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Abstract Compression is an important field of digital im-
age processing where well-engineered methods with high
performance exist. Partial differential equations (PDEs),
however, have not much been explored in this context so
far. In our paper we introduce a novel framework for im-
age compression that makes use of the interpolation quali-
ties of edge-enhancing diffusion. Although this anisotropic
diffusion equation with a diffusion tensor was originally
proposed for image denoising, we show that it outperforms
many other PDEs when sparse scattered data must be in-
terpolated. To exploit this property for image compression,
we consider an adaptive triangulation method for remov-
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ing less significant pixels from the image. The remaining
points serve as scattered interpolation data for the diffusion
process. They can be coded in a compact way that reflects
the B-tree structure of the triangulation. We supplement the
coding step with a number of amendments such as error
threshold adaptation, diffusion-based point selection, and
specific quantisation strategies. Our experiments illustrate
the usefulness of each of these modifications. They demon-
strate that for high compression rates, our PDE-based ap-
proach does not only give far better results than the widely-
used JPEG standard, but can even come close to the quality
of the highly optimised JPEG2000 codec.

Keywords Partial differential equations · Nonlinear
diffusion · Image compression · Image inpainting

1 Introduction

While applications of partial differential equations (PDEs)
and corresponding variational techniques in image process-
ing and computer vision are often associated with denoising
problems (see e.g. [3, 17, 68]), there is an increasing number
of publications where their potential as interpolation meth-
ods is explored.

Early examples in that direction include variational optic
flow methods [35, 54] where one is interested in estimating
the apparent motion field in an image sequence as a min-
imiser of an energy functional. In flat regions where the lo-
cal greyscale data do not allow to compute reliable motion
fields, information from surrounding regions is propagated
by the so-called filling-in effect of the smoothness term. Sim-
ilar variational models are also used for related correspon-
dence problems such as stereo reconstruction [49, 74] or im-
age registration [6, 52], whenever dense displacement fields
are required.
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More recently this filling-in effect has also become the
main feature of PDE-based inpainting methods such as [10,
11, 16, 34, 50, 65]. Here one aims at restoring missing infor-
mations in certain corrupted image areas by means of second
or higher-order PDEs. The basic idea is to regard the given
image data as Dirichlet boundary conditions, and interpo-
late the data in the inpainting regions by solving appropriate
boundary value problems.

Variational and PDE methods that have been proposed
for inpainting have also been investigated for more classical
interpolation problems such as zooming into an image by
increasing its resolution [2, 7, 8, 15, 47, 60, 69]. For such
interpolation problems with data given on a regular grid,
these techniques are in competition with cubic or quintic
splines, radial basis functions and sinc-based interpolation
techniques; see e.g. [44, 51]. If the data are not available on
a regular grid, scattered data interpolation techniques have
been proposed [31, 55], among which radial basis func-
tions such as thin plate splines [25] are popular and well-
performing.

Interestingly, not many of the variational and PDE-based
interpolation and inpainting techniques have been used for
scattered data interpolation. It seems that the sparsity of the
scattered data constitutes a real challenge for these tech-
niques: While second-order PDEs may satisfy a maximum–
minimum principle, they often create singularities at isolated
interpolation points in 2-D. Higher-order PDEs, on the other
hand, may give smoother solutions, but the violation of an
extremum principle can lead to undesirable over- and under-
shoots; see e.g. [15].

The goal of the present paper is to explore the potential
of PDEs for a difficult scattered data interpolation problem,
namely lossy image compression. While contemporary im-
age compression methods are dominated by concepts that
involve the discrete cosine transform (such as the widely-
used JPEG standard [56]) or the discrete wavelet transform
(in JPEG2000 [64]), we shall give a proof-of-concept that
there are alternatives where PDEs may be beneficial. The
basic idea is to reduce the image data to a well-adapted
set of significant sparse points that can be coded in an ef-
ficient way. Decoding is accomplished by using these scat-
tered data and interpolating them by means of a suitable
PDE. Our PDE of choice is edge-enhancing anisotropic dif-
fusion (EED). It uses a diffusion tensor that allows smooth-
ing along discontinuities while inhibiting smoothing across
them. Although EED has been introduced originally as a de-
noising technique [67], we will see that it is particularly use-
ful for scattered data interpolation. As a tool for creating a
useful sparse point representation, we consider the B-tree
triangular coding (BTTC) by Distasi et al. [24], since it is
relatively simple and allows an efficient coding of the spar-
sified image data. In order to end up with a PDE-based com-
pression framework with optimal quality, however, it is not

sufficient to apply BTTC in its original version. It has to
be supplemented with a number of amendments such as er-
ror threshold adaptation, diffusion-based point selection and
specific quantisation strategies.

Paper Structure Our paper is organised as follows. In
Sect. 2 we describe PDE-based interpolation techniques and
show that scattered data interpolation with EED performs
particularly well. In Sect. 3 we review the BTTC model of
Distasi et al. [24] for image coding and decoding. Section 4
describes how it can be coupled with EED-based interpo-
lation, and presents a number of amendments for the cod-
ing step. Experiments on EED-based image coding are pre-
sented in Sect. 5, where each of these amendments is demon-
strated to lead to improved compression quality. Our paper
is concluded with a summary in Sect. 6.

