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Abstract. We propose a rationale for experimentally studying the intricate rela-
tionship between the rate of information transmission and synchronization level in
active networks, applying theoretical results recently proposed. We consider two
non-identical coupled Chua’s circuit with non-identical coupling strengths in order
to illustrate the proceeding for experimental scenarios of very few data points com-
ing from highly non-coherent coupled systems, such that phase synchronization
can only be detected by methods that do not rely explicitely on the calculation of
the phase. A relevant finding is to show that for the coupled Chua’s circuit, the
larger the level of synchronization the larger the rate of information exchanged
between both circuits. We further validate our findings with data from numerical
simulations, and discuss an extension to arbitrarily large active networks.

1 Introduction

Given an arbitrary time dependent stimulus that externally excites an active network, formed by
elements that have some intrinsic dynamics (e.g. neurons or oscillators), how much information
from such stimulus can be realized by measuring the time evolution of one of the elements
of the network ? For example, in neurosciences, determining how and how much information
flows along anatomical brain paths is an important requirement for understanding how animals
perceive their environment, learn and behave [1–3].
Even though the approaches in [1–6] have brought considerable understanding on how and

how much information from a stimulus is transmitted in a neural network, the relationship
between synchronization and information transmission in a neural as well as in an active network
is still awaiting a more quantitative description.
In order to treat this problem in a more analytical way, we proceed in the same line as

in [7,8], and study the information transfer in autonomous networks. However, instead of treat-
ing the information transfer between dynamical systems components, we treat the transfer of
information per unit time exchanged between two elements in an autonomous chaotic active
network [9]. Arguably, the relationship between synchronization and information in autonomous
chaotic networks is useful for understanding its counterpart in non-autonomous active networks.
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The purpose of the present work is to revisit some previous theoretical results and explain
how to apply such approaches to study information transmission and synchronization from data
coming from experiments.
In [9], we proposed a formula (see eq. (10)) that enables the calculation of the rate with

which information is exchanged between two elements in a chaotic network, in terms of defined
positive conditional Lyapunov exponents. Consider two non-identical coupled chaotic systems
with two positive conditional exponents, λ‖ and λ⊥. The upper bound for the rate with which
information is exchanged between these two elements is given by λ‖ − λ⊥.
While Lyapunov exponents measure the exponential divergence of nearby trajectories in

phase space, the conditional Lyapunov exponents measure the exponential divergence of nearby
trajectories on a coordinate-transformed space. This transformed space (see section 4) is con-
structed in such a way that if the elements in a network are almost completely synchronous
[10–12], then one conditional exponent, λ‖, measures the exponential divergence of trajectories
along the synchronization manifold, and the other exponent, λ⊥, measures the exponential di-
vergence of trajectories along the transversal manifold. Then, the rate of information exchanged
between two elements is the rate of information produced by the synchronous trajectories (λ‖)
minus the rate of information produced by the desynchronous trajectories (λ⊥). Thus, this
formula enables one to understand the relationship between information and synchronization,
since the so defined conditional exponents are a measure of the synchronization and desynchro-
nization between two elements in a network.
We apply the formula proposed in [9] using an experimental perspective. We consider that

one has only a short time series available to do the analysis and that the system is highly
non-coherent. Under such conditions, we will show that the largest Lyapunov exponent of a
two coupled Chua’s circuit [13] can only be well estimated using a bivariate time series that
contains information of the trajectories of both circuits. Further, we show that the second largest
Lyapunov exponent can only be roughly estimated by using information from the characteristic
of conditional observations performed in one circuit while the other realizes some event. These
conditional observations, defined in [14,15], are in fact an alternative way of detecting phase
synchronization [16,17] without having to actually measure the phase. Such a method is a
necessary tool in order to study phase synchronization in non-coherent systems whose phases
might not always be well defined, as the one considered here, the two non-identical diffusively
coupled Chua’s oscillators, with non-identical coupling strengths (section 2).
We start by showing how one can measure phase synchronization in this coupled circuit

(section 3). Further, we demonstrate (section 4) that eq. (10) can be written in terms of the
positive Lyapunov exponents, thus enabling the use of standard codes to study information
transmission in coupled chaotic systems. Since the amount of data points in each time series
is small, alternative techniques to calculate the second largest Lyapunov exponent will be
developed (section 4.1). The direct relationship between synchronization and information, one
of the main results of this work, is detailed in section 5, and finally, in section 6, we discuss
how to extend our results to larger networks with arbitrary connecting topologies.

