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We present Cramér-Rao lower bounds (CRLBs) for the synchronization of UWB signals which should be tight lower bounds for
the theoretical performance limits of UWB synchronizers. The CRLBs are investigated for both single-pulse systems and time-
hopping systems in AWGN and multipath channels. Insights are given into the relationship between CRLBs for different Gaussian
monocycles. An approximation method of the CRLBs is discussed when nuisance parameters exist. CRLBs in multipath channels
are studied and formulated for three scenarios depending on the waymultipath interference is treated.We find that a larger number
of multipaths implies higher CRLBs and inferior performance of the synchronizers, and multipath interference on CRLBs cannot
be eliminated completely except in very special cases. As every estimate of time delay could not be perfect, the least influence of
the synchronization error on the performance of receivers is quantified.
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1. INTRODUCTION

Ultra-wideband (UWB) is a promising technique in the ap-
plication of short-range high-speed wireless communication
and precise location tracking. Typically, ultranarrow pulses,
such as Gaussian monocycles [1], are modulated to trans-
mit information. These pulses could be narrower than 1
nanosecond. This brings very stringent synchronization re-
quirements.

A UWB signal is basically a baseband signal without
phase and carrier information, hence time delay estimation
is the main task of a synchronizer. This synchronizer could
be one in a simple single-pulse UWB system; however, due
to the power limitation imposed by FCC [2], UWB pulses
are generally combined with spread spectrum techniques, es-
pecially time hopping (TH), to achieve multiuser access, to
ensure sufficient received energy, and to mitigate interfer-
ence in existing wireless systems. Similar to traditional spread
spectrum systems, the synchronization of a TH-UWB sys-

tem is accomplished in two steps: code acquisition followed
by code tracking. The former, involving the optimization of
search strategies, tries to determine the phase of the incom-
ing pseudonoise (PN) sequence within a fraction of chip
width. The latter refers to the process of achieving and main-
taining fine alignment of the chip boundaries of the incom-
ing and locally generated PN sequences.

As UWB pulses are very narrow, very stringent synchro-
nization requirements are incurred, and timing errors usu-
ally imply marked degradation of receiver performance [3].
Abundant research on the design and performance of syn-
chronization systems have been reported in the literature, for
example, [4, 5, 6]. These techniques can be transplanted into
UWB systems with some modifications to meet the strin-
gent timing requirement, as discussed in [7, 8, 9, 10]. Dif-
ferent to them, in this paper, we try to find some general
performance limitations for UWB synchronizers, and pro-
vide guidelines for the system design within acceptable per-
formance region.
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It is known that in the presence of noise, perfect synchro-
nization cannot be achieved. For UWB systems with strin-
gent timing requirements, it is of special interest to character-
ize this synchronization error and its influence on the per-
formance of detectors. This task becomes even more urgent
when we realize that the radiated power of UWB signals is
so low that the channel estimates could contain large errors
and the performance of synchronizers could be largely dete-
riorated. Under these conditions, is it still possible for UWB
synchronizers to reach a satisfying accuracy of timing lock-
ing? Some common performance parameters to evaluate syn-
chronizers are tracking time, S-curve behavior, and probabil-
ity of success. However, in order to provide benchmarks for
actual UWB synchronizers, we are more interested in under-
standing their theoretical performance limits. In the theory
of parameter estimation, Cramér-Rao lower bound (CRLB)
is most widely used in evaluating the performance of esti-
mates.

The CRLB [11] is a fundamental lower bound on the
variance of any unbiased estimator. The analysis of CRLB for
traditional systems is well founded [5, 12, 13, 14, 15, 16, 17,
18, 19], but for UWB, there is no systematic work reported
yet to our knowledge. The evaluation of the CRLB is gen-
erally mathematically quite difficult when the observed sig-
nal contains, besides the parameter to be estimated, some
nuisance parameters that are unknown [14, 19]. These nui-
sance parameters could be the transmitted data and, some-
times, multipath gains and delays which arise in fading chan-
nels. When the nuisance parameters are present, the modi-
fied CRLB (MCRB) [13, 14, 15], and the asymptotic CRLB
(ACRLB) [14], are good approximations to the true CRLB at
higher signal-to-noise ratio (SNR), and the lower-SNR limit
of the CRLB is approximated in [18] by applying a Taylor
Series expansion.

This paper is concerned with evaluating the CRLB for
UWB signals. Both single-pulse systems and TH systems are
considered. For TH, the CRLB should be a lower bound for
the performance of code tracking. The structure of this pa-
per is as follows. In Section 2, the problem is formulated.
In Section 3, considering AWGN channels, the CRLBs for
single-pulse systems are investigated in both cases of known
and unknown transmitted data. Some insights into the re-
lationship between CRLBs for different Gaussian monocy-
cles are given explicitly. We also highlight an oversight in the
lower-SNR approximation method [18] and provide a possi-
ble solution to remedy this problem by tightly locating the
range of SNR γs. These results can be readily extended to
a TH-UWB system in AWGN channels with minor modi-
fications. In Section 4, we extend this work to more prac-
tical multipath channels while considering an unmodulated
TH system. Depending on the way multipath interference is
treated in a practical synchronizer, three scenarios are ana-
lyzed when multipath interference contributes as an increase
of noise variance or multiple synchronization parameters. In
Section 5, the influence of synchronization error on the per-
formance of receiver is quantified, which may be the least
influence a UWB correlator receiver can expect. Finally, nu-
merical results are given in Section 6 to verify some analyt-

ical results and illustrate the effect of pulse truncation on
CRLBs.