Related Work In the context of image compression, PDEs
and related variational techniques have mainly been used as
a preprocessing step before coding images or videos [18, 29,
30, 41, 66] or as a postprocessing tool for removing coding
artifacts [1, 26, 29, 33, 53, 72, 73]. Our work differs from
these papers by the fact that we use a PDE within the en-
coding and decoding step rather than applying it before en-
coding or after decoding. Chan and Zhou [19] proposed total
variation regularisation in order to modify the coefficients in
a wavelet decomposition such that oscillatory edge artifacts
are reduced. Sometimes PDE-based interpolation strategies
have been tailored to specific data sets such as surface data
in digital elevation maps [28, 61, 70]. Moreover, some varia-
tional L1 minimisation ideas play an important role in recent
compressed sensing concepts [13].

The usefulness of inpainting concepts for image com-
pression is confirmed in several papers, where structure and
texture inpainting ideas have been integrated into standard
codecs (i.e. compression and decompression methods) such
as JPEG [46, 58, 71].

With respect to its intention to reconstruct an image from
a small set of characteristic data, our paper has some re-
lations to publications where edge information is used to
represent the main image content. This has been done in
different formulations by Zeevi and Rotem [75], Carlsson
[14], Hummel and Moniot [37], Mallat and Zhong [48], Au-
rich and Daub [4], Desai et al. [23], and Elder [27]. Meth-
ods of this type can be seen as representatives of second-
generation coding approaches that exploit perceptually rele-
vant features such as contours [43].

An alternative way to represent signals and images by a
sparse set of significant points consists of reconstructions
from top points in scale-space, as has been investigated by
Johansen et al. [39] and Kanters et al. [40]. More general dis-
cussions on how to reconstruct an image from a suitable set
of feature points and their derivatives (local jet) have been
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presented by Lillholm et al. [45]. Impressive global recon-
structions of natural images by means of the local jet struc-
ture are reported by Bruckstein [12], who suggested to in-
corporate Tikhonov regularisation and directional filtering.

With respect to the triangular B-tree coding of Distasi
et al. [24] that is used in our paper, a number of related
variable block size image coding algorithms exist, in par-
ticular also methods based on quadtree decompositions; see
e.g. [62, 63]. An interesting coding scheme that exploits
scattered data interpolation has been proposed by Demaret
et al. [22]. They construct an adaptive Delaunay triangula-
tion that is used for decoding the image by linear interpola-
tion. Their experiments show that it can be an alternative to
JPEG 2000 coding for texture-free images.

In 2005 a preliminary version of our paper has been pre-
sented at a workshop [32]. Compared to this earlier model,
the present paper introduces numerous improvements in
Sect. 4, it presents a systematic evaluation of all these mod-
ifications, and it compares the results with JPEG2000 for a
set of six standard test images. Recently Köstler et al. [42]
have developed multigrid algorithms for our method from
[32] and demonstrated that they can be used for real-time
video compression on a Playstation 3.

2 PDE-Based Interpolation

We start by considering a PDE approach to image interpo-
lation. First we discuss a general model, then we investigate
a number of options for smoothing operators, and finally we
present an experiment that illustrates their performance.

2.1 General Model

Let Ω ⊂ IRn denote an n-dimensional image domain. We
want to recover some unknown scalar-valued function v :
Ω → IR, from which we know its values on some subset
Ω1 ⊂ Ω . Our goal is to find an interpolating function u :
Ω → IR that is smooth and close to v in Ω \Ω1 and identical
to v in Ω1.

We may embed this problem in an evolution setting with
some evolution parameter (the “time”) t ≥ 0. Its solution
u(x, t) gives the desired interpolating function as its steady
state (t → ∞). We initialise the evolution with some func-
tion f : Ω → IR that is identical to v on Ω1 and that is set
to some arbitrary value (e.g. to 0) on Ω \ Ω1:

f (x) :=
{

v(x) if x ∈ Ω1,

0 else.
(1)

We consider the evolution

∂tu = (1 − c(x))Lu − c(x) (u − f ) (2)

with f as initial value,

u(x,0) = f (x), (3)

and reflecting (homogeneous Neumann) boundary condi-
tions on the image boundary ∂Ω . The function c : Ω → IR
is the characteristic function on Ω1, i.e.

c(x) :=
{

1 if x ∈ Ω1,

0 else,
(4)

and L is some elliptic differential operator. The idea is to
solve the steady state equation

(1 − c(x))Lu − c(x)(u − f ) = 0 (5)

with reflecting boundary conditions. In Ω1 we have c(x) = 1
such that the interpolation condition u(x) = f (x) = v(x) is
fulfilled. In Ω \Ω1 it follows from c(x) = 0 that the solution
has to satisfy Lu = 0. This elliptic PDE can be regarded as
the steady state of the evolution equation

∂tu = Lu (6)

with Dirichlet boundary conditions given by the interpola-
tion data on Ω1.

