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Abstract

Background: Sepsis has been shown to precondition the intact heart against
ischaemia/reperfusion (IR) injury, and prior endotoxin exposure of cells in in vitro
models has shown evidence of protection against subsequent simulated ischaemia.
Our aim in this study is to validate these findings and further investigate the
signaling pathways involved.

Methods: Adult male Sprague Dawley rats were randomised to control (n = 7) or
caecal ligation and perforation (CLP)-induced sepsis (n = 7). Hearts were harvested at
48 h, suspended in Langendorff mode and subjected to 30-min global ischaemia
followed by 90-min reperfusion. In subsequent experiments, designed to determine the
mechanisms by which sepsis protected against ischaemic injury, endotoxin-stimulated
isolated cardiomyocytes, pulmonary A549 cells and renal HK2 cells were
subjected to normoxic and hypoxic conditions. The roles of key pathways, including
mitogen-activated protein (MAP) kinases extracellular-regulated protein kinase (ERK)
1/2, p38 MAPK (p38), c-Jun NH2-terminal protein kinase (JNK)), and nuclear factor-kappaB
(NF-κB) were examined.

Results: Systemic sepsis protected isolated hearts from subsequent ischaemic/
reperfusion-induced injury, enhancing functional recovery on reperfusion [developed left
ventricular pressure ((d)LVP) mean(SE) 66.63(±10.7) mmHg vs. 54.13(±9.9) mmHg; LVPmax

at 60 min 67.29(±11.9) vs. 72.48(±9.3), sepsis vs. control] despite significantly reduced
baseline LV function in CLP animals (p < 0.001). Septic preconditioning significantly
reduced infarct size after IR injury (p < 0.05). Endotoxin exposure protected isolated
cardiomyocytes against hypoxia-induced cell death (p < 0.001). This effect appeared
mediated in part via the p38, JNK and NF-κB pathways, but was independent of the ERK
pathway, and did not appear to be mediated via HMGB1. The preconditioning effect of
endotoxin was also demonstrated in isolated kidney and lung cells, suggesting that this
preconditioning effect of sepsis is not confined to the myocardium.

Conclusions: Sepsis preconditions the isolated rat heart against myocardial IR injury.
These effects appeared to be mediated in part via the p38, JNK and NF-κB and pathways,
but were independent of the ERK and HMGB pathways.
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Background
Sepsis remains a major cause of mortality, and there is recent data to suggest that the

incidence of sepsis is increasing [1]. Treatment options remain limited to early anti-

biotic therapy, resuscitation and aggressive support of failing organ systems. Multiorgan

dysfunction syndrome (MODS), the most severe end of the spectrum of sepsis

syndrome, may involve the myocardium [2,3], and this has clear prognostic implications,

with some reports pointing to a direct correlation between the onset of myocardial

dysfunction and mortality in septic shock [4].

The pathophysiology of septic cardiomyopathy has not been fully elucidated.

Although apoptosis is postulated to play an important role in the pathophysiology of

septic cardiomyopathy [5,6], post-mortem studies have demonstrated relatively little cell

death, even in cases of undoubted severe septic cardiomyopathy [7,8]. This has led to

the suggestion that activation of pro-survival pathways may occur in association with

pro-apoptotic pathway activation and that septic cardiomyopathy, although ultimately

dysfunctional for the organism, is a reactive process of metabolic downregulation, serving

a cellular preservation function broadly similar to preconditioning [6].

Preconditioning is the phenomenon whereby prior exposure to a stimulus, often one

normally held to be injurious, triggers phenotypic changes that confer resistance to

subsequent insults. It was first described by Murry et al. in 1986 [9], following the dis-

covery that brief episodes of non-lethal myocardial ischaemia, followed by brief periods

of reperfusion, provided protection against a subsequent more prolonged period of

ischaemia/reperfusion. The concept of endotoxin-induced increased tissue tolerance

first emerged in the 1960s [10]. These early descriptions of ‘endotoxin tolerance’ in

animal models were followed by discoveries that a similar phenomenon occurs in

humans [11]. Sepsis preconditioning of cardiac tissue may also occur in response to

brief, non-fatal episodes of sepsis and bears undoubted observational similarities to

ischaemic preconditioning, being inhibited, for example, by cycloheximide, a well-

known blocker of ‘late ischaemic preconditioning’ [12]. The mechanisms whereby sepsis

confers protection to the heart against subsequent ischaemia/reperfusion injury,

however, are unknown, and whether this phenomenon most closely approximates

myocardial stunning, preconditioning or other unrelated effects remains to be firmly

established.

