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The continuum of causality in human
genetic disorders
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Abstract

Studies of human genetic disorders have traditionally
followed a reductionist paradigm. Traits are defined as
Mendelian or complex based on family pedigree and
population data, whereas alleles are deemed rare,
common, benign, or deleterious based on their
population frequencies. The availability of exome and
genome data, as well as gene and allele discovery for
various conditions, is beginning to challenge classic
definitions of genetic causality. Here, I discuss recent
advances in our understanding of the overlap between
rare and complex diseases and the context-dependent
effect of both rare and common alleles that underscores
the need for revising the traditional categorizations of
genetic traits.
populations.
Introduction
At the start of the 20th century, a new post-modernist
art movement, known as cubism, sought to deconstruct
complex images into small geometrical shapes so that
objects could be studied from multiple angles and
viewpoints. An example of this type of art is Pablo
Picasso’s Girl with a Mandolin (Fig. 1). Unbeknownst
to the artists who propagated this aesthetic concept,
the decomposition of complex problems into smaller,
experimentally tractable parcels has in fact been a
fundamental tenet of the scientific enterprise. In a cubist
manner, complex multidimensional questions have been
deconstructed, the ultimate aspiration being that once
each compartment is understood we will be able to
synthesize the complete image and gain clarity. Studies of
human genetic disorders have traditionally, and faithfully,
followed a reductionist paradigm. Human genetics typic-
ally separates rare and complex disorders into separate
categories; has stratified the effect of alleles on the basis of
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their frequencies in populations; and has argued, passion-
ately, over the contributions of rare versus common alleles
in various disorders [1]. However, with the advent of data
from the exomes and genomes of 105–106 people [2–5],
including individuals diagnosed with particular disorders
[6–10], it is clear that there is an imperfect fit between
observation and traditional reductionist paradigms. For
example, we have defined monogenic and polygenic traits
on the basis of our perception of whether a phenotype is
caused by mutations in one gene or many genes, with the
ambiguous term “oligogenic” being using as an interme-
diate construct. Likewise, we have delineated an arbitrary
cutoff of a 1% allele frequency to label an allele as “rare”
(and 0.1% for “ultra-rare”), even though these definitions
are both non-quantitative in the strict sense and are
derived from imperfect observations in a subset of human
Challenging concepts in the study of monogenic
human diseases
The foundational question of how a genotype influences
a phenotype or multiple phenotypes has propagated the
development of categories labeled with the approximate
titles and imperfect terms mentioned above. This is not
a failure of the field. Rather, it is a sign of maturity; a
signal that it is time to reconsider how best to put
together our first-order constructs to generate an accurate
biological understanding of human diseases. Like all
events that drive higher-order synthesis, challenges remain
in the study of the genetics of human disease, not
least because it will be necessary to discard some of our
preconceived notions and to develop new language that is
capable of capturing and transmitting more complex
information efficiently.
Human genetics has, to date, exerted its greatest

practical influence in the identification of genes and
alleles that cause monogenic disorders. When considering
the scope of current and planned projects [6–9], the
ability to identify the “cause” of disease in most familial
cases is likely to be limited. This is in part due to the fact
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Fig. 1 Girl with a Mandolin. © 1910 Estate of Pablo Picasso.
Reproduced with permission, Artists Rights Society (ARS),
New York, USA
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that definitions of monogenic and polygenic disorders are
becoming less distinct, which challenges existing concepts
in the field of human disease genetics. At the same time, it
is becoming increasingly clear that many of the conceptual
aids that we have used to get to this point require reevalu-
ation and revision.
We first consider perhaps the simplest concept: the

concept of “one gene, one phenotype” [11]. We now
understand that mutations in a single gene can drive nu-
merous disorders in which the phenotype (or phenotypes)
can be explained by the direction of a mutational effect
(or mutational effects) at a single locus. Two examples of
this are Kallman syndrome and Pfeiffer syndrome, both
of which are characterized by distinct phenotypes that are
caused by loss-of-function and gain-of-function muta-
tions in FGFR1 (which encodes fibroblast growth factor
receptor 1), respectively [12]. The contribution of muta-
tional effects to other so-called “monogenic” diseases is
less clear. In such cases, environmental and/or genetic
modifiers can influence the observed phenotypes. One
such example is Fuchs corneal dystrophy, which is one
of two autosomal-dominant disorders caused by muta-
tions in TCF4 (which encodes transcription factor 4); in
this case, the disease can be defined as a non-penetrant
Mendelian disorder or a complex trait [13], as modifier
genes and/or environmental factors influence the observed
phenotype [14]. For the discussed examples, a complex
pattern of transcript splicing might explain the different
phenotypes that are observed [15]. An extreme example
might be the recessive loss-of-function mutations in
CEP290 (which encodes centrosomal protein 290) that
cause a range of conditions, from the relatively mild disor-
ders Leber congenital amaurosis or nephronophthisis to
the perinatally lethal Meckel-Gruber syndrome [16–20].
Perhaps the best-known example is allelic variation in
CFTR (which encodes cystic fibrosis transmembrane
conductance regulator); the same CFTR mutation can
cause a range of conditions, from isolated male infertility
[21] to severe lung disease [22], probably owing to the
influence of genomic context. These exemplars are un-
likely to be academic curiosities; emerging reports from
exome-based clinical genetic tests are reporting “pheno-
typic expansions”, which are defined as an increasing
number of monogenic disorders that violate the “one
gene, one phenotype” assumption. Presently, as many
as ~25% of cases that have been exome sequenced in
the clinical setting are being redefined [7]. Taking a
cubist view, interpreting CFTR mutational data might be
thought of as studying the pattern of a single cube, rather
than looking at the relation of that cube to the whole
“picture”.
Following on from the need to revise the concept of