2.2 Specific Smoothing Operators

Regarding the elliptic differential operator L, many possi-
bilities exist. The simplest one uses the Laplacian Lu := �u

leading to homogeneous diffusion [38]:

∂tu = �u. (7)

A prototype for a higher order differential operator is the
biharmonic operator Lu := −�2u giving the biharmonic
smoothing evolution

∂tu = −�2u. (8)

Using it for interpolation comes down to thin plate spline
interpolation [25], a rotationally invariant multidimensional
generalisation of cubic spline interpolation.

The multidimensional generalisation of quintic spline in-
terpolation leads to triharmonic smoothing based on Lu :=
�3u:

∂tu = �3u. (9)

Note that only the second-order differential operators allow
a maximum–minimum principle, where the values of u stay
within the range of the values of f in Ω1.

A second order PDE that has been advocated for inter-
polation purposes [15] is given by the absolute monotone
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Lipschitz extension (AMLE) model. It uses the second or-
der directional derivative Lu := ∂ηηu in gradient direction
η := ∇u/|∇u|:
∂tu = ∂ηηu. (10)

Nonlinear isotropic diffusion processes are governed by
Lu := div (g(|∇u|2)∇u). This gives [57]

∂tu = div (g(|∇u|2)∇u) (11)

where the diffusivity function g is decreasing in its argu-
ment, since the goal is to reduce smoothing at edges where
|∇u| is large. One may e.g. choose the Charbonnier diffu-
sivity [20]

g(s2) = 1√
1 + s2/λ2

(12)

with some contrast parameter λ > 0. Since (11) uses a
scalar-valued diffusivity we name this process isotropic (in
contrast to the nomenclature in [57]).

Real anisotropic behaviour is possible when a diffusion
tensor is used. As a prototype for nonlinear anisotropic
diffusion filtering we consider edge-enhancing diffusion
(EED) [67]. The idea is to reduce smoothing across edges
while still permitting diffusion along them. The EED dif-
fusion tensor has one eigenvector parallel to ∇uσ , where
uσ is obtained from convolving u with a Gaussian with
standard deviation σ . The associated eigenvalue is given
by g(|∇uσ |2) with a diffusivity function such as (12). The
other eigenvectors are orthogonal to ∇uσ and have corre-
sponding eigenvalues 1. If we use the convention to extend
a scalar-valued function g(x) to a matrix-valued function
g(A) by applying g to the eigenvalues on A and leaving the
eigenvectors unchanged, then EED can be formally linked
to Lu := div (g(∇uσ ∇u�

σ )∇u). Hence, its evolution is gov-
erned by

∂tu = div (g(∇uσ ∇u�
σ )∇u). (13)

2.3 Experiments on Interpolation

In order to evaluate the potential of the preceding PDEs for
scattered data interpolation, we have discretised them with
central finite differences in space. For the diffusion equa-
tions, we performed a semi-implicit time discretisation with
SOR as solver for the linear systems of equations, while for
AMLE, biharmonic and triharmonic smoothing an explicit
scheme was used. Runtimes for a non-optimised C imple-
mentation on a 1.5 GHz Centrino laptop range between a
few seconds and several minutes for a 256 × 256 image. If
necessary, these operations can be speeded up to real-time
performance using multigrid algorithms [42].

In Fig. 1 we present an experiment that illustrates the
use of the different smoothing operators for scattered data
interpolation. It depicts a zoom into the famous lena im-
age, where 2 percent of all pixels have been chosen ran-
domly as scattered interpolation points. We observe that ho-
mogeneous diffusion is not very suitable for scattered data
interpolation, since it creates singularities at the interpola-
tion points. This can be avoided with interpolation using bi-
harmonic smoothing. It gives fairly good results, but suf-
fers from over- and undershoots near edges due to the vi-
olation of an extremum principle (see e.g. the shoulder).
These limitations become even more obvious for trihar-
monic smoothing. In spite of a number of favourable the-
oretical properties [15], AMLE does not live up to its expec-
tations. Also going from homogeneous diffusion to nonlin-
ear isotropic diffusion does not give an improvement: While
nonlinear isotropic diffusion may allow discontinuities, its
interpolant is too flat and tends to keep many interpolation
points as isolated singularities. The fact that EED, on the
other hand, gives the best results shows the importance of
the anisotropic behaviour. Its ability to smooth along edges
seems to be very beneficial for avoiding singularities at
interpolation points. Moreover, this second-order PDE re-
spects a maximum–minimum principle, such that the so-
lution is within the greyscale bounds of the interpolation
points.

A quantitative error analysis is presented in Table 1,
where we have computed the average absolute error (AAE)
and the mean squared error (MSE) between the interpolated
image (ui,j ) and the original image (vi,j ):

AAE(u, v) := 1

N

∑
i,j

|ui,j − vi,j |, (14)

MSE(u, v) := 1

N

∑
i,j

|ui,j − vi,j |2, (15)

where N denotes the number of pixels. As already men-
tioned, biharmonic and triharmonic interpolation may create
over- and undershoots. At locations where they lead to grey
values outside the interval [0,255], they have been trun-
cated.

