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1 Introduction

The fundamental objects in string theory or the so called D-branes have been playing a
key ingredient in various research topics on theoretical high energy physics as well as in
super string theory [1-4].

Indeed either a BPS or non-BPS D,-brane includes (p + 1)-dimensional world volume
fields which must be thought of a hypersurface like in a ten dimensional flat space time.
We need to take into account some special boundary conditions to them, namely either
Neumann or Dirichlet, depending on whether we apply those boundary conditions through
transverse or its world volume fields [5, 6]. Note that recently some remarks for brane-anti
brane have also been mentioned in [7].

To have more complete picture of the effective actions of string theory and what has
been carried out up to now, we just point out to various papers that are important to
the author. Myers in [8] did explore the form of a bosonic action which holds for mul-
tiple D,-brane configurations and the generalization of Myers action with its all order
o/ corrections (using the mixed open-closed scattering amplitudes) has been done in [9].



Having performed [9], some new couplings were obtained. These new couplings are not
inside Effective field theory (EFT) and their importance has played the fundamental role
not only in performing the ADM reduction of IIB and exploring dS brane world-volume
solutions [10] but also in deriving N3 entropy of M5 branes. These couplings could have
some specific role in super gravity solutions as well where the particular emphasis is paid
on the near-extremal black-branes to actually get to n® entropy growth analysis [11].

A remarkable paper [12] on supersymmetrized version of that action was given. A
part of the supersymmetric action is known, in fact it involves symmetric traces of the
non-abelian fields and what needs exploration is further terms which do not belong to the
category that we are looking for in this paper. Whereas the effective action for a bosonic
brane given by [13] and naturally its supersymmetric one was written down by [14-18]. One
could read off a review of all the DBI, Wess-Zumino and Chern-Simons action just for BPS
branes from [19]. On the other hand, to reveal more about three standard ways of effective
field theory of the D-brane action (which contain Taylor expansion-Myers Terms and Pull
back), and to learn more about all sorts of higher derivative corrections of non-BPS and
BPS branes , we advise the section five of [20].

It is also important to have some tools to actually deal with the mixed open-closed
higher point functions of string amplitudes, where one can refer to some of the pioneer
works on either effective actions or scattering amplitudes that are involved with several
D,-brane configurations as well as their string applications [21-33].

The paper is constructed as follows. In the next section we just introduce vertex
operators with all details and notations and then we try to work out Type II super string
computations with all order o D-brane S-matrix of a Ramond-Ramond (RR) in symmetric
picture, a scalar field in zero picture with two world volume gauge fields on different pictures
where we try to address the entire S-matrix and explain the whole techniques that are
involved in that particular amplitude.®

Afterwards we start comparing all the contact interactions and singularity structures
of (VeVgVaVa) S-matrix in two different pictures in the presence of a symmetric RR
vertex operator. Basically we compare both all order o contact interactions and all the
singularity structures of (C~1¢?A~1 A% with (C~1¢~1A%A%), where the superscripts refer
to the chosen picture of each string operator. Although we regenerate all ¢, s, u, (t + s+ u)-
channel poles in effective field theory, we also find out some new contact interaction and
singularities in the (C~!¢°A~1A%) S-matrix and for the first time , we explore their all
order o couplings in effective field theory as well.?

"We may wonder whether it is possible to apply T-duality to (VeVaVaVa) S-matrix of [19] to get
to (VeVsVaVa) S-matrix. Indeed as it has been explored there are various terms in the S-matrix of
(VeVgVaVa), that carry momentum of RR in transverse direction that cannot be obtained by T-duality
transformation in flat ten dimensions of space-time. In fact the appearance of RR makes things subtle or
complicated as argued in [35] and [36] accordingly.

2There is the possibility that some of the terms derived in different pictures of the vertex operators,
might be related via Bianchi identities of the bulk. This would imply that some of the contact interactions
might be redundant but not all. In some of the specific examples , some of the assumed contact terms
seems to be reproduced by a specific combination of pull-back and Taylor expansion of the CS terms. One
might use some of the new terms to eliminate either the pull-back or the Taylor expansion. Nevertheless,



It is also worth reporting some sort of new singularities and new sort of Myers terms
that appear in this particular picture of (C~1¢?A~1 A% S-matrix where those new terms
are actually the terms that carry momentum of RR in transverse direction and do involve
p.€ terms inside the S-matrix elements.

Note that these p.£ terms are derived by direct analysis of (C~1¢%A~1 A%, due to non
zero correlation function of RR field by the first term of scalar field’s vertex operator in
zero picture, that is, all (e*(*)9,2%(x)) terms are indeed non-zero. Therefore since scalar
field’s polarization is in the bulk , one expects to be concerned about all p.£ terms and
p’, p’ terms whose momenta of RR are carried in transverse directions. It is worth pointing
out the following fact as follows. Recently, it is shown in [34] that, if one does not know all
the Bianchi identities of RR in the bulk, then certainly there will be no chance to explore
all the bulk singularities of non-BPS branes.

We perform full comparisons at each order of o for all contact interactions as well,
and that leads to finding out new couplings that can be derived by just S-matrix analysis
not by any other tools to our knowledge.

The profound relation of open-closed string plays the crucial role in matching out all
the singularities of string theory with EFT, as it has been shown that all order o’ higher
derivative corrections to SYM couplings produce all massless poles at (f + s + u)-channel
poles through a RR coupling with various BPS open strings. It has also been empha-
sised that, this phenomenon could have played the major role for finding the universality
conjecture on o' corrections of string theory [37].

We carry out the same analysis (this time for an RR, two scalars and a gauge field)
in type IIA and IIB super string theory for both (C7'A% 1¢") and (C~'A~1¢0¢%) S-
matrices where we seem to find out the same t,s,u, (t + s + u)-singularity structures in
the presence of an RR, even number of scalar fields. However, we claim that various new
contact interactions appear in the S-matrix by considering both scalar fields in zero picture.
Indeed we derive these new couplings, show that these couplings can just be discovered
from (C~tA71¢%¢") S-matrix and explore their all order o/ corrections in effective field
theory side. Finally we conclude by mentioning various remarks about these S-matrices in
the conclusion section.

2 Type II Super string computations with all order o’ D-brane couplings

In this section we would like to carry out the Conformal Field Theory (CFT) technique to
be able to explore not only all the singularities but also all the infinite contact interactions
of the mixture of a closed string RR (in its symmetric picture) and various BPS open string
fields. Indeed our calculation makes sense at the level of a world-sheet five point mixed
closed-open string amplitude which must be done on the upper half-complex plane. We find
the entire S-matrix elements which hold on both world-volume and transverse component
of D-branes.

One might be interested in seeing various efforts that have been performed on both
BPS and non-BPS amplitudes [38-49].

we believe that not all the new couplings are redundant.



In order to find out the effective action of string theory one needs to deal with or
calculate the scattering amplitudes and naturally the first step to do so, is to fix a particular
picture of the vertices. Namely, the sum of the superghost charges must have been (-2) for
disk amplitudes.

In our notations we use p,v = 0,1,...,9 for the whole spacetime, while a,b,c¢ =
0,1,...,p for world volume space and 7,5 = p+ 1,...,9 for transverse directions. Here
we would like to insist on the calculations in the presence of symmetric picture of RR
but for the completeness we point out all the different vertex operators in various pictures
as follows:

V(@) = & (6X ‘() + a’ik-wzbi(x))ea'ik'x(ﬂc)’
ViV (y) = Eapy)e W e X W),
Vi (2) = & (@X ) + a/iq-@b@ba(;p))ea'i‘l'}((m)’
VD () = L (y)e#W e iaXw)
VE37(2,2) = (PLH My e ¥0)/28, (2) el TP X () =925 (5)ei 57 D-X(E),
VEETD(22) = (P My) e 028, () TP X (o025 () 5 P DX G,

(2.1)

To our knowledge the vertex of RR in asymmetric picture has been first shown by an
interesting paper on open string theory [50] and then it was argued with some more details
in [51, 52] where the following kinematic relations are also considered

=¢=p"=0 ¢£=0,

We also apply Doubling trick to make use of holomorphic components of world sheet fields
as well, that is,

XM(z) —» DLXY(2), 9"(2) = Diw¥(2), &(2) = ¢(2), and Sa(2) — Mo Sp(2),

where
+i
D _19—p 0 4 M (p+ 1)!’)/&17@2 “"yap+1€a1...ap+1 fOI'p even
N 0 1) P 1 e
TES c P60y 0y, fOrp odd

Although all the details of spinor part have been verified in [20], we just clarify the
definitions of projector and RR’s field strength as follows

(P H ()™ = O (P H)s”, Po= (14" (22)

and
H iy = %Hm._#n’y’“ cot
where for ITA and IIB we use n = 2,4,a, =i and n = 1, 3, a,, = 1 appropriately.
Here we just work out with the holomorphic parts of correlations but the interested

reader can easily find out all the tricks in the appendix part of [20] as well.



