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1 Introduction

The fundamental objects in string theory or the so called D-branes have been playing a

key ingredient in various research topics on theoretical high energy physics as well as in

super string theory [1–4].

Indeed either a BPS or non-BPS Dp-brane includes (p+ 1)-dimensional world volume

fields which must be thought of a hypersurface like in a ten dimensional flat space time.

We need to take into account some special boundary conditions to them, namely either

Neumann or Dirichlet, depending on whether we apply those boundary conditions through

transverse or its world volume fields [5, 6]. Note that recently some remarks for brane-anti

brane have also been mentioned in [7].

To have more complete picture of the effective actions of string theory and what has

been carried out up to now, we just point out to various papers that are important to

the author. Myers in [8] did explore the form of a bosonic action which holds for mul-

tiple Dp-brane configurations and the generalization of Myers action with its all order

α′ corrections (using the mixed open-closed scattering amplitudes) has been done in [9].
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Having performed [9], some new couplings were obtained. These new couplings are not

inside Effective field theory (EFT) and their importance has played the fundamental role

not only in performing the ADM reduction of IIB and exploring dS brane world-volume

solutions [10] but also in deriving N3 entropy of M5 branes. These couplings could have

some specific role in super gravity solutions as well where the particular emphasis is paid

on the near-extremal black-branes to actually get to n3 entropy growth analysis [11].

A remarkable paper [12] on supersymmetrized version of that action was given. A

part of the supersymmetric action is known, in fact it involves symmetric traces of the

non-abelian fields and what needs exploration is further terms which do not belong to the

category that we are looking for in this paper. Whereas the effective action for a bosonic

brane given by [13] and naturally its supersymmetric one was written down by [14–18]. One

could read off a review of all the DBI, Wess-Zumino and Chern-Simons action just for BPS

branes from [19]. On the other hand, to reveal more about three standard ways of effective

field theory of the D-brane action (which contain Taylor expansion-Myers Terms and Pull

back), and to learn more about all sorts of higher derivative corrections of non-BPS and

BPS branes , we advise the section five of [20].

It is also important to have some tools to actually deal with the mixed open-closed

higher point functions of string amplitudes, where one can refer to some of the pioneer

works on either effective actions or scattering amplitudes that are involved with several

Dp-brane configurations as well as their string applications [21–33].

The paper is constructed as follows. In the next section we just introduce vertex

operators with all details and notations and then we try to work out Type II super string

computations with all order α′ D-brane S-matrix of a Ramond-Ramond (RR) in symmetric

picture, a scalar field in zero picture with two world volume gauge fields on different pictures

where we try to address the entire S-matrix and explain the whole techniques that are

involved in that particular amplitude.1

Afterwards we start comparing all the contact interactions and singularity structures

of 〈VCVφVAVA〉 S-matrix in two different pictures in the presence of a symmetric RR

vertex operator. Basically we compare both all order α′ contact interactions and all the

singularity structures of 〈C−1φ0A−1A0〉 with 〈C−1φ−1A0A0〉, where the superscripts refer

to the chosen picture of each string operator. Although we regenerate all t, s, u, (t+ s+u)-

channel poles in effective field theory, we also find out some new contact interaction and

singularities in the 〈C−1φ0A−1A0〉 S-matrix and for the first time , we explore their all

order α′ couplings in effective field theory as well.2

1We may wonder whether it is possible to apply T-duality to 〈VCVAVAVA〉 S-matrix of [19] to get

to 〈VCVφVAVA〉 S-matrix. Indeed as it has been explored there are various terms in the S-matrix of

〈VCVφVAVA〉, that carry momentum of RR in transverse direction that cannot be obtained by T-duality

transformation in flat ten dimensions of space-time. In fact the appearance of RR makes things subtle or

complicated as argued in [35] and [36] accordingly.
2There is the possibility that some of the terms derived in different pictures of the vertex operators,

might be related via Bianchi identities of the bulk. This would imply that some of the contact interactions

might be redundant but not all. In some of the specific examples , some of the assumed contact terms

seems to be reproduced by a specific combination of pull-back and Taylor expansion of the CS terms. One

might use some of the new terms to eliminate either the pull-back or the Taylor expansion. Nevertheless,
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It is also worth reporting some sort of new singularities and new sort of Myers terms

that appear in this particular picture of 〈C−1φ0A−1A0〉 S-matrix where those new terms

are actually the terms that carry momentum of RR in transverse direction and do involve

p.ξ terms inside the S-matrix elements.

Note that these p.ξ terms are derived by direct analysis of 〈C−1φ0A−1A0〉, due to non

zero correlation function of RR field by the first term of scalar field’s vertex operator in

zero picture, that is, all 〈eip.x(z)∂ix
i(x1)〉 terms are indeed non-zero. Therefore since scalar

field’s polarization is in the bulk , one expects to be concerned about all p.ξ terms and

pi, pj terms whose momenta of RR are carried in transverse directions. It is worth pointing

out the following fact as follows. Recently, it is shown in [34] that, if one does not know all

the Bianchi identities of RR in the bulk, then certainly there will be no chance to explore

all the bulk singularities of non-BPS branes.

We perform full comparisons at each order of α′ for all contact interactions as well,

and that leads to finding out new couplings that can be derived by just S-matrix analysis

not by any other tools to our knowledge.

The profound relation of open-closed string plays the crucial role in matching out all

the singularities of string theory with EFT, as it has been shown that all order α′ higher

derivative corrections to SYM couplings produce all massless poles at (t + s + u)-channel

poles through a RR coupling with various BPS open strings. It has also been empha-

sised that, this phenomenon could have played the major role for finding the universality

conjecture on α′ corrections of string theory [37].

We carry out the same analysis (this time for an RR, two scalars and a gauge field)

in type IIA and IIB super string theory for both 〈C−1A0φ−1φ0〉 and 〈C−1A−1φ0φ0〉 S-

matrices where we seem to find out the same t, s, u, (t + s + u)-singularity structures in

the presence of an RR, even number of scalar fields. However, we claim that various new

contact interactions appear in the S-matrix by considering both scalar fields in zero picture.

Indeed we derive these new couplings, show that these couplings can just be discovered

from 〈C−1A−1φ0φ0〉 S-matrix and explore their all order α′ corrections in effective field

theory side. Finally we conclude by mentioning various remarks about these S-matrices in

the conclusion section.

2 Type II Super string computations with all order α′ D-brane couplings

In this section we would like to carry out the Conformal Field Theory (CFT) technique to

be able to explore not only all the singularities but also all the infinite contact interactions

of the mixture of a closed string RR (in its symmetric picture) and various BPS open string

fields. Indeed our calculation makes sense at the level of a world-sheet five point mixed

closed-open string amplitude which must be done on the upper half-complex plane. We find

the entire S-matrix elements which hold on both world-volume and transverse component

of D-branes.

One might be interested in seeing various efforts that have been performed on both

BPS and non-BPS amplitudes [38–49].

we believe that not all the new couplings are redundant.
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In order to find out the effective action of string theory one needs to deal with or

calculate the scattering amplitudes and naturally the first step to do so, is to fix a particular

picture of the vertices. Namely, the sum of the superghost charges must have been (-2) for

disk amplitudes.

In our notations we use µ, ν = 0, 1, . . . , 9 for the whole spacetime, while a, b, c =

0, 1, . . . , p for world volume space and i, j = p + 1, . . . , 9 for transverse directions. Here

we would like to insist on the calculations in the presence of symmetric picture of RR

but for the completeness we point out all the different vertex operators in various pictures

as follows:

V
(0)
φ (x) = ξi

(

∂Xi(x) + α′ik·ψψi(x)
)

eα
′ik·X(x),

V
(−1)
φ (y) = ξ.ψ(y)e−φ(y)eα

′ik·X(y),

V
(0)
A (x) = ξa

(

∂Xa(x) + α′iq·ψψa(x)
)

eα
′iq·X(x),

V
(−1)
A (y) = ξaψ

a(y)e−φ(y)eα
′iq·X(y)

V
(− 1

2
,− 1

2
)

C (z, z̄) = (P−H/ (n)Mp)
αβe−φ(z)/2Sα(z)e

iα
′

2
p·X(z)e−φ(z̄)/2Sβ(z̄)e

iα
′

2
p·D·X(z̄),

V
(− 3

2
,− 1

2
)

C (z, z̄) = (P−C/ (n−1)Mp)
αβe−3φ(z)/2Sα(z)e

iα
′

2
p·X(z)e−φ(z̄)/2Sβ(z̄)e

iα
′

2
p·D·X(z̄),

(2.1)

To our knowledge the vertex of RR in asymmetric picture has been first shown by an

interesting paper on open string theory [50] and then it was argued with some more details

in [51, 52] where the following kinematic relations are also considered

k2 = q2 = p2 = 0 q.ξ = 0,

We also apply Doubling trick to make use of holomorphic components of world sheet fields

as well, that is,

X̃µ(z̄) → Dµ
νX

ν(z̄) , ψ̃µ(z̄) → Dµ
νψ

ν(z̄) , φ̃(z̄) → φ(z̄) , and S̃α(z̄) → Mα
βSβ(z̄),

where

D =

(

−19−p 0

0 1p+1

)

, and Mp =















±i

(p+ 1)!
γa1γa2 . . . γap+1ǫa1...ap+1

for p even

±1

(p+ 1)!
γa1γa2 . . . γap+1γ11ǫa1...ap+1

for p odd

Although all the details of spinor part have been verified in [20], we just clarify the

definitions of projector and RR’s field strength as follows

(P−H/ (n))
αβ = Cαδ(P−H/ (n))δ

β , P− =
1

2
(1− γ11) (2.2)

and

H/ (n) =
an
n!

Hµ1...µnγ
µ1 . . . γµn ,

where for IIA and IIB we use n = 2, 4, an = i and n = 1, 3, an = 1 appropriately.