In our experiments the average absolute error gives a
ranking that corresponds well with our visual impression,
while the mean squared error fails to discriminate between
the perceptually strongly differing qualities of linear diffu-
sion, biharmonic smoothing and AMLE. It seems that the
MSE puts more weight on deviations of individual pixels
than our human perception does. Thus, it may be less help-
ful for quantifying the perceived visual quality. Interestingly,
in both error measurements as well as in our visual analy-
sis, EED gives the best scattered data interpolation. These
findings are also in accordance with results from [69] where
EED proved to be the PDE of choice for interpolating tensor
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Fig. 1 (a) Top left: zoom into
the test image lena, 256 × 256
pixels. (b) Top middle: grey
values of the scattered
interpolation points (2 percent
of all pixels, chosen randomly).
(c) Middle left: interpolation by
linear diffusion. (d) Centre:
biharmonic smoothing.
(e) Middle right: triharmonic
smoothing. (f) Bottom left:
AMLE. (g) Bottom middle:
nonlinear isotropic diffusion
(λ = 0.1). (h) Bottom right:
EED (λ = 0.1, σ = 1)

Table 1 Average absolute errors (AAE) and mean squared error
(MSE) for the PDEs used for scattered data interpolation in Fig. 1

PDE method AAE MSE

Homogeneous diffusion (7) 16.98 611.5

Biharmonic smoothing (8) 15.79 615.5

Triharmonic smoothing (9) 18.69 807.9

AMLE (10) 17.33 631.7

Charbonnier diffusion (11) 21.80 987.0

Edge-enhancing diffusion (13) 14.58 591.7

data. Therefore, we will focus on EED from now on, and all
optimisations of the approximation quality will be carried
out with respect to the average absolute error.

3 Image Coding and Decoding by Binary Trees

Now that we have seen that EED is useful for scattered
data interpolation, we want to exploit this technique for im-
age compression. To this end we have to combine it with

a method that provides a useful sparse image representa-
tion with scattered data. Intuitively the density of these data
points should be adapted to the underlying image structure
in order to allow the best interpolation quality. We have
started to explore a number of options, ranging from seman-
tically motivated feature selection [76] over greedy optimi-
sation concepts [21] to shape optimisation strategies [9]. For
compression purposes, however, good interpolation quality
is not sufficient if the resulting set of image data is too ex-
pensive to encode. This requirement has led us to an image
compression and decompression scheme that relies on an
adaptive sparsification of the image data by means of the
triangulation from B-tree triangular coding (BTTC). In this
section we review the underlying codec by Distasi et al. [24].
It serves as starting point for inclusion of our EED-based in-
terpolation concept.

3.1 Creating Scattered Interpolation Points

In B-tree triangular coding, an image is decomposed into a
number of triangular regions such that within each region it
can be recovered in sufficient quality by interpolation from
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the vertices. In our case, all regions are isosceles right tri-
angles. Then the decomposition into triangles is stored in a
binary tree structure.

In order to describe the compression procedure, let us
assume we have an image v = (vi,j ) of size (2m + 1) ×
(2m + 1). Smaller images should be filled up to such a size
in a suitable way. Initially, the image is split by one of its
diagonals into two triangles. The four image corners (1,1),
(1,2m + 1), (2m + 1,1) and (2m + 1,2m + 1) are vertices of
these two triangles.

To refine this initial configuration, an approximation
(ui,j ) of the image (vi,j ) is calculated by using only the
grey values from the vertices and interpolating the remain-
ing parts of the image.

For the moment, we consider just the simplest interpola-
tion procedure, that is a linear interpolation within each tri-
angle. If the error ei,j := |ui,j −fi,j | satisfies ei,j ≤ ε for all
pixels (i, j), with a given tolerance parameter ε > 0, the rep-
resentation by triangles is considered sufficiently fine. Oth-
erwise, for each pixel (i, j) for which ei,j > ε holds, the
triangle which contains (i, j) is split into two similar trian-
gles by the height on its hypotenuse. The centre of the hy-
potenuse thereby becomes an additional vertex of the repre-
sentation. By recalculating approximation errors within the
new smaller triangles, it is determined whether to split these
again etc. Since the approximation error is zero at vertices,
triangles with legs of length 1 are not split further, which
guarantees that the recursive splitting terminates. Moreover,
vertices throughout the process have integer coordinates. A
vertex mask of size equal to the image is generated during
the triangulation in order to indicate which pixels are ver-
tices.

One point which needs additional consideration is the
treatment of pixels located on the sides of triangles during
the splitting process. If the error bound is violated in such
a pixel, it is sufficient for our compression and decompres-
sion method to split one of the two adjacent triangles. This
allows to reduce the number of triangles noticeably since in
regions with fine details, a large number of small triangles
occur, and many pixel positions then happen to be located
on sides.