2. PROBLEM FORMULATION

Binary pulse position modulation (BPPM) and binary phase
shift keying modulation (BPSK, or antipodal modulation)
are considered here. Let s(t) be the transmitted UWB signal.
In a single-pulse system, s(t) = ∑

i biω(t − iTs) for BPSK,
and s(t) = ∑

i ω(t − iTs − biTd) for BPPM, where ω(t) is
a UWB pulse, bi ∈ {−1, +1} is the ith transmitted data, Ts

is the symbol period, and Td is the time offset of BPPM. In

an unmodulated TH system, s(t) =∑i si(t) =
∑

i

∑Nf

j=1 ω(t −
iTs− jT f −cjTc) where si(t) is the ith transmitted symbol, Tf

is the frame width, Nf is the number of frames in a symbol,
Tc is the chip width, and cj are the TH codes.

The UWB pulses considered are series of Gaussian
monocycles ω(t;n, tp), which are scaled and/or differen-
tiated versions of the basic Gaussian waveform ω0(t) =
exp(−2πt2), that is, ω(t;n, tp) = ω(n)

0 (t/tp), where the super-
script (n) stands for n-order differentiation with respect to t,
and tp parameterizes the width of the pulse.

To ensure equal energy of monocycles, a coefficient
ε(n, tp) is introduced, and let ω(t) = ε(n, tp)ω(t;n, tp). De-
note the energy of ω(t) as Ep and symbol SNR as γs, then
ε(n, tp), depending on n and tp, satisfies

ε2
(
n, tp

) = Ep∫ +∞
−∞ ω2

(
t;n, tp

)
dt
. (1)

When passing through a pure AWGN channel n(t), the
received signal r(t) becomes

r(t) = s(t − τ) + n(t), (2)

where every sample of n(t) is Gaussian distributed with zero
mean and variance σ20 , and τ is the timing delay to be esti-
mated.

When passing through a frequency-selective fading chan-
nel, h(t) =∑L

�=1 a�δ(t − τ�), the received signal is given by

r(t) =
L∑

�=1
a�s
(
t − τ�

)
+ n(t), (3)

where a� and τ� are real multipath gains and delays, respec-
tively. Note that the time delay τ between the transmitter and
the receiver is merged into τ� .

Due to the low-duty cycle of UWB signals, we assume the
received signal is free of intersymbol interference (ISI) unless
indicated otherwise. For the effect of ISI and the design of
training sequence accordingly, the readers can refer to [20,
21].

For the AWGN model in (2), for the purpose of forming
estimates based on K independent observations, the received
signal can be represented as a vector model

r = s(b, τ) + n, (4)
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where r = [r1, . . . , rK ], s = [s1, . . . , sK ], and n = [n1, . . . ,nK ]
are the sample vectors of the received signal r(t), the trans-
mitted signal s(t − τ), and the noise n(t), respectively, and
b = {bi} are the transmitted data sequence.

Suppose an unbiased estimate τ̂ of the time delay τ can
be generated from (4). Then the estimation error variance is
lower bounded by the CRLB Er[(τ̂ − τ)2] ≥ CRLB(τ), where

CRLB(τ) =
(
Er|τ

[
− d2

dτ2
ln
(
p
(
r
∣∣τ))])−1. (5)

In (5), the conditional pdf p(r|τ) is the likelihood function
of τ, and the expectation Er|τ[·] is with respect to p(r|τ).

The likelihood function p(r|τ) can be obtained by aver-
aging the joint likelihood function p(r|b, τ) over the a priori
distribution of the data b : p(r|τ) = Eb[p(r|b, τ)]. When b
is known, p(r|τ) = p(r|b, τ).

Since the additive noise n(t) is white and zero mean, the
joint conditional pdf p(r|b, τ) can be expressed as

p(r|b, τ) =
K∏
k=1

1√
2πσ0

exp
(
− 1

2σ20

(
rk − sk

)2)

=
(

1√
2πσ0

)K
exp

(
− 1

2σ20

K∑
k=1

(
rk − sk

)2)
.

(6)

Applying the signal orthogonal expressions [6, page 335]
or letting the number of samples K go to infinity [11, page
274] (or from the standpoint of generating sufficient statis-
tics), we have

K∑
k=1

(
rk − sk

)2 = ∫
To

[
r(t)− s(t − τ)

]2
dt, (7)

where To is the observation period.
Now, a continuous-time equivalent of p(r|b, τ) can be

developed. Considering the subsequent operations of loga-
rithm and differentiation, only terms related to b and τ will
be retained. Then the evaluation of p(r|b, τ) is equivalent to
evaluating the likelihood function

Λ(b, τ)=exp

(
1
2σ20

(
2
∫
To

r(t)s(t − τ)dt −
∫
To

s2(t − τ)dt
))

.

(8)
The process from (4) to (8) can be applied to the multi-

path model (3) with minor modifications.

3. CRLB FOR SINGLE-PULSE SYSTEMS
IN AWGN CHANNELS

3.1. CRLBwith known transmitted data
The CRLBwith known b, further derived from (8) or directly
from [15], has the form

CRLB(τ;b) = σ20∫
To
ṡ2(t − τ)dt

, (9)

where ṡ(t−τ) denotes first partial differentiation with respect
to τ.

Assuming that the pulse is strictly restricted within a
symbol period, and To = NTs, where N is the number of
symbols contained in the observation period (one pulse per
symbol in this case), then for both BPSK and BPPM, the
denominator in (9) equals N

∫
Ts
ω̇2(t − τ)dt. For a specific

monocycle, the lower variance bound becomes

CRLB(τ;b) = 1
Nγs

∫
Ts
ω2
(
t − τ;n, tp

)
dt∫

Ts
ω̇2
(
t − τ;n, tp

)
dt
, (10)

where the symbol SNR is γs = Ep/σ
2
0 .