2 Experimental and numerical simulation setups

2.1 Experiment

We consider two diffusively coupled non-identical Chua’s circuits [13] as shown in fig. 1. Each
oscillator is composed by a resistor R1,8, an inductor L1,2, two capacitors C1,3 and C2,4, and
one piecewise-linear resistance. In our notation, the first (second) index denotes an element in
the upper (lower) circuit of fig. 1. The upper circuit is regarded as S1 and the lower as S2. The
piecewise-linear resistance is designed by a pair of linear amplifiers, U1-U2 (in S1) or U3-U4 (in
S2) with an op-amp 741µA, for each oscillator. The resistance RC sets the coupling strengths,
ε1 =

R1
RC
and ε2 =

R8
RC
.

Two state variables, x1 = VC1 and x2 = VC3, are monitored using two channels of a digital
oscilloscope (Tektronix, TDS 220) at the nodes of the capacitors C1 and C3, respectively,
for varying coupling resistance RC . Data acquisition is made for 2500 data points at each
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Fig. 1. Two diffusively coupled Chua’s oscillators with a power supply of ±9V, and parameters
L1 = 20.5mH, r01 = 47.46Ω, C1 = 9.56 nF, C2 = 95.9 nF, R2 = 3215Ω, R3 = 21.28kΩ, R5 = 2147Ω,
L2 = 20.3mH, r02 = 46.98Ω, C3 = 9.93 nF, C4 = 93.3 nF, R9 = 3186Ω, R10 = 21.26kΩ, R12 = 2106Ω.

snapshot by an 8-bit memory of the oscilloscope, with a time step-size ∆t = 0.002ms. All
circuit component values are precisely measured using a standard LCR-Q bridge (APLAB
4910). We consider 20 data sets denoted by Fo, with o = {1, . . . , 20} representing the value of
RC . The larger o is, the larger RC is. The set denoted as F21 contains data from the uncoupled
circuits (ε = 0).

2.2 Simulation

To simulate the equations of motion of the circuit in fig. 1, we use the dimensionless set of
equations given by,

dxi

dτ
= τiαi[yi − xi − f(xi)] + εiτiαi(xj − xi),

dyi

dτ
= τi(xi − yi + zi), (1)

dzi

dτ
= τi(−βiyi − γizi),

where (i, j) = (1, 2) with j �= i, τ1 = 1, τ2 = R1C2
R8C4

, α1 =
C2
C1
, β1 =

R21C2
L1
, γ1 =

R1r01C2
L1

, α2 =

C4
C3
, β2 =

R28C4
L2
, γ2 =

R8r02C4
L2

, ε1 =
R1
RC
, and ε2 =

R8
RC
. The state variables are the dimensionless

voltages x1 =
VC1
E
, x2 =

VC3
E
, y1 =

VC2
E
, y2 =

VC4
E
(at the respective capacitor nodes), z1 =

R1IL1
E
, and z2 =

R8IL2
E
(where IL1,L2 is the inductor current). E is the saturation voltage of the

op-amps approximated as E ≈ 1.
The parameters considered for the numerical simulations are r01 = 47.46, r02 = 46.98, R1 =

1650, R2 = 3224, R3 = 21300, R4 = 21330, R5 = 2153, R6 = 221.6, R7 = 220.6, R8 = 1650,
R9 = 3194, R10 = 21320, R11 = 21330, R12 = 2111, C1 = 9.56 × 10−9, C2 = 95.9 × 10−9,
C3 = 9.93×10−9, C4 = 93.3×10−9, L1 = 20.5×10−3 and L2 = 20.3×10−3. Components have
standard units as Ohm for resistance, Farad for capacitance and Henry for inductance.
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The piecewise-linear function f(x1,2) is defined as

f(x1,2) =

∣∣∣∣∣∣
b1,2x1,2 + (b1,2 − a1,2), if x1,2 < −1 → Domain D−
a1,2x1,2, if −1 ≤ x1,2 ≤ 1 → Domain D0
b1,2x1,2 + (a1,2 − b1,2), if x1,2 > 1 → Domain D+