3.2 Coding the Binary Tree

To efficiently store the triangulation, we notice that the hier-
archical splitting of triangles gives rise to a binary tree struc-
ture. Each triangle occurring during the splitting process is
represented by a node while leaves correspond to those tri-
angles which are not divided further. When a triangle is split,
its two subtriangles become the children of its representing
node. To store the structure of the tree, one traverses the tree
and stores one bit per node: a 1 for a node that has chil-
dren, and a 0 for a leave. Preorder or level-order traversal

are equally possible. Note that by the tree structure, the ver-
tex mask is fully determined. Further space in storing the
tree is saved by measuring globally the minimal and maxi-
mal depth of the tree. Only for nodes at intermediate levels,
the corresponding bits are stored.

For coding the grey values in all vertices, we first zig
zag traverse the sparse image created with the binary tree
structure and store it in a sequence of grey values. Then
this sequence is compressed by Huffman coding [36], a loss-
less variable-length prefix code that assigns shorter codes to
more frequent characters. Its code structure is represented
by a binary tree, too.

Our entire coded image format then reads as follows:

– image size (4 bytes)
– minimal and maximal depth of the binary tree (together

2 bytes)
– binary string encoding binary tree structure (1 bit for each

node between minimal and maximal depth, filled up with
zeros to the next byte boundary)

– first grey value in a sequence of grey values (1 byte)
– minimal and maximal depth of the Huffman-code binary

tree (2 bytes)
– binary string for Huffman-code binary tree (1 bit for each

node between minimal and maximal depth, filled up with
zeros to the next byte boundary)

– Huffman dictionary (less than 256 bytes)
– sequence of Huffman-coded grey values

We have also considered arithmetic coding [59] as an al-
ternative to Huffman coding that adapts better to the distrib-
ution of grey values. In our experiments, however, no better
compression of the grey value sequence was achieved in this
way: For the image sizes used here, reductions in the length
of the encoded sequence itself are compensated by the in-
creased size of the coding dictionary.

3.3 Preprocessing by Requantisation

To further enhance BTTC, we introduced a modification that
has not been exploited in the original paper by Distasi et al.
[24]: We preprocessed the image by a (lossy) requantisation
step that reduced the number of grey values from 256 to 64.
As this shortens the grey value codes, it allows to retain more
interpolation pixels at a given compression rate. The result-
ing gain in restoration quality exceeds the loss caused by the
higher quantisation error.

3.4 Decoding by Linear Interpolation

Decompression takes place in two steps. In the first step, the
vertex mask is recovered from the binary tree representa-
tion, and the stored grey values are placed at the appropriate
pixel positions to give the sparse image. To recover the ver-
tex mask, the tree is generated in the same order as it was
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stored. Along with generating nodes, vertex positions are
calculated and marked in the vertex mask. The second step
consists of the interpolation of the image, where the vertex
mask becomes the interpolation mask. In the BTTC scheme
of Distasi et al. [24], linear interpolation within each triangle
is used.

In the sequel we will denote the entire coding and de-
coding technique of Distasi et al. by Q64 + BTTC(L)-L.
This nomenclature characterises a method with requantisa-
tion preprocessing to 64 grey levels, followed by B-tree tri-
angular encoding where linear interpolation is incorporated,
and decoded using linear interpolation.

4 EED-Based Coding and Decoding

Having seen in the previous section how images can be
coded efficiently via binary trees, we are in a position to use
these binary trees as backbone for our EED-based codec.
While the format of the coded image remains, we introduce
several amendments step by step. Each of them improves the
quality of the restored image at a given compression rate.

4.1 Decoding with EED

Since we have observed that EED performs favourably as a
scattered data interpolant, it is natural to renounce the lin-
ear interpolation step for decoding in the Q64 + BTTC(L)-L
method, and apply EED to the interpolation mask instead.
We abbreviate this codec by Q64 + BTTC(L)-EED. Our
workshop paper [32] was based on this method.

Note that in contrast to Q64 + BTTC(L)-L, the Q64 +
BTTC(L)-EED method does not rely on the triangulation,
only on its vertices as interpolation points. Moreover, this
replacement of linear interpolation by EED is the only step
that affects the decoding. All amendments that are described
next take place in the coding phase: They optimise the
sparsification step which selects the scattered interpolation
points and their stored grey values.

4.2 Adaptive Error Threshold

One approach to improve the compression procedure ad-
dresses the choice of the threshold parameter ε. In the orig-
inal BTTC procedure, this parameter is constant throughout
the construction of the binary tree. Recall, however, that the
decision whether or not to split a triangle is based on the
maximum error encountered within that triangle. Since split-
ting a large triangle affects many more pixels than splitting
a small one, it is expected to be more efficient in reducing
the average error. This suggests a strategy in which a more
restrictive, i.e., smaller, threshold ε is used on the coarser
levels of the binary tree.

Since the size of the triangles shrinks exponentially with
the level index of our binary tree, an exponential scaling is
chosen for the threshold, too: Starting from a small threshold
ε0 on the coarsest level, it is adapted by a constant factor
α > 1 per level (typically, in the range between 1.35 and
1.5), resulting in

εk = αkε0 (16)

in level k of the binary tree. We denote this algorithm with
adaptive threshold by Q64 + BTTC(L,AT)-EED.

