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Abstract Despite mounting evidence implicating sedentary
behavior as a significant risk factor among the elderly, there
is a limited amount of information on the type and amount
of activity needed to promote optimal health and function
in older people. Overall muscle strength and mass decline
30–50% between the ages of 30 and 80. The loss of muscle
mass accounts for most of the observed loss of strength.
The loss of muscle tissue is due to a decrease in the number
of muscle fibers and to atrophy of the type II muscle fibers.
The declining strength reduces the capacity to carry out
basic activities of daily life and puts people at risk for falls
and dependence on others. The objective of the present
review is to examine the role of exercise training as a
primary tool for increasing cardiopulmonary and muscular
fitness in order to lessen the severity of disability in
activities of daily living and to attain optimal health and
functioning among the elderly.
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Introduction

The primary aging process, itself genetically associated,
occurs both independently of life style and in the absence of
disease [27, 29]. Increased life expectancy and the
subsequent growth of the elderly population have had a
marked effect on the proportion of persons with some form

of disability. Approximately 20% of persons aged 70 years
or older report difficulty in performing essential activities of
daily living (ADL), referred to as ADL disability [36].

Physical disability is common among older persons
living within the community. The Framingham Disability
Study [33, 56] reported that among community-dwelling
persons older than 70 years of age, 49% of women and
27% of men have substantial mobility or work limitations.
The high prevalence of ADL disability in our society
imposes a considerable public health problem, and there-
fore, prevention of ADL disability is a major public health
objective. This type of disability is the most severe form of
disability limiting older persons' autonomy and leading to
dependence. It marks a serious decline in functional health
and increases the risk of outpatient care, hospitalization,
nursing home admission, and death [6, 15, 25, 48].

Functional limitation is an intermediate state on the
course from health to physical disability. Mobility limita-
tion (e.g., difficulty in walking or climbing steps) is of
particular interest because it is a common occurrence, is
strongly related to major health outcomes, and may
represent a stage in the disablement process that is
amenable to intervention.

Aging-related changes occur mainly in the cardiopulmo-
nary and skeletal muscles, bringing about a reduction in
physical performance [8, 66]. Such myocardial and periph-
eral functional changes include a decline in maximum heart
rate, stroke volume, and heart contractility and an increase
in peripheral vascular resistance. Consequently, maximal
oxygen uptake (VO2 max), the best single indicator of
physical working capacity, is decreased. In older adults, a
strong inverse association between physical activity and
functional decline has been consistently observed [42, 57,
64, 68]. Accordingly, one may expect maximal cardiac
output to decrease with aging irrespective of lifestyle due to
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genetic factors. If oxygen transport is indeed limited by
maximal cardiac output, this may be calculated as the
product of maximal heart rate and maximal stroke volume.
The second possible cause for the reduction of VO2 max
with aging is the reduced capacity of working muscles to
extract oxygen from the blood, as manifested by arteriove-
nous oxygen content difference at maximal effort [36]. The
elderly are not generally anemic, and red blood cell content
is usually well maintained [28]. Some studies have shown a
correlation between VO2 max and muscle mass [17, 61].
Mitochondrial density has been found to be lower in their
skeletal muscle of older individuals, which could further
diminish capacity for endurance work. Thus, it may be that
aging-related atrophy of skeletal muscle plays some role in
the aging-related decline in work endurance [34] and
strength [58].

The benefit of activity is partly mediated through the
maintenance of strength and physical endurance [58], and
trials of both strength and aerobic interventions have shown
them to be beneficial in improving function in older adults
[52, 54]. However, despite the general benefit of exercise,
individual responses to exercise vary [5]. The basis for this
is unclear, but there appears to be a strong genetic
component [1, 55]. Physical performance in response to
exercise appears to be influenced by the angiotensin-
converting enzyme (ACE) insertion (I)/deletion (D) geno-
type in young adults, but whether this relationship can help
explain variation in older individuals' response to exercise
has not been well established [37].

Aging considerations

In response to stress, the age-related reduction in physio-
logic reserves causes a loss of regulatory or homeostatic
balance. When combined with another consequence of age-
related changes, an increased perception of effort associated
with submaximal work, a vicious cycle is created leading to
decreased exercise capacity. This results in an elevated
perception of effort, subsequently causing avoidance of
activity, and finally contributing to an exacerbation of the
age-related declines secondary to disuse. This is especially
prevalent among patients unaware of these processes.