Here we just work out with the holomorphic parts of correlations but the interested

reader can easily find out all the tricks in the appendix part of [20] as well.
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2.1 All order α′ S-matrix element of 〈C−1φ0A−1A0〉

The complete form of the S-matrix element of a closed string RR (in its symmetric picture)

n-form field strength and a transverse scalar field in zero picture and two world volume

gauge fields 〈C−1φ0A−1A0〉 can be found by the following correlation functions

A〈C−1φ0A−1A0〉 ∼

∫

dx1dx2dx3dzdz̄ 〈V
(0)
φ (x1)V

(−1)
A (x2)V

(0)
A (x3)V

(− 1

2
,− 1

2
)

RR (z, z̄)〉, (2.3)

We just look for a special ordering. Setting the Wick theorem, the amplitude is written

down as follows

A〈C−1φ0A−1A0〉 ∼

∫

dx1dx2dx3dx4dx5 (P−H/ (n)Mp)
αβξ1iξ2aξ3bx

−1/4
45 (x24x25)

−1/2

×(I1 + I2 + I3 + I4)Tr (λ1λ2λ3), (2.4)

where xij = xi − xj , x4 = z, x5 = z̄ and

I1 = 〈 : ∂Xi(x1)e
α′ik1.X(x1) : eα

′ik2.X(x2) : ∂Xb(x3)e
α′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) :〉

×〈 : Sα(x4) : Sβ(x5) : ψ
a(x2) :〉,

I2 = 〈 : ∂Xi(x1)e
α′ik1.X(x1) : eα

′ik2.X(x2) : eα
′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) :〉

×〈 : Sα(x4) : Sβ(x5) :: ψ
a(x2) : α

′ik3.ψψ
b(x3)〉,

I3 = 〈 : eα
′ik1.X(x1) : eα

′ik2.X(x2) : ∂Xb(x3)e
α′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) :〉

×〈 : Sα(x4) : Sβ(x5) : α
′ik1.ψψ

i(x1) : ψ
a(x2) :〉,

I4 = 〈 : eα
′ik1.X(x1) : eα

′ik2.X(x2) : eα
′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) :〉

×〈 : Sα(x4) : Sβ(x5) : α
′ik1·ψψ

i(x1) :: ψ
a(x2) : α

′ik3·ψψ
b(x3) :〉. (2.5)

We actually use the standard propagators, as follows

〈Xµ(z)Xν(w)〉 = −
α′

2
ηµν log(z − w) ,

〈ψµ(z)ψν(w)〉 = −
α′

2
ηµν(z − w)−1 ,

〈φ(z)φ(w)〉 = − log(z − w) (2.6)

We also need to take into account the Wick’s theorem to be able to investigate all the

bosonic correlators. To see further details , the section 3 of [53] is strongly suggested.

Let us just address the most complicated fermionic correlation function of two spin

operators/ two different currents and a fermion field, where all the possible contractions

have to be considered.

Once again we use x4 = z, x5 = z̄. Note that unlike the open string correlator where

integration is on the real line x4, x5 are integrated on the upper half plane. It is only for

the purposes of the Wick contractions that we can forget the complex conjugation of one
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variable to another, in order to simplify things.

Ibcaid6 = 〈 : Sα(x4) : Sβ(x5) : ψ
dψi(x1) :: ψ

a(x2) : ψ
cψb(x3)〉

=

{

(ΓbcaidC−1)αβ + α′r1
Re[x14x25]

x12x45
+ α′r2

Re[x14x35]

x13x45
+ α′r3

Re[x24x35]

x23x45
(2.7)

+α′2r4

(

Re[x14x35]

x13x45

)(

Re[x24x35]

x23x45

)}

2−5/2x
5/4
45 (x14x15x34x35)

−1(x24x25)
−1/2,

so that

r1 =
(

ηda(ΓbciC−1)αβ

)

,

r2 =
(

− ηcd(ΓbaiC−1)αβ + ηdb(ΓcaiC−1)αβ

)

,

r3 =
(

− ηac(ΓbidC−1)αβ + ηab(ΓcidC−1)αβ

)

,

r4 =
(

(ηcdηab − ηbdηac)(γiC−1)αβ

)

(2.8)

Replacing the above correlators and performing some simple algebraic computations, one

can further simplify the amplitude and write it down in a closed form as follows

A〈C−1φ0A−1A0〉∼

∫

dx1dx2dx3dx4dx5(P−H/ (n)Mp)
αβIξ1iξ2aξ3bx

−1/4
45 (x24x25)

−1/2

×
(

Ia7 (a
i
1a

b
2) + ai1a

ba
3 + ab2a

ai
4 − α′2k1dk3cI

bcaid
6

)

Tr (λ1λ2λ3),

(2.9)

where

I = |x12|
α′2k1.k2 |x13|

α′2k1.k3 |x14x15|
α′2

2
k1.p|x23|

α′2k2.k3

×|x24x25|
α′2

2
k2.p|x34x35|

α′2

2
k3.p|x45|

α′2

4
p.D.p,

ai1 = ipi
(

x54
x14x15

)

,

ab2 = ikb1

(

x14
x13x34

+
x15

x35x13

)

+ ikb2

(

x24
x34x23

+
x25

x35x23

)

,

aba3 =

{

(ΓbcaC−1)αβ + (−α′ηac(γbC−1)αβ + α′ηab(γcC−1)αβ)
Re[x24x35]

x23x45

}

×α′ik3c2
−3/2x

1/4
45 (x34x35)

−1(x24x25)
−1/2

aai4 = α′ik1d2
−3/2x

1/4
45 (x24x25)

−1/2(x14x15)
−1 (2.10)

×

{

(ΓaidC−1)αβ + α′ηad(γiC−1)αβ
Re[x14x25]

x12x45

}

,

Ia7 = 〈 : Sα(x4) : Sβ(x5) : ψ
a(x2) :〉 = 2−1/2x

−3/4
45 (x24x25)

−1/2(γaC−1)αβ .

Now one could use the SL(2,R) invariance of the S-matrix and to remove the VCKG we

do gauge fixing over the position of open strings at zero, one and infinity. By doing gauge

– 6 –
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fixing as (x1 = 0, x2 = 1, x3 = ∞), one needs to address the following integration on the

upper half plane over the position of RR

∫

d2z|1− z|a|z|b(z − z̄)c(z + z̄)d

where a, b, c are the combinations of the following Mandelstam variables

s =
−α′

2
(k1 + k3)

2, t =
−α′

2
(k1 + k2)

2, u =
−α′

2
(k2 + k3)

2

and the results of the integrations for d = 0, 1 and d = 2 were obtained accordingly in [54]

and [20].

Therefore, the final form of the S-matrix in this particular picture to all orders in α′

is obtained as follows

A〈C−1φ0A−1A0〉 = A1 +A2 +A3 +A4 +A5 +A6 +A7 (2.11)

where

A1 ∼ 2−1/2ξ1iξ2aξ3b

[

− k3ck1dTr (P−H/ (n)MpΓ
bcaid)

+k3cp
iTr (P−H/ (n)MpΓ

bca)
]

4(−t− s− u)L1,

A2 ∼ 2−1/2Tr (P−H/ (n)MpΓ
aid)ξ1iξ2ak1d

{

− 2k1.ξ3(ut) + 2k2.ξ3(st)
}

L2

A5 ∼ 2−1/2Tr (P−H/ (n)Mpγ
i)ξ1i

{

ξ3.ξ2(2ts) + 2k1.ξ3(2k3.ξ2)t

−4uk1.ξ2(k1.ξ3) + 4sk2.ξ3k1.ξ2

}

L1

A4 ∼ −2−1/2(st)L2

{

ξ3bξ1iξ2aTr (P−H/ (n)MpΓ
bai)u+ 2k3.ξ2k1dξ1iξ3bTr (P−H/ (n)MpΓ

bid)

−Tr (P−H/ (n)MpΓ
cid)k1dk3cξ1i(2ξ2.ξ3)

}

A3 ∼ −2−1/2ξ1ik3c

{

− 2k1.ξ2ξ3bTr (P−H/ (n)MpΓ
bci)(us)

+2k1.ξ3ξ2aTr (P−H/ (n)MpΓ
cai)(ut)

}

L2

A6 ∼ 2−1/2(st)piξ1i

{

2k3.ξ2Tr (P−H/ (n)Mpγ
b)ξ3b − 2ξ3.ξ2Tr (P−H/ (n)Mpγ

c)k3c

}

L2

A7 ∼ 2−1/2piξ1iTr (P−H/ (n)Mpγ
a)ξ2a

{

2k1.ξ3(ut)− 2ξ3.k2(st)
}

L2 (2.12)

where the functions L1, L2, are

L1 = (2)−2(t+s+u)−1π
Γ(−u+ 1

2)Γ(−s+ 1
2)Γ(−t+ 1

2)Γ(−t− s− u)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
,

L2 = (2)−2(t+s+u)π
Γ(−u)Γ(−s)Γ(−t)Γ(−t− s− u+ 1

2)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
, (2.13)

As we have expected by interchanging ξ2a → k2a and also ξ3b → k3b, the whole S-matrix

vanishes, which means that the amplitude does satisfy all the associated Ward identities
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and the amplitude is non zero for various p, n cases. Notice also we are dealing with all

massless BPS strings so the expansion is low energy expansion. This S-matrix does have

all t, s, u and particularly (t + s + u) channel poles and in particular it has some extra

singularities that are precisely carrying momentum of RR in the bulk direction where we

will show that these terms cannot be derived in the other picture (〈C−1φ−1A0A0〉) S-matrix

and we argue about them in the next section.

More significantly, in 〈C−1φ0A−1A0〉 S-matrix we discover the new form of contact

interactions to all orders in α′ that cannot be found in the other picture. For the precise

definitions of the expansions and more kinematical definitions and identities, one needs to

look at [19, 35].