4.3 Coding with EED

In Sect. 4.1 we have replaced the linear interpolation within
each triangle in the decoding step by EED-based interpola-
tion. This already leads to a considerable improvement in
restoration quality. At the same time, a mismatch between
coding and decoding was introduced in this way, since we
retained the linear interpolation in the sparsification proce-
dure.

As a remedy, diffusion-based interpolation can be used
in the sparsification step, too. To decide whether to split a
triangle, the current sparse image is completed by EED in-
terpolation and compared to the original image. If the error
of some pixel within the triangle in question exceeds the
threshold pertaining to the current refinement level, the tri-
angle is split.

In contrast to the linear interpolation used in Sect. 3, dif-
fusion interpolation is not localised within each triangle:
The changes in the interpolation result that occur when in-
serting a new vertex are not limited to the triangle that has
been split, or even adjacent triangles. After updating the
tree, one has therefore always to recompute the interpola-
tion for the entire image, not just for a triangle. For best
coding quality, recomputing is done after each insertion of
a node. Alternatively, all decisions on the splitting of trian-
gles of one and the same size can be made simultaneously,
thereby restricting recomputations to one interpolation per
triangulation level. This leads to a faster compression at the
cost of a slight loss in image quality. In the current stage
we are more interested in optimal quality than in fast al-
gorithms. Thus we perform a recomputation for each in-
serted vertex. This EED-based compression method is called
Q64 + BTTC(EED,AT)-EED.

4.4 Biasing Interpolation Values

A close look at the PDE interpolation results in Fig. 1 re-
veals that interpolation points that are local extrema tend
to stand out in the interpolated image as sharp peaks. This
effect is most striking in the linear diffusion result but can
also be observed in less pronounced form in the nonlinear
diffusion interpolation. In the case of linear interpolation, it
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Fig. 2 Biasing of an interpolation value. Vertical direction expresses
grey values. An interpolation pixel (dot in the middle) with its 3 × 3
neighbourhood in the original image (joined by solid lines) and in the
interpolated image (dashed lines). Left: without biasing. Right: with
biasing

can be related to the decay behaviour of radial basis func-
tions that underly the steady state of the diffusion interpola-
tion.

As a consequence, it is not always appropriate to store
the exact grey values of the interpolation pixels extracted
from the original image: While the reconstruction error in
the interpolation pixel itself is minimised in this way, sur-
rounding pixels can be considerably biased. For example,
if the interpolation pixel is a local maximum, grey values
in its neighbourhood will be systematically underestimated.
Storing, instead, a slightly larger grey value for the interpo-
lation pixel introduces an error in this particular pixel while
reducing the error in its neighbourhood; see Fig. 2. As the
latter involves multiple pixels, the average absolute error is
reduced.

A caveat in exploiting this idea is that it is difficult to
estimate the influence zone of a given pixel in the interpo-
lation of a scattered data set. Our realisation is based on the
conservative assumption of a small influence zone given by
a 3 × 3 neighbourhood. After determining the interpolation
mask, the interpolated image u using exact grey values in all
interpolation pixels is compared to the original image v. For
each pixel (i, j) of the interpolation mask we compute the
average error

ẽi,j := 1

9

i+1∑
k=i−1

j+1∑
l=j−1

(vk,l − uk,l) (17)

and use it to correct the stored grey value for pixel (i, j):
Instead of ui,j we store the value

ũi,j := ui,j + ẽi,j . (18)

Although a more precise estimation of the influence zones
of interpolation pixels could most probably further improve
the quality of restored images, already the simple procedure
described here offers a measurable reduction of the recon-
struction error. This version of the algorithm with biased in-
terpolation is named Q64 + BTTC(EED,AT) + B-EED.

4.5 Postprocessing by Requantisation

Finally, we revisit the requantisation procedure described in
Sect. 3.3. By deferring the requantisation until the actual
coding step, we gain a more precise error measurement dur-
ing the sparsification procedure. On the other hand, the inter-
polated images in the sparsification procedure are computed
based on grey values different from those that are eventually
stored, which may deteriorate restoration results. The ques-
tion which of these two settings, quantisation as preprocess-
ing or postprocessing, is superior, is therefore difficult to an-
swer theoretically.

Experiments, however, indicate that postprocessing is
preferable. This is particularly true if it is applied in con-
junction with the biasing of interpolation values as described
in the previous subsection: Bias corrections computed there
may often be less than one quantisation level. Only when
the quantisation acts as postprocessing, small adjustments
can therefore optimally be accounted for in the quantised
data set. Our best postprocessing results have been achieved
with quantisation to 32 grey levels.

We will refer to the compression algorithm with post-
quantisation to 32 levels by BTTC(EED,AT)+B-Q32-EED.
Note the shifted order of the Q label. This is our most ad-
vanced algorithm that incorporates all amendments. For the
sake of brevity, this EED-based codec is also abbreviated by
EEDC when being compared with other algorithms such as
JPEG or JPEG2000.

