∑

k=−m−1
2

1

2πi

∂

∂v
log

r(u+ ia/2 + ij, v − ib/2 + ik)

r(u− ia/2 + ij, v + ib/2 + ik)
, (A.6)

where

b(u, v) =
1/xmir(u) − xmir(v)

√

xmir(v)
, r(u, v) =

xmir(u) − xmir(v)
√

xmir(v)
, (A.7)

and

P(a)(v) = − 1

2π
∂v log

xmir(v + ia/2)

xmir(v − ia/2)
. (A.8)

To derive (3.31) we use the following integral representation [60, 61]:

2S̃nm(u, v)−R(11)
nm (u, v)+B(11)

nm (u, v) = −Kn,m(u−v) (A.9)

−2
∞
∑

a=1

∫

[

B(10)
n1 (u,w+ia/2)B(01)

1m (w−ia/2, v)+B(10)
n1 (u,w−ia/2)B(01)

1m (w+ia/2, v)
]

dw.

Equation (3.31) follows due to the identity R(11)
nm (u, v) + B(11)

nm (u, v) = Kn,m(u− v).

B Fermionic duality transformation and su(2)

We can transform a set of Bethe equations into an equivalent one by application of the

fermionic duality. This follows [34] closely. We construct the polynomial

P (x) =

K4
∏

j=1

(x− x+
4,j)

K4̄
∏

j=1

(x− x+
4̄,j

)

K2
∏

j=1

(x− x−2,j)(x− 1/x−2,j)

−
K4
∏

j=1

(x− x−4,j)

K4̄
∏

j=1

(x− x−
4̄,j

)

K2
∏

j=1

(x− x+
2,j)(x− 1/x+

2,j) (B.1)
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from the Bethe equations of [37] (given in section 2.1 of the present work) for the fermionic

roots u1 and u3. We see that this polynomial has zeros for x = 1/x1,j and x = x3,j.

Denoting the remaining zeros of this polynomial by x̃, we get

P (x) = C

K3
∏

j=1

(x− x3,j)

K1
∏

j=1

(x− 1/x1,j)

K̃3
∏

j=1

(x− x̃3,j)

K̃1
∏

j=1

(x− 1/x̃1,j) (B.2)

(where C is a constant) or in our notation (with R ≡ R4R4̄, B ≡ B4B4̄)

P (x) = CR3B1R3̃B1̃ =
[

R(−)Q+
2 −R(+)Q−

2

] (x

h

)K2
K4
∏

j=1

√

x+
4,j (B.3)

P (x+)

P (x−)
=
R+

3 B
+
1 R

+
3̃
B+

1̃

R−
3 B

−
1 R

−
3̃
B−

1̃

=

(

x+

x−

)K2 R(−)+Q++
2 −R(+)+Q2

R(−)−Q2 −R(+)−Q−−
2

(B.4)

and
P (1/x−)

P (1/x+)
=
B−

3 R
−
1 B

−
3̃
R−

1̃

B+
3 R

+
1 B

+
3̃
R+

1̃

=

(

x+

x−

)K2 B(−)−Q2 −B(+)−Q−−
2

B(−)+Q++
2 −B(+)+Q2

(B.5)

then

f(u) = −
(

x+

x−

)K2 R(+)+B−
1 B̃

−
1 B

+
3 B̃

+
3

R(−)−B+
1 B̃

+
1 B

−
3 B̃

−
3

, fa(u) ≡
a−1
2
∏

n=− a−1
2

f(u+ in) (B.6)

Ta,1(u|{u1,j}, {u3,j}) = fa(u)T1,a(u|{ũ1,j}, {ũ3,j}) (B.7)

T1,s(u|{u1,j}, {u3,j}) = fs(u)Ts,1(u|{ũ1,j}, {ũ3,j}) (B.8)

Here, the bar means complex conjugation in the physical sense, i.e. the replacement

R(±)± → R(∓)∓ , B(±)± → B(∓)∓. (B.9)

Notice that x is not inverting under this conjugation.

Y◭a ≃
(

x[−a]

x[+a]

)L−K2

Ta,1

a−1
2
∏

n=− a−1
2

Φ̃
θE
na

4 (u+ in)Φ̃
θO
na

4̄
(u+ in), (B.10)

Y◮a ≃
(

x[−a]

x[+a]

)L−K2

Ta,1

a−1
2
∏

n=− a−1
2

Φ̃
θO
na

4 (u+ in)Φ̃
θE
na

4̄
(u+ in) (B.11)

As in section 2, the factors Φ̃4(u) and Φ̃4̄(u) are constructed in such a way that the ABA

equations for the momentum carrying nodes are given by Yph
◭1

(u4,j) = −1 and Yph
◮1

(u4̄,j) =

−1. We have

Φ̃4(u) = −S4S4̄
B

(+)+
4 R

(−)−
4 B̃−

1 B̃
+
3

B
(−)−
4 R

(+)+
4 B̃+

1 B̃
−
3

eiQ1/2 , Φ̃4̄(u) = −S4S4̄

B
(+)+
4̄

R
(−)−
4̄

B̃−
1 B̃

+
3

B
(−)−
4̄

R
(+)+

4̄
B̃+

1 B̃
−
3

eiQ1/2 .