Note that by sending t, s, u → 0, one finds the expansion of the functions L1, utL2 as

follows

L1 = −2−1π5/2

(

∞
∑

n=0

cn(s+ t+ u)n +

∑∞
n,m=0 cn,m[sntm + smtn]

(t+ s+ u)

+
∞
∑

p,n,m=0

fp,n,m(s+ t+ u)p[(s+ t)n(st)m]

)

utL2 = −π3/2
∞
∑

n=−1

bn
1

s
(u+ t)n+1 +

∞
∑

p,n,m=0

ep,n,msp(tu)n(t+ u)m. (2.14)

with the following coefficients

b−1 = 1, b0 = 0, b1 =
1

6
π2,

b2 = 2ζ(3), c0 = 0, c1 = −
π2

6
,

e2,0,0 = e0,1,0 = 2ζ(3), e1,0,0 =
1

6
π2,

e1,0,2 =
19

60
π4, e1,0,1 = e0,0,2 = 6ζ(3),

e0,0,1 =
1

3
π2, e3,0,0 =

19

360
π4,

e0,0,3 = e2,0,1 =
19

90
π4, e1,1,0 = e0,1,1 =

1

30
π4, (2.15)

c2 = − 2ζ(3), c1,1 =
π2

6
, c0,0 =

1

2
,

c3,1 = c1,3 =
2

15
π4, c2,2 =

1

5
π4,

c1,0 = c0,1 = 0, c3,0 = c0,3 = 0 ,

c2,0 = c0,2 =
π2

6
, c1,2 = c2,1 = −4ζ(3),

f0,1,0 =
π2

3
, f0,2,0 = − f1,1,0 = −6ζ(3),

f0,0,1 = − 2ζ(3), c4,0 = c0,4 =
1

15
π4.
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Meanwhile the result of the S-matrix in different picture of scalar field, that is,

〈C−1φ−1A0A0〉 S-matrix was derived in [35] to be as follows

A〈C−1φ−1A0A0〉 ∼

∫

dx1dx2dx3dzdz̄ 〈V
(−1)
φ (x1)V

(0)
A (x2)V

(0)
A (x3)V

(− 1

2
,− 1

2
)

RR (z, z̄)〉,

A〈C−1φ−1A0A0〉 = A1 +A2 +A3 +A4 +A5 (2.16)

where

A1 ∼ −2−1/2ξ1iξ2aξ3b

[

k3dk2cTr (P−H/ (n)MpΓ
bdaci)

]

4(−t− s− u)L1,

A2 ∼ 2−1/2Tr (P−H/ (n)MpΓ
bdi)ξ1iξ3bk3d

{

2k1.ξ2(us)− 2k3.ξ2(st)
}

L2

A3 ∼ −2−1/2Tr (P−H/ (n)MpΓ
aci)ξ1iξ2ak2c

{

− 2k2.ξ3(st) + 2k1.ξ3(ut)
}

L2 (2.17)

A4 ∼ −2−1/2(st)L2

{

ξ3bξ1iξ2aTr (P−H/ (n)MpΓ
bai)u+ 2k2.ξ3k3dξ1iξ2aTr (P−H/ (n)MpΓ

dai)

+2k3.ξ2k2cξ1iξ3bTr (P−H/ (n)MpΓ
bci)− Tr (P−H/ (n)MpΓ

dci)k3dk2cξ1i(2ξ2.ξ3)
}

A5 ∼ 2−1/2Tr (P−H/ (n)Mpγ
i)ξ1i

{

ξ3.ξ2(2ts) + 2k1.ξ3(2k3.ξ2)t

−4uk1.ξ2(k1.ξ3) + 4sk2.ξ3k1.ξ2

}

L1

Let us first compare the results of the same S-matrix in different pictures and then

start producing all the singularity structures as well as new contact interactions.

3 Comparison on singularity structures of 〈C−1φ0A−1A0〉 with

〈C−1φ−1A0A0〉

First of all note that both A5’s in two different pictures are exactly matched. The first

term A3 of 〈C−1φ0A−1A0〉 is exactly the first term A2 of 〈C−1φ−1A0A0〉. Now if we add

the 2nd term A2 of 〈C−1φ−1A0A0〉 with the 3rd term A4 of 〈C−1φ−1A0A0〉 and apply

momentum conservation along the world volume of brane we get

−2−1/2stL2(2k3.ξ2)ξ1iξ3bTr (P−H/ (n)MpΓ
bci)(−k1c − pc)

Now if we use the identity that has been found in [7], that is,

pcǫ
a0...ap−2bc = 0 (3.1)

then we get to know the fact that the first term of above equation precisely produces the

2nd term A4 of 〈C−1φ0A−1A0〉.

One can see the derivation of (3.1) in various equations of [7]. For example, it is shown

in equation (9) of [7] that, in order to get to the same result of three point function of

one RR and a scalar field in both 〈C−1φ−1〉 and 〈C−2φ0〉 S-matrix, the equation (9) of [7]

or (3.1) must hold. Another example to prove that (3.1) holds is as follows. It is shown

in section five of [7] that, to get to the same result of four point function of 〈C−1T 0φ−1〉

and 〈C−2T 0φ0〉 S-matrix, the equation (3.1) must hold ( see the footnote of 19 in page 14
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of [7]). It has also been discovered that the amplitude of 〈C−1A−1T 0T 0〉 satisfies Ward

identity associated to the gauge field if and only if the above identity (3.1) holds.

Likewise if we add the 1st term A3 with the 2nd term A4 of 〈C−1φ−1A0A0〉 and also

apply momentum conservation we find the following elements

−2−1/2stL2(2k2.ξ3)ξ1iξ2aTr (P−H/ (n)MpΓ
aci)(k1c + pc)

Once more one needs to apply the equation pcǫ
a0...ap−2ac = 0 so that the first term of above

precisely produces the 2nd term A2 of 〈C−1φ0A−1A0〉.

Simultaneously if we add the first term A2 with the 2nd term A3 of 〈C−1φ0A−1A0〉

with keeping in mind momentum conservation and pcǫ
a0...ap−2ac = 0, we then precisely

produce the 2nd term A3 of 〈C−1φ−1A0A0〉.

Finally the last term A4 of 〈C−1φ−1A0A0〉 is exactly equivalent with the last term A4

of 〈C−1φ0A−1A0〉.3

Therefore the upshot is that we can precisely produce all the singularities of

〈C−1φ−1A0A0〉 by 〈C−1φ0A−1A0〉 S-matrix (as we will show later on), however, we have

also some extra contact interactions and other singularities of 〈C−1φ0A−1A0〉 S-matrix

(in the zero picture of scalar field in the presence of a symmetric RR) that are absent in

〈C−1φ−1A0A0〉 S-matrix and we will argue about them in a moment.

In fact from the direct calculations we observe the facts that at pole levels the whole

A6 and A7 of 〈C−1φ0A−1A0〉 S-matrix are extra terms that cannot be derived from direct

computations of 〈C−1φ−1A0A0〉 S-matrix.

Moreover, the 2nd contact interaction A1 of 〈C−1φ0A−1A0〉 is also extra term that

cannot be derived from direct computations of 〈C−1φ−1A0A0〉 S-matrix on upper half

plane, as we further elaborate on this coupling in the other section. Let us first produce

the different singularity structures.

We do have massless scalar poles in t,s and (t+s+u) channels as well as u channel gauge

field poles. Here we just produce the s-channel scalar poles and finally by interchanging

2 ↔ 3 and exchanging the respected momenta and polarisations we can produce t- channel

poles as well. If we replace the desired expansion of utL2, we then obtain all s-channel

poles of string amplitude as follows (normalization constant is (2π)1/2mp)

(2πα′)2

p!
µpξ1iξ2ak2cǫ

a0···ap−2acH i
a0···ap−2

∞
∑

n=−1

1

s
bn(u+ t)n+1(2k1.ξ3)Tr (λ1λ2λ3) (3.2)

In order to produce all these massless s-channel scalars, one has to consider a field theory

sub amplitude as

A = V i
α(Cp−1, A2, φ)G

ij
αβ(φ)V

j
β (φ,A3, φ1) (3.3)

where by taking into account the kinetic term of scalar fields (2πα′)2

2 DaφiDaφi one obtains

the following vertex as well as scalar propagator

V j
β (φ,A3, φ1) = −2ik1.ξ3(2πα

′)2Tpξ
j
1Tr (λ3λ1λβ) (3.4)

(Gφ)ijαβ = −
iδijδαβ

(2πα′)2Tps

3Notice to momentum conservation and pcǫ
a0...ap−2ac = 0.
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Now we need to consider the mixed Chern-Simons coupling and the so called Taylor

expended of scalar field as follows

S1 = i(2πα′)2µp

∫

dp+1σ
1

(p− 1)!
(εv)a0···apTr

(

Fa0a1φ
i
)

∂iC
(p−1)
a2···ap (3.5)

to actually derive the following vertex operator of an RR, an on-shell gauge field and an

off-shell scalar field as

V i
α(Cp−1, A2, φ) =

i(2πα′)2µp

(p)!
(εv)a0···apH i

a2···apξ2a1k2a0Tr (λ2λα) (3.6)

where V j
β (φ,A3, φ1) is derived from the kinetic term of the scalar field and in particular it

has no correction, hence to be able to produce all s-channel poles we need to propose the

higher derivative corrections to (3.5) as follows

S2 =
∞
∑

n=−1

bn(α
′)(n+1)µp

∫

dp+1σ
1

(p− 1)!
(εv)a0···ap

×∂iCp−1 ∧Da1 . . . Dan+1
FDa1 . . . Dan+1φi (3.7)

Having taken (3.7), we were able to derive all order vertex operator of (3.6) as

V i
α(Cp−1, A2, φ) =

i(2πα′)2µp

(p)!
(εv)a0···apH i

a2···apξ2a1k2a0Tr (λ2λα)
∞
∑

n=−1

bn(α
′k2.k)

n+1 (3.8)

Now if we replace (3.8) and (3.4) inside (3.3), then one is able to precisely regenerate

all order s-channel singularities of string amplitude (3.2) in the effective field theory as well.

