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Abstract

This paper focuses on the equalization of block transmissions with zero pad (ZP). If the channel impulse response
length does not exceed the ZP length, it is possible to construct zero-forcing equalizers (ZFEs). Improved performance
may be achieved using a minimummean squared error (MMSE) equalizer. However, these equalizers are
computationally intensive when a time-domain implementation is used. While the frequency-domain implementation
of a ZFE has a lower complexity, it is prone to—potentially infinite—noise enhancement in the presence of spectral
zeros. The MMSE equalizer in the frequency domain performs better by limiting the noise enhancement but still loses
all information stored at the spectral zeros. This paper presents a method to exploit the redundancy of the padding to
recover this lost information, leading to two new frequency-domain equalizers, a ZFE and an MMSE-like equalizer.
These two equalizers are evaluated through simulations. They have a performance close to the time-domain
equalizers, while maintaining the low complexity of the original frequency-domain equalizers. The equalizers are
especially useful for scenarios with a high signal-to-noise ratio (SNR), where the performance is not limited by the
presence of noise, but by the absence of the information stored in the spectral zeros. In practice, this means an
SNR >30 dB. With minor modifications, the equalizers can also be applied if the ZP is replaced by a unique word (UW).

Keywords: Equalization, Spectral zero, ZFE, MMSE, OFDM, Single-carrier, Block transmission, Zero padding

1 Introduction
The idea of using a discrete Fourier transform (DFT) to
(de)modulate data on carriers—referred to as tones or sub-
carriers—goes back a long time [1]. The transmission is
organized in blocks and operates as follows: each tone
is assigned a complex data symbol corresponding to a
constellation point. These complex data symbols for all
tones are packed together in a vector which is converted
to the time domain by means of an inverse DFT (IDFT).
The resulting time-domain waveform can be seen as a
summation of orthogonal signals—one for each tone—
hence the name orthogonal frequency division multiplex-
ing (OFDM). This waveform is now transmitted over
the channel. The received samples are stored in a vector
which is converted back to the frequency domain using
a DFT. Unfortunately, the channel causes inter-symbol
interference and destroys the orthogonality between the
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tones, complicating the equalization. Both problems can
be solved by introducing a cyclic prefix (CP): a block of
samples at the end of the time-domain waveform is copied
and added in front of the waveform prior to transmis-
sion [2]. At the receiver side, the samples pertaining to the
CP are discarded. The resulting effect is that the linear
channel convolution now appears to be circular. Accord-
ingly, the corresponding channel matrix in the frequency
domain becomes a diagonal one and the received symbols
on each tone only depend on the transmitted symbols on
that tone. Equalization can now easily be done by multi-
plying with the inverse of the diagonal channel matrix. A
good overview is given in [3–5].
Later on, it was realized that this equalization tech-

nique is not limited to OFDM but also applicable to
single-carrier block transmissions (SC), see [6], who
observes that this idea was already suggested two decades
earlier [7].
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Since one can be converted into the other by merely
adding an orthogonal precoding, OFDM and SC have
many similarities and mathematical techniques for one
of them can usually be adapted for use with the
other. The differences mostly concern practical imple-
mentation issues: because SC systems generally have a
lower peak-to-average power ratio (PAPR) and a bet-
ter robustness against non-linearities or carrier offset
[6, 8, 9], their demands on the analog hardware are
lower than those of OFDM. Adaptive OFDM, on the
other hand, has the advantage of allowing bit loading
and power loading of each sub-carrier according to its
quality [9].
Furthermore, adding a CP is not the only way to con-

vert the linear channel convolution into a circular one.
This can also be obtained by adding a zero pad (ZP) or
unique word (UW) to the waveforms in the time domain.
Specifically, a CP system relies on the overlap-save (OLS)
technique, while a ZP system uses overlap-add (OLA) to
obtain a circular convolution. Although CP and ZP sys-
tems appear to be interchangeable, there are important
differences. More specifically, if the channel frequency
response exhibits spectral zeros on or zeros near the unit
circle, zero-forcing equalization may be impossible for
a CP system or may lead to severe noise enhancement
[10, 11]. A CP-OFDM system can take this into account
by discarding the affected sub-carriers if the channel is
known at the transmitter or by using forward error cor-
rection (FEC) codes if it is not [8, 11]. The signal pro-
jection scheme from [12] offers a fundamental solution
but is prohibitive in complexity, while the precoding tech-
nique from [13] requires the channel to remain constant
over a period of multiple blocks. For a CP-SC system
with a zero-forcing equalizer (ZFE), the presence of spec-
tral zeros in the channel response is even worse, as the
enhanced noise spreads out over the entire time-domain
block. The classical solution is to limit the noise enhance-
ment by using a minimum mean square error (MMSE)
equalizer instead [14]. The information stored in the sub-
carriers corresponding to the zeros, however, will still
be lost.
For a ZP system, on the other hand, zero-forcing equal-

ization is always possible [11, 15]. Unfortunately, using the
OLA technique to implement the ZFE in the frequency
domain introduces the same vulnerability to spectral zeros
in the channel response as in CP systems. This results in
an ill-conditioned problem and again the need to revert
to an MMSE equalizer. Again, the information stored in
the sub-carriers corresponding to the zeros is still lost. A
decision feedback equalizer (DFE) on sample level might
solve this problem. However, due to the processing in the
time domain, its implementation will be much less effi-
cient than the frequency-domain techniques mentioned
before.