(2)

where a1,2 =
(− 1

R2,9
− 1
R5,12

)
R1,8 and b1,2 =

(
1

R3,10
− 1
R5,12

)
R1,8. The piecewise linear function

f(x1,2) has a slope a1,2 in the inner region near the equilibrium at the origin (domain D0) and
a slope b1,2 in the outer regions close to the two mirror symmetric equilibria of each oscillator
(domains D+ and D−).
The dimensionless variables in the time-τ frame of the numerical simulations are obtained

by rescaling the time-t frame of the experiment by τ = t
R1C2

.

3 Phase, phase synchronization, and conditional maps

Phase synchronization (PS) [16] is a phenomenon defined by,

|∆φ(S1, S2)| = |φ1 −mφ2| ≤ r, (3)

where φ1 and φ2 are the phases of two elements S1 and S2, m = ω2/ω1 is the angular frequency
ratio that can be a real number [17], and ω1 and ω2 are the average frequencies of oscillation
of the elements S1 and S2. The phase φ is a function constructed on a 2D subspace, whose
trajectory projection has proper rotation, i.e. it rotates around a well defined center of rotation.
The Chua’s circuit, while presenting a double scroll attractor, has no proper rotation in the
phase space, but it can have proper rotation in the velocity space, therefore it can admit a
phase that measures the displacement of the tangent vector [14,18] and can be calculated as
shown in [18] by,

φ(t) =

∫ t
0

ÿẋ− ẍẏ
(ẋ2 + ẏ2)

dt. (4)

However, as neither the simulated nor the experimental circuit, for ε �= 0, present proper
rotation in both phase and velocity spaces, eq. (4) has only physical meaning for a time interval
where the attractors are far away from the equilibrium points, a time that can be large but
not infinitely large. Therefore, for the present study is necessary to employ alternative methods
that detect phase synchronization without having to measure the phase, as the one proposed
in [14,15]. If PS exists between two subspaces, then by observing the trajectory of one circuit
at the time the other circuit makes a physical event (an event that has positive probability of
occurrence), there exists at least one special curve, Γ , in this subspace, for which the points
obtained from these conditional observations do not visit its neighborhood. Such a curve Γ is
defined in the following way. Given a point x0 in the attractor projected onto the subspace
of one circuit where the phase is defined, Γ is the union of all points for which the phase,
calculated from this initial point x0, reaches n〈r〉, with n = 1, 2, 3, . . . ,∞ and 〈r〉 a constant
(typically 2π). Clearly, an infinite number of curves Γ can be defined.
For coupled systems with sufficiently close parameters that have proper rotation in some

subspace, if the points obtained from the conditional observations do not visit the whole attra-
ctor projection on this subspace, one can always find a curve Γ that is far away from the
conditional observations. Therefore, for such cases, to state the existence of PS one just has to
check if the conditional observations are localized with respect to the attractor projection on
the subspace where the phase is calculated. Note that the value of the angular frequency ratio,
m, is irrelevant to state PS using these conditional mappings. Whatever m is, if there is PS,
these mappings will be localized.
In a general situation, where the attractor has no proper rotation either in phase or velocity

spaces and the event is a physical event, thus, as demonstrated in [15], PS implies the localization
of the conditional sets.
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Fig. 2. (Color online) projections of the attractor (gray (green) lines) and conditional mappings (black
filled circles). Experimental results are shown in (A–B) and simulations in (C–D). PS happens for the
data set F12 (A) and it is absent for the data set F18 (B). PS is observed for RC = 12, 000 (C) and is
absent for RC = 25, 000 (D). The conditional mappings for (A) (resp. (B)) are constructed by observing
the circuit S2 at the moment the events defined in conditions (5) and (6) (resp. eq. (7)) happen in
S1, and the conditional mappings in (C–D) are constructed by observing the circuit S2 at the moment
the events defined in conditions (8) and (9) happen in S1. The straight black line (A,C) illustrates a
surface Γ .