All the u-channel gauge field poles of the string amplitude are given as

µp(2πα
′)2

1

(p)!u
ǫa0···ap−2bdξ1ik1dH

i
a0···ap−2

×
∞
∑

n=−1

bn(s+ t)n+1(2k3.ξ2ξ3b − 2k2.ξ3ξ2b + 2ξ3.ξ2k2b) (3.9)

Note that these u-channel gauge field poles can be reconstructed in the effective field

theory by the following field theory sub amplitude

A = V a
α (Cp−1, φ1, A)G

ab
αβ(A)V

b
β (A,A2, A3), (3.10)

where the vertices are

V a
α (Cp−1, φ1, A) =

i(2πα′)2µp

(p)!
(εv)a0···ap−1aH i

a1···ap−1
ξ1ika0Tr (λ1λα)

∞
∑

n=−1

bn(t+ s)n+1,

V b
β (A,A2, A3) = −iTp(2πα

′)2Tr (λ2λ3λβ)
[

2k2.ξ3ξ
b
2 − 2k3.ξ2ξ

b
3 + ξ3.ξ2(k3 − k2)

b
]

,

Gab
αβ(A) =

iδαβδ
ab

(2πα′)2Tpu
, , (3.11)
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where all order corrections to V a
α (Cp−1, φ1, A) have been derived from (3.7). By replacing

these vertices into the field theory amplitude (3.10), one exactly produces all u-channel

gauge field poles that appeared in (3.9).

For the completeness we just produce all the (s + t + u)- channel singularities of the

S-matrix in the field theory as well. To do so, first we replace the part of the expansion of

L1 (which has poles) inside A5 so that one gets all the poles in string amplitude as

8π3µp

ǫa0···apξ1iH
i
a0···ap

(p+ 1)!(s+ t+ u)
Tr (λ1λ2λ3)

∞
∑

n,m=0

cn,m(smtn + sntm)

×
[

2stξ2.ξ3 + 4tk1.ξ3k3.ξ2 + 4sk1.ξ2k2.ξ3 − 4uk1.ξ2k1.ξ3

]

(3.12)

In order to produce these poles, one has to consider the following sub amplitude in

field theory side

V i
α(Cp+1, φ)G

ij
αβ(φ)V

j
β (φ, φ1, A2, A3) (3.13)

where the scalar propagator can be found by taking the kinetic term of scalar fields

( (2πα
′)2

2 DaφiDaφi) and the vertex of V i
α(Cp+1, φ) is obtained by taking the following ef-

fective action through Taylor expansion of scalar field

(2πα′)iµp

∫

dp+1σ
1

(p+ 1)!
(εv)a0···ap Tr

(

φi
)

∂iC
(p+1)
a0···ap

so that

Gij
αβ(φ) =

−iδαβδ
ij

Tp(2πα′)2k2
=

−iδαβδ
ij

Tp(2πα′)2(t+ s+ u)
,

V i
α(Cp+1, φ) = i(2πα′)µp

1

(p+ 1)!
(εv)a0···apH i

a0···apTr (λα). (3.14)

To be able to produce all scalar massless poles of the string amplitude to all orders

in α′, one needs to know all order vertex operator of two scalar two gauge field couplings

V j
β (φ, φ1, A2, A3). This vertex operator can be found by employing all order α′ SYM

couplings [35] as follows

(2πα′)4
1

2π2
Tp

(

α′
)n+m

∞
∑

m,n=0

(Lnm
1 + Lnm

2 + Lnm
3 ), (3.15)

Lnm
1 = −Tr

(

an,mDnm[Daφ
iDbφiF

acFbc] + bn,mD′
nm[Daφ

iF acDbφiFbc] + h.c.
)

,

Lnm
2 = −Tr

(

an,mDnm[Daφ
iDbφiFbcF

ac] + bn,mD′
nm[Daφ

iFbcD
bφiF

ac] + h.c.
)

,

Lnm
3 =

1

2
Tr

(

an,mDnm[Daφ
iDaφiF

bcFbc] + bn,mD′
nm[Daφ

iFbcD
aφiF

bc] + h.c.
)

,

where the following definitions for all higher derivative operators have been considered [19]

Dnm(EFGH) ≡ Db1 · · ·DbmDa1 · · ·DanEFDa1 · · ·DanGDb1 · · ·DbmH,

D′
nm(EFGH) ≡ Db1 · · ·DbmDa1 · · ·DanEDa1 · · ·DanFGDb1 · · ·DbmH.
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Since the off-shell scalar field is abelin, one needs to consider just two permutations of

Tr (λ1λβλ2λ3),Tr (λβλ1λ2λ3) to be able to derive all order vertex of V j
β (φ, φ1, A2, A3) from

the above corrections (3.15) as below

V j
β (φ, φ1, A2, A3) = ξj1

I8
2π2

(α′)n+m(an,m + bn,m)
(

(k3 ·k1)
m(k1 ·k2)

n + (k3 ·k)
m(k2 ·k)

n

+(k1 ·k3)
n(k1 ·k2)

m + (k ·k3)
n(k ·k2)

m
)

,

(3.16)

with the following definition for I8

I8 = (2πα′)4TpTr (λ1λ2λ3λβ)

[

st

2
ξ2.ξ3 + tk1.ξ3k3.ξ2 + sk1.ξ2k2.ξ3 − uk1.ξ2k1.ξ3

]

where k is off-shell scalar field’s momentum, and some of the coefficients an,m and bn,m
(bn,m is symmetric [19]) are

a0,0 = −
π2

6
, b0,0 = −

π2

12
,

a1,0 = 2ζ(3), a0,1 = 0,

b0,1 = − ζ(3), a1,1 = a0,2 = −7π4/90,

a2,2 = (−83π6 − 7560ζ(3)2)/945, b2,2 = − (23π6 − 15120ζ(3)2)/1890,

a1,3 = − 62π6/945,

a2,0 = − 4π4/90, b1,1 = − π4/180,

b0,2 = − π4/45, a0,4 = − 31π6/945,

a4,0 = − 16π6/945, a1,2 = a2,1 = 8ζ(5) + 4π2ζ(3)/3,

a0,3 = 0, a3,0 = 8ζ(5),

b1,3 = − (12π6 − 7560ζ(3)2)/1890,

a3,1 = (−52π6 − 7560ζ(3)2)/945, b0,3 = − 4ζ(5),

b1,2 = − 8ζ(5) + 2π2ζ(3)/3, b0,4 = − 16π6/1890. (3.17)

They are computed in [19]. Now if we use momentum conservation, we get k3·k = k2.k1 −

(k2)/2 and k2 ·k = k1.k3 − (k2)/2, whereas k2 in (3.16) is cancelled with the k2 in the

denominator of the propagator. Since we just want to produce singularities, we are ignoring

those contact terms and considering (3.16) and (3.14) inside (3.13), one explores the sub

amplitude in field theory as follows

16πµp

ǫa0···apξ1iH
i
a0···ap

(p+ 1)!(s+ t+ u)
Tr (λ1λ2λ3)

∞
∑

n,m=0

(an,m + bn,m)[smtn + sntm]

[

2stξ2.ξ3 + 4tk1.ξ3k3.ξ2 + 4sk1.ξ2k2.ξ3 − 4uk1.ξ2k1.ξ3

]

(3.18)

Now we show that all the poles in field theory of (3.18) can be matched with string

amplitude poles that appeared in (3.12). After omitting the common factors of both string
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and field theory we compare string amplitude with sub amplitude in field theory for various

cases of n,m. For n = m = 0, the amplitude (3.18) does carry the following factor

−4(a0,0 + b0,0) = −4

(

−π2

6
+

−π2

12

)

= π2

where the corresponding term for the string amplitude carries (2π2c0,0) which is exactly

equivalent to the factor of π2 in field theory sub amplitude. At α′ order, (3.18) carries the

following coefficient

−(a1,0 + a0,1 + b1,0 + b0,1)(s+ t) = 0

where the corresponding term for the string amplitude is now proportional to π2(c1,0 +

c0,1)(s+t) which is zero as appeared in the field theory sub amplitude. At (α′)2 order, (3.18)

has the following numerical factor

−4(a1,1 + b1,1)st− 2(a0,2 + a2,0 + b0,2 + b2,0)[s
2 + t2] =

π4

3
(st) +

π4

3
(s2 + t2)

where the corresponding term for the string amplitude is now proportional to π2[c1,1(2st)+

(c2,0 + c0,2)(s
2 + t2)], which is exactly equivalent to the factor of field theory sub ampli-

tude. The comparisons at orders of (α′)3, (α′)4 are also done in [35]. Hence, one can keep

comparing to all orders and show that indeed all singularities of (t + s + u) channels of

string amplitude can be precisely reconstructed by the above field theory sub amplitudes.

Before further analysis let us compare all order contact interactions on two different

pictures, start finding new coupling in the string theory effective action and also explore

its all order α′ corrections.

4 Comparison on contact interactions to all α′ orders

If we look at the whole S-matrix elements in two different pictures and apply momentum

conservation to the 1st term A1 of 〈C−1φ0A−1A0〉 we obtain the following elements

−23/2(−t− s− u)L1ξ1iξ2aξ3bk3c(−k3d − k2d − pd)Tr (P−H/ (n)MpΓ
bcaid)

= 23/2ξ1iξ2aξ3bk3c(k2d)Tr (P−H/ (n)MpΓ
bcaid)(−t− s− u)L1

which is exactly A1 of 〈C−1φ−1A0A0〉, where we have also used pdǫ
a0...ap−4bcad = 0, more-

over without any further attempts, one reveals that the first term A4 of 〈C−1φ0A−1A0〉 is

exactly the 1st term A4 of 〈C−1φ−1A0A0〉, however, in below we show that there is some

other contact interaction that can just be found by 〈C−1φ0A−1A0〉 S-matrix.

5 Other contact interaction to all orders in α′

From the direct computations we observed the fact that at the level of contact interactions

there is an extra contact term inside the S-matrix of 〈C−1φ0A−1A0〉 that has been over-

looked from the direct calculations of 〈C−1φ−1A0A0〉 S-matrix. Indeed the 2nd contact
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interaction A1 of 〈C−1φ0A−1A0〉 is extra term that is not only needed into the entire am-

plitude but also cannot be derived from direct computations of 〈C−1φ−1A0A0〉 on upper

half plane.

Hence the following coupling is extra contact interaction to all orders in α′, which must

have been appeared in S-matrix because it stands correctly on the field theory side to all

orders as well. Thus let us first write it down

4π1/2µpξ1iξ2aξ3bk3cp
iTr (P−H/ (n)MpΓ

bca)(−t− s− u)L1 (5.1)

where we normalized the S-matrix by a coefficient of (2π)1/2µp.

