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1 Introduction

Supersymmetry — apart from being phenomenologically appealing for physics beyond the

standard model — is a powerful symmetry which constraints the dynamics of gauge theo-

ries. Investigations of supersymmetric gauge theories have yielded important physical (and

mathematical) insights and serve as calculable models for the rich dynamics of four dimen-

sional gauge theories. For instance, the exact low energy effective action of N = 2 super

Yang-Mills constructed by Seiberg and Witten [1] provides an elegant physical realization

of quark confinement in terms of the dual Meissner effect, via the condensation of magnetic

monopoles.

The correlation functions of gauge invariant operators in supersymmetric gauge the-

ories — despite enjoying more controlled dynamics in comparison to QCD — are highly

non-trivial to calculate. Even for supersymmetric observables, which preserve some of the

symmetries of the theory, generic correlation functions have perturbative corrections to ar-

bitrary loop order as well as non-perturbative instanton corrections. Only in the past few

years, exact calculations for the correlation functions of some supersymmetric operators

started to be available. An important early step in this recent development was the calcu-

lation of the exact partition function of physical N = 2 gauge theories on S4 and of the

expectation value of supersymmetric Wilson loop operators in these theories [2]. Likewise,

the computation of certain supersymmetric domain walls in N = 2 gauge theories on S4

— such as Janus and duality walls — were presented in [3] (see also [4]).

Some of the most basic observables of four dimensional gauge theories are loop oper-

ators. These operators can be classified according to whether the loop operator is electric

or magnetic, giving rise to Wilson and ’t Hooft operators respectively. Gauge theory loop

operators — which are supported on curves in spacetime — are order parameters for the

phases that a gauge theory can exhibit, and serve as probes of the quantum dynamics of

gauge theories. Loop operators are also the most basic observables on which S-duality is

conjectured to act in supersymmetric gauge theories (or certain nonsupersymmetric lattice

models), and therefore are ideal probes of this remarkable symmetry exhibited by some

supersymmetric gauge theories and M-theory. Calculating these observables exactly allows

for a quantitative study of S-duality and serves as a theoretical playground for gaining a

deeper understanding of the inner workings of dualities.

In this paper we evaluate the exact path integral which computes the expectation

value of supersymmetric ’t Hooft loop operators in an arbitrary N = 2 supersymmetric

gauge theory on S4 admitting a Lagrangian description. The expectation value of ’t Hooft

loop operators — originally introduced [5] to probe the phase structure of gauge theories

— are calculated by explicit evaluation of the path integral using localization [6]. In the

localization framework, the path integral is one-loop exact with respect to an effective ~-

parameter, but nevertheless the computation yields the exact result with respect to the

gauge theory coupling constant of the theory. Our analysis of ’t Hooft loops together with

the results of [2] for Wilson loops, provide a suite of complete, exact calculations of the

most elementary loop operators in supersymmetric gauge theories.

– 1 –
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Figure 1. Instanton, monopole and anti-instanton field configurations

We find that for an N = 2 gauge theory in S4, the expectation value of a supersym-

metric ’t Hooft operator carrying magnetic charge labeled by a coweight1 B of the gauge

group G takes the form

〈T (B)〉N=2 =

∫

da
∑

v

Znorth(v)Zsouth(v)Zequator(B, v)

=

∫

da
∑

v

|Znorth(v)|2 Zequator(B, v) .

(1.1)

The integral is over the Cartan subalgebra of the gauge group. The coweight B of G can

be identified with the highest weight for a representation of the Langlands (or GNO [7])

dual group LG.2 The sum is then over the coweights v of G such that their corresponding

weights of LG appear in the representation specified by B.