3.1 Events

An event is considered to be the crossing of the trajectory to a Poincaré section.
The experimental Poincaré sections are defined in the 2D time-delay space, constructed

using the coordinates (x(t), x(t) + δ), with the time-delay δ = 6∆τ , and they are given by,

x(t+ δ) = xc and x(t) ≥ xc, (5)

x(t+ δ) = −xc and x(t) ≤ −xc, (6)

with xc = 1.5, for the data sets F1 to F16 plus F21, and

x(t+ δ) = xc if x(t) ≥ xc, (7)

with xc = 0, for the data sets F17 to F20. The theoretical Poincaré sections are defined as

x1(t) = xc and y1(t) < 0, (8)

x1(t) = −xc and y1(t) < 0, (9)

with xc = 2.

3.2 Observing phase synchronization in the coupled Chua’s circuit without
measuring the phase

In figs. 2(A, C), we show the presence of PS in the experiment and in the simulations,
respectively, while in figs. 2(B, D), we show the absence of such a phenomenon. While in
figs. (A, C), a surface Γ can be defined such that the conditional observations do not visit
it, i.e. the conditional observations are localized with respect to the attractor, in (B, D) the
conditional observations spread all over the attractor, i.e. they are not localized.

4 Mutual information rate, Lyapunov and conditional exponents

In recent publications [9], we have shown that the mutual information rate (MIR) between two
elements in an active chaotic network, quantifying the amount of information per unit time
that can be realized in one element, i, by measuring another element, j, is given by the sum
of the conditional Lyapunov exponents associated with a parallel coordinate transformation
minus the positive conditional Lyapunov exponents associated with a transversal coordinate
transformation.
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Assuming that every element possesses only one positive Lyapunov exponent, for every
pair of elements, whose state variables are given by xi and xj , we can define a coordinate

transformation x
‖
ij = xi+xj and x

⊥
ij = xi−xj that produces two positive conditional exponents,

λ‖ and λ⊥ (in units of bits/unit time). The mutual information rate (MIR), denoted by IC(t),
between the element xi and xj is bounded from above by λ

‖ − λ⊥, and thus
IC(xi,xj) ≤ λ‖ − λ⊥ (10)

where equality certainly holds if the elements are identical and are either in complete synchrony
or decoupled (ε = 0).
As shown in [9], if there are N = 2 linearly coupled chaotic systems that produce at most

two positive Lyapunov exponents, λ1 and λ2, with λ1 > λ2, then λ‖ = λ1 and λ⊥ = λ2, since
the parallel and the transversal coordinate transformations are only rotations which do not
alter the value of the Lyapunov exponents.
This result can be easily demonstrated for the system considered here, due to its linear

form. Thus, we can write
IC(xi,xj) ≤ λ1 − λ2. (11)

Making the notation x = (xT1 ,x
T
2 ) and X = (x

⊥T
12 ,x

‖T
12 ), we have that,

ẋ =M1x+ c1, (12)

Ẋ =M2X+ c2, (13)

X =Mx, (14)

whereM1,M2, andM are 6×6 matrices and c1 and c2 are constant terms from the piecewise-
linear function. MatricesM2 andM are explicitly written in Appendix (section 8), while matrix
M1 is the Jacobian of eq. (1).
Writing eqs. (12), (13), and (14) in the variational form, and making a Taylor expansion

(which eliminates the constant terms), the following equations are retrieved,

˙ξx =M1ξx, (15)

˙ξX =M2ξX. (16)

While the Lyapunov exponents of eq. (1) are calculated from eq. (15), the conditional exponents
are calculated from eq. (16), both using the approach in [23]. But,

˙ξx =M−1 ·M2 ·Mξx. (17)

Noting thatM−1 ·M2 ·M is just a rotation applied to matrixM2, and since a rotation does not
change the eigenvalues ofM2, thus, the Lyapunov exponents should be equal to the conditional
exponents.
Assuming that we have a large active network, the theoretical approaches proposed in