2.1 All order o’ S-matrix element of (C~1¢p%°A~1A9)

The complete form of the S-matrix element of a closed string RR (in its symmetric picture)
n-form field strength and a transverse scalar field in zero picture and two world volume
gauge fields (C~1¢? A~ A%) can be found by the following correlation functions

1

_ _ _1_1
AlCTI0ATIAY) / daydeydesdzdz (V. (x) VD @) V(@) Vit ™2 (z,2), (2.3)

We just look for a special ordering. Setting the Wick theorem, the amplitude is written
down as follows

ALCTIPATIAD) /d$1dw2d$3d$4dﬂf5 (P—H(n)Mp)a651i€2a£3b$251/4(51724«T25)71/2
X(Il + Iy + I3 —|—I4)TI‘ (Al)\Q}\g), (24)

where x;; = x; —xj, v4 = z, x5 = Z and

/

I = < :8Xi<1'1)6a ik1.X (z1) : ea/ikQ.X(xz) :aXb(x3)ea/ik3.X(x3) :ei%/p.X(m) . ei%/p.D,X(%) :>

X( 1 Sa(xa) - Sg(xs) : P (x2) ),

I, = < :aXi(l,l)ea’ikl.X(asl) : ea/ik‘g.X(.Z‘Q) . ea’ik3.X(:v3) :ei%/p.X(am) :ei%/p.D.X(acg)) :>

X (: Se(xa) : Sp(xs) = v (22) : ikz. by (x3)),
I3 = < :6a/z‘k:1.X(zl) : ea/z’kz.X(xg) Z@Xb(z?))ealik?"X(‘m’) :ei%p.X(:m) . ei%p.D.X(a:g,) :>

><< : Sa(m4) : Sg(x5) : a/ik1.¢¢i(x1) : Qba(xg) :>,
I = < :ea/ikl.X(xQ : ea/ikQ.X(azg) . ea/ikg.X(xg) :ei%/p.X(m) :ei%lp.D.X(xg)) :>

x(: Sa(a) : Sp(ws) : oiky- ' (w1) 2 P (w2) : oiks Py (x3) 3. (2.5)

We actually use the standard propagators, as follows

(X)X () = S log(z — w),

(W) (w) = =S (e —w) ™,

(9(2)¢(w)) = —log(z — w) (2.6)

We also need to take into account the Wick’s theorem to be able to investigate all the
bosonic correlators. To see further details , the section 3 of [53] is strongly suggested.

Let us just address the most complicated fermionic correlation function of two spin
operators/ two different currents and a fermion field, where all the possible contractions
have to be considered.

Once again we use x4 = 2z, x5 = z. Note that unlike the open string correlator where
integration is on the real line x4, x5 are integrated on the upper half plane. It is only for
the purposes of the Wick contractions that we can forget the complex conjugation of one



variable to another, in order to simplify things.

Ié)caid _ < . Sa(l'4) : 5,8(335) . ¢dw1($1) i wa(xQ) : wciﬁb(xii))

: R R R
— {(Fbcazdc1)aﬁ+a/rl e[z14 5] +a'ry e[r14735) +alrs elxo4w3s] (2.7)
T12%45 13245 T23%45
o [ Re[r1axs5] [ Re[rasw3s] —5/2, 5/4 . _1/2
Tatry 275y (14w 1523435)  (T24225) ;
T13T45 23745
so that
r = (nda(l‘\bcicfl)aﬂ>’
ro = (_ nCd(FbaiC_l)aﬁ + ndb(r\caic—l)aﬁ)’
rg = (_ naC(Fbidcfl)aﬁ + T,ab(]:wcialc«fl)oéﬁ)7
ry = ((ncdnab o nbdnac)(,}/ic—l)aﬁ) (2.8)

Replacing the above correlators and performing some simple algebraic computations, one
can further simplify the amplitude and write it down in a closed form as follows

ALCTI0ATIAY) N/ dzxidrodrsdrsdrs(P-H () Mp)aﬁfﬁz‘&afszg“(117243325)71/2

x (T2 (a}ah) + ajal? + abad’ — 0 hnakae§0) Tr (A doda),

(2.9)
where
7 — ’x12’a’2k1.k2’x13’a’2k1.k3‘1,143;15’%ﬁkl.p‘x23|a’2k2.k3
2 12 12
X |Toqwos| T K2 P|pa2a5| T AP 35 ] T PDP,
%=W<54>
14715
. X X . X X
agzzk‘l{< 14 + 15 )+sz( 24 + 25 >7
L13T34 L35X13 T34023 T35723
_ _ _ Re[x243:35]
aga _ {(Fbcac 1)a5+(_a/na0(,ybc 1)a6+a/nab(,ycc 1)a5)m
><a/ik382_3/2xié4(x34x35)_1(x24m25)_1/2
; . _ 1/4 — _
aZZ = O/Zk‘ld2 3/2$4é (.T24£L'25) 1/2(33143015) 1 (2.10)
aid ~—1 ' ad iq—1y  Re[T1awos]
X (["C™ ap + '™ (v'C )aﬁm ;

I8 = (: Sal(@a) : Splas) : p4(x2) ) = 27222 (@9a225) "2 (1 C g,

Now one could use the SL(2,R) invariance of the S-matrix and to remove the Vogg we
do gauge fixing over the position of open strings at zero, one and infinity. By doing gauge



fixing as (z1 = 0,22 = 1,23 = 00), one needs to address the following integration on the
upper half plane over the position of RR

/d22|1 — 2|%2°(z — 2)(z + 2)¢

where a, b, ¢ are the combinations of the following Mandelstam variables

/ / /

(k1+k3)27 t= _2a (k1+k2)2, u = —204

—Q

2

(kQ + k3)2

S =

and the results of the integrations for d = 0,1 and d = 2 were obtained accordingly in [54]
and [20].

Therefore, the final form of the S-matrix in this particular picture to all orders in o/
is obtained as follows

ACTIOATIAY) — Ay 4 Ay + Ag + Ay + As + Ag + Ay (2.11)
where
Ar ~ 2712¢1,60,63 [ — k3ck1qTr (P—H(n)Mprmd)
g Tr (P H () MyT") | 4(—t = 5 = w) Ly,
Ay ~ 27121y (P,H(n)Mpraid)ngQakld{ k& (ut) + 2k2.£3(st)}L2
As ~ 27121y (P_I;{(n)M,,fyi)gu{gg.gg(zts) + 2y .65 (2ks.E0)t
—uky.Eo(k1.E3) + 4sk2.§3k1.§2}L1
Ag ~ —2_1/2(875)L2{§3b§1z‘52aTr (P_H () M Yu + 2ks.Eok1a&1i€ap Tr (P—H () M T
—Tr (P—H(n)MpFCid)kldk?)Cgli(252'53)}
Az ~ —2_1/2§1ik36{ — 21 &by Tr (P—H () M) (us)
2k €620 Tr (P My (ut) | Lo
Ag ~ 2_1/2(8t)pi5u{2k3-§2Tr (P_H () M) — 263.65 T (P*H(n)Mp’VC)kSC}LQ
Az ~ 27V 20Ty (P_H(H)Mp’ya)fga{le.fg(ut) - 253.k2(st)}L2 (2.12)
where the functions Lq, Lo, are

I(—u+ $)T(=s+ $)(—t + I (—t — s — u)
MN—u—t+1)I'(-t—s+1)I'(-s—u+1) ’

T(—u)(=s)I(—=t)T(~t — s —u+ 3)

M(—u—t+1)I(—t—s+1)I(-s—u+1)

Ly = (2)—2(t+s+u)—1ﬂ_

Ly = (2) —2(t+s+u) T

(2.13)

As we have expected by interchanging £, — ko, and also €3, — ks, the whole S-matrix
vanishes, which means that the amplitude does satisfy all the associated Ward identities



and the amplitude is non zero for various p,n cases. Notice also we are dealing with all
massless BPS strings so the expansion is low energy expansion. This S-matrix does have
all ¢,s,u and particularly (¢ + s + u) channel poles and in particular it has some extra
singularities that are precisely carrying momentum of RR in the bulk direction where we
will show that these terms cannot be derived in the other picture ((C~1¢~1A°A%)) S-matrix
and we argue about them in the next section.

More significantly, in (C~'¢°A~1A%) S-matrix we discover the new form of contact
interactions to all orders in o that cannot be found in the other picture. For the precise
definitions of the expansions and more kinematical definitions and identities, one needs to
look at [19, 35].