If the symbol period Ts is large enough so that most of
the energy of the pulse concentrates within Ts, we can express
(10) in the frequency domain:

CRLB(τ;b) = 1
Nγs

∫ +∞
−∞
∣∣W(

f ;n, tp
)∣∣2df∫ +∞

−∞ f 2
∣∣W(

f ;n, tp
)∣∣2df , (11)

whereW( f ;n, tp) is the Fourier transform of ω(t;n, tp).
According to the properties of the Fourier transform of

derivatives of functions, we find explicit relationships exist-
ing between the CRLBs of monocycles with different n but
the same tp, that is,

CRLB(τ;b)n
CRLB(τ;b)n+1

=
∫ +∞
−∞
∣∣W(

f ;n, tp
)∣∣2df · ∫ +∞−∞ f 4

∣∣W(
f ;n, tp

)∣∣2df( ∫ +∞
−∞ f 2

∣∣W(
f ;n, tp

)∣∣2df )2
> 1,

(12)

where the inequality follows from an application of Schwarz’s
inequality. This inequality implies that monocycles with
higher-order differentiation have the potential for better per-
formance in the sense of lower synchronization error vari-
ance.

For monocycles with different tp but with the same n, the
ratio between their CRLBs can be found as

CRLB(τ;b)tp1
CRLB(τ;b)tp2

=
(
tp1
tp2

)2

, (13)

which implies that monocycles with smaller tp (narrower ef-
fective pulse width) have the potential for better synchro-
nization performance.

3.2. CRLBwith unknown randomly transmitted data

For PPM, the uncertainty of time jitter introduced by modu-
lation will cause large synchronization error when the trans-
mitted data is random and unknown.When further methods
are adopted to solve this problem, the CRLB analysis in these
cases will usually be based on a system model similar to the
one with known data. Hence we only consider BPSK-UWB
signals in this subsection.
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For BPSK, the likelihood function in (8) becomes

Λ(b, τ) = exp

( N∑
i=1

1
σ20

(
bi y(τ)− b2i γs

))
, (14)

where y(τ) = ∫Ts
r(t)ω(t − τ)dt.

Dropping the constant term γs
∑N

i=1(b
2
i ) = Nγs, we ob-

tain the log-likelihood function of p(r|τ) as

L(r; τ) = ln p(r|τ)
= ln Eb

[
Λ(b, τ)

]
=

N∑
i=1

ln Ebi

[
exp

(
1
σ20

bi y(τ)

)]

= N ln cosh

(
1
σ20

y(τ)

)
.

(15)

By differentiatingL(r; τ) twice with respect to τ, we get

∂2L(r; τ)
∂τ2

= N

σ20
tanh

(
y(τ)

σ20

)
ÿ(τ)

+
N

σ40

(
1− tanh2

(
y(τ)

σ20

))
ẏ2(τ),

(16)

where ẏ(τ) and ÿ(τ) denote first and second derivatives of
y(τ) with respect to τ.

Due to the nonlinear function tanh(·) in (16), an analyt-
ical solution for Er|τ[∂2L(r; τ)/∂τ2] is infeasible.

Since the pulse energy is restricted to be very low by
the FCC [2] (the maximum power of a transmitted pulse
with bandwidth 7GHz is only 0.5mW), one can refer to the
lower-SNR limit of CRLB in [18], applying a Taylor exten-
sion of the likelihood function p(r|b, τ), to obtain a simi-
lar result for UWB. One thing we wish to emphasize here is
that, in [18], the statistical property of the likelihood func-
tionL(u, τ) (original notation in [18]) is somewhat ignored.
Due to L(u, τ) containing Gaussian variables with variance
comparable to the reciprocal of symbol SNR, more care is
needed when dropping the higher-order terms in Taylor ex-
tension according to the lower symbol SNR assumption. A
similar problem arises in an alternative method we introduce
below, where this ambiguity is revealed further, and resolved
by tightly locating the value of the symbol SNR.

The alternative method we suggest is also based on ap-
proximation. The basic idea is to find best-fitting functions
for ln(cosh(·)) in a piecewise fashion. To make analysis
tractable, these functions are polynomials with order smaller
than 3. But they should not be constructed by only consider-
ing the goodness of fit due to the succeeding expectation op-
eration. This is because y(τ) is a random variable and when
we deal with the expectation operation, we have to make
sure that all the possible samples of y(τ) are involved. Al-
though integrating these polynomials in segments is feasi-
ble, it cannot produce a closed form result and is still a nu-
merical method. Instead, we try to construct each polyno-
mial in which the variable space supports the sampling space.

It seems impossible as the pdf of y(τ) distributes in the en-
tire one-dimension real space. We overcome this obstacle by
assuring that most of the samples (say, 99%) are located in
the interval of interest.

With this criterion in mind, we find that a three-segment
approximation is a good choice by studying the shape of
the waveform ln(cosh(x)). A detailed discussion is shown in
Appendix A. Examples of such three lower-order (≤ 2) poly-
nomials are

ln
(
cosh(x)

) ≈

0.3x2 + 0.14x − 0.018, |x| < 1.5,

0.000034x2 + x − 0.69, 1.5 ≤ |x| ≤ 2.5,

x − 0.69, |x| > 2.5.

(17)

The root mean squared approximation errors are 0.0081,
0.0091, 0.0031 for the three pieces, respectively. The ranges
of corresponding SNR γs are [−∞,−6.25] dB, [10.3, 10.8] dB,
and [10.8, +∞] dB, respectively, which can be determined ac-
cording to the way addressed in Appendix A.