[9] remain valid whenever the coordinate transformation x
‖
ij = xi + xj and x

⊥
ij = xi − xj

successfully separate the two systems i and j from the whole network. Such a situation arises,
for example, in networks of chaotic maps of the unit interval connected by a diffusive (also
known as electrical or linear) all-to-all topology, where every element is connected to all other
elements. These approaches were also shown to be approximately valid for chaotic networks of
oscillators connected by a diffusively all-to-all topology. The discussion on how to extend such
approaches to arbitrary network topologies is given in section 6.
In order to compare our results with known quantities, we will also calculate the MIR using

Shannon’s formalism [22]. The MIR between the two circuits can be roughly estimated by
symbolizing their trajectories and then measuring the mutual information from the Shannon
entropy of the symbolic sequences. The mutual information between S1 and S2 is given by

I ′S = H(S1)−H(S2|S1), (18)
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where H(S1) is the uncertainty about what S1 has sent (entropy of the message), and H(S2|S1)
is the uncertainty of what was sent, after observing S2. In order to estimate the mutual informa-
tion between the two chaotic Chua’s circuit by symbolic ways, we have to proceed with a non-
trivial technique to encode the trajectory, which constitutes a disadvantage of such technique
to chaotic systems. We represent the time at which the n-th event happens in Sk (k = {1, 2})
by Tnk , and the time interval between the n-th and the (n+1)-th event, by δT

n
k .

We encode the events using the following rule. The i-th symbol of the encoding is a “1”
if an event is found in the time interval [i∆, (i + 1)∆] and “0” otherwise. We choose ∆ ∈
[min (δTnk ),max (δT

n
k )] in order to maximize I

′
S . Each circuit produces a symbolic sequence

that is split into small non-overlapping sequences of length l = 12. The Shannon entropy of
the encoding symbolic sequence (in units of bits) is estimated by H = −∑p Pp log2 Pp, where
Pp is the probability of finding one of the 2

l possible symbolic sequences of length l. The term
H(S2|S1) is calculated by H(S2|S1) = −H(S2) + H(S1;S2), with H(S1;S2) representing the
joint entropy between both symbolic sequences for S1 and S2.
Finally, the MIR (in units of bits/unit time), denoted by IS , is calculated from

IS =
I ′S
∆× l . (19)

The calculation of IS by means of eq. (19) should be expected to underestimate the real value
of the MIR. Since the Chua’s circuit has two time-scales, a large sequence of sequential zeros in
the encoding symbolic sequence should be expected to be found between two events (large δTnk
values), leading to a reduction in the value of H(S1), followed by an increase in the value of
H(S2|S1), as there will be a large sequence of zeros happening simultaneously in the encoding
sequence for the time intervals between two events of S1 and S2.

4.1 Experimental exponents

The estimation of the Lyapunov exponents from the experimental time series data was done
using a method recently proposed ([19]). The first step in the algorithm is the phase recon-
struction, accomplished by means of the nearest neighbor embedding with different time delays
method proposed in [20]. This method considers different time delays for every embedding
coordinate. The embedding dimension is estimated using the false nearest neighbors criterion
proposed in [21]. The second step of this algorithm pertains estimating local tangent maps
by a least-squares minimization with a pseudo-inverse method. Finally, in the third step of
this method, the exponents are derived from the usual QR decomposition with a modified
Gram-Schmidt method.
Due to the small number of data points and the additional fact that the coupled Chua’s

circuit has a highly non-coherent dynamics, a better estimate of the largest Lyapunov exponents
was achieved by an attractor reconstructed from the bivariate data set (x1(t), x2(t)).
However, even the bivariate data set is not capable of providing a second largest positive

Lyapunov exponent, λ2, which should be positive if there is not complete synchronization. So,
in order to estimate λ2 from the experimental data sets, we assume that

λ2 = λ1
(
max (xn2 )−min (xn2 )
max (x2)−min (x2)