Note that by sending t, s,u — 0, one finds the expansion of the functions L, utLy as
follows

Sooe Crm [S"E + s

n,m=0

(t+s+u)

[e.9]
Ly = —27 1752 (Z en(s+t+u)" +

n=0

+ 3 fonm(s+t+uP(s+ t>n<st>m]>

p,n,m=0

o0 o0
1
utly = =2 Y 7 bn—(ut )" Y 0 epnms”(tu)" (t+ w)" (2.14)
n=-—1 p,n,m=0
with the following coefficients
L 4
by =1, bo = 0, -
6
2
b2 = 2C(3)7 Co = Oa 1= — Ev
1
€2,0,0 = €0,1,0 = 2¢(3), €1,00 = 67T2,
19
e102 = —7, e1,0,1 = €0,02 = 6¢(3),
60
€001 = 3T, €300 = 5557
19 1
€0,0,3 = €2,0,1 = %W47 €1,1,0 = €0,1,1 = %W4, (2.15)
2
= —2((3 = — E
2 ¢(3), €11 = €0 = 3
2 1
€31 =C13 = T5ﬂ4’ C22 = 57T47
c10=co1 =0, c30 =co3=0,
2
€20 = C02 = &= c12 = c21 = —4¢(3),
2
fo10= 3 Jo20= — fi,10 = —6((3),
1 4
foo1 = —2¢(3), €40 = C04 = 77 -



Meanwhile the result of the S-matrix in different picture of scalar field, that is,
(C71p~1 A" A% S-matrix was derived in [35] to be as follows

AlCTIOTIAAD) / dydwsdasdzdz (VS (@) V) w2V (@) Vig? 2 (2, 2),
ACTIOTIAMAY) A 4 Ay + As+ Ay + As (2.16)
where
At~ =2712¢1360080 | Raakac Tr (P H o MyT") | 4(—t = 5 — w) Ly,
Ay ~ 27121y (P_H(H)Mprdi)fliﬁgbkgd{%:l.fg(us) - 2k3.§2(st)}L2
Ay ~ —2712y (P_H(n)Mpraci)guggakgc{ Ok E5(st) + 2k1.§3(ut)}L2 (2.17)
Ay ~ _271/2(5t)L2{€3b§1i§2aTr (P H () ML Y + 2k E3kza€1i€aa Tr (P H () M,T )
2k Eokzc€s€an T (P H () MpU™) = Tr (P H () T igahe€1,(260.65) }
As ~ 27127y (P_H(n)Mp’yi)&i{53.52(%3) + 2ky.E5(2ks.E0)t
—4duky.&a(k1.§3) + 4skz-§3k1-§2}L1
Let us first compare the results of the same S-matrix in different pictures and then

start producing all the singularity structures as well as new contact interactions.

3 Comparison on singularity structures of (C '¢°A~1A%) with
(C_1¢_1A0A0>

First of all note that both Ajs’s in two different pictures are exactly matched. The first
term Az of (C71¢9A=1 A% is exactly the first term Ay of (C71¢p~1A%A%). Now if we add
the 2nd term Ay of (C71p1AYAY) with the 3rd term Ay of (C71¢71AYA%) and apply
momentum conservation along the world volume of brane we get

—27 Y25t Ly (2ks.2) €133 Tt (P H (1) MpT) (— k1 — pe)
Now if we use the identity that has been found in [7], that is,
pceao...ap,gbc — O (31)

then we get to know the fact that the first term of above equation precisely produces the
2nd term Ay of (C~1¢0A71AY).

One can see the derivation of (3.1) in various equations of [7]. For example, it is shown
in equation (9) of [7] that, in order to get to the same result of three point function of
one RR and a scalar field in both (C~!'¢~!) and (C~2¢") S-matrix, the equation (9) of [7]
or (3.1) must hold. Another example to prove that (3.1) holds is as follows. It is shown
in section five of [7] that, to get to the same result of four point function of (C~1T%~1)
and (C2T°¢") S-matrix, the equation (3.1) must hold ( see the footnote of 19 in page 14



of [7]). It has also been discovered that the amplitude of (C~tA~1TOTY) satisfies Ward
identity associated to the gauge field if and only if the above identity (3.1) holds.

Likewise if we add the 1st term Az with the 2nd term Ay of (C~1¢~1A4%A4% and also
apply momentum conservation we find the following elements

—27 125t Ly (2ks.£3) 615600 Tr (P—H () M) (K1 + )

Once more one needs to apply the equation p.e®0%-29¢ = () so that the first term of above
precisely produces the 2nd term Ay of (C~1¢0A~1A%).

Simultaneously if we add the first term Ay with the 2nd term Az of (C~1¢2A4~1A0)
with keeping in mind momentum conservation and p.e®0%-2%¢ = (), we then precisely
produce the 2nd term Ajs of (C~1¢p=1A4°4%).

Finally the last term A4 of (C~1¢~1A%A%) is exactly equivalent with the last term Ay
of (C71¢0A=140)3

Therefore the upshot is that we can precisely produce all the singularities of
(C71p71AYA) by (C71¢° A1 A%) S-matrix (as we will show later on), however, we have
also some extra contact interactions and other singularities of (C~'¢°A~1A%) S-matrix
(in the zero picture of scalar field in the presence of a symmetric RR) that are absent in
(C~1p=1 A A%) S-matrix and we will argue about them in a moment.

In fact from the direct calculations we observe the facts that at pole levels the whole
Ag and A7 of (C1¢%A~1 A% S-matrix are extra terms that cannot be derived from direct
computations of (C~'¢~1 A% A%) S-matrix.

Moreover, the 2nd contact interaction A; of (O~ 1¢?A~1A%) is also extra term that
cannot be derived from direct computations of (C71¢~1A°A%) S-matrix on upper half
plane, as we further elaborate on this coupling in the other section. Let us first produce
the different singularity structures.

We do have massless scalar poles in t,s and (¢+s+u) channels as well as u channel gauge
field poles. Here we just produce the s-channel scalar poles and finally by interchanging
2 +» 3 and exchanging the respected momenta and polarisations we can produce t- channel
poles as well. If we replace the desired expansion of utLo, we then obtain all s-channel
poles of string amplitude as follows (normalization constant is (27)'/2m,,)

o0

: 1
pp€1i€aakoce™ P H Z gbn(u+t)”+1(2k1.§3)1&~()\1)\2)\3) (3.2)

n=—1

(2ma’)?
p!

In order to produce all these massless s-channel scalars, one has to consider a field theory

sub amplitude as
A = Vi(Cpr, As, §)GI () V] (¢, Az, 1) (3.3)

7\2 .
where by taking into account the kinetic term of scalar fields @D“gf)zDagbi one obtains
the following vertex as well as scalar propagator

VI(6, Az, ¢1) = —2ik1.&(2ma > T Tr (AshiAg) (34)
- i 8§iJ S8
d\iJ _ 1096
(G%)as (2ma’)?Tys

3Notice to momentum conservation and p.e®0-»—2%¢ = (),
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Now we need to consider the mixed Chern-Simons coupling and the so called Taylor

expended of scalar field as follows

_
(p—1)!

to actually derive the following vertex operator of an RR, an on-shell gauge field and an
off-shell scalar field as

S1 = i(2ma)u, / o (") T (Fagay ') hCEY) (3.5)

i(2ma’)?py
(p)!

where Vﬁj (¢, As, ¢1) is derived from the kinetic term of the scalar field and in particular it

Vi(Cpo1, Az, $) = ()20 % H ... €2a, k2ao TT (A2 Aa) (3.6)

has no correction, hence to be able to produce all s-channel poles we need to propose the
higher derivative corrections to (3.5) as follows

1
- Z b n+1 /derlO'(p_l)!(Ev)aO“'ap

n=—1

x0;Cp—1 A Dq, ...Dq,,, FD" ... D" 1¢"  (3.7)

Having taken (3.7), we were able to derive all order vertex operator of (3.6) as

(2 N2
2m) My wyao-ay gy, ay €201 K2a0 TF (A2 o) Z b (o' k.l (3.8)

Vc’i(cp—17A27¢) = (p)|

n=-—1

Now if we replace (3.8) and (3.4) inside (3.3), then one is able to precisely regenerate
all order s-channel singularities of string amplitude (3.2) in the effective field theory as well.
All the u-channel gauge field poles of the string amplitude are given as

1 ;
,up(27ro/)2 €40 ap72bd£1ik1dHZao---ap,2

(p)lu

X Z b (s + )" (2k3.E083p — 2ko.E360p + 263.62ka)  (3.9)

n=-—1

Note that these u-channel gauge field poles can be reconstructed in the effective field
theory by the following field theory sub amplitude

A = Vi (Cp1, 91, )GZ%(A)VE(A,AQ,AP,), (3.10)
where the vertices are

i(2ma’)

V(S(CP—17¢17A> - (p)|

(gv)ao ap— 1CL]Jla1 ay 1flzka0Tr Al)\ Z bn t—|—8 n+1

n=-—1
V3(A, A, Ag) = —iT,(2ma)*Tr (AaAsAg) | 2k2.6365 — 2k3.8285 + €3.80 (ks — kg)b],
b 15050
A = —2 11
Gaﬁ( ) (QWO[,)QTP’LL” (3 )

— 11 —



where all order corrections to V.¢(Cp—_1, ¢1, A) have been derived from (3.7). By replacing
these vertices into the field theory amplitude (3.10), one exactly produces all u-channel
gauge field poles that appeared in (3.9).