In the current study, we hypothesised that sepsis would protect the myocardium from

subsequent ischaemia/reperfusion (IR) injury. We further hypothesised that the mitogen-

activated protein kinases (MAPK) and nuclear factor-kappaB (NF-κB) pathways mediated

this protective effect.

Methods
Ex vivo isolated heart model

All animal studies were carried out with the approval of the National University of

Ireland Galway Animal Care Research Ethics Committee and under licence issued by

the Public Health Division, Department of Health, Ireland. Specific pathogen-free adult

male Sprague Dawley rats (Charles River Laboratories, Kent, UK), 250 to 300 g in body

weight, were used for caecal ligation and perforation (CLP)-isolated heart experiments.

Animals were randomised to control (n = 7) or CLP (n = 7) groups. The CLP proced-

ure was carried out under general anaesthesia. Briefly, following midline laparotomy,
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the caecum was identified and ligated, following which needle perforation was carried

out, and wound layers were closed. Animals were returned to housing in individually

ventilated cages. At 48 h following operation, animals were harvested for isolated heart

protocol using the Langendorff suspension. Animals were sacrificed by means of

decapitation. The heart was then removed and suspended from a canula inserted into

the aortic root facilitating perfusion with prewarmed Krebs Ringer at 37°C, oxygenated

by means of a gas mixture containing 5% CO2 and 95% O2, maintaining pH of solution

at 7.4. Episodes of ventricular fibrillation were promptly treated with lignocaine bolus

200 mg, administered via a t-piece connected to the aortic canula such that it passes

directly through the coronary arteries. Measurements of systolic and diastolic left

ventricular (LV) functional characteristics were made with a saline-filled balloon placed

in the left ventricle. This balloon was connected to a pressure transducer facilitating

provision of a digital readout as a continuous waveform. Balloon volume was adjusted

to achieve LVEDP 4 to 8 mmHg, following which the volume of the balloon was

maintained constant, thus providing a pre-load-independent measure of contractility.

Parameters measured were systolic and diastolic left ventricular pressure (LVP),

developed (sys-dias) LVP, maximal and minimal derivatives of LVP (dp/dt LVPmax,

dp/dt LVPmin) and heart rate. Global myocardial ischaemia was induced by means

of clamping the inflow line for a period of 30 min, followed by 90 min reperfusion.

Upon completion of the protocol, the hearts were stained with 1% 2,3,5-triphenyl-

tetrazolium chloride (TTC), a dye taken up only by viable cells. Myocardial infarct

size was determined by direct visualisation, dissection and separation of viable and

infarcted heart tissue, which were then weighed and expressed as percentage of total

heart weight.

In vitro hypoxic/ischaemic studies

Preparation of primary cultures of neonatal cardiomyocytes was achieved by trypsin/

collagenase digestion of ventricles harvested from 3- to 5-day-old neonatal Sprague

Dawley rats following decapitation. Cells were cultured in a 1:1 mixture of Dulbecco's

modified Eagle's medium (DMEM) and Ham's F12 (D8437 Sigma-Aldrich Ireland

Limited, Wicklow, Ireland) containing 17 mM glucose, supplemented with 1 mM

sodium pyruvate (Gibco, Life Technologies, Grand Island, NY, USA), 10% newborn

foetal calf serum, 5 μg/ml bovine insulin, 5 ng/ml human transferrin, 5 μg/ml sodium

selenite, 100 U/ml penicillin and 100 μg/ml streptomycin. All plates and flasks used to

culture cardiomyocytes were previously coated with 2% gelatin solution for 24 h and

aspirated prior to plating of cells, to ensure adherence of cardiomyocytes. To prevent

fibroblast proliferation, 100 mM 5-bromo-2-deoyuridine (BrdU) was added to the

cardiomyocyte media for 48 h following plating, at which point media were replaced.