This paper presents two new frequency-domain equal-
izers for ZP transmission which can recover the infor-
mation lost in the spectral zeros, while maintaining a
complexity, comparable to frequency-domain solutions.
They are applicable to OFDM as well as SC transmissions.
The equalizers are analysed through simulation for several
realistic scenarios, including situations where the perfor-
mance is not limited by the signal-to-noise ratio (SNR),
but by the missing information of the spectral zero. With
minor modifications, they can also be used for systems
using a UW.
The paper is organized is as follows: in Section 2,

the system model and existing equalization techniques
are presented. In Section 3, the new frequency-domain
equalizers are introduced. In Section 4, simulations
results are presented. Finally, in Section 5, conclusions are
summarized.

2 Systemmodel and equalizers
The following conventions are followed: bold lower-
case letters denote vectors and bold uppercase letters
denote matrices. Normal uppercase letters denote con-
stants. (.)T , (.)H, (.)† and E{.} denote transpose, Hermi-
tian, pseudo-inverse and expected value, respectively, and
A(:, [ l1 . . . lk] ) selects columns l1 . . . lk of A. The DFT,
IDFT, zero and identitymatrix of sizeK are represented by
FK, IK, 0K and IK, respectively. Occasionally, for clarity,
the dimensions of a matrix are indicated as [ .]K×L.
Now, consider a finite impulse response (FIR) transmis-

sion channel h = [
h0 h1 . . . hL

]T of order L, which is
known by both transmitter and receiver and which can be
considered quasi-static over one block period. The trans-
mitted block x = [

x1 x2 . . . xN
]T is followed by a ZP

of length P, with P ≥ L to avoid inter-block interfer-
ence (IBI). Without loss of generality, it is assumed that
the variance of x equals unity, i.e. E{xxH} = IN and that
P = L. The received signal y is given as

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0
...

. . .
hL

. . . h0
...

hL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H(N+L)×N

x + n, (1)

with H the linear convolution matrix of h and n addi-
tive noise. Without loss of generality, it is assumed that
the noise is zero-mean and white with variance σ 2

n , i.e.
E{nnH} = σ 2

n IN+L.



Cuypers and Moonen EURASIP Journal onWireless Communications and Networking  (2016) 2016:101 Page 3 of 14

2.1 Time domain equalization
An equalizer W is a matrix for which x̂ = Wy is an esti-
mate of x. Moreover, any equalizerWZFE that satisfies the
following constraint

WZFEH(N+L)×N = IN, (2)

is referred to as a zero forcing equalizer (ZFE). In the
absence of noise, such ZFE obviously leads to a perfect
reconstruction of the transmitted block. Because H is a
tall Toeplitz matrix, an infinite number of equalizers exist
that satisfy Eq. (2). Since x̂ = x + WZFEn, ZFEs only dif-
fer in the way they treat the noise. One particular ZFE is
obtained as the pseudo-inverse of H, which then provides
theminimum-norm solution of Eq. (2). It is given by1

WZFE-TD = H† = (HHH
)−1HH. (3)

Here,HHH is a full-rankN×N matrix and hence always
invertible. This is referred to as the ZFE-TD (time-domain
ZFE) where ‘time-domain’ refers to the absence of a trans-
formation to the frequency domain (see Section 2.2).
It is the optimal ZFE because it has the smallest noise
enhancement.
By dropping the perfect reconstruction constraint of

Eq. (2), it is often possible to achieve improved per-
formance. The MMSE equalizer also takes into account
the noise statistics and performs an overall optimization
by minimizing the expected value of the squared error,
E{||x − WMMSE-TDy||2}. It can be expressed as

WMMSE-TD = (HHH + σ 2
n IN
)−1HH. (4)

The calculation of these equalizers has a complexity of
O(N2) flops (using structured matrix inversion formulae)
while calculating x̂ = Wy requires no more than O(N2)
flops per block [16].

2.2 Frequency-domain equalization based onmatrix
folding

To exploit frequency-domain techniques, the linear chan-
nel convolution needs to be converted into a circular one.
Accordingly, the matrix H needs to be transformed into a
circular matrix. This can be achieved in two ways: either
by folding the last L rows back to the top or by extending it
with Lmore columns. The first method corresponds to an
overlap-add operation: the last L samples of y are added

to the first L samples and then only the first N samples of
the result are kept, resulting in

yf=
[
IN
∣∣∣∣ IL

0

]
︸ ︷︷ ︸

Gf

y=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 hL . . . h1
...

. . . . . .
...
hL

hL
. . .

hL . . . h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Hf(N×N)

x + nf.