For the completeness we just produce all the (s + ¢ 4+ u)- channel singularities of the
S-matrix in the field theory as well. To do so, first we replace the part of the expansion of
L; (which has poles) inside A5 so that one gets all the poles in string amplitude as
€0y H =

0+ap T o myn nym
p+ (s +t+u) r(Adads) Z Cnm (8™t + 8"1")

8773#17 (

n,m=0

X |:2St62.53 + 4tkq.&3ks.Eo + 4dsk1.Eoko. &3 — duky.Eokq.&3 (312)

In order to produce these poles, one has to consider the following sub amplitude in
field theory side

Vi(Cpi1, )G (0)V (9, 61, Aa, As) (3.13)

where the scalar propagator can be found by taking the kinetic term of scalar fields
2 . .

(@D‘%’Da@) and the vertex of V}(Cpt1,¢) is obtained by taking the following ef-

fective action through Taylor expansion of scalar field

. 1 v\ag---a 7 (p+1)
(2 )iy [ @ (e T () 08T,
so that
S —i8,0% —18,30%
G%(qb) = : B/ 210 — /12 o )
T,(2ma/ )%k T,(2ma/)2(t + s + u)
7 . 1 v\ag-a )
Va(cp+1v¢) = l(QWa/)Mpm(s ) 0 pHagu-apTr ()\a)- (314)

To be able to produce all scalar massless poles of the string amplitude to all orders
in o/, one needs to know all order vertex operator of two scalar two gauge field couplings
Vﬁj (¢, 1, Ag, A3). This vertex operator can be found by employing all order o/ SYM
couplings [35] as follows

1 nim e
(27ro/)4WTp (@)™ S Ly Lyt £ym), (3.15)

m,n=0

LM = Ty (amml)nm (Dt D¢ F™ Fio] + b Dy [Datd FDP b Fye] + hi.c. ) :

Lom = Ty (an7mDnm[Da¢iDb¢incF“C] + bumDl [Dady FureD'é; F°] + h.c. ) ,

£om = %Tr (an,mpnm[paqsiD%inCFbC] + b D [Dad Foe D% ] + h.c.) ,
where the following definitions for all higher derivative operators have been considered [19]

Dpm(EFGH) = Dy, -+ Dy, Dy - - Do, EFD - .. D""GD ... Db [,
D, (EFGH) = Dy, --- Dy, Dg, --- Do, ED™ - .. D FGD" ... D' H.

— 12 —



Since the off-shell scalar field is abelin, one needs to consider just two permutations of
Tr (A1 AgA2A3), Tr (AgA1A2A3) to be able to derive all order vertex of Vﬁj (¢, P1, Az, Ag) from
the above corrections (3.15) as below

. T
Vi(6, 61, Az, As) = €] =

1ﬁ(a/)n+m(an,m + bpm) ((kii'kl)m(kl ko)™ + (k3-k)™ (k2 k)"

Ok k)" (b )™+ (k)" (o))
(3.16)

with the following definition for Ig
st
Ig = (27ra/)4TpTr ()\1)\2>\3)\5) |:252-£3 + tkl.ggk‘g.fZ + S/ﬁ.fgk:z.ﬁg — uk1.52k1.53:|

where k is off-shell scalar field’s momentum, and some of the coefficients a; ,, and by,
(bp,m is symmetric [19]) are

2 2
a0 =~ & boo = — iEE
aro = 2¢(3), ap,1 =0,
bog = —¢(3), a1l = agp = —77* /90,
aze = (—83m% — 7560¢(3)?)/945, bao = — (237% — 15120¢(3)?)/1890,
a3 = — 627°/945,
ago = — 4m*/90, b1y = — /180,
boo = — /45, aps = — 3177945,
aso = — 167°/945, a1 = ag1 = 8¢(5) + 472¢(3)/3,
ap,3 = 0, azo = 8¢(5),

big = — (127% — 7560¢(3)?)/1890,
az1 = (—52r% — 7560¢(3)?)/945, bos = — 4¢(5),
bia = —8((5) +27°((3)/3, bos = — 16m°/1890. (3.17)

- =

They are computed in [19]. Now if we use momentum conservation, we get ks-k = ko.k1 —
(k?)/2 and ko-k = ki.ks — (k?)/2, whereas k? in (3.16) is cancelled with the k? in the
denominator of the propagator. Since we just want to produce singularities, we are ignoring
those contact terms and considering (3.16) and (3.14) inside (3.13), one explores the sub
amplitude in field theory as follows

cooon . ) S

0% Ty (Mg A\ o+ D ) [sTH 4 s
(p+Dl(s+t+u) T (MA2As) Y (anm o+ bom) [ + 5"

167 1

n,m=0

[28t§2.£3 + Atky .E3ks.Eo + 4sky.Eoko. &3 — duky . Eoky &3 (318)

Now we show that all the poles in field theory of (3.18) can be matched with string
amplitude poles that appeared in (3.12). After omitting the common factors of both string
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and field theory we compare string amplitude with sub amplitude in field theory for various
cases of n,m. For n = m = 0, the amplitude (3.18) does carry the following factor

—7'1'2 —7'1'2
—4 boo) = 4 — + —— ) =72
(@0 + boo) < G + 1 ) T

where the corresponding term for the string amplitude carries (27%co) which is exactly
equivalent to the factor of 72 in field theory sub amplitude. At o’ order, (3.18) carries the
following coefficient

—(a10+ao1+b1o+bo1)(s+t) =0

where the corresponding term for the string amplitude is now proportional to 7r2(cl,0 +
co.1)(s+t) which is zero as appeared in the field theory sub amplitude. At (a/)? order, (3.18)
has the following numerical factor

71.4

3

71.4

3 (s2 + t2)

—4(@171 + bljl)st — 2(&072 +azo+ b2+ b270)[82 + t2] = (St) +
where the corresponding term for the string amplitude is now proportional to 72[c; 1(2st) +
(c2.0 + co2)(s? + t?)], which is exactly equivalent to the factor of field theory sub ampli-
tude. The comparisons at orders of (a’)3, (a/)* are also done in [35]. Hence, one can keep
comparing to all orders and show that indeed all singularities of (¢ + s + u) channels of
string amplitude can be precisely reconstructed by the above field theory sub amplitudes.

Before further analysis let us compare all order contact interactions on two different
pictures, start finding new coupling in the string theory effective action and also explore

its all order o’ corrections.

4 Comparison on contact interactions to all o’ orders

If we look at the whole S-matrix elements in two different pictures and apply momentum
conservation to the 1st term A; of (C71¢? A~ A%) we obtain the following elements

—232(—t — 5 — u) L1 €1iloaSavkac(—ksa — kaa — pa) Tr (P—H () MT****?)
= 23/2€1,6a€a0kc (ko) Tr (P—H () MpI"** ) (—t — s — u) Ly
which is exactly A; of (C~1¢p~1AYA%), where we have also used pge®-9r-1bcd — (0 more-
over without any further attempts, one reveals that the first term Ay of (C~1¢%A71A%) is

exactly the 1st term Ay of (C~1¢p~1A%A%) however, in below we show that there is some
other contact interaction that can just be found by (C~1¢?A~1 A% S-matrix.

5 Other contact interaction to all orders in o’

From the direct computations we observed the fact that at the level of contact interactions
there is an extra contact term inside the S-matrix of (C~'¢° A=t A%) that has been over-
looked from the direct calculations of (C~1¢~1A%A%) S-matrix. Indeed the 2nd contact
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interaction A; of (C~1¢Y A=1A%) is extra term that is not only needed into the entire am-
plitude but also cannot be derived from direct computations of (C~1¢=1A°A4% on upper
half plane.