Having taken the expansion of L1 inside (5.1), we first produce the leading term of

string amplitude by the EFT coupling, in fact it can be produced by mixing Chern-Simons

coupling and Taylor expansion as follows

S3 =
i(2πα′)3

2
µp

∫

dp+1σ Tr (∂iC(p−3) ∧ F ∧ FΦi) (5.2)

Therefore one can explore the next order to the above coupling, which is α′4. Indeed all

order α′ corrections to the above coupling can be discovered by applying the proper higher

derivative corrections on the above coupling and the coefficients can just be fixed by taking

the elements in the expansion of L1, so that all order corrections to above couplings are

(s+ t+ u)n+1HφAA =

(

α′

2

)n+1

H(DaD
a)n+1(φAA),

(st)mHφAA = (α′)2mHDa1 · · ·Da2mΦ∂
a1 · · · ∂amA∂am+1 · · · ∂a2mA,

(s+ t)nHφAA = (α′)nHDa1 · · ·DanΦ∂
a1 · · · ∂an(AA),

(s)ntmHφAA = (α′)n+mHDa1 · · ·DanDa1 · · ·DamΦ∂
a1 · · · ∂amA∂a1 · · · ∂anA.

Note that in above couplings, inside the covariant derivative terms the connections

or commutator terms do not appear and to get them, one needs to compute higher point

amplitudes like 〈CφAAA〉.

Therefore, we argue that for higher point function of string theory amplitudes, involv-

ing the mixed RR, a scalar and two gauge fields, there is a subtle issue as follows.

Indeed to be able to get to all the corrected and all order contact interactions as well

as singularities of the mixed string theory amplitudes, one should consider the scalar field

in zero picture as it has just been clarified in detail by the comparisons of 〈C−1φ0A−1A0〉

with 〈C−1φ−1A0A0〉 S-matrix.

It would be nice to generalize this idea to see what happens for the mixed amplitudes

of closed string RR, two scalar fields and one gauge field which we carry it out in the

next section.

It would be even nicer if we could do it on asymmetric picture of RR ,that is, find out

〈C−2φ0A0A0〉 to actually generalize the rules and symmetries of string theory, where we

leave it for the future works, although partial results for simpler systems, like for brane anti

brane have already been announced in [7]. Let us now generate all the other singularity

structures of 〈C−1φ0A−1A0〉 in the effective field theory.
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6 Other singularities of 〈C−1φ0A−1A0〉

Having produced some of the singularities and contact interactions, we are now ready to

derive some other singularities of 〈C−1φ0A−1A0〉 S-matrix. These singularities do exist

for this five point world-sheet S-matrix which includes a symmetric RR, a scalar field

in the zero picture and two gauge fields. In fact by direct calculations we have shown

that besides having some other contact interactions, even at pole levels the whole A6 and

A7 of 〈C−1φ0A−1A0〉 are also extra singularities that cannot be derived from the direct

computations of 〈C−1φ−1A0A0〉 S-matrix. Let us write them down as follows

A7 ∼ 2−1/2piξ1iTr (P−H/ (n)Mpγ
a)ξ2a(2k1.ξ3)utL2

A6 ∼ 2−1/2stL2p
iξ1iTr (P−H/ (n)Mpγ

b)
(

2k3.ξ2ξ3b − 2ξ3.ξ2k3b − 2ξ3.k2ξ2b

)

(6.1)

First we try to produce all these new s-channel poles of A7. By considering the desired

expansion, one gets all new s-channel poles (note that normalization constant is (2π)1/2mp)

of 〈C−1φ0A−1A0〉 S-matrix as

(2πα′)2

p!
µpp.ξ1ξ2a2k1.ξ3ǫ

a0···ap−1aHa0···ap−1

∞
∑

n=−1

1

s
bn(u+ t)n+1Tr (λ1λ2λ3) (6.2)

In order to produce all these new massless s-channel scalars, one has to apply the following

field theory sub amplitude

A = V i
α(Cp−1, A2, φ)G

ij
αβ(φ)V

j
β (φ,A3, φ1) (6.3)

where to follow the related vertices, the kinetic term of scalar fields (2πα′)2

2 DaφiDaφi has

to be taken into account, so that we obtain

V j
β (φ,A3, φ1) = −2ik1.ξ3(2πα

′)2Tpξ
j
1Tr (λ3λ1λβ) (6.4)

(Gφ)ijαβ = −
iδijδαβ

(2πα′)2Tps

Now one needs to re-consider the mixed Chern-Simons coupling and Taylor expended

of scalar field, where the extremely important point has to be pointed out as follows.

This turn, we take integration by parts and employ the momentum of external gauge field

directly to RR (p-1) form potential to be able to produce the necessary field strength of

RR whereas the total derivative terms are indeed zero at infinity, hence we find out the

following effective action

S4 = i(2πα′)2µp

∫

dp+1σ
1

(p− 1)!
(εv)a0···ap∂iHa0···ap−1

Tr
(

Aapφ
i
)

(6.5)

Having set the above action, we obtain the following vertex in the effective field theory

V i
α(Cp−1, A2, φ) = pi

i(2πα′)2µp

(p)!
(εv)a0···apHa0···ap−1

ξ2apTr (λ2λα) (6.6)
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Note that V j
β (φ,A3, φ1) was derived from the kinetic term of the scalar field and it has

no correction, that is why to produce all the singularities we need to propose all the higher

derivative corrections to the new action of (6.5) as follows

S5 =
∞
∑

n=−1

bn(α
′)(n+1)µp

∫

dp+1σ
1

(p− 1)!
(εv)a0···ap

×∂iHa0···ap−1
Da1 . . . Dan+1

AapD
a1 . . . Dan+1φi (6.7)

now we are allowed to actually reveal all order vertex operator of V i
α(Cp−1, A2, φ) as

V i
α(Cp−1, A2, φ) = pi

i(2πα′)2µp

(p)!
(εv)a0···apHa0···ap−1

ξ2apTr (λ2λα)
∞
∑

n=−1

bn(t+ u)n+1 (6.8)

Replacing (6.8) and (6.4) to (6.3), we are then able to precisely regenerate all order

new s-channel singularities (6.2) in the field theory side too. Finally let us reconstruct all

new u-channel singularities.

Having replaced the desired expansion, we get all new u-channel poles (normalisation

constant is (2π)1/2mp) of string amplitude as follows

(2πα′)2

p!
µpp.ξ1ǫ

a0···ap−1bHa0···ap−1

∞
∑

n=−1

1

u
bn(s+ t)n+1

(

2k3.ξ2ξ3b − 2ξ3.ξ2k3b − 2ξ3.k2ξ2b

)

(6.9)

All these u-channel gauge poles are also produced by considering the following sub

amplitude in the field theory

A = V a
α (Cp−1, φ1, A)G

ab
αβ(A)V

b
β (A,A2, A3) (6.10)

Here we consider the mixed Chern-Simons coupling and Taylor expended of scalar field,

and not only this time we take integration by parts but also we do apply the momentum

of external gauge field directly to RR potential to be able to produce the necessary field

strength of RR, keeping in mind the above remarks, we obtain the following vertex

V a
α (Cp−1, φ1, A) = pi

i(2πα′)2µp

(p)!
(εv)a0···ap−1aHa0···ap−1

ξ1iTr (λ1λα) (6.11)

where V b
β (A,A2, A3) has no correction, so the only way of obtaining all the poles is to

actually impose all infinite higher derivative corrections to the mixed Chern-Simons Taylor

expansion of scalar field, so that now we can derive the generalization of above vertex to

all orders as

V a
α (Cp−1, φ1, A) = pi

i(2πα′)2µp

(p)!
(εv)a0···ap−1aHa0···ap−1

ξ1iTr (λ1λα)
∞
∑

n=−1

bn(t+s)n+1 (6.12)

Now by taking into account (6.12), the known V b
β (A,A2, A3) and gauge field propa-

gator Gab
αβ(A) =

iδαβδ
ab

(2πα′)2Tpu
inside the sub amplitude (6.10) we are then able to precisely

reconstruct all order new u-channel singularities in the effective field theory side as well.

In the next section we further generalize our knowledge by dealing with the mixed RR

scalars/ gauge field S-matrices to see what happens to the S-matrix in the presence of two

scalar fields (in different pictures), a gauge field and a symmetric RR field strength.
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6.1 All order S-matrix of 〈C−1A0φ−1φ0〉

In this section we would like to see what is going on for the mixed higher point function of a

symmetric RR, two transverse scalar fields (in two different pictures) and a gauge field. We

do the whole details to get to the entire S-matrix to all orders in α′ so the 〈C−1A0φ−1φ0〉

S-matrix is shown by

A〈C−1A0φ−1φ0〉 ∼

∫

dx1dx2dx3dzdz̄ 〈V
(0)
A (x1)V

(−1)
φ (x2)V

(0)
φ (x3)V

(− 1

2
,− 1

2
)

RR (z, z̄)〉, (6.13)

Further simplification can be done to get to the closed form of S-matrix as follows

A〈C−1A0φ−1φ0〉 ∼

∫

dx1dx2dx3dx4dx5 (P−H/ (n)Mp)
αβξ1aξ2iξ3jx

−1/4
45 (x24x25)

−1/2

×(I1 + I2 + I3 + I4)Tr (λ1λ2λ3), (6.14)

where xij = xi − xj , x4 = z,x5 = z̄, and also

I1 = 〈 : ∂Xa(x1)e
α′ik1.X(x1) : eα

′ik2.X(x2) : ∂Xj(x3)e
α′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) : 〉

×〈 : Sα(x4) : Sβ(x5) : ψ
i(x2) : 〉,

I2 = 〈 : ∂Xa(x1)e
α′ik1.X(x1) : eα

′ik2.X(x2) : eα
′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) : 〉

×〈 : Sα(x4) : Sβ(x5) :: ψ
i(x2) : α

′ik3cψ
cψj(x3)〉,

I3 = 〈 : eα
′ik1.X(x1) : eα

′ik2.X(x2) : ∂Xj(x3)e
α′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) : 〉