Each well was then re-fed with prewarmed media prior to commencing experimenta-

tion. This is required to provide sufficient metabolic substrate for viability and normal

function throughout the experimental period.

Human alveolar epithelial cells (A549) were purchased from ATCC, Middlesex, UK.

HK2 human adult kidney cells were a kind gift from Prof. Michael Ryan (University

College Dublin, Ireland). Cells were cultured in DMEM medium supplemented with

heat-inactivated 10% foetal bovine serum, 2 mmol/l glutamine, 100 U/ml penicillin and

100 μg/ml streptomycin.
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To investigate putative signaling pathways involved in the protective effect of cellular

exposure to endotoxin prior to incubation under hypoxic conditions, inhibitors of

MAP kinases extracellular-regulated protein kinase (ERK) 1/2, p38 MAPK (p38), and

c-Jun NH2-terminal protein kinase (JNK) in addition to pyrrolidinedithiocarbamate

(PDTC) (an NF-κB inhibitor) and anti-HMGB1 antibody were added to cell culture at

standard concentrations.

For cell viability experiments, A549 and HK2 cells were grown to confluence in

96-well flat-bottom tissue culture plates (Sarstedt, Nümbrecht, Germany) and cultured

in pre-equilibrated and prewarmed RPMI, DMEM and a 1:1 mixture of DMEM:Ham's

F12 media, respectively. The cells were allowed 24 h to polarise prior to experimentation.

The medium was then re-fed, supplemented with LPS, LPS with MAPK inhibitors, PDTC,

anti-HMGB1 antibody or vehicle under conditions of normoxia (humidified 5%

CO2, 95% air) or hypoxia (humidified O2/N2/CO2 in the following ratio: 2:93:5),

following randomisation.

Viability was measured by cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazo-

lium bromide (MTT) assay, under conditions of normoxia (humidified 95% air, 5%

CO2) and hypoxia (humidified O2/N2/CO2 in the following ratio: 2:93:5), for an experi-

mental duration of 48 h, on all four cell types. The MTT assay provides an estimate of

mitochondrial activity from which cell viability is deduced.
Data analysis

Results are expressed as mean (SD) for normally distributed data. Data were analysed

using t test comparison. A p value of 0.05 was considered statistically significant.
Results
Sepsis preconditioning protects the heart

Seven animals underwent the CLP procedure to provide a model of polymicrobial sepsis.

These septic animals were then sacrificed and hearts suspended in Langendorff prepar-

ation. The hearts were also isolated from seven non-septic animals which provided the

control group in this series of experiments.

Indices of myocardial function

Hearts from septic animals had reduced baseline developed LVP ((d)LVP) compared to

those from control animals, mean (SE) 101.11 ± 6.06 mmHg vs. 47.15 ± 6.88 mmHg,

p = 0.0001 (Figure 1).

LVPmax was reduced in CLP animals compared to controls at baseline, 109.08 ± 4.65

mmHg vs. 57.49 ± 7.22 mmHg, p = 0.00003 (Figure 2).

During the early reperfusion phase, (d)LVP was greater for CLP hearts than for

control, pointing to more rapid functional recovery at reperfusion. This effect was not

lasting, however, as at 90-min reperfusion, (d)LVP was similar for CLP and control

animals, 58.51 ± 14.59 mmHg vs. 54.27 ± 5.75 mmHg, as was LVPmax, 67.16 ± 11.05

mmHg vs. 78.41 ± 10.49 mmHg, p = 0.77.

Episodes of fibrillation upon reperfusion occurred more frequently in the control

group (2/7, 28%) compared to the sepsis group (1/7, 14%). Episodes were promptly

terminated by administration of lignocaine.