Due to nonexistence of a polynomial with goodness
of fit and a fully covered sampling space simultaneously,
an appropriate interval corresponding to SNR range of
[−6.25, 10.3] dB cannot be found.

Representing a general 2-order polynomial function as
ln(cosh(x)) ≈ f (x) = ax2 + b|x| + c|x=y(τ)/σ20 , |x| ∈ [x1, x2],
where 0 ≤ x1 < x2, we derive the CRLB based on it below.

The reciprocal of the CRLB can be calculated as

−Er|τ

[
∂2L(r; τ)

∂τ2

]
= −N Er|τ

[
2axẍ + 2aẋ2 + bẍ

]
, (18)

where we utilize

d2|x|
dτ2

= d2

dτ2
(√

x2
) = d

dτ
ẋ = ẍ. (19)

As shown in Appendix B, these expectations are given by

Er|τ
[
ẋ2
] = 1

σ20

∫
Ts

ω̇2(t − τ)dt,

Er|τ[xẍ] = −γs + 1

σ20

∫
Ts

ω̇2(t − τ)dt,

Er|τ
[
ẍ2
] = − 1

σ20

∫
Ts

ω̇2(t − τ)dt.

(20)

Then for a specific monocycle ω(t;n, tp), the CRLB is

CRLB(τ) = 1
N
(
2aγs + b

)
γs

∫
Ts
ω2
(
t − τ;n, tp

)
dt∫

Ts
ω̇2
(
t − τ;n, tp

)
dt
. (21)

By substituting a and b with the coefficients of polynomials
in (17), the CRLBs for different γs are readily obtainable. It
is clear that the relationship between CRLBs for monocycles
with different n or tp is identical to that when the transmitted
data is known.
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By comparing (10) and (21), we find that CRLB(τ;
b)/CRLB(τ) = 2aγs + b. Referring to (17), it is obvious
that the CRLB with unknown data is always larger than that
with known data for the lower SNR case, and converges to
CRLB(τ;b) in the higher-SNR case, which coincides with the
attributes of ACRB given in [14].

4. CRLB FOR TH-UWB SYSTEMS
IN SELECTIVE FADING CHANNELS

When the channel is AWGN, the analysis and results in
Section 3 can be applied to TH-UWB systems with minor
modifications. The change can be merged into the symbol
SNR γs, that is, γs equals the ratio between the energy of Nf

pulses and the noise variance σ20 for TH-UWB systems. In
this section, we will focus on selective fading channels.

Synchronization in selective fading channels is a chal-
lenging task. The performance largely depends on the
schemes and algorithms. Based on the way multipath signals
are treated, these systems can be divided into three categories.
Accordingly, we consider the CRLB for each of them. Since
CRLB with unknown data is straightforward but computa-
tionally complex as derived in Section 3, we only consider the
case of known data b here.

4.1. Passivemethods: regardingmultipath
signals as interference

This refers to methods that apply general synchronizers, such
as early/late gates, while treating multipath signals as inter-
ference [22, 23], or partly utilizing multipath energy [24], or
using a whitening filter before a synchronizer [25]. The effect
of multipath interference on synchronizers has been studied
in [22, 23, 26, 27, 28, 29]. From the viewpoint of CRLB, all
these methods can be generalized to a model in which only a
specific multipath is of interest. Mathematically, we can rep-
resent this model as

r(t) = ams
(
t − τm

)
+

L∑
�=1, � �=m

a�s
(
t − τ�

)
︸ ︷︷ ︸

interference

+n(t), (22)

where am and τm are the parameters to be estimated.
Generally, the received signal r(t) first passes through a

PN code correlator si(t − τ̂m), where τ̂m is the preestimated
delay, so that the energy of all pulses in a symbol are collected
tomake an estimation. Then themodel in (22) can be further
written as

r f
(
τ̂m
) = am

N∑
i=1

φ
(
τ̂m + iTs − τm

)

+
N∑
i=1

L∑
�=1, � �=m

a�φ
(
τ̂m + iTs − τ�

)
︸ ︷︷ ︸

na

+n f
(
τ̂m
)
,

(23)

where

r f
(
τ̂m
) = N∑

i=1

∫
iTs

r(t)si
(
t − τ̂m

)
dt,

φ(v) =
∫
iTs

s(t − v)si(t)dv,

n f
(
τ̂m
) = N

∫
iTs

n(t)si
(
t − τ̂m

)
dt.

(24)

Successful detection requires sampling r f (t) at τ̂m = iTs + τm
accurately.

Each sample of n f (τ̂m) is Gaussian distributed with zero
mean and variance σ2n f

= NNf Epσ
2
0 . The component na,

containing interchip interference and ISI, is hard to model
and evaluate without prior knowledge of TH codes and mul-
tipath delay. To make the analysis mathematical tractable,
here we assume that na is Gaussian distributed1 with mean
mna and variance σ2na . In Appendix C, more information is
given on the parameters of this distribution.

Recall that when considering the CRLB for TH-UWB
synchronizers in the phase of code tracking, it is reason-
able to assume that φ(t − τm)|t=τ̂m is restricted in an inter-
val [−Tφ,Tφ], where Tφ is smaller than half of the frame pe-
riod (Tφ < Tf /2). Then the sum of φ(t − τm) for N symbols,∑N

i=1 φ(t + iTs− τm), equals Nφ(t− τm). Now, the estimation
problem can be reformed as

r f (t) = amNφ
(
t − τm

)
+ na + n f (t), (25)

which is a problem of multiple parameters estimation in a
Gaussian interference.