×〈 : Sα(x4) : Sβ(x5) : α
′ik1bψ

bψa(x1) : ψ
i(x2) : 〉,

I4 = 〈 : eα
′ik1.X(x1) : eα

′ik2.X(x2) : eα
′ik3.X(x3) : ei

α′

2
p.X(x4) : ei

α′

2
p.D.X(x5) : 〉

×〈 : Sα(x4) : Sβ(x5) : α
′ik1bψ

bψa(x1) : ψ
i(x2) : α

′ik3cψ
cψj(x3) : 〉. (6.15)

If we work with all possible contractions, then one finds out the compact form of the

following fermionic correlation function as follows

Ijciab6 = 〈 : Sα(x4) : Sβ(x5) : ψ
bψa(x1) :: ψ

i(x2) : ψ
cψj(x3)〉

=

{

(ΓjciabC−1)αβ + α′r1
Re[x14x35]

x13x45
+ α′r2

Re[x24x35]

x23x45
(6.16)

+α′2r3

(

Re[x14x35]

x13x45

)(

Re[x24x35]

x23x45

)}

2−5/2x
5/4
45 (x14x15x34x35)

−1(x24x25)
−1/2,

where

r1 =
(

− ηbc(ΓjiaC−1)αβ + ηac(ΓjibC−1)αβ

)

,

r2 =
(

ηij(ΓcabC−1)αβ

)

,

r3 =
(

ηbcηij(γaC−1)αβ − ηacηij(γbC−1)αβ

)

(6.17)

Substituting the closed form of the correlators into the amplitude we now claim the final

answer for the S-matrix can be written down by

A〈C−1A0φ−1φ0〉∼

∫

dx1dx2dx3dx4dx5(P−H/ (n)Mp)
αβIξ1aξ2iξ3jx

−1/4
45 (x24x25)

−1/2 (6.18)

×

(

Ii7(a
a
1a

j
3) + aa1a

ji
2 + aj3a

ia
4 − α′2k1bk3cI

jciab
6

)

Tr (λ1λ2λ3),
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where

I = |x12|
α′2k1.k2 |x13|

α′2k1.k3 |x14x15|
α′2

2
k1.p|x23|

α′2k2.k3

×|x24x25|
α′2

2
k2.p|x34x35|

α′2

2
k3.p|x45|

α′2

4
p.D.p,

aa1 = ika2

(

x42
x14x12

+
x52

x15x12

)

+ ika3

(

x43
x14x13

+
x53

x15x13

)

aj3 = ipj
(

x54
x34x35

)

aji2 =

{

(ΓjciC−1)αβ + (α′ηij(γcC−1)αβ)
Re[x24x35]

x23x45

}

×α′ik3c2
−3/2x

1/4
45 (x34x35)

−1(x24x25)
−1/2

aia4 = α′ik1b2
−3/2x

1/4
45 (x24x25)

−1/2(x14x15)
−1

{

(ΓiabC−1)αβ

}

,

Ii7 = 〈 : Sα(x4) : Sβ(x5) : ψ
i(x2) : 〉 = 2−1/2x

−3/4
45 (x24x25)

−1/2(γiC−1)αβ .

It now becomes clear that the S-matrix of (6.18) is SL(2,R) invariant and after gauge

fixing over the position of open strings one needs to come over the integrals on upper half

complex plane on the location of RR. By evaluating those integrals one eventually writes

down the complete form of the S-matrix to all orders as follows

A〈C−1A0φ−1φ0〉 = A1 +A2 +A3 +A4 +A5 +A6 (6.19)

where

A1 ∼ 2−1/2ξ1aξ2iξ3jp
jTr (P−H/ (n)Mpγ

i)
[

− 2ka3(ut) + 2ka2(us)
]

L2

A2 ∼ 2−1/2k3c

{

− 2k2.ξ1ξ2iξ3j(us)L2Tr (P−H/ (n)MpΓ
jci)

+2k3.ξ1ξ2iξ3j(ut)L2Tr (P−H/ (n)MpΓ
jci)

+4tξ2.ξ3k3.ξ1L1Tr (P−H/ (n)Mpγ
c)− 4sξ2.ξ3k2.ξ1L1Tr (P−H/ (n)Mpγ

c)
}

A3 ∼ 2−1/2k1bξ1aξ2iξ3j4(−u− s− t)L1

(

Tr (P−H/ (n)MpΓ
iab)pj − k3cTr (P−H/ (n)MpΓ

jciab)
)

A4 ∼ 2−1/2(ut)L2

{

− sξ1aξ2iξ3jTr (P−H/ (n)MpΓ
jia)

−2k3.ξ1k1bξ2iξ3jTr (P−H/ (n)MpΓ
jib)

}

A5 ∼ 21/2(st)L2ξ2.ξ3ξ1ak1bk3cTr (P−H/ (n)MpΓ
cab)

A6 ∼ 21/2ξ3.ξ2

(

tsTr (P−H/ (n)Mpγ
a)ξ1a + 2tk3.ξ1Tr (P−H/ (n)Mpγ

b)k1b

)

L1 (6.20)

where the functions L1, L2 are given in (2.13).

On the other hand if we actually consider both scalar fields in zero picture in the

presence of a symmetric RR, then we get the whole S-matrix as

A〈C−1A−1φ0φ0〉 ∼

∫

dx1dx2dx3dzdz̄ 〈V
(−1)
A (x1)V

(0)
φ (x2)V

(0)
φ (x3)V

(− 1

2
,− 1

2
)

RR (z, z̄)〉,
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Having done all integrals, one could find the final answer ( for further details, look

at [9]) for the entire S-matrix of a symmetric RR with both transverse scalars in zero

picture and a gauge field as follows

A〈C−1A−1φ0φ0〉 = A1 +A2 +A3 +A4 +A5 +A6 +A7 +A8 +A9 +A10 (6.21)

where

A1 ∼ −2−1/2ξ1aξ2iξ3j

[

k3ck2bTr (P−H/ (n)MpΓ
jciba)− k2bp

jTr (P−H/ (n)MpΓ
iba)

−k3cp
iTr (P−H/ (n)MpΓ

jca) + pipjTr (P−H/ (n)Mpγ
a)
]

4(−s− t− u)L1,

A2 ∼ 2−1/2
{

− 2ξ1.k2k3cξ3jξ2iTr (P−H/ (n)MpΓ
jci)

}

(us)L2

A3 ∼ 2−1/2
{

ξ1aξ2iξ3jTr (P−H/ (n)MpΓ
jia)

}

(−ust)L2

A4 ∼ 2−1/2
{

2k3.ξ1k2bξ3jξ2iTr (P−H/ (n)MpΓ
jib)

}

(ut)L2

A5 ∼ 2−1/2
{

2ξ3.ξ2k2bk3cξ1aTr (P−H/ (n)MpΓ
cba)

}

(st)L2

A6 ∼ 21/2(us)L2

{

pjξ1.k2ξ2iξ3jTr (P−H/ (n)Mpγ
i)
}

A7 ∼ −2−1/2(ut)L2

{

2k3.ξ1p
iξ3jξ2iTr (P−H/ (n)Mpγ

j)
}

A8 ∼ 21/2L1

{

2k2.ξ1k3cTr (P−H/ (n)Mpγ
c)(−sξ2.ξ3)

}

A9 ∼ 21/2L1

{

2k3.ξ1k2bTr (P−H/ (n)Mpγ
b)(−tξ2.ξ3)

}

A10 ∼ 21/2L1

{

ξ1aTr (P−H/ (n)Mpγ
a)(tsξ3.ξ2)

}

(6.22)

where the functions L1, L2 are already appeared in (2.13).

It is worth highlighting the point that, this S-matrix also satisfies Ward identity, that

is, by substituting ξ1a → k1a, the entire amplitude vanishes and the amplitude holds

for various p, n cases. Let us do the comparisons 〈C−1A0φ−1φ0〉 with 〈C−1A−1φ0φ0〉 S-

matrix at both level of singularity structures and contact interactions, find out various new

couplings and in particular find out their corrections and eventually get to the conclusion.

7 Comparison on singularity structure of 〈C−1A0φ−1φ0〉 with

〈C−1A−1φ0φ0〉

In this section we are going to compare all the singularities of 〈C−1A0φ−1φ0〉 with

〈C−1A−1φ0φ0〉 S-matrix. The first term A6 of 〈C−1A0φ−1φ0〉 is exactly equivalent to

A10 of 〈C−1A−1φ0φ0〉, likewise the last term A2 of 〈C−1A0φ−1φ0〉 is the same as A8 of

〈C−1A−1φ0φ0〉 S-matrix.

Now if we add the second term A6 of 〈C−1A0φ−1φ0〉 with the third term A2 of

〈C−1A0φ−1φ0〉 and make use of momentum conservation along the world volume of branes,

we obtain

21/2L1(2tk3.ξ1)ξ2.ξ3Tr (P−H/ (n)Mpγ
b)(−k2b − pb)
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Now by applying the following equation pbǫ
a0...ap−1b = 0, we then realize the fact that

the first term in above equation precisely produces the A9 term of 〈C−1A−1φ0φ0〉.

Meanwhile A5 of 〈C−1A0φ−1φ0〉 can be written down as

21/2(st)L2ξ1aξ2.ξ3k3cTr (P−H/ (n)MpΓ
cab)(−k3b − k2b − pb)

where the first term has no contribution to S-matrix. Because of the antisymmetric prop-

erty of ǫ and the fact that it is symmetric with respect to k3 so the result for the first

term is zero. More evidently the third term in above equation has no contribution because

pbǫ
a0...ap−3cab = 0 and the second term precisely produces A5 of 〈C−1A−1φ0φ0〉.

The same so happens to the other terms, namely if we add the 2nd terms of A2 and

A4 of 〈C−1A0φ−1φ0〉 and apply the momentum conservation, then we are able to precisely

produce A4 of 〈C−1A−1φ0φ0〉 which is related to all s-channel poles.

Indeed without any further details the first term A2 of 〈C−1A0φ−1φ0〉 is exactly A2

term of 〈C−1A−1φ0φ0〉 so that all t-channel poles are then reproduced in both pictures.