Human muscle strength declines at the rate of 12–14%
per decade after the age of 50 years [39, 41]. This loss of
strength with age is due to many factors, but is primarily
attributed to a loss of muscle mass leading to sarcopenia
[22]. Because sarcopenia is related to a loss of functional
abilities [58], dependency [58], increased risk of falls,
fractures [2, 40], and decreased bone mineral density [64],
it has negative consequences for the health status and func-
tional abilities of older adults. With advancing age, a further
decrease in lean body mass may occur, together with the in-
crease in adipose tissue mass typical with aging [13, 28, 69].

Mechanisms underlying age-associated change in body
composition, such as an increase in body fat and a decrease
in bone mass, are not fully understood. Decrease in GH
secretion and serum IGF-1 levels with aging may have
some impact on these processes. IGF-1 has been identified
as a potent regulator of gene expression in skeletal muscle.
Excitation–contraction uncoupling has been identified as a
mechanism underlying sarcopenia in the skeletal muscle of
aging mammals. The basic mechanism for excitation–
contraction uncoupling is a larger number of ryanodine
receptors uncoupled to dihydropyridine receptors [13]. In
addition to the effects on muscle development, IGF-1
facilitates skeletal muscle dihydropyridine activity via
tyrosine kinase-protein kinase C-dependent phosphoryla-
tion [14]. It has also been shown that IGF-1-dependent
dihydropyridine modulation is impaired in aging skeletal
muscles [60], which may explain, at least partially, the
decline in muscle force with aging [53].

In middle and late adulthood, all people experience a
series of progressive alterations in body composition [62].
The contraction in lean body mass reflects atrophic
processes in liver, kidney, spleen, skin, bone, and skeletal
muscles due to slower muscle protein synthesis. These
structural changes have been considered an unavoidable
result of aging. The results of cross-sectional studies
suggest that sarcopenia is a major determinant of aging-
associated decrements in strength [23, 59]. Sarcopenia
involves significant alterations in the architecture of human
muscle, which stem from a loss of some myofibers and the
remodeling of those that remain [51, 70]. It has been
suggested that sarcopenia results from both a loss of
myofibers and a decrease in type II fiber size [37].

In humans, age-related myofiber loss and myofiber
atrophy generally involve type IIa and IIb fibers, with a
greater impact seen in the IIb fibers [38, 49]. In young
healthy adults, maximal oxygen uptake is determined by a
combination of cardiac output and maximal oxygen
extraction. If there is no pulmonary limitation (i.e., arterial
desaturation), arterial oxygen content stays relatively
constant up to maximal exertion, and venous oxygen
content is reduced to the point that local oxygen pressure
in the capillaries becomes insufficient for driving oxygen
diffusion into the tissues. At maximal exertion, oxygen
extraction can reach values of 140� 180mlO2 l

�1 blood
[4].

Another possible mechanism for the inability to increase
oxygen extraction is mild arterial hypoxemia at maximum
exercise. This is related to a misdistribution of cardiac
output, i.e., over-perfusion of organs other than those in
which perfusion and diffusion limitation are rapidly
compromised [65]. Low oxygen extraction in the elderly
may be due to physical inactivity or sarcopenia. As a
consequence, mitochondrial partial dysfunction occurs due
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to unmatched or perhaps intrinsic mitochondrial function
and regulation (abnormal mitochondrial function) and
hence the inability of skeletal muscles to fully extract
oxygen from the arterial blood due to considerably reduced
normal oxygen conductance from the muscle capillary to
the mitochondria [44]. The latter is most likely associated
with a poor muscle microcirculatory network and capillary–
myofiber dissociation [43]. The molecular defect in subjects
with mitochondrial myopathies commonly involves the
mitochondrial genome, with the detection of either single
large-scale deletions or point mutations [46].

Exercise benefits

The force-producing capability of skeletal muscle facilitates
locomotion and the successful performance of activities of
daily living. Metabolically speaking, muscle is a significant
contributor to the basal metabolic rate; it is the prime storage
depot for body amino acids and is a key metabolic tissue
involved in glucose disposal and lipid oxidation [20, 47].