5 Experiments on Compression

Let us now investigate the effects of our EED-based interpo-
lation in the context of image coding. In all experiments in
this section, the parameters have been optimised in order to
give the best compression quality.

Figures 3 and 4 show a test image and its compressed
versions using Q64 + BTTC(L)-EED, our BTTC-method
with EED decoding. We have chosen the threshold para-
meter ε such that compressions of 0.8, 0.4 and 0.2 bits per
pixel (bpp) are achieved. Compared to the standard coding
that uses 1 byte per pixel, this comes down to compres-
sion ratios of 10:1, 20:1 and 40:1. In Fig. 4, we display
both the coded pixels with their corresponding grey values,
and the result after scattered data interpolation with EED.
While the image quality deteriorates with increasing com-
pression, we observe that even at high compression rates,
still fairly realistic results are possible. Therefore we carry
out our further comparisons at the high compression rate
of 40:1 (or equivalently 0.2 bpp) where the differences be-
tween the original and the compressed images are well visi-
ble.
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In Fig. 5, we compare Q64 + BTTC(L)-EED with the
original Distasi method Q64 + BTTC(L)-L and the wide-
spread JPEG compression. We show images reconstructed
after compression to 0.2 bpp by each method. We observe
that JPEG coding suffers from severe block artifacts that re-
sult from the fact that the discrete cosine transform is com-
puted within blocks of 8 × 8 pixels. The Q64 + BTTC(L)-
L method, on the other hand, creates a different type of
artifacts where the underlying triangulation becomes visi-
ble. Since Q64 + BTTC(L)-EED only uses the interpolation

Fig. 3 Test image trui,
257 × 257 pixels

points from the Q64 + BTTC(L)-L method, but not the cor-
responding triangulation, it is clear that this method cannot
suffer from such a shortcoming. Where insufficient data are
available, its interpolation tends to be on the smoother side.
As a consequence, already this most basic one of our PDE-
based algorithms gives results that are visually superior to
the other two methods.

This visual impression is also confirmed by the quantita-
tive measurements in Table 2, where the average absolute er-
ror is listed. We see that at the compression rate 40:1, JPEG
performs worst, Q64 + BTTC(L)-L is in the midfield, and
Q64 + BTTC(L)-EED gives the best results.

Table 2 Comparison of the
average absolute error (AAE)
for the trui image and
compression to 0.2 bpp

Codec AAE

JPEG 11.25

Q64 + BTTC(L)-L 8.63

Q64 + BTTC(L)-EED 8.45

Fig. 4 First row, left to right:
adaptive sparsification of trui,
using BTTC with compression
to 0.8 bpp, 0.4 bpp, 0.2 bpp.
Second row, left to right:
corresponding interpolation
(Q64 + BTTC(L)-EED)

Fig. 5 Comparison at high
compression rates (0.2 bpp) for
the test image trui. Left: JPEG.
Middle: Q64 + BTTC(L)-L.
Right: Q64 + BTTC(L)-EED
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Fig. 6 Comparison of
BTTC-based compression
methods at a compression rate
of 0.2 bpp. First row, left to
right: EED-based decoding
(Q64 + BTTC(L)-EED), with
adaptive threshold
(Q64 + BTTC(L,AT)-EED),
with EED coding
(Q64 + BTTC(EED,AT)-EED).
Second row, left to right: with
biasing (Q64 +
BTTC(EED,AT) + B-EED),
with post-quantisation to 64
grey levels (BTTC(EED,AT) +
B + Q64-EED), with post-quan-
tisation to 32 grey levels instead
(BTTC(EED,AT) +
B + Q32-EED)

Table 3 Comparison of absolute errors for different methods at 0.2
bpp. For BTTC-based methods, the number of pixels in the sparse im-
age is stated in the last column

Codec AAE #Pixels

Q64-BTTC(L)-EED 8.45 1543

Q64-BTTC(L,AT)-EED 5.98 1517

Q64-BTTC(EED,AT)-EED 5.55 1542

Q64-BTTC(EED,AT) + B-EED 5.32 1530

BTTC(EED,AT) + B + Q64-EED 5.27 1527

BTTC(EED,AT) + B + Q32-EED 4.99 1769

JPEG2000 4.86

In Fig. 6 we demonstrate how the quality of reconstructed
images is successively improved by introducing the adaptive
threshold, diffusion-based sparsification, biasing and post-
quantisation. Each step constitutes an improvement over
its predecessor. In compression methods using EED in the
coding step, interpolation is recomputed once per node to
achieve optimal quality. With fast compression (a single
EED interpolation per level) the AAE values deteriorate by
approximately 0.1 to 0.2.