By considering the 2nd term A1 of 〈C−1A0φ−1φ0〉 we are then able to generate A6 term

of 〈C−1A−1φ0φ0〉.

Finally to be able to produce all the second kind of s-channel poles one has to subtract

the first term of A1 of 〈C−1A0φ−1φ0〉 from A7 term of 〈C−1A−1φ0φ0〉 such that upon

considering the following identity

ξ2ξ3jǫ
a0...ap(−pjH i

a0...ap + piHj
a0...ap) = 0

we believe that the first term of A1 of 〈C−1A0φ−1φ0〉 is exactly the same A7 term of

〈C−1A−1φ0φ0〉.

Henceforth, we could precisely produce all the singularities of this five point function

in two different pictures. However, note that we have some extra contact interactions in

〈C−1A−1φ0φ0〉 amplitude while they are absent in 〈C−1A0φ−1φ0〉 S-matrix. These extra

contact interactions are needed by symmetries of string theory amplitudes as we point

out/hint them in a moment.

For the completeness we first would like to produce all the singularities. This amplitude

has u-channel gauge poles that can be read off from the string amplitude as follows

µp(2πα
′)22k2ak3ap−1

ξ2.ξ3
1

(p− 2)!u
ǫa0···ap−1aHa0···ap−3

ξ1ap−2

∞
∑

n=−1

bn

(

α′

2

)n+1

(s+ t)n+1

(7.1)

where these u-channel poles should be produced by the following sub amplitude in the

effective field theory

A = V a
α (Cp−3, A1, A)G

ab
αβ(A)V

b
β (A, φ2, φ3), (7.2)

Considering the kinetic terms of scalars iTp
(2πα′)2

2 Tr (DaφiDaφi) and gauge fields we

obtain the following vertices

V b
β (A, φ2, φ3) = iλ2Tpξ2.ξ3(k2 − k3)

bTr (λ2λ3λβ)

Gab
αβ(A) =

−i

λ2Tp

δabδαβ
k2

, (7.3)
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The kinetic terms have no corrections so we need to apply all higher derivative correc-

tions to Chern-Simons couplings as follows

S6 = i(2πα′)2µp

∫

dp+1σ
∞
∑

n=−1

bn(α
′)n+1 C(p−3) ∧Da0···anF ∧Da0···anF (7.4)

Now if one considers S6, then one is able to obtain the following vertex operator to all

orders in α′ as follows

V a
α (Cp−3, A1, A) =

λ2µp

(p− 2)!
(ǫ)a0···ap−1a(H(p−2))a0···ap−3

ξ1ap−2
kap−1

×Tr (λ1λα)
∞
∑

n=−1

bn(α
′k1.k)

n+1 (7.5)

Replacing above vertices (7.5) and (7.3) into (7.2), we are then able to exactly produce

all u-channel gauge poles in the field theory side.

On the other hand, if we employ all order α′ SYM couplings as appeared in (3.15),

and also apply a following sub amplitude of field theory

A = V a
α (Cp−1, A)G

ab
αβ(A)V

b
β (A,A1, φ2, φ3)

then we will be able to produce all (t + s + u) gauge field poles. Note that this task has

been completely done in section four of [9] and in order to avoid rewriting the old contents

of the paper, we refer the interested reader to that section four of [9].

Let us reconstruct all t-channel poles and finally by interchanging 1 ↔ 2 for all the

momenta, the polarisations and t to s, we are able to produce all s-channel poles as well.

All the t-channel poles of the string amplitude are given by

16ξ2iξ3jk2.ξ1π
2µp

t(p+ 1)!

{

2pjǫa0···apH i
a0···ap − 2(p+ 1)k3aǫ

a0···ap−1aH ij
a0···ap−1

} ∞
∑

n=−1

bn(α
′k3.k)

n

(7.6)

These t-channel poles can be regenerated in the field theory side, and to do so one needs

to take into account the following sub amplitude and vertices in the field theory as

A = V i
α(Cp+1, φ3, φ)G

ij
αβ(φ)V

j
β (φ,A1, φ2)

V j
β (φ,A1, φ2) = −2i(2πα′)2Tpk2.ξ1ξ

j
2Tr (λ1λ2λβ)

Gij
αβ(φ) =

−i

(2πα′)2Tp

δijδαβ
t

(7.7)

Consider the Taylor expansion of the two scalar fields as

S7 =
(2πα′)2µp

2

∫

dp+1σ
1

(p+ 1)!
ǫa0···apTr

(

ΦjΦi
)

∂j∂iC
(p+1)
a0···ap
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and then work out with pull-back and both mixing term involving Taylor and pull-back

as follows

S8 =
(2πα′)2µp

2

∫

dp+1σ
1

(p+ 1)!
ǫa0···ap

[

p(p+ 1)Tr
(

Da0Φ
iDa1Φ

j
)

C
(p+1)
ija2···ap

+2(p+ 1)Tr
(

ΦjDa0Φ
i
)

∂jC
(p+1)
ia1···ap

]

(7.8)

where one needs to also add the following Myers terms

S9 =
i

4
(2πα′)2µp

∫

dp+1σ
1

(p− 1)!
ǫa0···ap Tr

(

Fa0a1 [Φ
j ,Φi]

)

C
(p+1)
ija2···ap

. (7.9)

with S8 and take all the integrations by parts to actually get to the following action

S10 =
(2πα′)2

2
µp

∫

dp+1σ
1

(p+ 1)!
ǫa0···ap

[

(p+ 1)Tr
(

Da0Φ
jΦi

)

H
(p+2)
ija1···ap

]

Eventually in order to produce the first t-channel pole, one must consider the summa-

tion of the Taylor expansion and S10 as follows

µp(2πα
′)2

2(p+ 1)!

∫

dp+1σǫa0···ap
[

Tr

(

ΦjΦi

)

∂jH
(p+2)
ia0···ap

+ (p+ 1)Tr
(

Da0Φ
jΦi

)

H
(p+2)
ija1···ap

]

(7.10)

From (7.10) we now look for the vertex of V i
α(Cp+1, φ3, φ) as follows

V i
α(Cp+1, φ3, φ) =

µp(2πα
′)2

(p+ 1)!
Tr (λ3λα)ǫ

a0···ap

[

pjξ3jH
i
a0···ap + (p+ 1)H ij

a1···apk3a0ξ3j

]

(7.11)

However, to produce all the other t-channel poles, one needs to apply all order higher

derivative corrections to (7.10) as below

µp(2πα
′)2

2(p+ 1)!

∫

dp+1σǫa0···ap
∞
∑

n=−1

bn(α
′)n

[

Tr
(

Da1...anΦ
jDa1...anΦi

)

∂jH
(p+2)
ia0···ap

+(p+ 1)Tr
(

Da0Da1...anΦ
jDa1...anΦi

)

H
(p+2)
ija1···ap

]

(7.12)

to indeed obtain the following vertex to all orders in α′ as follows

V i
α(Cp+1, φ3, φ) =

µp(2πα
′)2

(p+ 1)!
Tr (λ3λα)ǫ

a0···ap

∞
∑

n=−1

bn(α
′k3.k)

n

×

[

pjξ3jH
i
a0···ap + (p+ 1)H ij

a1···apk3a0ξ3j

]

(7.13)

Now if we replace (7.13) inside (7.7) then we are exactly able to regenerate all order t-

channel singularities in the field theory side as well.

Note that all of the new couplings that we have discovered, can just be derived with

scattering computations not by any duality transformation. Because the coefficients of

these couplings can just be fixed without any ambiguity by S-matrix analysis. We now

turn to contact interaction terms.
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8 Comparison on contact interactions

If we look at the precise computations of the S-matrices in two different pictures, we then

realize the fact that the first term A4 of 〈C−1A0φ−1φ0〉 is exactly the term that has been

shown up in A3 of 〈C−1A−1φ0φ0〉.

As we can readily observe, we have just left with two contact terms in A3 of

〈C−1A0φ−1φ0〉 while in A1 of 〈C−1A−1φ0φ0〉 we do have four different terms, so let us

keep comparing.

Now if we apply the momentum conservation to the 2nd term A3 of 〈C−1A0φ−1φ0〉

and apply the Bianchi equation that we have already got, that is, pbǫ
a0...ap−3cba = 0 then

we are able to precisely produce the first term A1 of 〈C−1A−1φ0φ0〉.

Eventually we apply momentum conservation to the only remaining term of

〈C−1A0φ−1φ0〉 which is its first A3 term and do subtract it from the second and third

terms A1 of 〈C−1A−1φ0φ0〉 such that upon holding the following equation, we are able to

generate the second and third term A1 of 〈C−1A−1φ0φ0〉.

ξ2iξ3jξ1ak3bǫ
a0...ap−2ab(pjH i

a0...ap−2
− piHj

a0...ap−2
) = 0

Once more pbǫ
a0...ap−2ab = 0, whereas up to a sign the third term A1 of 〈C−1A−1φ0φ0〉

is also produced.

However, note to the important point that there is no chance to actually produce even

the leading order α′ of the fourth contact interaction A1 of 〈C−1A−1φ0φ0〉. The reason

is that, there is no left over term inside 〈C−1A0φ−1φ0〉 S-matrix to be compared with

that fourth term A1 of 〈C−1A−1φ0φ0〉 S-matrix. Therefore, let us further elaborate on the

needed contact interactions of this string amplitude.

9 The needed contact interaction for 〈C−1φ−1φ0A0〉

As we have seen above, we were able to produce all the first three contact terms A1 of

〈C−1A−1φ0φ0〉 to all orders, however, we have evidently observed that indeed there is

no chance to produce the fourth term contact interaction A1 of 〈C−1A−1φ0φ0〉 by direct

computations of 〈C−1A0φ−1φ0〉.

In fact we claim that this extra contact interaction must be appeared in the entire

S-matrix as it plays the crucial role in all order α′ contact interaction terms in both type

IIA and IIB super string theory. Let us first write it down and then we try to construct

its all order α′ higher derivative couplings.