Exercise has various beneficial physiological effects
such as improved muscle strength and bone mass and
increased aerobic capacity, flexibility, and balance [16, 45,
63]. In line with these findings, the exercise programs
resulted in increased physical performance, aerobic capac-
ity (for the aerobic exercise program only), and muscle
strength and in improved postural sway, which may explain
the reduced risk for subsequent major disability. Observa-
tional studies suggested that regular physical exercise may
be one of the most important factors preventing the onset of
late-life disability [18, 31]. Clinical trials among older
persons have shown that exercise programs improve
aerobic capacity, walking speed, and muscle strength [11].

Muscle mass is arguably the most important determinant
of functional capabilities and, as such, is an important
consideration in a number of occupational and clinical
settings. Load-bearing or resistance-type exercise is the
primary method for the maintenance, increase, or recovery
of muscle mass. This can be particularly important in
settings where muscle atrophy is a risk, such as during bed
rest or an airplane flight [32, 50].

Resistance strength training greatly increases muscle
strength even in very old people. It produces muscle fiber
hypertrophy and improves neural factors involved in force
production. The recovered strength in turn enhances
physical performance and facilitates more activity and
independence towards the end of the life span [21]. Thus,
it seems that resistance exercise is an effective countermea-
sure to sarcopenia.

Several investigators have documented the utility of
resistance training in elderly persons of both sexes living
both in institutions and in the community. In two studies,
Fiatorone and colleagues [18, 19], observed frail, institu-

tionalized patients with mean ages of 87 and 90 years.
Their patients participated in a 10-week program of lower-
extremity resistance training at an intensity of 80% of
single repetition maximum. They found that the strength of
the quadriceps correlated with walking speed over a 6-m
walking course and that muscle strength and short-course
walking speeds increased by 113% and 12%, respectively,
after resistance training. Strength training has been shown
to improve insulin-stimulated glucose uptake in both
healthy elderly individuals and patients with manifest
diabetes and likewise to improve muscle strength in both
healthy elderly individuals and in elderly individuals with
chronic disease. The increased strength is coupled with
improved function and a decreased risk for falling injuries
and fractures [12].

It has been shown that systematic strength training can
lead to substantial increases in strength performance not
only in middle-aged but also in elderly people. This could
primarily be the result of the considerable neural adapta-
tions observed, especially during the earlier weeks of
training [26]. Thereafter, strength development in older
people may also occur because of an increasing contribu-
tion of muscle hypertrophy. The basic requirements for
training-induced hypertrophy and strength development in
both older men and women are that the overall training
intensity be high enough and the duration of the training
period long enough [7, 67].

Training effect on cardiopulmonary function and muscle
metabolism performance of the heart as a pump has been a
major element in testing the idea that exercise ameliorates
the aging process. Exercise training was associated with
health benefits and specifically with decreased cardiovas-
cular mortality in two large observational studies [30, 43].

It was recently suggested [3] that following training, the
mechanism most likely to be involved is a change in the
cardiac autonomic balance producing an increase or a
relative dominance of the vegal component. It has long
been known that exercise training reduces resting and
submaximal heart rate. Several cardiac changes accompany
the normal aging process, including prolongation of
excitation–contraction and relaxation, an increase in after-
load, increased vascular and myocardial stiffness, and
decreased catecholamine sensitivity [44]. Alterations in left
ventricular structure and function are a well-described and
accepted component of the response to physical condition-
ing [If elderly or younger subjects are engaged in similar
endurance training].

The training effect on cardiopulmonary function during
submaximal exercise of a fixed absolute work rate is similar
for younger and older individuals. Although many studies
have shown a decrease in functional capacity and VO2 max
among the aging, they generally did not involve physically
active older men [44].
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Table 1 summarizes some of the changes in cardiovas-
cular and hemodynamic variables associated with age and
training. Endurance exercise training in the elderly de-
creased resting and submaximal exercise heart rate and
systolic and diastolic blood pressure, while stroke volume
increased. Marked changes are notable in elderly subjects
during maximal effort in which stroke volume, cardiac
output, contractility, and oxygen uptake increased, while
total peripheral resistance and systolic and diastolic blood
pressure decreased, thus lowering after-load which in turn
facilitated left ventricular systolic and diastolic function.
Table 1 also reveals that breathing efficiency is improved in
the elderly following an endurance training program. These
changes include reduction in lactic acid levels and
increased maximal ventilation.