The path integral in the localization computation receives contributions which localize

to the north and south poles of S4 as well as to the equator, where the ’t Hooft operator is

supported. Each factor has an elegant interpretation as arising from specific field config-

urations in the effective path integral arising in the localization computation. The magic

of localization is that it restricts the integral over the space of all field configurations to

the submanifold of field configurations invariant under a fermionic symmetry Q, which also

preserves the supersymmetric ’t Hooft operator. These field configurations are solutions

to the localization saddle point equations. Integrating out the fluctuations around each of

the saddle points and summing over them in the path integral yield the exact result for

the expectation value of the ’t Hooft loop operator.

The north pole factor captures the effects of point-like instantons while the south pole

one incorporates the contributions of point-like anti-instantons. These configurations are

the solutions to the localization saddle point equations at the north and south poles of S4,

given by F+ = 0 and F− = 0 respectively. The result of summing over these saddle points

can be written in terms of Nekrasov’s instanton partition function [8] of the corresponding

1We recall that a coweight, denoted as B here, is an element of the Cartan subalgebra t of G such that

the product α ·B is an integer for all roots α ∈ t
∗ of G.

2The Cartan subalgebra L
t of LG can be identified with the dual t∗ of the Cartan subalgebra of G and

vice versa: Lt ≃ t
∗, Lt∗ ≃ t.
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N = 2 theory in R
4 (more precisely in the Ω-background), with arguments depending on

the effective magnetic charge v

Znorth(v) =Zcl

(

ia− v

2r
, q
)

Z1-loop,pole

(

ia− v

2r
, imf

)

Zinst

(

ia− v

2r
,
1

r
+ imf ,

1

r
,
1

r
, q

)

Zsouth(v) =Zcl

(

ia+
v

2r
, q
)

Z1-loop,pole

(

ia+
v

2r
, imf

)

Zinst

(

ia+
v

2r
,
1

r
+ imf ,

1

r
,
1

r
, q

)

,

(1.2)

with Zcl, Z1-loop,pole and Zinst given in (4.10), (6.32), (5.2). The parameters mf are the

masses of the hypermultiplets in the N = 2 gauge theory, r is the radius of S4 and

q = exp(2πiτ), where τ is the gauge theory coupling constant3

τ =
θ

2π
+

4πi

g2
.

A crucial new contribution to the ’t Hooft loop expectation value arises from the

equator of S4, where the localization saddle point equations are the Bogomolny equations

DΦ = ∗F . Zequator(B, v) captures the contribution to the path integral of field config-

urations which are solutions to the Bogomolny equations in the presence of a singular

monopole background labeled by the magnetic charge B, created by the ’t Hooft loop op-

erator insertion. The sum over v in (1.1) appears due to the physics of monopole screening,

whereby smooth non-abelian monopole field configurations screen the charge B of the sin-

gular mononopole down to an effective magnetic charge v. In the path integral we must

sum over all possible effective magnetic charges labeled by coweights v, which are attain-

able given a singular monopole of magnetic charge B.4 The LG-weights corresponding to

v precisely span the weights of the representation of LG for which B corresponds to the

highest weight.5 The equatorial contribution is

Zequator(B, v) = Z1-loop,eq(ia, imf , v)Zmono(ia, imf ;B, v) , (1.3)

where Z1-loop,eq is given in (6.61) and Zmono in section 7. Combining all the various contri-

butions produces the exact expectation value for the supersymmetric ’t Hooft loop operator

in N = 2 gauge theories on S4.

Our gauge theory computations are in elegant agreement with the conjectures and

calculations in [10–12] for ’t Hooft operators in certain N = 2 gauge theories using topo-

logical defect operators in two dimensional nonrational conformal field theory. In these

papers, gauge theory loop operators in N = 2 gauge theories were identified with loop op-

erators (topological webs more generically) in two dimensional Liouville/Toda conformal

field theory, and some correlation functions were explicitly calculated. The Liouville/Toda

conformal field theory computations are shown to capture in detail all the features of our

gauge theory computation, thereby establishing the proposal put forward in [10–12].