Although am and τm are correlated via the mean power
profile of fading, they are usually treated as unknown and de-
terministic parameters, and nonrandom parameter estima-
tion techniques are applied, as the statistical relationship be-
tween them are hardly predictable. This means they are not
a function of each other any more. Strictly speaking, τm is
the only synchronization parameter, and CRLB(τm) can be
obtained when regarding am as a nuisance parameter. How-
ever, it is known that joint estimation of τm and am usually
gives lower CRLB for τm than that in a separate-estimation
case [11, 14, 19]. Hence we will focus on joint estimation and
generate CRLB(am) as a byproduct.

Representing (25) as a vector form rf = amNΦ + na + nf

and applying the similar process from (6) to (8), the joint
log-likelihood function L(rf ; am, τm) = ln p(rf ; am, τm) can
be obtained as

L
(
rf ; am, τm

)
= − N

2
(
σ2na+σ

2
n f

) ∫
2Tφ

(
Na2mφ

2(t − τm
)− 2amr f (t)φ

(
t−τm

)
+ 2mnaamφ

(
t − τm

))
dt.

(26)

1In [11, page 309], a general equation is provided for the CRLB of any
unbiased estimate in colored noise. But a closed-form solution is not readily
available.
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Lower bounds on the variances of estimates for the com-
ponents of am and τm are given in terms of the diagonal el-
ements of the inverse of the Fisher information matrix J−1

[11]. In this example,

J =


−E

[
∂2L

(
rf ; am, τm

)
∂a2m

]
−E

[
∂2L

(
rf ; am, τm

)
∂am∂τm

]

−E

[
∂2L

(
rf ; am, τm

)
∂am∂τm

]
−E

[
∂2L

(
rf ; am, τm

)
∂τ2m

]

 ,

(27)

where the expectation E[·] is with respect to p(rf ; am, τm).
Noting φ(t − τm) and am are mutually independent, the

elements of J can be calculated as

J11 = C
∫
2Tφ

φ2(t − τm
)
dt,

J12 = J21 = Cam

∫
2Tφ

φ
(
t − τm

)
φ̇
(
t − τm

)
dt,

J22 = Ca2m

∫
2Tφ

φ̇2(t − τm
)
dt,

(28)

where C is a constant defined as C � N2/(σ2na + σ2n f
).

The crossterms J12 and J21 will vanish if we extend the
observation period Tφ till φ(Tφ) ≈ 0. Then the CRLBs for τm
and am are

CRLB
(
τm
) = 1

J22
=
(
Ca2m

∫
2Tφ

φ̇2(t − τm
)
dt
)−1

,

CRLB
(
am
) = 1

J11
=
(
C
∫
2Tφ

φ2(t − τm
)
dt
)−1

.

(29)

It is clear that the estimation of the time delay τm depends
on the amplitude of the multipath given that C is the same
for all multipath signals, while the estimation of am could be
independent of τm supposing we extend the observation pe-
riod appropriately. For the performance of synchronizer, the
multipath interference contributes as an increased estimate
variance.2

Depending on the Gaussian approximation for the mul-
tipath interference na, C may be related to a specific mono-
cycle, hence the relationship between CRLB for different
monocycles cannot be claimed directly.

Finally, we wish to say a little more on the relationship
between our model in this section and practical systems. In
the literature on synchronizers for spread spectrum systems
such as CDMA, we can always find the terms fading band-
width, tracking loop bandwidth, and predetection bandwidth
and discussions on how the relationship between them af-
fects the performance of synchronizers in a multipath chan-
nel (e.g., [26, 27, 28]). Briefly, the relationship between these
bandwidths determines the degree of multipath interference

2The multipath interference also very much likely causes a biased esti-
mation according to [27].

entering the final decision part of the synchronizer. Consid-
ering our model, the effect can be regarded as a reduction of
noise variance σ2na .

4.2. Positive joint detection ofmultipath signals

We refer to the method of jointly detecting fading ampli-
tude and delay of all the multipath signals as a positive
one. For CDMA, this method has been well studied in lit-
erature such as [16, 17, 25]. And the derivation of CRLB
for CDMA systems can been found in [16, 17, 30]. Here,
following the process in Section 3, we study the CRLB us-
ing joint detection for a UWB system where the parameters
a = [a1, . . . , a� , . . . , aL]1×L and τ = [τ1, . . . , τ� , . . . , τL]1×L to
be estimated are treated as unknown but deterministic.

Beginning with (3), similar to the derivation from (4) to
(8), we can obtain the log-likelihood functionL(r; τ, a) as

L(r; τ, a) = 1
σ20

∫
To

r(t)
∑
�

a�s
(
t − τ�

)
dt

− 1
2σ20

∫
To

[∑
�

a�s
(
t − τ�

)]2

dt.