Hence the following coupling is extra contact interaction to all orders in o/, which must
have been appeared in S-matrix because it stands correctly on the field theory side to all
orders as well. Thus let us first write it down

A2 181600 spk3ep T (P-H () MpT) (—t — s — u) Ly (5.1)

where we normalized the S-matrix by a coefficient of (27)'/2 .

Having taken the expansion of L; inside (5.1), we first produce the leading term of
string amplitude by the EFT coupling, in fact it can be produced by mixing Chern-Simons
coupling and Taylor expansion as follows
i(2ma)3

S3 = 5

fhp / dPtlo  Tr (61-0(1,_3) ANF A F@i) (5.2)

Therefore one can explore the next order to the above coupling, which is a’*. Indeed all
order o/ corrections to the above coupling can be discovered by applying the proper higher
derivative corrections on the above coupling and the coefficients can just be fixed by taking
the elements in the expansion of Li, so that all order corrections to above couplings are

/

n+1
(s+t+u)" " HGAA = (‘;) H(D,D*)"1(pAA),
(stY"HPAA = (&/)>™HDy, - - Dy, & - 9%m AJTm+1 ... 9%2m A
(s +t)"HPAA = (¢/)"HDq, -+ D, 20" - - 9" (AA),

()"t HpAA = (&)""™HD,, -+ D, Day -+ Dy, ®™ - - - 0% AD™ - .- 9" A,

Note that in above couplings, inside the covariant derivative terms the connections
or commutator terms do not appear and to get them, one needs to compute higher point
amplitudes like (CpAAA).

Therefore, we argue that for higher point function of string theory amplitudes, involv-
ing the mixed RR, a scalar and two gauge fields, there is a subtle issue as follows.

Indeed to be able to get to all the corrected and all order contact interactions as well
as singularities of the mixed string theory amplitudes, one should consider the scalar field
in zero picture as it has just been clarified in detail by the comparisons of (C~1¢°A~1AY)
with (C~1¢p~1A°A%) S-matrix.

It would be nice to generalize this idea to see what happens for the mixed amplitudes
of closed string RR, two scalar fields and one gauge field which we carry it out in the
next section.

It would be even nicer if we could do it on asymmetric picture of RR ,that is, find out
(C72¢0 A% A% to actually generalize the rules and symmetries of string theory, where we
leave it for the future works, although partial results for simpler systems, like for brane anti
brane have already been announced in [7]. Let us now generate all the other singularity
structures of (C~1¢°A~1 A% in the effective field theory.
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6 Other singularities of (C~1¢p°A~1A”)

Having produced some of the singularities and contact interactions, we are now ready to
derive some other singularities of (C~1¢?A~1A%) S-matrix. These singularities do exist
for this five point world-sheet S-matrix which includes a symmetric RR, a scalar field
in the zero picture and two gauge fields. In fact by direct calculations we have shown
that besides having some other contact interactions, even at pole levels the whole Ag and
Az of (C71¢PA=1AY) are also extra singularities that cannot be derived from the direct
computations of (C~1¢~1A°A%) S-matrix. Let us write them down as follows

Az ~ 27 2piey Tr (P_H () Myy™®) €24 (2K .€5)ut Ly
Ag ~ 2725t Lyp'€y Ty (P_H(mMpv”)(zkg.@&gb — 263.62ksp — 253.k252b) (6.1)

First we try to produce all these new s-channel poles of A7. By considering the desired
expansion, one gets all new s-channel poles (note that normalization constant is (27)'/2m,,)
of (C71¢?A~1A%) S-matrix as

oo

1
ppp-€182a2k1. &30P  Hyy g, Z ;bn(“ + )" T (A Ao 3) (6.2)

n=-—1

(2ma’)?
p!

In order to produce all these new massless s-channel scalars, one has to apply the following
field theory sub amplitude

A = Vi(Cp1, Ay, )G () VI (0, As, 61) (6.3)

where to follow the related vertices, the kinetic term of scalar fields MD“WDG@ has

to be taken into account, so that we obtain

V(¢ A, ¢1) = —2iky &(2ma’) Tp&] Tr (AsA1Ag) (6.4)
g 51 508
SNii 10949
(@ )O‘B (2ma)?Tys

Now one needs to re-consider the mixed Chern-Simons coupling and Taylor expended
of scalar field, where the extremely important point has to be pointed out as follows.
This turn, we take integration by parts and employ the momentum of external gauge field
directly to RR (p-1) form potential to be able to produce the necessary field strength of
RR whereas the total derivative terms are indeed zero at infinity, hence we find out the
following effective action

Sy = i(2ma )y / o (€")% %0 Hagwqpy  Tr (Aa, @) (6.5)

(p—1)!
Having set the above action, we obtain the following vertex in the effective field theory

ii(2ma’) 2y

Vé(cp—lyA%(ﬁ) =D (p)‘

(E’U)ao'“apHaO"'a‘pflgZQpTr (/\QAQ) (6.6)
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Note that Vﬁj (¢, As, ¢1) was derived from the kinetic term of the scalar field and it has
no correction, that is why to produce all the singularities we need to propose all the higher
derivative corrections to the new action of (6.5) as follows

1
Z b n—l—l /dp+1o_(p_ 1)!(6U)a0...ap

n=-—1

x0;Hag-ap_ Day - .- Dayyy Aa, D™ ... D" 1g"  (6.7)

now we are allowed to actually reveal all order vertex operator of Vi(Cp_l, Ag, @) as

- i(2mal)?
v;<cp17A27¢>=pzW<e”>% % Hayeeays €20, TF (A2Aa Z bt +u)"™ (6.8)

Replacing (6.8) and (6.4) to (6.3), we are then able to precisely regenerate all order

n=-—1

new s-channel singularities (6.2) in the field theory side too. Finally let us reconstruct all
new u-channel singularities.

Having replaced the desired expansion, we get all new u-channel poles (normalisation
constant is (27)!/2m,,) of string amplitude as follows

(271'0( )2 agp--ap—1b = 1 n+1
PG g, DT (s 1) (ks — 25 Eok — 26 k)

n=-—1

(6.9)
All these u-channel gauge poles are also produced by considering the following sub
amplitude in the field theory

A = VI(Cpo1, 61, A)GUL(A)VE(A, A, As) (6.10)

Here we consider the mixed Chern-Simons coupling and Taylor expended of scalar field,
and not only this time we take integration by parts but also we do apply the momentum
of external gauge field directly to RR potential to be able to produce the necessary field
strength of RR, keeping in mind the above remarks, we obtain the following vertex
i(2ma’)2u,

(p)!

where Vﬁb (A, Ay, A3) has no correction, so the only way of obtaining all the poles is to

Va(Cp1, 91, 4) = (€)1 Hog.a, 1 £2iTY (A1 Aa) (6.11)

actually impose all infinite higher derivative corrections to the mixed Chern-Simons Taylor
expansion of scalar field, so that now we can derive the generalization of above vertex to
all orders as

i(2mal)?
Vg(cp—l,QSl,A) ZPZW(gv)ao ap— 1aHaO ay 1511T1“ )\1)\ Z b t+8)n+1 (6 12)

Now by taking into account (6.12), the known Vﬁb (A, Ay, A3) and gauge field propa-

n=-—1

; ab
gator Ggf@(A) = % inside the sub amplitude (6.10) we are then able to precisely
reconstruct all order new u-channel singularities in the effective field theory side as well.
In the next section we further generalize our knowledge by dealing with the mixed RR
scalars/ gauge field S-matrices to see what happens to the S-matrix in the presence of two

scalar fields (in different pictures), a gauge field and a symmetric RR field strength.
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6.1 All order S-matrix of (C~1A%~1¢°)

In this section we would like to see what is going on for the mixed higher point function of a
symmetric RR, two transverse scalar fields (in two different pictures) and a gauge field. We
do the whole details to get to the entire S-matrix to all orders in o/ so the (C~1A%~1¢)
S-matrix is shown by

S 11
ALCTIA%TIN) /dx1da:2dx3dzd2<V,a(xo)(xl)Vé_l)(952>V¢50)(~T3)V1-(3R2’ 2)(Z75)>7 (6.13)

Further simplification can be done to get to the closed form of S-matrix as follows