Figure 1 Sepsis protects the isolated heart against ischaemia/reperfusion injury - (d)LVP. Line graph
depicting developed LVP in isolated hearts, control and animals subjected to the CLP procedure (n = 7 per
group), demonstrating that sepsis reduces myocardial function with lower (d)LVP at baseline, but protects
the heart against ischaemia/reperfusion injury with more rapid functional recovery at reperfusion.
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Infarct size

Infarct sizes after ischaemia/reperfusion were significantly reduced in CLP hearts

compared to controls (27% ± 8.8 vs. 44% ± 6.2, p < 0.05) (Figure 3).

Mechanism of action of septic preconditioning

Cardiomyocytes

Endotoxin preconditioning protected against hypoxia-induced cardiomyocyte cell

death vs. hypoxic controls [cell viability 81.55% ± 8.2% vs. 49.74% ± 1.1%, respectively,

p = 0.000125] (Figure 4). Prior blockade of p38, JNK and NF-κB pathways all caused

significant reversal of endotoxin preconditioning with viabilities decreased to 43.13% ±

6.6%, p = 0.000004, 47.83% ± 20.2%, p = 0.01, 38.67% ± 5.6%, p = 0.000001, respectively

(Figure 4). Addition of inhibitors of ERK 1/2 and anti-HMGB1 antibody demonstrated no

significant effects.
Figure 2 Sepsis protects the isolated heart against ischaemia/reperfusion injury - LVPmax. Line graph
depicting LVPmax in isolated hearts, control and animals subjected to the CLP procedure (n = 7 per group),
demonstrating that sepsis reduces myocardial function with lower LVPmax at baseline, but protects the heart
against ischaemia/reperfusion injury with more rapid functional recovery at reperfusion.



Figure 3 Sepsis protects the isolated heart against ischaemia/reperfusion injury - infarct size. Bar
chart depicting infarct size in isolated hearts, control and animals subjected to CLP procedure (n = 7 per
group), demonstrating that sepsis reduces myocardial function with reduced infarct size in the sepsis group.
*Significantly different (p < 0.05, Students t test).
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Alveolar epithelial cells

Endotoxin preconditioning was protective against hypoxia-induced cell death, with

viability of 69.7% ± 7.62% vs. hypoxic controls 49.01% ± 7.95%, p = 0.003 (Figure 5).

Kidney cells

Endotoxin preconditioning was protective against hypoxia-induced cell death, with

viability of 85.51% ± 3.27% vs. 73.88% ± 4.04%, p = 0.0004 (Figure 6). Addition of anti-

HMGB1 antibody and ERK 1/2 inhibitors to LPS-treated cells did not reverse these
Figure 4 Endotoxin exposure protects isolated cardiomyocytes from hypoxia-induced cell death. Bar
chart depicting cell viability as measured by MTT assay of cardiomyocytes expressed as % of normoxia
controls. Groups were normoxia and hypoxia controls and cells pretreated with LPS and inhibitors prior to
incubation under conditions of hypoxia (n = 6 per group). The figure demonstrates the protective effect of
endotoxin exposure against hypoxia-induced cell death, an effect reversed by exposure to inhibitors of p38
and JNK MAPK and NF-κB inhibition. *Significantly different (p < 0.02, Students t test).



Figure 5 Endotoxin exposure protects pulmonary alveolar cells from hypoxia-induced cell death.
Bar chart depicting cell viability as measured by MTT assay of A549 cells expressed as % of normoxia
controls. Groups were normoxia and hypoxia controls and cells pretreated with LPS prior to incubation
under conditions of hypoxia (n = 5 per group). The figure demonstrates the protective effect of endotoxin
exposure against hypoxia-induced cell death. *Significantly different (p < 0.01, Students t test).
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protective effects, with viabilities of 97.3% ± 6.24% and 96.15% ± 11.7%, respectively,

p = 0.002 and p = 0.007 (Figure 6).

Discussion
Previous investigators have reported that exposure of hearts to sublethal dosing of

endotoxin confers protective effects against myocardial ischaemia/reperfusion injury in

a variety of experimental models [13-15], including the Langendorff mode [16-19].