The most important adaptive response of skeletal muscle
to endurance exercise is an augmentation of respiratory,
capacity with increases in the ability to oxidize pyruvate,
fatty acids, and ketones. As a result of increases in the
levels of the enzymes of the malate–asparate shuttle, there
is also an enhancement of the capability for mitochondrial
oxidation of the reducing equivalents generated in the
cytoplasm during glycolysis. The rise in muscle respiratory
capacity results from an increase in muscle mitochondria
and an alteration in mitochondrial composition, making
skeletal muscle mitochondria more like heart mitochondria
in their enzyme pattern [58]. When previously sedentary
individuals were re-tested at the same absolute submaximal
work rate after adapting to endurance exercise, their
endurance was found to be markedly increased [10].
However, metabolic factors do not appear to determine
the magnitude of VO2 max. The changes in muscle
oxidative potential may play a major role in the capacity
of elderly to perform ADL tasks.

The decline in muscle strength and mass during aging
has been linked to a reduction in metabolic function.

Dynamic exercise increases aerobic metabolism of the
exercising skeletal muscles in proportion to the mass of
muscles and intensity of exertion involved. Skeletal muscle
atrophy is often considered a hallmark of aging, and this
deficit has profound implications for the regeneration of
ATP in the muscles. Oxidative capacity declines in some
skeletal muscles with advancing age [39]. Aging is
associated with alterations in body composition such that
there is an increase in percentage of body fat and a
concomitant decline in lean body mass. Thus, significant
loss in maximal force production takes place with aging
[24, 35]. These changes in muscle mass and strength may
be due to alteration in the distribution of fiber types as a
result of an interconversion between type I and type II
muscle fibers or secondary to the preferential loss of a
specific muscle fiber type [9].

An insertion (I)/deletion (D) polymorphism in intron 16
of the ACE gene has been identified as a potential marker
for the differential response to exercise. In the field of
hypertension, the D allele is associated with significantly
higher serum ACE levels. In response to exercise, the D
allele has been associated with increased muscle strength
and power, while the I allele has been associated with better
muscular endurance, although data are not entirely consis-
tent. Since both muscle strength and endurance are
determinants of physical function in older adults, mainte-
nance of physical function could be related to ACE I/D
genotype. However, studies involving younger individuals
suggest that a genotype effect is seen primarily in response
to high physical activity levels [1].

Conclusions

Among older individuals who exercised, those with the
ACE DD or ID genotypes were less likely to develop

Variable Rest Submax exercise Maximal exercise

Oxygen uptake Unchanged Unchanged Increases

Systolic blood pressure Decreases Decreases Decreases

Diastolic blood pressure Decreases Decreases Decreases

Stroke volume Decreases Increases Increases

Heart rate Decreases Decreases Unchanged

Cardiac output Unchanged Unchanged Increases

Contractility Unchanged Unchanged Unchanged/Increases

Total peripheral resistance Unchanged Unchanged Decreases

Arteriovenous O2 difference Unchanged Unchanged Increases

VO2 max Unchanged Unchanged Increases

Ventilation/oxygen uptake Unchanged Unchanged Decreases

Lactic acid Unchanged Decreases Decreases

Table 1 Endurance training-
induced changes in cardiovas-
cular and hemodynamic
variables in elderly subjects
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mobility limitation than those with the II genotype.
Regardless of genotype, individuals who exercised were
less likely to develop mobility limitation than those who
did not exercise. In well-functioning older men and women,
a high level of physical activity is associated with the
preservation of physical function. Although physical activ-
ity was associated with less mobility limitation for all ACE
I/D genotypes, the improved risk benefit was significantly
greater for those possessing the ID or DD genotypes
compared with the II genotype. The physiological basis
for these findings is uncertain. However, among the
physically active participants, the II genotype was also
associated with higher levels of total adiposity and
intermuscular thigh fat. Exercise and an active lifestyle that
includes walking protect against mobility loss in older men
and women. However, activity effects on muscle parame-
ters do not explain this association. These data indicate
that the older person's skeletal muscle, cardiovascular
system, and pulmonary function retain a high degree of
trainability, with much of the improvement occurring
peripherally, just as in younger individuals. Aerobic and
resistance exercise programs appear to be effective non-
pharmacological therapies for preventing major disability in
older people.
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