)
, (20)

where xn2 is the value of x2(t + δ) at the moment the circuit S1 makes its n-th event. By an
event, we consider conditions (5) and (7). While [max (xn2 ) − min (xn2 )] measures the size
of the conditional observations, [max (x2) − min (x2)] measures the size of the reconstructed
attractor.
Thus, if the conditional observations cover the whole attractor, λ2 = λ1, and thus IC = 0,

which means no information is being transmitted between both circuits, since whenever S1
crosses the defined Poincaré section, S2 can be everywhere. If there is complete synchronization
in the generalized sense [11,12], [max (xn2 )−min (xn2 )] ∼= 0 and IC = λ1, meaning that whenever
S1 crosses the defined Poincaré section, S2 is also about to or has just crossed that particular
section. Therefore, the information about one circuit trajectory by observing the other circuit
is maximal.
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Fig. 3. (Color online) simulations are shown in (A–B) and experimental results in (C–D). In (A), we
show IC (see eq. (11)) and IS (see eq. (19)). The Lyapunov exponents of the simulated circuit, with
which IC is calculated, are obtained using the method of [23] and the variational equations in eq. (15).
Complete synchronization (CS) in the generalized sense [11,12] is observed for RC < 9000 and PS
for 9000 ≤ RC ≤ 16000. In (B), we show the conditional observations realized in S2 at the moment
S1 makes its n-th event, i.e. the crossing of x1(τ) with the defined Poincaré sections (conditions (8)
and (9)). A periodic orbit is observed for RC ∼= 20, 000. In (C), we show λ1 calculated as described in
section 4.1, and IC is calculated considering that λ

2 is estimated from eq. (20). CS in the generalized
sense is observed for the data series Fo, with o ≤ 10, and PS for Fo, with 11 ≤ o ≤ 14. In (D), we show
the conditional observations realized in S2 at the moment S1 makes its n-th event, i.e. the crossing of
x1(t) with the defined Poincaré sections (see conditions (5), (6), and (7)). A periodic orbit is observed
for the data set F16.

5 Synchronization versus information

In figs. 3(A–B), we show results from our numerical simulations, while in figs. (C–D), experi-
mental results. In both cases, one obvious observation is that the more synchronous the circuits
are (small RC), the larger the rate of information that can be measured in one circuit about
the other circuit, being maximal when the two circuits are completely synchronous in the gen-
eralized sense [11,12]. When both circuits are in PS, the MIR decreases but remains larger than
when there is no PS.

6 Mutual information rate in large active networks

For large active networks with elements arbitrarily connected, an extension of eq. (10) is

IC(xi,xj) ≤ max (λ)− λ⊥, (21)

where max (λ) is the largest Lyapunov exponent of the network and λ⊥ is the transversal
exponent between the elements xi and xj . Making an analogy with the usual definition of
mutual information as given by Shannon [22], the term max (λ) provides the rate of information
produced by the source, and the term λ⊥ quantifies the error in the transmission. The term
max (λ) can be calculated by a scalar signal measured from xi, and λ

⊥ can be estimated either
by the ways of eq. (20) or as similarly done in [15].
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7 Conclusions

This work proposes a rationale to experimentally study the relationship between transmission of
information and synchronization in active networks formed by non-identical and non-coherent
elements. For the coupled Chua’s circuit, we have shown that the larger the level of synchro-
nization the larger the rate of information exchanged between both circuits, which implies that
such a system is non-excitable. By non-excitability [9] we mean a system that as the coupling
strength increases, the Kolmogorov-Sinai entropy [23] (the sum of the positive Lyapunov expo-
nents) decreases. For such systems, the maximal mutual information rate that can be achieved,
the so called channel capacity, happens for when complete (generalized) synchronization is
present.
Other relevant contributions of this work include showing that for short time series the

largest conditional exponent (demonstrated to be identical to the largest Lyapunov exponent)
can only be reliably estimated by using a multivariate data set, with information of both ele-
ments being considered, and that the second largest conditional exponent (which also equals
the second largest Lyapunov exponent) can only be reliably estimated by the conditional
observations, realized in one element when the other makes an event. Finally, we have also
shown that for two coupled non-identical and non-coherent systems, phase synchronization can
be detected by these conditional observations, even though for such a system phase is not well
defined.