However, data in the literature examining the effects of polymicrobial sepsis, such as

that induced by caecal ligation and operation, is less frequently encountered. It should

be noted that inherent difficulties exist with experimental models utilising exposure of

animal species to endotoxin. Although a reproducible experimental model that is easy
Figure 6 Endotoxin exposure protects human kidney cells from hypoxia-induced cell death. Bar
chart depicting cell viability as measured by MTT assay of HK2 cells expressed as % of normoxia controls.
Groups were normoxia and hypoxia controls and cells pretreated with LPS prior to incubation under
conditions of hypoxia (n = 6 per group). The figure demonstrates the protective effect of endotoxin
exposure against hypoxia-induced cell death. *Significantly different (p < 0.02, Students t test).
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to establish, endotoxaemia is not a perfect model of sepsis, with differing cytokine

kinetic responses, duration of sepsis and time to death [20]. Making a conceptual

advance on LPS exposure as a model of sepsis, we utilised the CLP procedure to induce

polymicrobial sepsis. CLP is an in vivo model of sepsis that has been shown to be valid

and reproducible [21] and is a more accurate replication of systemic inflammatory

response to an infectious stimulus [22], more loosely mimicking an important clinically

encountered scenario and is considered by some to be an essential preclinical model

for sepsis studies [23].

The results of our experiments demonstrate that septic animals sustained marked

sepsis-induced myocardial dysfunction, as evidenced by significantly reduced baseline

(d)LVP and LVPmax compared to control animals, p = 0.0001 and p = 0.00003, respect-

ively (Figures 1 and 2). Following ischaemia and reperfusion, CLP hearts showed more

rapid recovery of functional measures, despite significantly reduced baseline function,

and infarct size was significantly reduced in septic hearts (Figure 3). These results

strongly support a preconditioning effect of polymicrobial sepsis.

Episodes of fibrillation were seen more frequently in the control group compared to

the sepsis group (28% vs. 14%). This likely reflects the severity of IR injury, with protec-

tion conveyed in the CLP group conveyed by sepsis preconditioning. The use of ligno-

caine to prevent or treat reperfusion arrhythmias in the Langendorff model of the

isolated heart has been well described [16]. Episodes of fibrillation were promptly

treated and therefore unlikely to affect functional outcomes or infarct size.

Studies have shown sepsis preconditioning to demonstrate putative similarities to

ischaemic preconditioning, particularly so-called ‘late preconditioning’ [12,24]. For

example, with induction of gram-negative sepsis, myocardial protective effects are dem-

onstrable at 6 h [18,25], and the myocardial protective effects of LPS exposure were

reported to appear after 12 to 24 h [12]. As mentioned previously, the administration

of the drug cycloheximide was found to inhibit protection, an effect demonstrable with

late ischaemic preconditioning [26]. Additionally, there is strong evidence from mul-

tiple sources that the protective effects of LPS utilise signaling pathways known to be

of central importance in ischaemic preconditioning, namely NOS2 and Akt [24]. Des-

pite these similarities and intense research in the area of ischaemic preconditioning,

the signaling pathway through which sepsis protects the heart from IR injury remains

to be fully elucidated.

To investigate the in vitro effects of endotoxin exposure, we examined cell viability as

measured by the MTT assay. The MTT assay provides an estimate of mitochondrial ac-

tivity from which cell viability is deduced. In the presence of functioning mitochondria,

MTT is reduced from a colourless compound to a blue product (MTT-formazan). The

assay involves spectrophotometrical measurement of the concentration of the blue

product. This is then calibrated post hoc to provide an indirect measure of mitochon-

drial function.