(B.12)

where B̃l, R̃l are defined similarly to (2.8), (2.9), with xl,j replaced by x̃l,j.
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C Explicit expressions for Y-functions

Here we present the solution of the Y-system in the scaling limit for the sl(2) sector. This

solution was obtained in section 4, and below we give its explicit form, which can be used

in the Mathematica system. We denote d = ∆, g = f4, gb = f̄4, Ym[a_] = Y•a , Yp[a_] =

Y△a , Yb[s_] = Y©s , and the Y-functions are given by the following code:

sb={

A-> ((1+d)(1-d g^2-g gb+2 d g gb-d^2 g gb-d gb^2+d^2 g^2 gb^2)

(1-d g^2+g gb-2 d g gb+d^2 g gb-d gb^2+d^2 g^2 gb^2))/

((-1+d)(-1+g)(1+g)(-1+d g)(1+d g)(-1+gb)(1+gb)(-1+d gb)(1+d gb)),

S1->((-1+g)(1+g)gb^2(-1+d gb)(1+d gb))/(g^2(-1+d g)(1+d g)(-1+gb)(1+gb)),

S2->((-1+g)(1+g)(-1+gb)(1+gb))/(g^2(-1+d g)(1+d g)gb^2(-1+d gb)(1+d gb)),

P-> ((-1+d g^2)^2(-1+d gb^2)^2)/((-1+d)^4g^2gb^2),

T2->d g gb, T1->-(g/gb)};

Ym[a_]=-1+(S2 T2^(1+a)(-1+T2^2)-S1^2 S2 T1^(4+2a)T2^(1+a)(-1+T2^2)+

S1 T1^(1+a)(-1+T1^2)(-1+S2^2 T2^(4+2a)))^2/

((-S2 T2^a (-1+T2^2)+S1^2 S2 T1^(2+2 a)T2^a (-1+T2^2)-

S1 T1^a (-1+T1^2)(-1+S2^2 T2^(2+2 a)))(-S2 T2^(2+a)(-1+T2^2)+

S1^2 S2 T1^(6+2 a) T2^(2+a)(-1+T2^2)-

S1 T1^(2+a)(-1+T1^2)(-1+S2^2 T2^(6+2 a))))/.sb;

Yp[a_]=((S1 T1^(4+a) T2)/(-1+T1^2)+(T1^-a T2)/(S1-S1 T1^2)-

(T1(T2^-a-S2^2 T2^(4+a)))/(S2 - S2 T2^2))^2/(-((S1 T1^(4+a)T2)/

(-1+T1^2)+(T1^-a T2)/(S1 - S1 T1^2)-(T1(T2^-a-S2^2 T2^(4+a)))/

(S2-S2 T2^2))^2+(T1^(-2 a)T2^(-2 a)(T2^2-S2^2 T2^(4+2 a)-

2 S1 S2 T1^(2+a)T2^(2+a)(-1+T2^2)+2 S1 S2 T1^(4+a)T2^(2+a)(-1+T2^2)+

S1^2 T1^(6+2 a)T2^2(-1+S2^2 T2^(2+2 a))+2 T1 T2 (-1+S2^2 T2^(4+2 a))-

2 S1^2 T1^(5+2 a)T2(-1+S2^2 T2^(4+2 a))+T1^2 (1-S2^2 T2^(6+2 a))+

S1^2 T1^(4+2 a)(-1+S2^2 T2^(6+2 a)))^2)/(S1^2 S2^2 (-1+T1^2)^2

(-1+T2^2)^2(T2+T1^2 T2-T1(1+T2^2))^2))/.sb;

Yb[s_]=(s-A)^2-1/.sb;

Y11=(-1+(S1 S2(-1+T1^2)(-1+T2^2)(T2^2-S2^2 T2^6-2 S1 S2 T1^3 T2^3 (-1+T2^2)+

2 S1 S2 T1^5 T2^3(-1+T2^2)+S1^2 T1^8 T2^2(-1+S2^2 T2^4)+

2 T1 T2(-1+S2^2 T2^6)-2 S1^2 T1^7 T2(-1+S2^2 T2^6)+T1^2 (1-S2^2 T2^8)+

S1^2 T1^6 (-1+S2^2 T2^8))^2)/((S1^2 S2 T1^4 T2 (-1+T2^2)+S2 (T2-T2^3)-

S1 T1 (-1+T1^2)(-1+S2^2 T2^4))^2 (T2^2-S2^2 T2^8-2 S1 S2 T1^4 T2^4 (-1+T2^2)+

2 S1 S2 T1^6 T2^4 (-1+T2^2)+S1^2 T1^10 T2^2 (-1+S2^2 T2^6)+2 T1 T2 (-1+S2^2 T2^8)-

2 S1^2 T1^9 T2 (-1+S2^2 T2^8)+T1^2 (1-S2^2 T2^10)+S1^2 T1^8 (-1+S2^2 T2^10))))/.sb;

Y22=(P/Y11)/.sb;
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