“one gene, one phenotype” is that of necessity and suffi-
ciency. For much of the Mendelian disease era, alleles
propagated in families or large multigenerational pedi-
grees have been described as both necessary and suffi-
cient to cause disease; embedded in this concept is the
notion that most alleles associated with Mendelian traits
are penetrant. This concept is being challenged by the
accrual of genomic data that are beginning to suggest
that individuals vary in their tolerance of pathogenic
mutations [23]; we are now aware of the presence of
non-penetrant mutations in individuals with classically
defined dominant or recessive traits [24]. Moreover, the
traditional argument regarding the penetrance of Men-
delian mutations may end up being circular, as the known
alleles are those that were detected by available methods.
The degree of phenotypic penetrance is influenced by
stochastic forces, by imperfect phenotyping, sequencing,
or annotation, and by the effect of genetic modifiers is
yet to be determined. The degree to which phenotypic
penetrance is influenced by stochastic forces, by imper-
fect phenotyping, sequencing, or annotation, and by the
effect of genetic modifiers is yet to be determined.
Following on from the concept of necessity and suffi-

ciency, a third concept that needs to be revised is the trad-
itional paradigm that alleles associated with a rare disease
are themselves rare in a population. This paradigm remains
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largely true, although the phenotypic effect (or effects)
of some rare alleles is now known to be potentiated by
common alleles. These rare alleles sometimes map to the
disease locus, as exemplified by a common regulatory
variant in RET (which encodes RET proto-oncogene) that
contributes to Hirschsprung disease [25] and a promoter
polymorphism in FECH (which encodes ferrochelatase)
that regulates the penetrance of a rare mutation further
downstream in the same gene [26]. More recently, the
phenomenon of cis-complementation was described; this
phenomenon describes how the deleteriousness of an
allele can be modulated by neutral alleles in the same
gene or haplotype [27]. In other instances, the common
allele is not present in the “Mendelian gene” but in a
discrete locus. For example, a common permissive micro-
satellite array at the D4Z4 locus modulates the penetrance
of mutations in SMCHD1 (which encodes structural
maintenance of chromosomes flexible hinge domain-
containing protein 1) and causes facioscapulohumeral
muscular dystrophy type 2 [28]. Similarly, an allele found
in 3% of Europeans that potentiates an exonic splice
enhancer in CCDC28B (which encodes coiled-coil domain-
containing protein 28B) can modify the penetrance of a
recurrent mutation in BBS1 (which encodes Bardet-Biedl
syndrome 1) in patients with Bardet-Biedl syndrome [29].
Imagining a cubist’s interpretation of this landscape

might lead us to dissolve or blend some of the current
“hardfixed” boundaries that are used to define monogenic
disorders. Critically, it might be important to re-evaluate
the usage of deterministic language, such as the terms
“causes” or “solved”, as such terms simply and inaccurately
imply that monogenic disorders are penetrant and mini-
mally variable and that alleles at Mendelian loci cannot
be influenced by the surrounding genome.

Refining our understanding of complex human
disorders
The traditional compartmentalization of complex disor-
ders is also coming under scrutiny, and we are beginning
to understand that the notion that drivers of common
diseases are either exclusively common [30] or a collec-
tion of rare alleles [31] is an empirical oversimplification
[32]. The idea that both common alleles of small effect
and rare alleles of large effect are integral constituents
of the genetic architecture of complex traits is largely
accepted [33]. The purist cubist might argue that some
complex traits are a cluster of rare disorders, whereas
others are truly complex. For example, age-related macu-
lar degeneration is a paragon of complex trait analysis and
became the first success story in the field of human
disease genetics when genome-wide association studies
found that a significant proportion of the genetic burden
of disease was attributable to a common allele in CFH
(which encodes complement factor H) [34–37]. However,
rare alleles in a gene encoding another member of the
complement pathway, CFI (which encodes complement
factor I), have also been shown to be potent disease drivers
[38], but they seem to behave in an almost Mendelian
fashion because of their penetrance. In other complex
traits, such as autism, the distinction between rare and
common causative alleles is even more blurred; epidemio-
logical and genomic studies have shown that most of
the heritability of autism is due to common alleles, but
penetrant de novo mutations can contribute substantially
to an individual’s susceptibility to developing autism [39].
Post hoc examination of some of these rare, de novo
alleles suggests that they have the capacity to cause syn-
dromic phenotypes. An example of such an allele is the
16p11.2 deletion, which is found in >1% of cases of
Autism spectrum disorder [40] and is associated with,
for example, weight-regulation defects [41, 42], facial
dysmorphisms and renal pathologies [43]. Similarly,
re-examination of the mutational distribution of neurode-
velopmental traits—including epileptic encephalopathy,
intellectual disability, autism and schizophrenia—have
shown extensive overlap [44]. In light of these findings,
some might argue that some complex traits are a cluster
of rare disorders, whereas others are truly complex. In the
case of autism, for example, is it a constituent component
of multiple rare syndromes or is it a continuum of variable
expressivity and penetrance that does not fit neatly into
either the Mendelian or the complex disease construct?
In some ways, cubist deconstruction will teach us that