(30)

After some manipulation, the Fisher information matrix
J has the structure

J =
(
Jττ Jτa
Jaτ Jaa

)
, (31)

where Jττ , Jτa, Jaτ , and Jaa are all L× Lmatrices with [�,m]th
elements:

Jττ[�,m] = 1
σ20

∫
To

a�amṡ
(
t − τ�

)
ṡ
(
t − τm

)
dt,

Jaa[�,m] = 1
σ20

∫
To

s
(
t − τ�

)
s
(
t − τm

)
dt,

Jτa[�,m] = Jaτ[m, �] = − 1
σ20

∫
To

a� ṡ
(
t − τ�

)
s
(
t − τm

)
dt,

(32)

respectively.
The CRLB for τm is just the mth diagonal element of the

inverse of J. Usem = 1 as an example and rewrite the matrix
J as

J =
(
J11 B
C D

)
; (33)

we have

CRLB
(
τ1
) = J−111 + J−111 B

(
D− CJ−111 B

)−1
CJ−111 (34)

= J−111 + J−211 BJ̃
−1
11 C (35)

≥ J−111 , (36)

where J̃11 is called the Schur complement of J11 [31, page 175].
Since J is nonnegative definite, the Schur complement matrix
J̃11 is also nonnegative definite, and so is J̃−111 . At the same
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time, B is the transpose of C since J is a symmetric matrix
in this case. Thus we get BJ̃11C ≥ 0 and the inequality in
(36) follows immediately. Whenever J11 > 0, we can get the
inequality in (36) more readily according to

CRLB
(
τ1
) = (J11 − BD−1C

)−1
> J−111 . (37)

As J−111 can be regarded as the CRLB in an AWGN channel
with a known scalar of amplitude, this inequality implies that
the CRLB in joint detection is always larger than that in the
single-parameter estimation in an AWGN channel. Then an
interesting question arises, whether more multipath means
higher CRLB and inferior performance of synchronizers ac-
cordingly.

We consider a channel with L− 1 multipath signals. The
Fisher information matrix J′ can be written as

J′ =
(
J11 B
C D′

)
, (38)

with

D′ =
(
D1 0
0† 0

)
, (39)

where 0 is an (L−2)×1 zero vector and † stands for transpose
operation. Then the CRLB with L− 1 multipath is

CRLB
(
τ1
)
L−1 =

(
J11 − BD′−1C

)−1
. (40)

Comparing BD−1C and BD′−1C gives

BD−1C− BD′−1C = B

(
D−1 −

(
D−11 0
0† 0

))
C (41)

≥ 0, (42)

where the inequality in (42) yields from the fact that D−1 −
D′−1 is a nonnegative definite matrix as can be proven ac-
cording to the property of partitioned nonnegative definite
matrices (see, e.g., [31, page 178] and let D−1 = A in equa-
tion (6.10)).

Since J11 > 0, we have

CRLB
(
τ1
)
L > CRLB

(
τ1
)
L−1, (43)

which shows that more multipath does lead to higher CRLB
and inferior performance of synchronizers. Since the number
of multipaths is closely relevant to the bandwidth of mono-
cycles, we conclude that narrower monocycles will very likely
cause larger CRLBs. We did not say “absolutely” because all
other variables besides D during this derivation are assumed
unchanged, but it could be unrealistic when different mono-
cycles are applied.

Another key factor with influence on CRLB is the choice
of TH codes. When the autocorrelation of TH codes is ideal,
both the CRLBs in this subsection and Section 4.2 will be the
same and similar to the one in an AWGN channel.

4.3. Activemethods: cancellation of interference?

From Sections 4.1 and 4.2, we have seen that the performance
of synchronizers is deteriorated by the multipath interfer-
ence. It is natural to ask whether the multipath interference
can be mitigated or fully eliminated before entering the deci-
sion part of a synchronizer.

As shown for CDMA systems in [27], it is possible to re-
move part of multipath interference in UWB systems. How-
ever, unless the correlation of TH codes is ideal, the total re-
moval of multipath interference is impossible due to the ex-
istence of n(t). This is because, from Section 4.2, we see that
any estimate of parameters, including amplitude and delay,
even though unbiased, may still have a nonzero variance in
the present of noise. The CRLB can generally be achieved
bymaximum likelihood estimation asymptotically (when the
number of observation samples goes to infinity), and the es-
timation error becomes Gaussian distributed with zero mean
and variance equivalent to the CRLB [5, 11]. Therefore, the
final signal with a pair of synchronization parameters of in-
terest contains the sum of 2(L− 1) Gaussian variables, which
has a variance larger than the variance of n(t). Since CRLB is
proportional to the variance of (interference and) noise, the
CRLBs for this pair of parameters will be larger than those
in a single-path channel. So no matter how perfect the struc-
ture and algorithm to remove multipath signal are, the effect
of multipath interference can only be mitigated but cannot
be canceled thoroughly. This result also partly explains why
more multipath generally leads to higher CRLBs.

However, there are some special cases whenmultipath in-
terference becomes negligible. For example, when the max-
imal multipath delay is smaller than the frame period in a
single-pulse system, multipath signals do not interfere with
each other due to the low duty cycle of UWB signal struc-
ture.

5. INFLUENCE OF SYNCHRONIZATION ERROR ON BER

As every estimate of time delay could not be perfect, we use
an example to show the influence of synchronization error
on the performance of receivers in UWB systems.

We consider a BPSK modulated single-pulse signal in an
AWGN channel like that in Section 3. A correlator receiver
[32, 33] is used to detect the signal.

The conditional bit error ratio (BER), depending on the
synchronization error eτ , is given by

Pe
(
eτ
) = Q

 ρ
(
eτ
)√

Epσ0

, (44)

where we have assumed that the observation period
equals a symbol period such that N = 1, Q(x) �∫ +∞
x exp(−t2/2)/√2π dt, and ρ(eτ) =

∫
Ts
ω(t)ω(t − eτ)dt.

Recall that the best theoretically achievable eτ is Gaussian
distributed with zero mean and variance equivalent to the
CRLB (denoted by σ2c ). In the best case, σ

2
c = σ20 /(N

∫
Ts
ω̇2(t−

τ)dt) from (9) is the smallest. Averaging Pe(eτ) over eτ ,
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Figure 1: CRLB versus symbol SNR γs for n-order monocycles with tp = 2 nanoseconds; n = 2, 3, 4.

we get the mean BER

Pe = E
[
Pe
(
eτ
)]

=
∫ +∞

−∞
1√
2πσc

Q

√√√√ρ2
(
eτ
)

Epσ
2
0

 exp

(
−e2τ
2σ2c

)
deτ .