ALCTIANT) /div1d$2dw3d£v4d$5 (P—H(n)Mp)aﬁgla€2i§3jx25l/4(x243725)71/2
X(Il + I +13—|-I4)T1" (Al/\g)\g), (614)
where x;; = z; — x5, v4 = 2,25 = Z, and also
I = <: 8Xa(l'1)ea/ik1'x(zl) . ea/ikg.X(:BQ) :an($3)ea’ik:3.X(:v3) :6i%/p.X(a:4) :ei%/p.D.X(:%) :>
x(: Salwa) : Splas) ¢ (wa) 1 ),
I, = < : aXa(xl)eo/ikl.X(xl) :6a/ik52.X(1‘2) : ea’ikg.X(:pg) : ei%lp.X(:m) : ei%/p.D.X(:v5) : >
X (1 Salxa) : Sp(xs) = ' (22) : &ikscp P (23)),
I3 = < : ea’ikl.X(zl) :ea’ikg.X(xg) :6Xj(x3)€a’ik3.X(:c3) : ei%p.X(m) :ei%’p.D.X(:cs) : >
x( : Sa(s) : Sglas) : &ikyp))®® (z1) : ' (22) ¢ ),
I = (:eX(@)  golihaX(@2) , ga'iks X (zs) . ei%p.X(u) : ei%p.D.X(u) )
><< : Sa(.’L'4) : Sﬁ($5) : O/Z‘klbwblﬁa({tl) : wz(l'g) : alikgcwcwj(wg) : ) (615)

If we work with all possible contractions, then one finds out the compact form of the

following fermionic correlation function as follows

Ié'cz'ab _ < . Sa(l'4) . Sﬁ($5) :¢b¢a(x1) i ¢"(.ﬁlf2) : ¢c¢j(x3)>

. Re Re
— {(FJ‘”“bCl)ag +a'r Relz14z3s] +a'ry Relzzawss] (6.16)
T13745 T23T45
Re|x14235 Re|za4735 _5/2 5/4 _ _
+0/27“3< [ ] [ ] 2 5/2564é (z14215230735) " (224205) /2,
T13%45 €T23T45

where
r = (_ pe(riac=1) 5 + naC(Fjibc—l)aﬁ>7
ry = (77” (retc _1)aﬂ),
ry = (n”cn"j(’vac"l)ag — 1’ (vbC’l)cw) (6.17)

Substituting the closed form of the correlators into the amplitude we now claim the final

answer for the S-matrix can be written down by

A<01A0¢1¢0>N/ d$1d.%‘2d33‘3d$4d.7}5(P,H(n)Mp)aﬁfflaggifgjxlgﬂ($24x25)_1/2 (6.18)

X <I§(a‘1’a§) + a‘fagi + aéafﬂ — a’lebkchécmb) Tr (A A2)3),
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where

|a’2k1.k2|x13|a’2k1 kl.p|x23|a’2k2.k3

k 04/2
I = |z R EAVESTT el

a/2 a/2 a/2
. 2. a2, D.
X|xoaxos| 2 " P|wgawss| 2 P |wys| T PP,
. T42 52 . T43 T53
ai’zzk%( + >—|—Zk§< + )
T14T12  T15T12 T14T13  T15T13
i T
al = zp7( >
34735
Jio__ jeiv—1 1,05 (~cov—1
o = {005 4 @050 as)

. e—3/2 1/4 - -
xa'iks.2 3/2:c4é (23435) " (wpq05) L/

Re[:c24x35] }
T23T45

ayt = a/ik1b2_3/2$}1é4(x24$25)_1/2($14$15)_1{(wac_l)aﬁ}a

I = (: Sa(@a) : Sp(ws) : ¥ (wa) ) = 2722 (wa405) 2(41 O g

It now becomes clear that the S-matrix of (6.18) is SL(2,R) invariant and after gauge
fixing over the position of open strings one needs to come over the integrals on upper half
complex plane on the location of RR. By evaluating those integrals one eventually writes
down the complete form of the S-matrix to all orders as follows

ALCTIASTI) — Ay Ay + Az + Ay + As + As (6.19)

where
Ar ~ 271281, 60,€5;p  Tr (P_H () Myy') | — 2k (ut) + 2k (us)| Lo
Az ~ 2_1/2k3c{ — 2ky.&1€2i€35 (us) LaTr (P H (;,) M,T7)

+2k3.£160:€35 (ut) Ly Tr (P_H () M)

+4t62.§3ks.E1 L1 Tr (P H () Myyy©) — 4882.§3k2.&1 L1 Tr (P—Iﬂ(n)Mp’YC)}
Ag ~ 272k 10664 (—u — 5 — )L (Tr (P H oy MpD™ )7 — s T (P H () M,T7%) )
Ay ~ 2_1/2(ut)L2{ — 5€1aaisy Tr (P H () M,T7™)

—2k3.E1k1p€2i€3; Tr (P-H () Mpl—‘jib)}
Ay ~ 2Y2(st) Lo&s &3 1ak1pkse Tr (P_H () M,T)

Ag ~ 212656 (tsﬁ (P_H () Myy®)E1a + 2th3. & T (P,H(n)Mpyb)k:uJ L (6.20)

where the functions Lj, Ly are given in (2.13).
On the other hand if we actually consider both scalar fields in zero picture in the
presence of a symmetric RR, then we get the whole S-matrix as

o 11
ACTHATI060) /d:c1d1:2d333dzdz (V;(;l)(561)V<z50)(332)V¢(0)(333)V152RT 2)(2’2»’
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Having done all integrals, one could find the final answer ( for further details, look
at [9]) for the entire S-matrix of a symmetric RR with both transverse scalars in zero
picture and a gauge field as follows

ACTIATIO) — A 4 Mg+ A+ As+ As + Ag + A7+ As + Ag + Al (6.21)
where
Ar ~ 271281603 [k3c/€2bT1“ (P_H () M) — kogyp? Tr (P_H () M ™)
s T (P H o MyI9) + p'pI T (P H ) Myy™) | 4(=s — £ = w) Ly,
Ay ~ 2712 = 261 Fipkia€ay€aiTr (P oy MpTI) } () Lo
Ay ~ 2712 €001 T (P H () MyTT™) | (—ust) Lo
Ay ~ 2_1/2{2k3-€1k2b€3j€2iTr (P_H () Mprﬁb)}(uﬂb
As ~ 272 96 &k Te (P H () MpT) } (s1) Lo
Ag ~ 21/2(US)L2{p]fl-k252i53jTr (P*H(n)Mp’Vi)}
Ap ~ —2_1/2(ut)L2{2k3.§1pi§3j§2iTr (P_H(H)Mpfyj)}
{21k e (P My) (—562.63) |
Ay ~ 2213 {2hg 0k Tr (P (M) (~t62.63) |
A ~ 21/2L1{§1aT1" (P-H () p’Ya)(tsfs-&)} (6.22)

As ~ 2Y21,

where the functions L, Ly are already appeared in (2.13).

It is worth highlighting the point that, this S-matrix also satisfies Ward identity, that
is, by substituting &1, — k14, the entire amplitude vanishes and the amplitude holds
for various p,n cases. Let us do the comparisons (C~'A%1¢%) with (C~1A~1¢%¢%) S
matrix at both level of singularity structures and contact interactions, find out various new
couplings and in particular find out their corrections and eventually get to the conclusion.

7 Comparison on singularity structure of (C 'A% '¢°) with
(CTTA™1¢°90)
In this section we are going to compare all the singularities of (C~'A%1¢") with
(C7TA7L$0¢Y) S-matrix. The first term Ag of (C71A%~1¢0) is exactly equivalent to
Aqo of (C7LATI¢0¢Y), likewise the last term A of (C71A% " 1¢%) is the same as Ag of
(C71A190¢%) S-matrix.
Now if we add the second term Ag of (C71A%~1¢%) with the third term As of

(C71 A%~ 1¢Y) and make use of momentum conservation along the world volume of branes,
we obtain

212 L1 (2ths.&1)&2.&3Tr (P H () Myy") (—kay, — po)

— 20 —



Now by applying the following equation pye®®-1% = 0, we then realize the fact that
the first term in above equation precisely produces the Ag term of (C~tA=1¢0¢Y).
Meanwhile A5 of (C71A% 1¢") can be written down as

272 (st) Lo&1a&a-E3kseTr (P—H () MpT ) (— kg, — Koy, — py)

where the first term has no contribution to S-matrix. Because of the antisymmetric prop-
erty of € and the fact that it is symmetric with respect to ks so the result for the first
term is zero. More evidently the third term in above equation has no contribution because
ppe®0p=3¢ab — () and the second term precisely produces As of (C~1A™1¢0¢Y).

The same so happens to the other terms, namely if we add the 2nd terms of A5 and
Ay of (C71 A%~ 1¢%) and apply the momentum conservation, then we are able to precisely
produce Ay of (C~'A~1¢%¢") which is related to all s-channel poles.

Indeed without any further details the first term Ag of (C71A%~1¢%) is exactly As
term of (C~1A71¢Y¢") so that all t-channel poles are then reproduced in both pictures.
By considering the 2nd term A; of (C~1A% ~1¢?) we are then able to generate Ag term
of (C~1A=1¢%¢Y).