(5)

Note that the multiplication with the (N × (N + L))-
matrix Gf reduces the number of matrix rows and hence
the information in the system. The existence of a ZFE
solution may therefore no longer be guaranteed. Indeed,
Hf is an N × N matrix which becomes rank deficient if
the Z-transform of h has a zero on one of the N equally
spaced points e

2π i
N k , with k = 0 . . .N − 1, referred to as

spectral zeros. If Hf has rank N, the resulting unique ZFE
can be written as

WZFE-TD-FOLD = H−1
f Gf. (6)

To perform the equalization in the frequency domain,
note that Hf can be diagonalized to �f, such that Eq. (5)
becomes

yf = IN�fFN︸ ︷︷ ︸
Hf

x + nf. (7)

The frequency-domain ZFE can now be written as

WZFE-FD-FOLD = IN�−1
f FN︸ ︷︷ ︸

H−1
f

Gf. (8)

The calculation of the inversion of the diagonal matrix
in this equation requiresO(N) flops, whereas the calcula-
tion of x̂ requires onlyO(N log(N)) flops per block, if the
(I)DFT operation is implemented using the (inverse) fast
Fourier transform. Obviously, an important saving is to be
made compared to the ZFE-TD, especially for large values
ofN. However, this speedup comes at a cost: if the channel
has spectral zeros or zeros near the unit circle, the inver-
sion of �f may be impossible or lead to very large values
and hence a significant noise enhancement.
This problem is well known, and several authors have

proposed the MMSE approach to limit the detrimental
influence of the noise [12, 17], see [18] for the OFDM
case. The frequency-domain MMSE equalizer can be
expressed as

WMMSE-FD-FOLD = IN

(
�H

f �f + σ 2
n

(
N + L
N

)
IN
)−1

�H
f FNGf, (9)
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where the regularization term
(N+L

N
)
reflects the differ-

ence in noise shaping due to Gf.

2.3 Frequency-domain equalization based onmatrix
extension

It is also possible to add appropriate columns to H to
extend it to a circular (N + L) × (N + L) matrix He.
Equation (1) is then extended to explicitly involve the ZP
in the calculations, i.e.

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 hL . . . h1
...

. . . . . .
...
hL

hL
. . . h0

... h0
...

. . .
hL hL-1 . . . h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
He(N+L)×(N+L)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...
xN
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
xZP

+n (10)

Note that He is an M × M matrix, with M = N + L,
of which the rank is minimally N. Now, He can be diago-
nalized to �e, having diagonal elements λe1 , λe2 , . . . λeM ,
yielding

y = IM�eFM︸ ︷︷ ︸
He

xZP + n. (11)

The frequency-domain ZFE can be written as

WZFE-FD-EXT = [ IN | O ]IM�−1
e FM (12)

The calculation of the inversion of the diagonal matrix
in this equation requires O(M) flops, whereas the calcu-
lation of x̂ requires O(M log(M)) flops per block. Note
that, in the absence of spectral zeros, there exists a clever

method to express the optimal ZFE, WZFE-TD in terms
of WZFE-FD-EXT and a correction term of low complexity
[19].
In case of spectral zeros at one of the points e

2π i
N+L k , with

k = 0 . . .M−1,�e may be a rank-deficient matrix. Again,
this can be dealt with by using the MMSE equalizer,

WMMSE-FD-EXT =
[
IN
∣∣∣∣O
]
IM

(
�H

e �e+σ 2
n IM

)−1
�H

e FM

(13)

It is remarkable that the assured possibility of zero-
forcing equalization is lost in going from Eq. (1) to
Eq. (12), because the number of equations is unchanged
(contrary to Eq. (5), where information is truly discarded).
The problem arises in Eq. (10) when the matrix He is not
of full rank. For the solution in the time domain, how-
ever, He does not need to be of full rank because the last
L elements of xZP are known to be zero. In the frequency
domain, this additional information is unavailable. In the
next section, this problem is solved by feeding back this
known information and fixing the possible ‘gaps’ in �e,
thereby restoring the information that was lost due to the
spectral zeros.

3 Improved frequency-domain equalization
In Section 2.3, the ZP part of the equalized signal is dis-

carded by the multiplication with
[
IN
∣∣∣∣ O

]
in Eqs. (12)

and (13). The equalized ZP, however, contains informa-
tion that can help to improve the equalization of the useful
signal.
Before diving into the mathematics, the general idea

will be illustrated by a graphical example. Consider a sim-
ple binary communication system with zero padding. The
elements of x only take two values, as shown in Fig. 1.
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Fig. 1 The originally transmitted signal and the equalized received signal, assuming one sub-carrier was discarded. The phase and amplitude of the
missing sub-carrier can be estimated by inspecting the zero pad
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Assume a channel that can be properly equalized at every
sub-carrier except for one, where it exhibits a spectral
zero. Any energy received at the sub-carrier exhibiting this
spectral zero can therefore only be noise and the best any
frequency-domain equalizer can do is to discard it. Note
that this is exactly what the MMSE equalizer in Eq. (13)
does. The resulting x̂, including the equalized ZP, is also
shown in Fig. 1. Comparing the transmitted signal and the
equalized version, a sinusoidal disturbance is immediately
apparent. This disturbance is caused by the absence of the
contribution of the sub-carrier which exhibited a spec-
tral zero. If this missing contribution would be added, the
equalized useful signal points would be closer to the trans-
mitted ones, and the equalized zero pad would be closer
to zero. Exactly this last observation suggests a method
to determine the contribution of the missing sub-carrier:
its phase and amplitude should be chosen so as to min-
imize the zero pad. After determining these parameters,
the contribution of this sub-carrier can be added. It is
expected that this addition will also improve the quality of
the useful signal. This idea will now be elaborated math-
ematically. To simplify the notation, it is assumed that
L = P, which can easily be obtained by padding h with
zeros.