(45)

Statistically, this is the best achievable performance under
certain SNR. This equation can be evaluated numerically by
Monte Carlo simulation which requires high computational
complexity. Alternatively, we invoke the Hermite-Gaussian
quadrature [34], and Pe can be accurately approximated by

Pe 	 1√
π

Nh∑
n=1

HxnQ

ρ
(√

2σcxn
)√

Epσ0

, (46)

whereNh is the order of the Hermite polynomialHNh(·), and
xn andHxn are the zeros (abscissas) and weight factors of Nh-
order Hermite polynomial, respectively. These values are tab-
ulated in many mathematical handbooks (e.g., [35]). In ex-
periments, we find that 16 coefficients (Nh = 16) are enough
to generate accurate approximation results.

Further define a variable η as the degrading ratio between
Pe and Pe(0) = Q(√γs), which is the BER in the case of

perfect synchronization. We show the values of η for differ-
ent monocycles in Section 6 to compare the synchronization
error robustness of monocycles.

6. NUMERICAL RESULTS

Since for multipath channels, the CRLBs depend on the TH
codes and detailed fading channel models, we only show nu-
merical results on the CRLBs in pure AWGN channels in this
paper.

In Figures 1, 2, and 3, the CRLBs for different monocycles
in the case of known data b are demonstrated. Since in prac-
tice, a transmitted monocycle is usually the truncated por-
tion of a whole pulse w(t;n, tp), this effect of truncation is
considered by varying the actual width of pulse in (10).

From Figure 1, we can see that CRLBs are inversely pro-
portional to the symbol SNR and the observation period
NTs. The relationship between CRLBs for monocycles with
different n order coincides with the analytical results in (12).
This can be further observed in Figure 2, which also depicts
the effect of truncated pulses on CRLB. The CRLBs change
little even when the truncated portion narrows to 1.6 tp
(symmetric with respect to t = 0). However, with the width
of truncated pulse decreasing further, the CRLBs become or-
derless. Figure 3 shows the effect of tp on the CRLBs and is a
direct verification of (13).
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Figure 2: CRLB versus n-order for monocycles with tp = 1
nanoseconds; different lines correspond to different widths of trun-
cation.

Figure 4 demonstrates the influence of synchronization
error on the performance of receivers. It is plotted from (46)
using Hermite-Gaussian approximation. The influence is no-
table when the observation window in the stage of synchro-
nization has small width (NTs) and weakens with N increas-
ing (CRLBs decreasing). The figure also indicates that syn-
chronization errors of different monocycles have very close
influence on BER, although the data in experiments shows
that the influence of monocycles with larger n is a little worse
when SNR γs is small and changes toward the opposite with
SNR increasing.

7. CONCLUSIONS

We have derived the Cramér-Rao lower bounds (CRLBs) for
the synchronization of UWB signals for both single-pulse
systems and time-hopping systems in AWGN and multi-
path channels. Insights are given on the relationship between
CRLBs for different Gaussian monocycles. The CRLBs in
AWGN channels are discussed in both cases of known and
unknown transmitted data. An approximationmethod of the
CRLB is introduced when nuisance parameters, unknown
transmitted data, exist. An oversight in the lower-SNR ap-
proximation method [18] is highlighted, and a possible solu-
tion is provided by tightly locating the range of SNR γs. The
CRLBs in multipath channels are studied for three scenar-
ios depending on the way multipath interference is treated in
a practical synchronizer, where multipath interference con-
tributes as an increase of noise variance or multiple syn-
chronization parameters. It is found that larger number of
multipaths implies higher CRLBs and inferior performance
of synchronizers, and multipath interference on CRLBs can-
not be eliminated completely except in very limited cases.
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Figure 3: CRLB for a 3-order (n = 3) monocycle with different pa-
rameters tp; different lines correspond to different widths of trun-
cation.

The least influence of synchronization error on the perfor-
mance of receivers is quantified. The influence is notable
when observation window (NTs) in the stage of synchro-
nization is small, and weakens with N increasing (CRLBs
decreasing). Synchronization errors of different monocycles
have very close influence on BER.

APPENDICES

A. APPROXIMATIONOF ln(cosh(y(τ)/σ20 ))

Here we show how to approximate ln(cosh(y(τ)/σ20 )) as low-
order polynomials in a piecewise fashion and determine the
corresponding range of symbol SNR γs.

From y(τ) = ∫
Ts
r(t)ω(t − τ)dt, y(τ) has Gaussian dis-

tributionN (E1, γsσ40 ), where |E1| = Ep in the case of perfect
synchronization, otherwise |E1| < Ep. As the estimate is usu-
ally clustered tightly around the true value in our case, and
E1 changes smoothly for UWB monocycles, we assume that
|E1| ≈ Ep (this can also be obtained from the assumption
of unbiased estimation of τ). Then y(τ)/σ20 is also Gaussian
distributed N (γs, γs) or N (−γs, γs). For Gaussian distribu-
tion, we know that when the distance between a sample and
the mean is larger than about 2.6

√
variance, the probability

of appearance can be assumed to be zero. Let the interval of
interest be [x1 ≤ y(τ)/σ20 ≤ x2]; to ensure that most of the
samples are in this interval, γs should satisfy the following
equations:

−2.6√γs + γs ≥
∣∣x1∣∣,

2.6
√
γs + γs ≤

∣∣x2∣∣,∣∣x1∣∣ + 5.2
√
γs ≤

∣∣x2∣∣.
(A.1)
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Figure 4: The degrading ratio η versus SNR γs for monocycles. Two observation periods (NTs) in a synchronizer are compared with
(a) N = 10 and (b) N = 50. The time t is normalized with respect to tp.