Finally to be able to produce all the second kind of s-channel poles one has to subtract
the first term of A; of (C71A%~1¢Y) from A; term of (C~1A71¢%¢") such that upon
considering the following identity

f2§3j€a°"'ap(*PjHéo...ap +Pngo...ap) =0

we believe that the first term of A; of (C~1A% 1¢°) is exactly the same A7 term of
(C1A-1g0g%).

Henceforth, we could precisely produce all the singularities of this five point function
in two different pictures. However, note that we have some extra contact interactions in
(C7TA71¢0¢Y) amplitude while they are absent in (C~1A%~1¢%) S-matrix. These extra
contact interactions are needed by symmetries of string theory amplitudes as we point
out/hint them in a moment.

For the completeness we first would like to produce all the singularities. This amplitude
has u-channel gauge poles that can be read off from the string amplitude as follows

1 ag--ap—1a = o m n
/,Lp(271'a/)22]{;2ak3ap71fg.fgme Y & PN S Zl bn(2> (s+1) +1
(7.1)
where these u-channel poles should be produced by the following sub amplitude in the

effective field theory
A = Vi(Cp-s, A1, A)Gi(A)VS (A, 62, 3), (7.2)

Considering the kinetic terms of scalars i7T), (27? 0y (D*¢'D, ;) and gauge fields we

obtain the following vertices
VE(A, ¢2,¢3) = iNTpéa.E3(ka — k3)"Tr (A2As\g)

—i 0%,

ab _
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The kinetic terms have no corrections so we need to apply all higher derivative correc-
tions to Chern-Simons couplings as follows

Se = i(2ma’)? / o N by(a)" Clyig) A Dagea, F ADOTE(7.4)

n=-—1

Now if one considers Sg, then one is able to obtain the following vertex operator to all
orders in o/ as follows
)\Qﬂp

Vi(Cp3,A1,A) = »=2) (e)r0ar—re (P~ Jao-ap—3&1ay_2Ka, 1

XTr (A1 Aa) i bo('ky k)" (7.5)

n=-—1

Replacing above vertices (7.5) and (7.3) into (7.2), we are then able to exactly produce
all u-channel gauge poles in the field theory side.

On the other hand, if we employ all order o’ SYM couplings as appeared in (3.15),
and also apply a following sub amplitude of field theory

A= V;(Cp_h A)GZ%(A)VBI](A7 A17 ¢27 ¢3)

then we will be able to produce all (¢ + s 4+ u) gauge field poles. Note that this task has
been completely done in section four of [9] and in order to avoid rewriting the old contents
of the paper, we refer the interested reader to that section four of [9)].

Let us reconstruct all t-channel poles and finally by interchanging 1 <+ 2 for all the
momenta, the polarisations and t to s, we are able to produce all s-channel poles as well.
All the t-channel poles of the string amplitude are given by

16&2;E35ko.&17° 1y
t(p+1)!

0o
{2pj6ao...apHLilomap _ 2(]9 4 1)k3a€aou-ap_1aHCiL]('Jmap_l} Z bn(o/kg.k)”
n=-—1

(7.6)
These t-channel poles can be regenerated in the field theory side, and to do so one needs
to take into account the following sub amplitude and vertices in the field theory as

A= Voi(cp+1a ¢3a ¢)G2ﬂ(¢)vfg(¢a Ala ¢2)
V6, A1, o) = —2i(2m0/)° Tk &1 Tr (A Aag)

—1 51’]'50[5

GZ{B(gﬁ) - (2ma!)?T, t

Consider the Taylor expansion of the two scalar fields as

2ma’)? 1 o
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and then work out with pull-back and both mixing term involving Taylor and pull-back
as follows

2 2 1 . .
5y = 2T )t / T [p(p+ 1) Tr (Dgy® Dy, ®7) C0FV

9 ijaz--ap

+2(p+ 1)Tr (87 D,,d%) 0,671 | (7.8)

1ay---ap

where one needs to also add the following Myers terms

€0 Tt (F, [®7, ®7]) C2FY (7.9)

ijag-ap”

7
So = — (27 2 /dp+1
9 4( 71—0‘) Hp U(p_1)|

with Sg and take all the integrations by parts to actually get to the following action

(2ma’)?
2

1 .
— +1 ap--a i (p+2)
SlO - Mp/dp UWG 0T {(p—l— 1)TI‘ (Daocbj(b ) Hija1-~-ap:|

Eventually in order to produce the first t-channel pole, one must consider the summa-
tion of the Taylor expansion and Sig as follows

pp(2ma)? aoa i +2 i +2
m Al |\ Ty (©107 )0 HEY) 4 (p+1)Tr (Day @) HEF? | (7.10)

From (7.10) we now look for the vertex of V(Cpi1, d3, ¢) as follows

B Mp(27ro/)2

Vi(Cpi, 3, 0) = T Tr (Agha )€ P {pffngéo...a,,+(p+1)H2{...apk3a0§3j] (7.11)

However, to produce all the other t-channel poles, one needs to apply all order higher
derivative corrections to (7.10) as below

/,Lp(Qﬂ’O/)2 p+1 an--a - nn _7 ay...an FH ) (p+2)
Sprr ) T 3 ) [T (Do, @D YO HT,
_|_(p 4 1)TI‘ (DaoDal...an(DjDal"'an(I)i) HZ(;)(;E?')'ap] (712)

to indeed obtain the following vertex to all orders in o’ as follows

- 2ma’)? e > "
Va(Cpt1,¢3,9) = mﬂ(&)\a)ﬁao P> ba(ksk)

n=-—1

X [pfgsjﬂéo...a,, +(p+ 1>Hz;{...a,,k3aofgj} (7.13)

Now if we replace (7.13) inside (7.7) then we are exactly able to regenerate all order t-
channel singularities in the field theory side as well.

Note that all of the new couplings that we have discovered, can just be derived with
scattering computations not by any duality transformation. Because the coefficients of
these couplings can just be fixed without any ambiguity by S-matrix analysis. We now
turn to contact interaction terms.

— 23 —



8 Comparison on contact interactions

If we look at the precise computations of the S-matrices in two different pictures, we then
realize the fact that the first term Ay of (C71A%~1¢") is exactly the term that has been
shown up in Az of (C~1A=1¢0¢).

As we can readily observe, we have just left with two contact terms in As of
(C71A%~1¢") while in A; of (C71A71¢%¢") we do have four different terms, so let us
keep comparing.

Now if we apply the momentum conservation to the 2nd term Az of (C~1A%~1¢%)
and apply the Bianchi equation that we have already got, that is, pye®0®-3¢ = () then
we are able to precisely produce the first term A; of (C~1A1¢Y¢0).

Eventually we apply momentum conservation to the only remaining term of
(C71AY%~1¢Y) which is its first A3 term and do subtract it from the second and third
terms A; of (C71A71¢Y%¢°) such that upon holding the following equation, we are able to
generate the second and third term A; of (C~1A71¢%°).

52i§3j§1ak3b€a°"'ap’2ab(PjHéo...ap,g —Pngo...ap,z) =0

Once more ppe®@-2% — () whereas up to a sign the third term A; of (C~TA™1¢%¢%)
is also produced.

However, note to the important point that there is no chance to actually produce even
the leading order o/ of the fourth contact interaction A; of (C~1A71¢%°). The reason
is that, there is no left over term inside (C~1A%~!1¢") S-matrix to be compared with
that fourth term A; of (C71A71¢%¢%) S-matrix. Therefore, let us further elaborate on the
needed contact interactions of this string amplitude.

9 The needed contact interaction for (C~1¢p~1¢°A°)

As we have seen above, we were able to produce all the first three contact terms A; of
(C7TA71¢0¢Y) to all orders, however, we have evidently observed that indeed there is
no chance to produce the fourth term contact interaction A; of (C~tA~1¢%¢") by direct
computations of (C~1A%~1¢0).

In fact we claim that this extra contact interaction must be appeared in the entire
S-matrix as it plays the crucial role in all order o/ contact interaction terms in both type
ITA and IIB super string theory. Let us first write it down and then we try to construct
its all order o’ higher derivative couplings.