3For a semi-simple gauge group there is a coupling constant for each simple factor.
4The necessity to sum over such configurations was conjectured in [9], where the perturbative analysis

of the expectation value of ’t Hooft operators in N = 4 super Yang-Mills was performed.
5We recall that regular monopoles are labeled by coroots, which when acting on the singular monopole,

labeled by a coweight B, generate all coweights associated to B.
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The localization calculation performed in this paper is the first example of an exact

computation of a path integral in the presence of a genuine singularity due to a disorder

operator — an operator characterized by the singularities induced on the fields — and of

which a ’t Hooft operator is a prime example.6 In order to treat precisely the fluctua-

tions around the singular field configuration, we employ the mathematical correspondence

between singular monopoles in three dimensions and U(1)-invariant instantons in four di-

mensions [14]. This turns out to be a particularly clean way to carry out the relevant index

calculations.

The plan of the rest of the paper is as follows. Section 2 briefly introduces the key

ingredients that will be needed to perform the localization computation of ’t Hooft oper-

ators in N = 2 gauge theories on S4. In section 3 we derive the localization saddle point

equations relevant for the localization computation, demonstrate that these equations in-

terpolate between the anti-self-duality, self-duality and Bogomolny equations at the north

pole, south pole and equator respectively, and find the most general non-singular solution

to these equations. This section also describes the singular field configuration produced

by the supersymmetric ’t Hooft operator as well as the symmetries of the theory used to

carry out the localization computation. Section 4 contains the calculation of the classical

contribution of the ’t Hooft loop path integral, which includes a discussion of the relevant

boundary terms. In this section we demonstrate that the classical result can be factored

into a contribution arising from the north pole and one from the south pole. Section 5

computes the contribution due to the singular solutions to the saddle point equations aris-

ing at the north and south poles, described by pointlike instantons and anti-instantons. In

section 6 we calculate the localization one-loop determinants arising from the north and

south poles of S4 as well as from the equator. Section 7 describes the effect of monopole

screening in the study of the equatorial Bogomolny equations and explains how to calculate

the contribution to the ’t Hooft loop expectation value due to screening. In section 8 we

compare our gauge theory results with the Liouville/Toda computations conjectured to

capture ’t Hooft operators in certain N = 2 gauge theores. We finish with conclusions in

section 9. The appendices contain some technical details and computations

2 N = 2 Gauge theories in S4 and localization

In this section we introduce the main ingredients of the localization analysis in [2] that we

require to calculate the exact expectation value of supersymmetric ’t Hooft operators in

an arbitrary four dimensional N = 2 gauge theory on S4 admitting a Lagrangian descrip-

tion.7 Such a theory is completely characterized by the choice of a gauge group G and of a

representation R of G under which the N = 2 hypermultiplet transforms, the N = 2 vec-

tormultiplet transforming in the adjoint representation of G. This includes gauge theories

6A monopole operator in three dimensions is a closely related disorder operator. The work [13] performed

localization computations for monopole operators in three dimensions to compute the supersymmetry index

via radial quantization, thus removing the singularity by a coordinate change. In this paper we deal with

the monopole singularity more directly.
7Localization of some N = 2 gauge theories was also considered in [15].
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with several gauge group factors and multiple matter representations by letting G be the

product of several gauge groups and by taking R to be a reducible representation of G. It

therefore applies to any gauge theory with a Lagrangian description.

The on-shell field content of the N = 2 multiplets is given by

vectormultiplet : (Aµ,Φ0,Φ9,Ψ)

hypermultiplet : (q, q̃†, χ) .

In this notation, the usual complex scalar field of the N = 2 vectormultiplet is constructed

out of the real fields Φ0 and Φ9. One complication in the construction of the N = 2

Lagrangian in S4 overcome in [2] was to turn on in a supersymmetric way mass parameters

for the flavour symmetries associated to the hypermultiplet. These N = 2 gauge theories

on S4 are invariant under the superalgebra OSp(2|4), where Sp(4) ≃ SO(5) is the isometry

group on S4 and SO(2)R is a subgroup of the SU(2) R-symmetry of the corresponding

N = 2 gauge theory in flat spacetime.