the traditional artificial boundaries are heuristically help-
ful but unnecessary, as key questions remain regarding
the genetic variants that cause disease, the underlying
molecular mechanisms of disease, and the direction of
effect of variants associated with disease (i.e., whether they
increase or decrease the expression or activity of the gene
product). In this context, the rarity of some alleles and the
strength of their effect on protein function have provided
a bridge between rare and complex traits. For example,
mutations in MC4R (which encodes melanocortin 4
receptor) cause a Mendelian form of severe obesity [45, 46]
but have been proposed to predispose to adult-onset
obesity under a complex trait model [47, 48]. Similarly,
recessive mutations in BBS10 (which encodes Bardet-
Biedl syndrome 10)—mutations in which cause the rare
Bardet-Biedl syndrome, a multisystemic disorder that also
manifests truncal obesity [49]—have been found in indi-
viduals with morbid obesity and type 2 diabetes but no
evidence of syndromic disease [50]. Although the pres-
ence of mutations in MC4R or BBS10 in cohorts with
adult-onset obesity informs us about the potential drivers
of disease in only a miniscule number of individuals, they
nonetheless teach us about two signaling cascades that
are likely to be relevant to a larger proportion of patients.
Similarly, although the contribution of CHD8 (which



Katsanis Genome Biology  (2016) 17:233 Page 4 of 5
encodes chromodomain helicase DNA binding protein 8)
to autism will probably never exceed an infinitesimal
proportion of the Autism spectrum disorder burden,
understanding how the loss of CHD8 function affects
neurodevelopment will be profoundly informative. Given
the pace of allele discovery for both “monogenic” and
“complex” traits, the discovery of alleles that provide
causal evidence for particular loci, and those that establish
the direction of effect, will increase dramatically and
provide invaluable insights in terms of both biological
understanding and drug discovery.

Moving beyond traditional definitions of
monogenic and polygenic human diseases
Using the analogy of cubist art, how then should we
move forward and reconstruct the art piece “Girl with
a Mandolin” (Fig. 1) so that we can appreciate all of her
facets and beauty as a whole? That is, how can we develop
a more accurate understanding of human genetic diseases
by taking a cubist approach? For clinical diagnosis the
emphasis on rare penetrant alleles must persist in order
to understand causality and develop interventionist stra-
tegies; however, this must be coupled with improved
statistical models for assessing the contribution of mul-
tiple factors, both genetic and non-genetic, to complex
traits. In age-related macular degeneration, for example,
the susceptibility of individuals who carry a combination
of risk genotypes and smoke is sufficiently high to be
clinically meaningful and behaviorally actionable [51],
whereas for other disorders, such as type 2 diabetes, a
scale and a tape measure remain more effective diagnostic
tools than a genetics-based approach. If the question is
one of therapeutics, however, then disease frequency
becomes less relevant and allele causality, direction of
effect, and biochemical cascades become key.
In both contexts, it will be important to start conside-

ring not just individual alleles or genes, but biological
modules and pathways in toto. For example, considering
biological modules has informed penetrance and expres-
sivity of ciliopathies [52] and also illuminated the genetic
architecture of peripheral neuropathies [53]. Likewise,
for complex traits, considering genes that encode voltage-
gated calcium ion channels as a group has revealed a
causal module in schizophrenia that might eventually be
druggable [54]. Indeed, one could conceive a pathway or a
macromolecular complex as “the locus” and treat it as
such, from both genetic and drug-discovery standpoints.
Finally, we should not lose sight of the fact that the con-
cept of “mutation” signifies nothing more than variation
from a reference genome and in itself does not carry
a detrimental connotation. In that context, identifying
either rare or common variation that is deleterious to
protein function but beneficial to an organism might
provide unexpected and orthogonal avenues for therapeutic
development, as exemplified by the protective effect of
loss-of function mutations in SLC30A8 (which encodes
solute carrier family 30 member 8) to type 2 diabetes
[55]. Welcome to the post-modernist era!
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