3.1 Frequency-domain ZFE with zero restoration
If�e is invertible and well-conditioned, the solutions from
Eqs. (12) or (13) can be used. If �e is rank-deficient or
ill-conditioned, assume V diagonal elements of �e are
non-zero while the remaining K = M − V elements
are zero or close to zero. Note that, because He is at
least of rank N, it follows that K ≤ P. Now rearrange
the diagonal elements of �e such that the K (close-
to-) zero elements are collected at the end. Rearrange
the rows of the DFT-matrix FM in a likewise man-
ner and call the result F. The matrix He can now be
diagonalized as

He =
[
FH
A FH

C
FH
B FH

D

]
︸ ︷︷ ︸

FH

[
�nz O
O �ε

] [
FA FB
FC FD

]
︸ ︷︷ ︸

F

, (14)

in which �nz holds the non-zero diagonal elements of
�e, �ε holds the (close-to-) zero elements and FA(V×N),
and FB(V×L), FC(K×N) and FD(K×L) are submatrices of F.
Because FHF = I, specific relations hold between these
submatrices, e.g. FH

B FA = −FH
D FC and FH

A FA+FH
C FC = I.

Inverting �ε—if at all possible—would lead to a signif-
icant noise enhancement. However, by disregarding �ε

and inverting only �nz, a first approximation of xZP can
be calculated,

x̂ZPtemp = FH
[

�−1
nz O
O O

]
Fy (15)

=
[
FH
A

FH
B

]
�−1

nz
[
FA FB

]
y, (16)

Note that for high SNR values, this converges to the
MMSE-solution of Eq. (13).
Because FH can be derived from I by a simple permu-

tation of the rows and columns, it is also an orthogonal
matrix and, as such, its columns form a base onto which
the eventual equalizer output x̂ can be decomposed. Most
of the coefficients of this decomposition can be derived
from Eq. (16); more specifically, these are the coefficients
related to the first V columns of FH and the result is
x̂ZPtemp . The coefficients related to the last K columns
of FH are unknown and set to zero in (16). However,
including these columns could potentially lead to a better
approximation of x. Therefore, a correction term is added
to x̂ZPtemp , which lies in the column space of the last K
columns of FH, and which can be written as

x̂ZPcorr =
[
FH
C

FH
D

]
q, (17)

where q holds the unknown coefficients related to the
last V columns of FH. The correction term can be deter-
mined by taking into account that the last P elements of
x̂ZP should be zero. This leads to a system of P equations
in K unknowns, which can be solved exactly if no noise is
present. In practice, the correction term can be calculated
from the following least-squares (LS) system:

FH
D q +

[
O
∣∣∣∣IL
]
x̂ZPtemp

LS= OL×1, (18)

the solution of which is given by

q = − (FDFH
D
)−1 FDFH

B �−1
nz

[
FA
∣∣∣∣ FB
]
y. (19)

The overall expression for x̂ therefore becomes

x̂ =
[
IN
∣∣∣∣ O

] (
x̂ZPtemp + x̂ZPcorr

)
=
(
FH
A − FH

C
(
FDFH

D
)−1 FDFH

B

)
�−1

nz

[
FA
∣∣∣∣ FB
]

︸ ︷︷ ︸
WZFE-ZR

y (20)

This equation defines the ZFE-ZR, where ZR refers to
zero restoration. It can be rewritten as

WZFE-ZR = [FHA FHC
] [ I O
Q O

][
�−1

nz O
O O

]
F, (21)

withQ = −(FDFH
D )−1FDFH

B = − (FHD )† FH
B .
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It can now be shown that WZFE-ZR satisfies the con-
straint of Eq. (2):

WZFE-ZRH

= WZFE-ZRHe

[
I
O

]

= [
FA − FCQ O

][�−1
nz �nz O
O O�ε

][
FA
FC

]
= FH

A FA + FH
C
(
FDFH

D
)−1 FDFH

D︸ ︷︷ ︸
I

FC

= I. (22)

So the ZFE-ZR is indeed a ZFE, capable of recovering
the lost information. Note that this derivation holds even
if the diagonal elements of�ε are not exactly equal to zero,
which is more common in real-world situations.
Note that this procedure involves calculating the

pseudo-inverse of FHD , which is poorly conditioned if the
corresponding columns of the IDFT matrix are close to
each other. In other words, the restoration of the informa-
tion lost in spectral (close-to-) zeros works best if these
spectral (close-to-) zeros are not clustered.
The result of Eq. (21) has some similarity to another ZFE

proposed in [20], which indeed targets the same problem
of spectral zeros, be it in the context of a diversity analysis.
In the current notation, this ZFE can be written as

W = [F−1
A O

][�−1
nz O
O O

]
F, (23)

which can easily be shown to satisfy Eq. (2) as well. Note
that Eq. (23) assumes that K = P, because FA needs
to be square. Under this assumption, the solutions of
Eqs. (21) and (23) are mathematically identical, because of
the uniqueness of F−1

A . Regarding the computational com-
plexity, however, they are very different. The evaluation of
Eq. (23) requires the inversion of FA. Taking into account
the Vandermonde structure of this matrix, this requires
5N2/2 operations [20], which typically is much higher
than the evaluation of Eq. (21), as will be shown later. Note
that the same author also offered a similar solution, which
was the first linear equalization scheme to achieve max-
imum multipath diversity over single-input single-output
wireless links [21].