Hence we figure out the following term inside 〈C−1A−1φ0φ0〉 S-matrix

−4π1/2µpξ1aξ2iξ3jp
ipjTr (P−H/ (n)Mpγ

a)(−t− s− u)L1 (9.1)

is indeed needed. We normalized the S-matrix by a coefficient of (2π)1/2µp and considered

the expansion of L1 (with the aforementioned coefficients) given in (2.14). Thus the first

leading term of L1 can be produced by Chern-Simons coupling and Taylor expanded of

both scalar fields through closed string RR as follows

S11 =
i(2πα′)3

2
µp

∫

dp+1σ Tr (∂j∂iC(p−1) ∧ FΦiΦj) (9.2)
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Therefore one explores the next order term which is α′4 and indeed all order α′ cor-

rections to the above coupling with exact coefficients can be discovered by applying the

proper higher derivative corrections. For example the (st)mHAφφ and (s+ t)nHAφφ con-

tact terms of the S-matrix (inside the expansion of L1) can be shown to be matched to all

orders by the following couplings

(s+ t)nHAΦΦ = (α′)nH∂a1 · · · ∂anAD
a1 · · ·Dan(ΦΦ),

(st)mHAΦΦ = (α′)2mH∂a1 · · · ∂a2mAD
a1 · · ·DamΦDam+1 · · ·Da2mΦ

Note that the first correction to the above coupling (9.2) and the other new coupling

in (5.2) is of α′4 order.

It is also worth keeping in mind the fact that by expanding the string amplitude of

〈C−1A−1φ0φ0〉, we could also explore new couplings at leading order as follows.

Let us write down the explicit form of the string amplitude, indeed if we extract the

related trace, consider the expansion of stL2 inside A5 of 〈C
−1A−1φ0φ0〉 S-matrix, we then

obtain the following elements of string amplitude

−2ξ3.ξ2k2bk3cξ1aπ
2µp

16

(p− 2)!
ǫa0···ap−3cbaHa0···ap−3

×

(

∞
∑

n=−1

bn

(

1

u
(t+ s)n+1

)

+
∞
∑

p,n,m=0

ep,n,mup(st)n(s+ t)m

)

(9.3)

where we have already produced all the u-channel poles, now to obtain the new cou-

plings, we need to focus on the second term in (9.3) as

− 2ξ3.ξ2k2bk3cξ1aπ
2µp

16

(p− 2)!
ǫa0···ap−3cbaHa0···ap−3

∞
∑

p,n,m=0

ep,n,mup(st)n(s+ t)m (9.4)

where (9.4) satisfies the Ward identity associated to the gauge field, which means that by

replacing ξ1a to k1a, apply the momentum conservation and taking the following identity

for RR

paǫa0···ap−3cba = 0

the amplitude vanishes. Thus we understand that (9.4) has to be reconstructed by new

coupling and the structure of this new coupling is shown by

∫

∑
p+1

dp+1σ Tr (Cp−3 ∧ F ∧Dφi ∧Dφi) (9.5)

Note that (9.5) is considered by the fact that it has to cover up the whole world

volume space and more crucially it has to be antisymmetric with respect to interchanging

the momenta of both scalar fields. We now apply e1,0,0 =
π2

6 and e0,0,1 =
π2

3 to (9.4) to be

able to start constructing new couplings at order of α′3.
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Indeed if we replace e1,0,0 =
π2

6 to (9.4) and consider the above remarks, then one can

show that, this term of S-matrix can be generated by the following new coupling as follows

S12 =
(2πα′)3µpπ

12

∫

dp+1σ
1

(p− 3)!
(εv)a0···ap

(

α′

2

)

×C
(p−3)
a0···ap−4

Tr
(

Fap−3ap−2
(DaDa)

[

Dap−1
φiDapφi

])

(9.6)

Notice that, if we do the same for e0,0,1 =
π2

3 , namely if we replace e0,0,1 =
π2

3 into (9.4)

then one gets to know that, this particular term of S-matrix can be obtained by the following

new coupling

S13 =
(2πα′)3µpπ

6

∫

dp+1σ
(

α′
)

Tr
(

Cp−3 ∧Db1F ∧Db1

[

Dφi ∧Dφi

])

(9.7)

where these couplings are of α′3 order.

Hence the above couplings (9.2), more crucially (9.6) and (9.7) are needed in order to

consider the symmetries of the S-matrix with respect to interchanging of the scalar fields.

We can also investigate the closed form of the corrections to all orders in α′. So to produce

the whole (9.4), one applies the proper higher derivative corrections to (9.5) so that the

closed form of the string corrections can be found as follows

S14 =
λ3µp

2π

∫

dp+1σ
∞
∑

p,n,m=0

ep,n,m
(

α′
)2n+m

(

α′

2

)p

×Tr
(

Cp−3 ∧Db1 · · ·DbmDa1 · · ·Da2nF ∧ (9.8)

(DaDa)
pDb1 · · ·Dbm

[

Da1 · · ·DanDφi ∧Dan+1
· · ·Da2nDφi

])

Note that these new couplings of (9.6), (9.7) and (9.8) can not be derived by the

standard effective field theory ways of Taylor, Myers terms nor by pull-back formalism.

Indeed not only the structure of the above new couplings but also their coefficients can

just be explored by this S-matrix analysis.

Note that there is no Ward identity for the amplitudes of scalar fields in the presence

of RR, thus we argue that for two scalars and a gauge field in the presence of RR, there

is a subtle issue. Indeed to be able to get to the corrected all order contact interactions of

higher point functions of string theory amplitudes, one needs to consider both scalar fields

in zero picture as we have clarified in detail in the above S-matrix.

It would be nice to generalize this conjecture to even number of scalars in the presence

of a closed string RR or even it would be nicer to check it for the non-BPS amplitudes

where the first non-trivial amplitude to be carried out is 〈C−1T 0φ−1φ0〉 to be compared

with 〈C−1T−1φ0φ0〉 S-matrix. It would be even more significant if we could carry out these

S-matrices on asymmetric picture of RR (〈C−2T 0φ0φ0〉). It is more crucial to actually

deal with the higher point mixed RR- scalar field massless strings to actually generalize

the rules and symmetries of string theory amplitudes. We hope to answer these higher

point functions of string amplitudes and the other issues in future works. Although an
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interesting proposal for picture changing operator has been appeared in [55], however, we

find it complicated to be applied to the real string amplitudes, nevertheless, it would be

great to find the deep connections behind those topics as well.

10 Conclusion

In this paper, we have evaluated the five point world-sheet string theory amplitudes of

the mixed RR, scalar and gauge fields, namely we have carried out with entire details the

whole 〈C−1φ0A−1A0〉, 〈C−1φ−1A0A0〉, 〈C−1A0φ−1φ0〉 and 〈C−1A−1φ0φ0〉 S-matrices.

We have regenerated all t, s, u, (t + s + u)- channel poles in effective field theory. We

also found out new contact interactions as well as some new singularities that appear

in〈C−1φ0A−1A0〉 S-matrix where those new terms were actually the terms that carry mo-

mentum of RR in transverse direction and involved p.ξ terms inside the S-matrix elements.

These p.ξ terms are needed in the entire form of S-matrix , due to non zero correlation

function of RR field by the first term of scalar field vertex operator in zero picture. Indeed

all 〈eip.x(z)∂ix
i(x1)〉 terms are non-zero so we have reconstructed the S-matrices such that

by considering all the scalar fields in zero pictures in the presence of RR, we were able to

produce all p.ξ terms as well as pi, pj terms ( inside the S-matrices) whose momenta of RR

are carried in transverse directions.

By comparing 〈C−1φ0A−1A0〉 with 〈C−1φ−1A0A0〉 S-matrix we found a coupling inside

the 〈C−1φ0A−1A0〉 S-matrix as follows

S3 =
i(2πα′)3

2
µp

∫

dp+1σ Tr (∂iC(p−3) ∧ F ∧ FΦi)

where this coupling can be explained by the effective field theory ways as, the mixed Chern-

Simons and Taylor expansion of scalar field was needed. We then generalized its all order

higher derivative corrections. We produced all the new singularities of this S-matrix in

section six of this paper as well.

We also compared 〈C−1A0φ−1φ0〉 with 〈C−1A−1φ0φ0〉 S-matrix for all order α′ contact

interactions as well as singularities in both transverse and world volume directions of the

S-matrices and that leads to finding out various new couplings in string theory effective

actions. First we found the following coupling

S11 =
i(2πα′)3

2
µp

∫

dp+1σ Tr (∂j∂iC(p−1) ∧ FΦiΦj)

and claimed that this coupling can be verified just by 〈C−1A−1φ0φ0〉 S-matrix where from

field theory we employed the Taylor expansion of scalar fields and then we generalized its

all order corrections.

Basically, we claim that various new contact interactions appear in the S-matrix by

considering both scalar fields in zero picture. Indeed we derived the following new couplings

S12 =
(2πα′)3µpπ

12

∫

dp+1σ
1

(p− 3)!
(εv)a0···ap

(

α′

2

)

×C
(p−3)
a0···ap−4

Tr
(

Fap−3ap−2
(DaDa)

[

Dap−1
φiDapφi

])
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as well as

S13 =
(2πα′)3µpπ

6

∫

dp+1σ
(

α′
)

Tr
(

Cp−3 ∧Db1F ∧Db1

[

Dφi ∧Dφi

])

These couplings are needed in order to consider the symmetries of the S-matrix with

respect to interchanging of the scalar fields and their all order α′ corrections generalized

in (9.8).

Note that these two above couplings can not be derived by the standard effective

field theory ways of Taylor, Myers terms nor by pull-back formalism. Indeed not only the

structures of the above new couplings but also their coefficients can just be explored by

〈C−1A−1φ0φ0〉 S-matrix analysis and not by any other tools.

Note that there is no Ward identity for the amplitudes of scalar fields in the presence

of RR, thus we argue that for two scalars and a gauge field in the presence of RR, there

was a subtle issue. Indeed to be able to get to new couplings as well as the corrected

all order contact interactions of higher point functions of string theory amplitudes, one

needs to consider both scalar fields in zero picture as we have clarified in detail in this

paper. Eventually we have made use of Myers terms and the terms whose RR momenta

are embedded in transverse directions, to be able to derive all the singularity structures of

an RR, two scalars and a gauge field amplitude.
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