Lipopolysaccharide exerts its effects through TLR4-dependent NF-κB activation,

leading ultimately to pro-inflammatory cytokine release. LPS is known to induce both

pro-apoptotic and anti-apoptotic pathways, inducing apoptosis in endothelial cells [26]

and hepatocytes [27] while promoting survival in monocytes [28], neutrophils [29],

macrophages [30] and cardiomyocytes [4,12]. Although there is evidence to support a

protective role played by LPS against myocardial ischaemia and reperfusion injury
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[13,16,19], less is known about the effects of LPS on apoptosis of cardiomyocytes. The

current study in which LPS pretreatment of cardiomyocytes conferred protection

against hypoxia-induced cell death (Figure 4) supports the findings of Chao et al. [4]

who found reduced apoptosis in cardiomyocytes treated with LPS and subjected to

hypoxia and serum deprivation, supporting a preconditioning effect of LPS in in vitro

models of hypoxia. Limited studies exist outlining the effect of endotoxin precondition-

ing in other organ systems, and our findings in the current study speak to the fact that

these findings can be generalised to other tissues and are not specific to cardiomyocytes

through our demonstration of endotoxin preconditioning in alveolar epithelial (Figure 5)

and human kidney (Figure 6) cells.

Due to the known similarities between ischaemic and sepsis preconditioning, and the

important roles that stress kinases and NF-κB activation are known to play in the

signaling of ischaemic preconditioning [31,32], we utilised blockers of the stress

kinases, and ammonium PDTC, a direct inhibitor of the NF-κB pathway, to further

examine potential signaling pathways involved in sepsis preconditioning.

The MAPK are a family of kinases that have been shown to be activated following

multiple extracellular stimuli [33,34], with effects controlling cellular growth and differ-

entiation [35-37]. Three MAPK have been identified in the cardiomyocyte: ERK, p38

and JNK. These are known to play key roles in cellular signal transmission between the

cell surface and nuclei [38]. Although the signaling pathways through which sepsis

confers myocardial protective effects have as yet to be elucidated, an important role has

been proposed for the MAPK JNK, with additional reports of increased TNF-α-induced

apoptosis associated with JNK inhibition [39]. This is supported by the findings of the

current study, which demonstrates that the addition of JNKi to cardiomyocytes incu-

bated under hypoxic conditions attenuated the protective effects against cell death

associated with LPS (Figure 4). p38 MAPK is undoubtedly activated by LPS, although

studies have revealed the conflicting effects of attenuated [39] and enhanced [40] apop-

tosis consequent to this. The results of the current study support a role of increased

cell survival, as evidenced by attenuation of LPS-induced protective effects against

hypoxia in cardiomyocytes (Figure 4), a finding that warrants further investigation.

Although a role has been suggested by ERK 1/2 MAPK in the sepsis preconditioning

signaling pathway [4], incubation of cardiomyocytes with inhibitors of ERK 1/2 had no

demonstrable effect on endotoxin protection.

Studies have demonstrated an important role of NF-κB activation in delayed ischaemic

preconditioning in vivo [41], and there is some evidence of a role played in signaling path-

ways of sepsis preconditioning [42]. In the current study, inhibition of NF-κB through the

use of cellular incubation with PDTC attenuated endotoxin preconditioning, providing

support to our hypothesis that this mediator may play an important role in sepsis

preconditioning.

HMGB1, a so-called endogenous danger signaling molecule, is actively released by

activated monocytes and macrophages and is a key late mediator of the inflammatory

response to sepsis [43-45], with levels corresponding to the onset of mortality [43,46].

There is evidence that HMGB1 may also have preconditioning effects [47], and for this

reason, we utilised anti-HMGB1 antibodies to ascertain whether HMGB1 may play a

role in the signaling pathway of endotoxin preconditioning. Our results determined no

demonstrable effects with HMGB1 inhibition.
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Conclusions
These studies provide further confirmation of a preconditioning effect of sepsis in the

intact heart subjected to global ischaemia/reperfusion. In addition, we have provided

evidence of endotoxin preconditioning in cultured cardiomycocytes and further ex-

panded on this to other organ systems through demonstration of effects in pulmonary

alveolar cells and human kidney cells. Our investigation of the signaling pathway in-

volved in these effects were reversed by NF-κB, p38 and JNK inhibition, highlighting

potential important roles for these mediators in sepsis preconditioning. Taken together,

these findings suggest a phenomenon with a high degree of relative organ specificity

and requiring a complex signaling pathway.
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