3.2 Frequency-domain MMSE-like equalization with zero
restoration

As noted before, frequency-domain MMSE equalizers
can avoid dramatic noise enhancement due to an ill-
conditioned channel matrix. However, they too do not
offer any solution for the loss of information associated
with a (close-to-) zero on the diagonal of �c. This can be
solved using a structure similar to the ZFE-ZR presented
in the previous section.

Using �nz and �ε from Eq. (14), the following diagonal
matrices can be defined:

�nz = (
�H

nz�nz + σ 2
n IV
)−1

�H
nz (24)

�ε = (
�H

ε �ε + σ 2
n IK
)−1

�H
ε , (25)

such that the MMSE-FD-EXT in Eq. (13) can be rewritten
as

WMMSE-FD-EXT = [FH
A FH

C
][ �nz O

O �ε

]
F. (26)

Following the same steps as in the previous section, an
improved MMSE-like equalizer with zero restoration can
be obtained as

WMMSE-ZR = [FH
A FH

C
] [ I O

Q O

] [
�nz O
O O

]
F, (27)

with exactly the sameQ as in Eq. (21).
For a theoretical analysis of these two equalizers, we

refer to the Appendix.

3.3 Remarks
Before proceeding to the simulation results, some addi-
tional remarks are in place:

3.3.1 Threshold
Practical channel knowledge is imperfect because it is
based on estimates and hence spectral zeros will mostly be
identified as spectral close-to-zeros. Therefore, a decision
needs to be made as to which elements of�e should effec-
tively be treated as zero, e.g. based on a threshold. This can
be set at some percentage of the root mean square value
of h or through some other method. In any case, it needs
to be such that the number of zeros K is not larger than
P. A trade-off needs to be made: setting a low threshold
and identifying too few spectral close-to-zeros can lead
to noise enhancement. Setting a high threshold can lead
to too many spectral close-to-zeros, all of whose received
information is discarded.
In the case of reasonably high values of the SNR

(e.g.>30 dB), elements of�e with an absolute value below
σn should be treated as zeros, because they have a major
contribution to the MSE. In the case of non-white noise,
the threshold should also take into account the SNR level
at each sub-carrier.

3.3.2 Condition
Related to the previous point, it should be avoided to
assign consecutive elements of �e as zeros. This would
lead to an LS system based on consecutive rows of a DFT
submatrix, which can be poorly conditioned.
Both points should lead to some heuristic algorithm

to determine the selection of the elements which will be
treated as zeros, e.g. the approach used in the simulations
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section is to only retain the ‘lowest’ of a set of consecutive
zeros.
Extensive simulations have shown that treating one ele-

ment of �e as a zero generally does no harm and has
the potential to improve the performance significantly.
Keeping in mind that spectral zeros are relatively rare,
and multiple spectral zeros are even rarer, designating
the lowest element of �e as a zero suffices for most
‘difficult’ channels. Even if this tone was carrying useful
information, this can easily be recovered from the infor-
mation in the other tones. On the other hand, in the
extreme case, where K = P, Eq. (18) is no longer a LS
system and will be modeling the noise as well as recon-
struct the information stored in the spectral zeros. This
should only be considered for relatively high values of
the SNR.

3.3.3 UW
The zero-restoration equalizers can also be adapted to
UW-based transmission, either by subtracting the contri-
bution of the UW at the receiver and proceeding as in the
ZP case or by replacing x̂ZP by x̂UW and modifying the LS
system such that the last P samples of x̂UW equal the UW.

3.3.4 Implementation
Note that, while in Eq. (15) the last K columns of FH are
effectively multiplied by coefficients equal to zero, even
non-zero coefficients may be used here, because these are
then absorbed by q anyway. It is therefore also possible
to choose coefficients equal to �−1

ε . This implies that the
ZFE-ZR can be implemented as a post-processing of the
ZFE-FD-EXT.
A practical implementation could therefore start with

the evaluation of —without the premultiplication with[
IN
∣∣∣∣ O

]
—as an alternative for x̂ZPtemp . Next, the LS sys-

tem from Eq. (18) is solved, which is typically very small.
The calculation of q requires (N + L + K

3 )K2 flops ([22],
p. 238) and the calculation of x̂ZPcorr requires another
(2K − 1)N flops to multiply q and FH

C . The overall com-
putational complexity is thus equal to the complexity of
Eq. (12) plus approximately O((K2 + 2K)N) flops and is
generally significantly smaller than the complexity of the
time-domain equalizers of Eqs. (3) and (4). Likewise, the
MMSE-ZR can be implemented as a post-processing of
the MMSE-FD-EXT. Based on the measurement of the
actual channel and the SNR, it can be decided to use the
post-processing step or not.
Note that the ZFE-FD-FOLD and theMMSE-FD-FOLD

cannot be used as a starting point of the ZR-algorithm
because, contrary to He, Hf is not guaranteed at least
of rank N and may not contain enough information
to calculate N unknowns. For an easy comparison, the
complexity of all equalizers has been summarized in
Table 1.