Hence we figure out the following term inside (C~'A~1¢%¢°) S-matrix

—Am 2 pp€10€0iap' P Tr (P () Mypn®) (—t — s —u) Ly (9.1)

is indeed needed. We normalized the S-matrix by a coefficient of (27)'/2y, and considered
the expansion of Ly (with the aforementioned coefficients) given in (2.14). Thus the first
leading term of L; can be produced by Chern-Simons coupling and Taylor expanded of
both scalar fields through closed string RR as follows

i(2ma’)?

s = 00, / o Te (9,00, 1) A FOIDT) 92)
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Therefore one explores the next order term which is o’ and indeed all order ' cor-
rections to the above coupling with exact coefficients can be discovered by applying the
proper higher derivative corrections. For example the (st)™H A¢p¢p and (s +t)"H Ap¢p con-
tact terms of the S-matrix (inside the expansion of L;) can be shown to be matched to all
orders by the following couplings

(s + t)"HADD = (o/)"HOy, - - - Dy, AD™ - - - D (DD),
(st)"HADD = (/)*™HOy, - - - Ouy, AD™ - -- DmPDm+1 ... D2m P

Note that the first correction to the above coupling (9.2) and the other new coupling
n (5.2) is of o order.

It is also worth keeping in mind the fact that by expanding the string amplitude of
(C7TA710¢Y) | we could also explore new couplings at leading order as follows.

Let us write down the explicit form of the string amplitude, indeed if we extract the
related trace, consider the expansion of stLs inside Ajs of (C~1A~1¢%¢") S-matrix, we then
obtain the following elements of string amplitude

16
—2¢3.Eakapkscl1am iy (p_2)!€a° P3P
o0
(Z by < (t+s) "+1> + > ep,n,mup(st)n(sﬁ)m) (9.3)
n=-—1 p,n,m=0

where we have already produced all the u-channel poles, now to obtain the new cou-
plings, we need to focus on the second term in (9.3) as

o0

16
—263.£2k2bkgc€1aﬂ'zﬂpmﬁao “p— SCbaHao “ap—3 Z €p7n7mup(st)n(3+t)m (94)

p,n,m=0

where (9.4) satisfies the Ward identity associated to the gauge field, which means that by
replacing &1, to k14, apply the momentum conservation and taking the following identity
for RR

a0 ap— 3chba -0

pe

the amplitude vanishes. Thus we understand that (9.4) has to be reconstructed by new
coupling and the structure of this new coupling is shown by

/ o Tr(Cp3 AF A D@ A D) (9.5)
)

p+1

Note that (9.5) is considered by the fact that it has to cover up the whole world
volume space and more crucially it has to be antisymmetric with respect to interchanging
the momenta of both scalar fields. We now apply e g, 0 = & and ego1 = —2 to (9.4) to be
able to start constructing new couplings at order of a/3.

— 25 —



Indeed if we replace eq,0,0 = %2 to (9.4) and consider the above remarks, then one can
show that, this term of S-matrix can be generated by the following new coupling as follows

§1p = 2TV Hpm [ (1)’ — <a>

12 p—3 2
xCED Ty (Fapfsapfz(D“Da) [DapflgbiDap ¢D (9.6)
Notice that, if we do the same for eg o1 = %2, namely if we replace eg 1 = %2 into (9.4)

then one gets to know that, this particular term of S-matrix can be obtained by the following
new coupling

N3
Sy — W / @1 (o)) Te (Cpy ADUF A Dy [D& ADH])  (9.7)

where these couplings are of o/® order.

Hence the above couplings (9.2), more crucially (9.6) and (9.7) are needed in order to
consider the symmetries of the S-matrix with respect to interchanging of the scalar fields.
We can also investigate the closed form of the corrections to all orders in o’. So to produce
the whole (9.4), one applies the proper higher derivative corrections to (9.5) so that the
closed form of the string corrections can be found as follows

)\3,u 1 ontm [ P
/4 -+ /
Sy = 5 /dp o E Ep,n,m (Oz ) <2 )

p:nvaO

T (Cp_g A Db ... Dbm DAL Doz o A (9.8)

(DaDa)prl .. Dbm [Dm . DanD¢i A Dan+1 - DagnD¢i])

Note that these new couplings of (9.6), (9.7) and (9.8) can not be derived by the
standard effective field theory ways of Taylor, Myers terms nor by pull-back formalism.
Indeed not only the structure of the above new couplings but also their coefficients can
just be explored by this S-matrix analysis.

Note that there is no Ward identity for the amplitudes of scalar fields in the presence
of RR, thus we argue that for two scalars and a gauge field in the presence of RR, there
is a subtle issue. Indeed to be able to get to the corrected all order contact interactions of
higher point functions of string theory amplitudes, one needs to consider both scalar fields
in zero picture as we have clarified in detail in the above S-matrix.

It would be nice to generalize this conjecture to even number of scalars in the presence
of a closed string RR or even it would be nicer to check it for the non-BPS amplitudes
where the first non-trivial amplitude to be carried out is (C~!T%¢~1¢") to be compared
with (C~1T=1¢%¢°) S-matrix. It would be even more significant if we could carry out these
S-matrices on asymmetric picture of RR ((C~2T9¢°¢°)). It is more crucial to actually
deal with the higher point mixed RR- scalar field massless strings to actually generalize
the rules and symmetries of string theory amplitudes. We hope to answer these higher
point functions of string amplitudes and the other issues in future works. Although an
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interesting proposal for picture changing operator has been appeared in [55], however, we
find it complicated to be applied to the real string amplitudes, nevertheless, it would be
great to find the deep connections behind those topics as well.

10 Conclusion

In this paper, we have evaluated the five point world-sheet string theory amplitudes of
the mixed RR, scalar and gauge fields, namely we have carried out with entire details the
whole (C71pVA7TAY) (C71p=1 AP A% (C71 A%~ 1¢0) and (C~1A71¢04") S-matrices.

We have regenerated all ¢, s, u, (t + s + u)- channel poles in effective field theory. We
also found out new contact interactions as well as some new singularities that appear
in(C~1¢? A=t A%) S-matrix where those new terms were actually the terms that carry mo-
mentum of RR in transverse direction and involved p.£ terms inside the S-matrix elements.
These p.£ terms are needed in the entire form of S-matrix , due to non zero correlation
function of RR field by the first term of scalar field vertex operator in zero picture. Indeed
all (e*(2)9;2% (1)) terms are non-zero so we have reconstructed the S-matrices such that
by considering all the scalar fields in zero pictures in the presence of RR, we were able to
produce all p.£ terms as well as p’, p/ terms ( inside the S-matrices) whose momenta of RR
are carried in transverse directions.

By comparing (C~1¢? A1 A%) with (C~1¢~1 AY A) S-matrix we found a coupling inside
the (C~1¢°A~1 A%) S-matrix as follows

i(2ma’)3

S3 = 2up/dp+1(7 Tl“(az'C(p_g) /\F/\F(I)i)

where this coupling can be explained by the effective field theory ways as, the mixed Chern-
Simons and Taylor expansion of scalar field was needed. We then generalized its all order
higher derivative corrections. We produced all the new singularities of this S-matrix in
section six of this paper as well.

We also compared (C~1 A%~ 1¢%) with (C~1A~1¢%°) S-matrix for all order o’ contact
interactions as well as singularities in both transverse and world volume directions of the
S-matrices and that leads to finding out various new couplings in string theory effective
actions. First we found the following coupling

: "3
S = Z(%T;)/Lp/dp+10' Tr (8]‘81‘0(1,,1) A F(I)i(l)j)
and claimed that this coupling can be verified just by (C~tA~1¢°¢") S-matrix where from
field theory we employed the Taylor expansion of scalar fields and then we generalized its
all order corrections.

Basically, we claim that various new contact interactions appear in the S-matrix by

considering both scalar fields in zero picture. Indeed we derived the following new couplings

(2ma ) ppm / 1 a, O
S — dp+1 vyap-ap [ =
12 12 o) 2

y C(gzgjfjl)p%Tr ( Fay_sa,_»(D"Dy) [Dap,l ¢' D, ¢z} )
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as well as
(2ma’)? pp +1 / b i
Si3 = G/dp J(Q)Tr(cp_g/\DlF/\Dbl[D(ﬁ /\D¢7z})

These couplings are needed in order to consider the symmetries of the S-matrix with
respect to interchanging of the scalar fields and their all order o' corrections generalized
in (9.8).

Note that these two above couplings can not be derived by the standard effective
field theory ways of Taylor, Myers terms nor by pull-back formalism. Indeed not only the
structures of the above new couplings but also their coefficients can just be explored by
(C7TA71¢0¢%) S-matrix analysis and not by any other tools.

Note that there is no Ward identity for the amplitudes of scalar fields in the presence
of RR, thus we argue that for two scalars and a gauge field in the presence of RR, there
was a subtle issue. Indeed to be able to get to new couplings as well as the corrected
all order contact interactions of higher point functions of string theory amplitudes, one
needs to consider both scalar fields in zero picture as we have clarified in detail in this
paper. Eventually we have made use of Myers terms and the terms whose RR momenta
are embedded in transverse directions, to be able to derive all the singularity structures of
an RR, two scalars and a gauge field amplitude.
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