8 Appendix

Consider the notation x = (xT1 ,x
T
2 ) and X = (x

⊥T
12 ,x

‖T
12 ), such that

ẋ =Mx, and Ẋ =M2X+ c2,

where

M =




1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1



, M2 =



∂ẋ⊥12
∂x⊥12

∂ẋ⊥12
∂x
‖
12

,

∂ẋ
‖
12

∂x⊥12

∂ẋ
‖
12

∂x
‖
12


 ,

with the terms in matrix (22) given by

∂ẋ⊥12
∂x⊥12

=



(
−σ1 − ∂g1(x

⊥
12,x

‖
12)

∂x⊥ − σ2
)

σ1 0

σ3 −σ3 σ3
0 −σ4 −σ5


 ,

∂ẋ⊥12
∂x
‖
12

=




(
−σ8 − ∂g1(x

⊥
12,x

‖
12)

∂x‖

)
σ8 0

σ7 −σ7 σ7
0 −σ9 −σ10


 ,

∂ẋ
‖
12

∂x⊥12
=




(
−σ8 − ∂g2(x

⊥
12,x

‖
12)

∂x⊥ + σ6

)
σ8 0

σ7 −σ7 σ7
0 −σ9 −σ10


 , ∂ẋ

‖
12

∂x
‖
12

=




(
−σ1 − ∂g2(x

⊥
12,x

‖
12)

∂x‖

)
σ1 0

σ3 −σ3 σ3
0 −σ4 −σ5


 ,

where σ1 =
α1+α2τ
2 , σ2 =

(
α1R1
RC
+ α2τR8

RC

)
, σ3 =

1+τC
2 , σ4 =

β1+β2τ
2 , σ5 =

γ1+γ2τ
2 , σ6 =

(
α2τR8
RC

− α1R1
RC

)
, σ7 =

1−τC
2 , σ8 =

α1−α2τ
2 , σ9 =

β1−β2τ
2 , σ10 =

γ1−γ2τ
2 .
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The terms
∂g1(x

⊥
12,x

‖
12)

∂x⊥ ,
∂g1(x

⊥
12,x

‖
12)

∂x‖ ,
∂g2(x

⊥
12,x

‖
12)

∂x⊥ , and
∂g2(x

⊥
12,x

‖
12)

∂x‖ assume different values
depending on which of the domains, namely (i), (ii), (iii), (iv), the values of x1 and x2 belong
to, and are given by

Domains (i) (ii) (iii) (iv)

∂g1(x
⊥
12,x

‖
12)

∂x⊥12
ξ8 ξ5 ξ1 ξ4

∂g1(x
⊥
12,x

‖
12)

∂x
‖
12

ξ7 ξ6 ξ2 ξ3

∂g2(x
⊥
12,x

‖
12)

∂x⊥12
ξ7 ξ6 ξ2 ξ3

∂g2(x
⊥
12,x

‖
12)

∂x
‖
12

ξ8 ξ5 ξ1 ξ4

ξ1 =
a1α1+b2α2τ

2

ξ2 =
a1α1−b2α2τ

2
ξ3 =

a1α1−a2α2τ
2

ξ4 =
a1α1+a2α2τ

2

ξ5 =
b1α1+a2α2τ

2

ξ6 =
b1α1−a2α2τ

2

ξ7 =
b1α1−b2α2τ

2

ξ8 =
b1α1+b2α2τ

2

where domain (i) is defined by x1 ∈ D− and x2 ∈ D−, or x1 ∈ D− and x2 ∈ D+; domain (ii) by
x1 ∈ D− and x2 ∈ D0; domain (iii) by x1 ∈ D0 and x2 ∈ D− or x2 ∈ D+; and domain (iv) by
x1 ∈ D0 and x2 ∈ D0.

References

1. V.A. Smith, J. Yu, T.V. Smulders, et al., PLoS Comput. Biol. 2, e161 (2006)
2. J.J. Eggermont, Neurosc. Biobehav. Rev. 22, 355 (1998)
3. A. Borst, F.E. Theunissen, Nature Neurosci. 2, 947 (1999)
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