Table 1 Comparing the complexity for block size N, ZP-length P
and K spectral zeros (M = N + P)

Equalizer CalculatingW Evaluating x̂

WZFE-TD ,WMMSE-TD O(N2) O(N2)

WZFE-FD-FOLD ,WMMSE-FD-FOLD O(N) O(N log(N))

WZFE-FD-EXT ,WMMSE-FD-EXT O(M) O(M log(M))

WZFE-ZR ,WMMSE-ZR O(M) O(M log(M))

+
(
M + K

3

)
K2 +(2K − 1)N

More precisely, the complexity for the MMSE-FD-EXT
is

• (per channel update) evaluating Eq. (13), except for
the DFT operations: 2M complex multiplications, M
complex additions

• to evaluate x̂:

– FFT: 12M log(M) complex multiplications,
1
2M log(M) complex additions

– M complex multiplications
– IFFT: 12M log(M) complex multiplications,

1
2M log(M) complex additions

In (the rather common) case only one spectral zero would
be reconstructed, the MMSE-ZR would add to this:

• (per channel update) calculate FDFH
D , needed for q: P

complex multiplications, P − 1 complex additions
• to evaluate x̂:

– calculating q: P complex multiplications,
P − 1 complex additions

– scaling and adding the complex exponential
pertaining to the missing zero: N complex
multiplications, N complex additions.

For N = 48 and P = 16, this means that the number
of complexmultiplications for a channel update, assuming
�f is known, increases from 128 to 144 (+13 %). The num-
ber of complex multiplications to evaluate x̂ it increases
from 448 to 510 (+14 %). The figures for the additions are
nearly identical.

4 Simulations and discussion
To illustrate the performance of the ZR technique, simu-
lations have been done based on two channels found in
literature as well as for the general case of Rayleigh fading.
The section is concluded with a more general comparison
of equalization techniques using ITU channels.
Channels h1(n) =[−0.3699 + j0.5782 − 0.4053 +

j0.5750 − 0.0834 + j0.04060.1587 + j0.0156] and h2(n)

=[ 0.707000.707] correspond to p2 from [14] and chan-
nel A from [12], respectively. These channels are shown in
Fig. 2.
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Fig. 2Magnitude response for h1(n) (from [14]) and h2(n) (from [12])

The OFDM system in the original papers is replaced by
ZP-SC with M = 64, P = L and N = 64 − P. Note
that h1(n) has a spectral close-to-zero at the 30th sub-
carrier and h2(n) has a spectral zero as well as two spectral
close-to-zeros. The noise is white Gaussian with different
variances to match the SNR. The BER performance is sim-
ulated using a Monte Carlo method with 100,000 random
blocks, assuming a 16-QAM system.
For the first channel, Fig. 3 indicates that limiting

the noise at the spectral close-to-zero frequency, as
the MMSE-FD-EXT does, is a good strategy for low
SNR. However, because of the noise enhancement at the
spectral close-to-zero, the MMSE-FD-EXT is unable to

benefit fully from increasing SNR levels and at some
point the ZFE-TD starts to perform better. The ZFE-
ZR equalizer manages to stay very close to the ZFE-TD,
which obviously provides a performance lower bound
for any ZFE. As expected, the MMSE-ZR performs bet-
ter than the ZFE-ZR, especially for low SNRs, and
it even outperforms the ZFE-TD. Because the chan-
nel exhibits a spectral close-to-zero, and therefore the
noise enhancement is finite, even the performance of the
ZFE-FD-EXT eventually improves as the SNR increases,
albeit slower.
The results for channel h2(n) are shown in Fig. 4.

Because of the spectral zero, the noise enhancement for
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the ZFE-FD-EXT equals infinity, as reflected by a BER of
0.5 for all SNR values. TheMMSE-FD-EXT is also severely
impacted by the spectral zero.
For moderate SNR values, its performance is compa-

rable to that of Fig. 3, however, the performance now
saturates for high SNR values. Indeed, all information is
lost at the spectral zero and the best strategy is to discard
the noise present at this sub-carrier. Roughly speaking,
this implies that one Mth part of the signal power will be
lost, resulting in an irreducible error, no matter how high
the SNR. This is also apparent from the MSE curves in
Fig. 5, for which this limit would be at 64−1 or −18 dB.

The ZFE-ZR and MMSE-ZR on the other hand assume
three spectral (close-to-) zeros (K = 3) and reconstruct
the information that was stored there. As the SNR levels
increase, the estimation of the q vector in Eq. (18) also
improves and therefore these equalizers do not show a
saturation. They achieve a performance close to the ZFE-
TD and the MMSE-TD, which are obviously not at all
affected by the spectral zero. These curves also illustrate
that the MSE for the two ZFEs is linearly dependent on
the noise energy. For low SNR values, the ZFEs are clearly
inferior to MMSE-based equalizers that limit the noise
enhancement.
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The Rayleigh fading model is a more realistic descrip-
tion of the wireless channel dominated by multipath ([23],
p. 705). Such model has been simulated for 10,000 ran-
domly generated channels of order L = 5, with both the
real and imaginary part of the impulse responses following
a Gaussian distribution with variance σ 2

h = 0.5. For each
channel, 1000 random blocks using 64-QAM coding have
been simulated with M = 32, P = L = 5, N = 26. The
threshold to determine which elements of �e are consid-
ered as zeros was set at 0.05. The calculated BER is shown
in Fig. 6. Again, the zero-restoration equalizers outper-
form the classical frequency-domain equalizers but are
inferior to equalization in the time domain. Note that the
zero-restoration mechanism is only triggered for a limited
number of channels. The gain is therefore less impressive
than for the previous results.
Finally, some more extensive simulations have been

done, comparing ZP to CP, SC to OFDM and matrix fold-
ing to matrix extension. The dimensions for IEEE 802.11a
[24] have been used together with channel models pre-
sented by the ITU, more specifically the Indoor office test
environment channel B [25]. The useful signal length N =
48 and the padding length P = 16, be it a ZP or CP. The
constellation size for all symbols was QAM64. It is impor-
tant to note that no coding was used and for OFDM no bit
loading was done. The following modulation schemes are
compared:

• SC-ZP, using MMSE-TD, ZFE-TD, MMSE-ZR,
ZFE-ZR, MMSE-FD-EXT, ZFE-FD-EXT and
MMSE-FD-FOLD

• SC-CP, using an MMSE-style FD equalizer
• OFDM-ZP, using MMSE-FD-EXT and MMSE-ZR.
• OFDM-CP, using an MMSE-style FD equalizer

without the final IDFT step. This is the typical
OFDM operation.