The key idea behind localization [6] exploits that the path integral — possibly enriched

with any observables invariant under the action of a supercharge Q — is unchanged upon

deforming the supersymmetric Lagrangian of the theory by a Q-exact term

L → L+ tQ · V . (2.1)

The restriction on the choice of V is such that if Q2 generates a symmetry and a gauge

transformation, as will be the case in our analysis, then V must be gauge invariant and

also invariant under the action of the symmetry. Also we require the path integral to

be still convergent after the deformation, and that the contribution from the boundary

in the space of fields vanishes. In order to localize the gauge fixed path integral, the

supersymmetry generated by Q must be realized off-shell, and a gauge fixing procedure

must be implemented. This was accomplished in [2] by introducing suitable auxiliary fields

and a ghost multiplet, which plays a key role in precisely determining the measure of

integration of the fluctuations.

Since the path integral is independent of t, we can study it in the t → ∞ limit.

In this limit the saddle points of the path integral are the solutions to the localization

equations, which are the saddle points of the deformed action Q · V . In this limit, the

path integral becomes one-loop exact with respect to the effective ~ = 1/t parameter

and can be evaluated by summing over all saddle points. Therefore, it can be calculated

by evaluating the original Lagrangian L on the saddle points and by integrating out the

quadratic fluctuations of all the fields in the Lagrangian deformation Q·V expanded around

the solutions to the saddle point equations.8 Of course, even though the path integral is

one-loop exact with respect to t, it yields results to all orders in perturbation theory with

respect to the original gauge coupling constant τ of the theory. This underlies the power

of localization. In favorable situations, for a judicious choice of V , the deformation freezes

out most of the fields that must be integrated over in the path integral, thus yielding a

path integral for a reduced model, with fewer degrees of freedom.

8The original Lagrangian L is irrelevant for the localization one-loop analysis.

– 5 –
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In the analysis in [2], as well as in our analysis, it suffices to single out a single

supersymmetry generator Q of the OSp(2|4) symmetry algebra present in any N = 2

gauge theory on S4. This supercharge generates an SU(1|1) subalgebra of OSp(2|4), given
explicitly by

Q2 = J +R , [J +R,Q] = 0 . (2.2)

J is the generator of a U(1)J subgroup of the SO(5) isometry group of the S4 while R is

the SO(2)R ≃ U(1)R symmetry generator in OSp(2|4). If we represent the S4 of radius r

by the embedding equation

X2
1 + . . .+X2

5 = r2 , (2.3)

then J acts as follows

X1 + iX2 → eiε(X1 + iX2)

X3 + iX4 → eiε(X3 + iX4) .
(2.4)

We note that the action of J has two antipodal fixed points on S4, which can be used to

define the north and south pole of S4. The U(1) symmetry associated to J + R will be

denoted by U(1)J+R ≡ (U(1)J ×U(1)R)diag.

We conclude this section by mentioning a property of the localization equations that

we will exploit in the following section when studying the N = 2 gauge theory path integral

on S4 in the presence of a supersymmetric ’t Hooft loop operator. The deformation term

Q·V that we add to the action naturally splits into two pieces, one giving rise to localization

equations for the vectormultiplet and one for the hypermultiplet. In formulas

V = Vvm + Vhm = Tr(Q ·ΨΨ) + Tr(Q · χχ) , (2.5)

where Ψ and χ are the fermions in the vectormultiplet and hypermultiplet respectively.