A comparison in terms of their average absolute error
in Table 3 further supports these observations. In this table
we include also the error measure for JPEG2000. For the
BTTC-based methods, we give also the numbers of pixels
in the sparse images. From these numbers it can be read off
firstly that all algorithmic modifications improve the quality
of selected pixels, while their number remains in the same

Table 4 Comparison of absolute errors and numbers of stored pixels
for different quantisation levels. We juxtapose pre-quantisation (Q∗∗ +
BTTC(EED,AT) + B-EED) and post-quantisation (BTTC(EED,AT) +
B + Q∗∗-EED)

#Quantisation Pre-quantisation Post-quantisation

levels AAE #Pixels AAE #Pixels

256 6.42 1123 6.42 1123

64 5.32 1530 5.27 1527

32 5.04 1770 4.99 1769

16 5.33 2099 5.34 2054

range between 1500 and 1550 pixels. Secondly, it is con-
firmed that a reduced number of quantisation levels allows
to store substantially more pixels.

We extend this comparison in Table 4 for both pre- and
postprocessing quantisation, including also the case with-
out quantisation (256 grey levels). It can be seen that the
number of pixels increases with coarser quantisation. For
very small numbers of grey levels, however, the growing
quantisation error dominates over the AAE improvements
by having more pixels, making 32 the preferable choice.
Post-quantisation offers an advantage over pre-quantisation
for medium quantisation levels that disappears when reduc-
ing the number of quantisation levels to 16.

Our most optimised EED-based codec is given by
BTTC(EED,AT) + B + Q32-EED (from now on simply
called EEDC). It achieves an average absolute error of 4.99.
This is far better than JPEG with an error of 11.25 and
very close to the 4.86 value for JPEG2000 which marks
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Fig. 7 Left: original image trui.
Middle: reconstructed after
compression to 0.2 bpp by
JPEG2000 (AAE = 4.86).
Right: reconstructed after
compression to 0.2 bpp by
EEDC (AAE = 4.99)

Fig. 8 Comparison of EEDC with JPEG and JPEG2000 over a range
of compression ratios from 5:1 (1.6 bits per pixel) to 40:1 (0.2 bpp) for
the test image trui

the state of the art in image compression. For a visual
comparison, we juxtapose this algorithm and JPEG2000
in Fig. 7. It can be seen that the overall visual quality of
both methods is very similar. Each algorithm represents
some details better. The result of the EEDC algorithm ap-
pears slightly smoother and is free from the faint block ar-
tifacts that occur even in JPEG2000. On the other hand, it
tends slightly more towards cartoon-like smoothed struc-
tures.

In Fig. 8, we show the relation between EEDC, JPEG,
and JPEG2000 over a range of different compression ra-
tios. At the lowest compression ratio 5:1, the differences be-
tween all methods are marginal. While JPEG deteriorates
rapidly at higher compression ratios, both JPEG2000 and
EEDC show a moderate increase in the reconstruction er-
ror.

Finally, a comparison of EEDC with JPEG and JPEG2000
on a variety of popular compression test images is shown in
Fig. 9 and Table 5. It demonstrates that in terms of recon-
struction quality at high compression ratio, PDE-based com-
pression consistently ranks between JPEG and JPEG2000,
and is always closer to the latter. For images with a lot
of detail and textures, like barbara or boats, the tendency
to smoothing becomes more striking. In these cases, how-

Table 5 Comparison of absolute average errors for different images
and compression methods at 0.2 bpp, as shown in Fig. 9

Image JPEG EEDC JPEG2000

Lena 13.61 8.72 7.20

Cameraman 13.75 9.38 8.07

Peppers 12.19 7.53 6.59

Barbara 15.47 12.22 10.06

Boats 14.68 11.82 9.28

ever, even JPEG2000 displays a noticeable loss of de-
tail.

6 Summary and Conclusions

While contemporary image compression is dominated by
transform-based methods that rely on the discrete cosine
transform or wavelet decompositions, we have shown that
PDEs have the potential to become a serious alternative. To
this end, we have driven PDE-based inpainting ideas to the
extreme by storing only a sparse set of all pixels and in-
terpolating the missing data by edge-enhancing anisotropic
diffusion. The sparse point set has been constructed by a
B-tree triangular coding with several improvements such as
the adaptation of the threshold parameter, diffusion-based
point selection, and a specific quantisation strategy. The fact
that with this relatively moderate degree of sophistication,
our EED-based codec clearly outperforms the JPEG stan-
dard at high compression rates and even comes close to the
quality of the highly optimised JPEG2000 is very encourag-
ing.

With respect to the specific method in our paper, there
is certainly room for further optimisation, for instance by
incorporating ideas from rate distortion theory. In order to
establish PDE-based methods as a more general alterna-
tive to existing paradigms, additional research is underway,
e.g. with respect to the theoretical foundations of diffusion-
based interpolation [9], alternative sparsification strategies
[9, 21] including feature-based ones [76], compact repre-
sentation of textured regions, highly efficient numerical al-
gorithms [42], as well as generalisations to vector- and
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Fig. 9 Comparison of
compression methods at 0.2 bpp
for different test images
(rescaled to 257 × 257 pixels).
Rows, top to bottom: lena,
cameraman, peppers, barbara,
boats. Columns, left to right:
original image, reconstructed
images after compression by
JPEG, by EEDC, and by
JEPG2000

tensor-valued images [69], image sequences [42], and sur-
face data [5]. More details will be reported in forthcoming
publications.
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