In total, 20,000 random channels were generated; for
each one, 1000 symbols were transmitted. The results are
presented in Fig. 7.
The best performance for SC-ZP systems is again

obtained using the MMSE-TD and ZFE-TD, followed by
the MMSE-ZR and ZFE-ZR and the other equalizers.
It is interesting to see that the SC-ZP with MMSE-FD-
FOLD has the same performance as SC-CP, which makes
sense because the operations on the useful signal are
identical; only the noise distribution is different. The
OFDM schemes systematically perform worse than the
corresponding SC alternative. This result is pessimistic,
though, because no bit loading is being used. Neverthe-
less, the OFDM-MMSE-ZR again performs better than
the OFDM-MMSE-FD-EXT.

5 Conclusions
Two new frequency-domain equalizers have been pro-
posed to equalize zero-padded OFDM and SC-block
transmissions over a channel exhibiting spectral zeros or
spectral close-to-zeros. Both exploit the redundancy of
the ZP to restore the lost information. The first technique
is shown to have the zero forcing property; the second
one is very similar to an MMSE equalizer. A particularly
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interesting feature is that these equalizers can be imple-
mented by adding a post-processing to the output of a
classical frequency-domain equalizer, typically requiring
only very limited additional resources. Simulations show
a performance comparable to time-domain equalizers, at
a computational complexity comparable to the original
frequency-domain equalizers. The equalizers can easily be
modified to work with unique wording as well.

Appendix
Theoretical analysis of the performance
The bit error rate (BER) of a communications system can
directly be calculated from the modulation scheme and
the achieved mean squared error (MSE). For any equal-
izer W, the MSE of the equalized blocks is given by the
diagonal elements of the autocorrelation matrix of the
equalization error, i.e.

MSE = Diag
{
E
{
(Wy − x)(Wy − x)H

}}
= Diag

{
(WH − I)(WH − I)H + σ 2

nWWH} (28)

The MSE has a contribution stemming from the inexact
channel equalization and a noise contribution. The first
contribution obviously equals zero for any ZFE.

ZFE
Bearing in mind that the ZFE-FD-EXT of Eq. (12) can be
rewritten as

WZFE-FD-EXT = [FH
A FH

C
][�−1

nz O
O �−1

ε

]
F, (29)

its MSE equals

MSE
ZFE-FD-EXT

= Diag
{
σ 2
n
[
FH
A FH

C
] [�−1

nz O
O �−1

ε

]
[
�−1

nz O
O �−1

ε

]H [ FA
FC

]}

= σ 2
n
M

(
Tr
{
�−1

nz �−1
nz

H + �−1
ε �−1

ε

H}) 1N × 1,
(30)

with Tr{.} the trace operator and 1N × 1 an all-one vec-
tor. This MSE is identical for all elements in the received
block. The MSE of the ZFE-ZR can be written as

MSE
ZFE-ZR

= σnDiag
{
FH
A �−1

nz �−1
nz

HFA + FH
A �−1

nz �−1
nz

HQHFC

FHCQ�−1
nz �−1

nz
HFA + FH

C Q�−1
nz �−1

nz
HQHFC

}
.
(31)

This MSE has a complex dependency on the noise of
the sub-carriers corresponding to �nz and the correla-
tion between the submatrices of F. However, it is clear
that it lacks the detrimental term in �−1

ε . As the diagonal
elements of �ε approach zero, the MSE of the ZFE-TD-
EXT increases unboundedly while theMSE of the ZFE-ZR
is not influenced. Therefore, the latter has a superior
performance in the presence of spectral (close-to-) zeros.

MMSE
The MSE of MMSE equalizers has a contribution stem-
ming from the inexact channel equalization as well as
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a noise contribution. Both will now be analysed for the
MMSE-FD-EXT and the MMSE-ZR.

Signal contribution
For the MMSE-FD-EXT, the signal contribution to the
MSE equals

MSE
MMSE-FD-EXT

signal

= Diag
{([

FH
A FH

C
] [ �nz�nz O

O �ε�ε

] [
FA
FC

]
− IN

)

×
([

FH
A FH

C
] [ �nz�nz O

O �ε�ε

]H [ FA
FC

]
− IN

)}

= Diag
{
FH
A (�nz�nz − IV)FAFH

A (�nz�nz − IV)HFA

+ FH
A (�nz�nz − IV)FAFH

C (�ε�ε −IK)HFC

+ FH
C (�ε�ε − IK)FCFH

A (�nz�nz − IV)HFA

+FH
C (�ε�ε − IK)FCFH

C (�ε�ε − IK)HFC
}

≈
σn�1

�ε≈OK

Diag
{
FH
C FCFH

C FC
}
,

(32)

where the approximation is valid in case of spectral (close-
to-) zeros and for high SNR values, i.e. small σn, so that
the following relations hold:

�nz�nz ≈
σn�1

IV, (33)

and

�ε�ε ≈
�ε≈OK

OK. (34)

From Eq. (32), it is seen that part of the information is
irrevocably lost due to Eq. (34), leading to an irreducible
error. If K = 1 (only one spectral zero), this MSE con-
tribution is identical for all elements of the block and
equal toM−1; otherwise, it is dependent on the correlation
between the rows of FC.
For the MMSE-ZR, the signal contribution to the MSE

can be written as

MSE
MMSE-ZR

signal

= Diag
{([

FHA FHC
] [ I O

Q O

] [
�nz�nz O

O �ε�ε

] [
FA
FC

]
− IN

)

×
([

FHA FHC
] [�nz�nz O

O �ε�ε

]H [ I QH

O O

] [
FA
FC

]
−IN

)}

= Diag
{(

FHA (�nz�nz − I)FA + FHC Q�nz�nzFA − FHC FC
)

×
(
FHA (�H

nz�
H
nz − I)FA + FHA �H

nz�
H
nzQHFC − F_CHFC

)}

≈
σn�1

Diag

⎧⎪⎨
⎪⎩
⎛
⎜⎝FHC QFA︸︷︷︸

≡FC

−FHC FC

⎞
⎟⎠(FHA QHFC − FHC FC

)⎫⎪⎬
⎪⎭

≈
σn�1

0,

(35)

in which the approximation is valid for high SNR values,
i.e. small σn.
Summarizing: in case the elements of �ε are (close-

to-) zero, the MSE due to inexact channel equalization
decreases as the SNR increases. For the MMSE-FD-EXT,
this MSE hits a lower bound for low noise levels. In the
case of the MMSE-ZR, there is no such lower bound,
implying that this equalizer has more benefit from a
higher SNR. The reason for this difference is that the
information stored at the corresponding sub-carriers is
irrevocably lost for the MMSE-FD-EXT, while it can be
recovered by the MMSE-ZR, and the quality of this recov-
ered signal improves as the SNR increases.

Noise contribution
For the MMSE-FD-EXT, the noise contribution to the
MSE equals

MSE
MMSE-FD-EXT

noise

= σ 2
n
M
(
Tr
{
�nz�

H
nz} + Tr{�ε�

H
ε

})
1N × 1,

(36)
This MSE contribution is again identical for all elements

in the transmitted block. Substituting Eqs. (24) and (25)
and taking into account the definition of �nz and �ε ,
Eq. (36) can be rewritten as a function of the spectral
responses λei :

MSE
MMSE-FD-EXT

noise

= 1
M

⎛
⎝ M∑

i=1
σ 2
n

λHei
λH
ei λei + σ 2

n

(
λHei

λH
ei λei + σ 2

n

)H
⎞
⎠ 1N×1.

(37)

Spectral zeros do not contribute to the MSE here.
Spectral close-to-zeros do contribute, however, and dom-
inate at high SNR values, i.e. for small values of
σn. This follows from the behaviour of the function

σ 2
n

λHei
λHei λei+σ 2

n

(
λHei

λHei λei+σ 2
n

)H
, which is shown in Fig. 8. For

large values of σn, this function is small because the
MMSE equalizer prevents noise enhancement. Obviously,
it is also small for extremely small values of σn. It reaches
a maximum at an in between point, more specifically for
σn = |λei |.
For the MMSE-ZR, the noise contribution to the MSE

equals

MSE
MMSE-ZR

noise

= σnDiag
{
FH
A �nz�

H
nzFA + FH

A �nz�
H
nzQHFC

FHCQ�nz�
H
nzFA + FH

C Q�nz�
H
nzQHFC

}
. (38)

It is not trivial to give a quantitative description of this
contribution to the MSE. Obviously, in the case of a spec-
tral zero, this MSE contribution will be larger than for
the case of the MMSE-FD-EXT. However, with increas-
ing SNR, i.e. decreasing values of σn, this contribution
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Fig. 8 The noise contribution to the MSE for different spectral responses λei . For high SNR (right hand side), the MSE is dominated by the noise
contribution of the sub-carriers with the lowest spectral response (close-to-zeros)

will go down rapidly. For spectral close-to-zeros, the sit-
uation is even more favourable, especially at higher SNR
values, because the dominant contributions from �ε , as
described above, are not present here.
When looking at both the signal and the noise con-

tributions to the MSE, it can be concluded that above a
certain SNR threshold, the MMSE-ZR is expected to per-
form better than the MMSE-FD-EXT. Simulations have
shown that for realistic scenarios this SNR threshold is
typically somewhere between 10 and 30 dB.

To illustrate this with an example, Fig. 9 shows the value
of the MSE contributions, averaged over the block, for
the MMSE-FD-EXT and the MMSE-ZR, for the chan-
nel ‘h1’, used before. The presence of a close-to-zero starts
dominating the MSE contribution of the noise for the
MMSE-FD-EXT around SNR = 50 dB. The contribu-
tion of the inexact channel equalization of the MMSE-
FD-EXT tends to saturate, but eventually σn becomes
low enough such that the approximation of Eq. (34) no
longer holds.
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