Briefly, two guidelines for determining the interval [x1, x2]
are (1) to ensure that this variable space be larger than the
sampling space for a specific polynomial and SNR γs, and
cover the range of γs as widely as possible; (2) although two
intervals can overlap, each interval should be fully covered by
a single polynomial.

Considering the waveform of ln(cosh(x)), from x = 0 to
a small x2, it has a very different shape with other segments
and has to be approximated separately by a polynomial. This
implies that there is only one interval covering the segment
containing the point zero. For this interval, only x2 needs to
be determined since ln cosh(·) is an even function, and the
distributions N (γs, γs) and N (−γs, γs) are symmetric with
respect to 0. For the same reason, it is enough to consider the
positive value of x1 and x2 for other segments hereafter. Note
that γs should be at least 6.76 for x1 > 0, this implies that
x2 > 13.52.

A well-known fact is that ln(cosh(x)) can be accurately
approximated by x2/2 when |x| 
 1, and by |x| − 0.69
when |x| � 1. But this simple scheme is not good enough
to be realistic. For example, for a value x2 as large as 0.5,

the approximation error is already 0.005, while the corre-
sponding maximum SNR γs is only 0.0324 = −15 dB which
is of little interest in practice.

To summarize the description above, we find that a three-
segment approximation is a good choice. Although the con-
struction of these approximations is not unique, they can be
represented as a general 2-order polynomial function f (x),
which leads to a general CRLB expression as shown in (21).

B. DERIVATION OF Er|τ[·]

First we derive the autocorrelation of r(t) which will be used
in subsequent calculation:

Er|τ
[
r
(
t1
)
r
(
t2
)]

= Er|τ
[(
s
(
t1 − τ

)
+ n
(
t1
))(

s
(
t2 − τ

)
+ n
(
t2
))]

= Er|τ
[
s
(
t1 − τ

)
s
(
t2 − τ

)]
+ σ20δ

(
t1 − t2

)
,

(B.1)

where in the last equality, we utilize the assumption that sig-
nal and noise are mutually independent and n(t) is AWGN
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with zero mean and covariance σ20δ(t1− t2). Note that the ex-
pectation with respect to p(r|τ) is equivalent to average over
the data b and noise n(t). Recalling that the convolution be-
tween r(t) and ω(t) in y(τ) is only within one symbol period
Ts, in the case of ISI-free, we have

Er|τ
[
s
(
t1 − τ

)
s
(
t2 − τ

)] = ω
(
t1 − τ

)
ω
(
t2 − τ

)
,

Er|τ
[
r
(
t1
)
r
(
t2
)] = σ20δ

(
t1 − t2

)
+ ω

(
t1 − τ

)
ω
(
t2 − τ

)
.
(B.2)

Then expectations on y(τ) can be calculated as

Er|τ
[
y(τ) ÿ(τ)

]
=
∫
Ts

∫
Ts

Er|τ
[
r
(
t1
)
r
(
t2
)]
ω
(
t1 − τ

)
ω̈
(
t2 − τ

)
dt1dt2

=
[∫

Ts

ω2(t)dt + σ20

]
·
∫
Ts

ω(t − τ)ω̈(t − τ)dt

= (γs + 1
)
σ20

∫
Ts

ω(t − τ)ω̈(t − τ)dt,

Er|τ
[
ÿ(τ)

]
=
∫
Ts

Er|τ
[
r(t)

]
ω̈(t − τ)dt

=
∫
Ts

ω(t − τ)ω̈(t − τ)dt,

Er|τ
[
ẏ2(τ)

]
=
∫
Ts

∫
Ts

Er|τ
[
r
(
t1
)
r
(
t2
)]
ω̈
(
t1 − τ

)
ω̇
(
t2 − τ

)
dt1dt2

= σ20

∫
Ts

ω̇2(t − τ)dt +
[∫

Ts

ω(t − τ)ω̇(t − τ)dt
]2
.

(B.3)

Assume that the energy of a pulse outside Ts is negligible,
these results can be further simplified due to∫

Ts

ω(t − τ)ω̇(t − τ)dt = 0,∫
Ts

ω(t − τ)ω̈(t − τ)dt

= −
∫
Ts

ω(t − τ)d
(
ω̇(t − τ)

)
= −ω(t − τ)ω̇(t − τ)|Ts︸ ︷︷ ︸

=0

−
∫
Ts

ω̇2(t − τ)dt

= −
∫
Ts

ω̇2(t − τ)dt.

(B.4)

According to the linear relationship between x and y(τ), the
expectations in terms of x are straightforward.

C. GAUSSIAN APPROXIMATIONOFMULTIPATH
INTERFERENCE

The key assumption we make is, for each multipath with
index �� �=m, φ(t)t �=0 is identically independently distributed

with meanmφ and variance σ2φ . As the number of multipaths
L in a dense UWB channel is very large, we invoke the central
limit theorem so that every sample variable of na(t) is Gaus-
sian distributed with

meanmna =
L∑

�=1, � �=m
a�mφ,

variance σ2na =
L∑

�=1, � �=m
a2�σ

2
φ.

(C.1)

The distribution of φ(t)t �=0 and the values of mφ and σ2φ
can be determined according to a general model describing
each sample and probability in detail or some specifically
chosen TH codes and multipath delays.
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