We represent the fermion fields in the N = 2 gauge theory by sixteen component, ten

dimensional Weyl spinors of Spin(10) subject to the projection conditions (see appendix A

for spinor notations and conventions)

Γ5678Ψ = −Ψ

Γ5678χ = +χ .
(2.6)

Since the bosonic part of deformed action Q · V — given by Tr(|Q ·Ψ|2) + Tr(|Q · χ|2) —
is positive definite, the saddle point equations are

Q ·Ψ = 0

Q · χ = 0 .
(2.7)

As shown in [2], the only solution of the saddle point equations

Q · χ = 0 (2.8)

– 6 –
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forces all the fields in the hypermultiplet to vanish.9 Therefore, we are left to analyze the

non-trivial saddle point equations for the vectormultiplet fields10

Q ·Ψ =
1

2
FmnΓ

mnǫQ − 1

2
ΦAΓ

Aµ∇µǫQ + iKjΓ
8 j+4ǫQ = 0 , (2.9)

where Am ≡ (Aµ,ΦA) = (Aµ,Φ9,Φ0) and Kj ≡ (K1,K2,K3) are the propagating bosonic

fields and three auxiliary fields of the N = 2 vectormultiplet respectively. Therefore in

our conventions m = 1, 2, 3, 4, 9, 0, while µ = 1, 2, 3, 4 and A = 9, 0. ǫQ is the confor-

mal Killing spinor that parametrizes the supersymmetry transformation generated by the

supercharge Q.

The equations (2.9) are Weyl invariant. That is Q ·Ψ = 0 is invariant under the Weyl

transformation

gµν → Ω2gµν , Aµ → Aµ, ΦA → Ω−1ΦA, Kj → Ω−2Kj , ǫQ → Ω1/2ǫQ . (2.10)

We will use this symmetry to study (2.9) in a Weyl frame where the localization equations

take a simpler form.

3 ’t Hooft loop in S4 and localization equations

In this section we initiate our study of the expectation value of a supersymmetric ’t Hooft

loop operator [5] in an arbitrary N = 2 gauge theory in S4. We start by constructing a

supersymmetric ’t Hooft loop operator which is annihilated by Q (and therefore by J+R).

This implies that we can localize the ’t Hooft loop path integral using the supercharge Q.

The derivation and interpretation of the localization saddle point equations Q · Ψ = 0 in

(2.9) follow. We will then find the most general non-singular solution to the localization

equations in the presence of a supersymmetric ’t Hooft loop operator.

A ’t Hooft loop operator inserts a Dirac monopole into (an arbitrary) spacetime. The

operator has support on the loop/curve spanned by the wordline of the monopole. In an

arbitrary gauge theory, the operator is characterized by a boundary condition near the

support of the loop operator that specifies the magnetic flux created by the monopole.

Since the choice of ’t Hooft operator depends on the embedding of the U(1) gauge group

of a Dirac monopole into the gauge group G, these operators are labeled by a coweight

or magnetic weight vector B, which takes values in the coweight lattice Λcw of the gauge

group G [7].

Locally, near the location of any point on the loop — where the loop is locally a straight

line — the ’t Hooft operator creates quantized magnetic flux [16]

F =
B

4
ǫijk

xi

|~x|3dx
k ∧ dxj , (3.1)

9This can be shown by writing Vhm as a sum of squares. One of the terms that is generated is a mass

term for the scalars in the hypermultiplet — that is qq† + q̃q̃† — which implies that on the saddle point

q = q̃ = 0.
10This formula should be dimensionally reduced to four dimensions using that Fmn = [Dm, Dn] and that

DA· = [ΦA, ·] for A = 9, 0. See appendix B for gauge theory conventions.

– 7 –
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where xi for i = 1, 2, 3 denote the three local transverse coordinates to any point in the

loop. Since B ≡ BaHa ∈ t takes values in the Cartan subalgebra t of the Lie algebra g

of the gauge group G, the magnetic flux (3.1) is abelian. Locally, this operator inserts

quantized flux through the S2 that surrounds any point in the loop
∫

S2

F

2π
= −B . (3.2)

In order to be able to apply localization we must consider supersymmetric ’t Hooft

loop operators invariant under the action of Q. These operators create a local singularity

on the scalar fields of the N = 2 vectormultiplet. The singularity which will be locally

compatible with our choice of Q is11

Φ9 =
B

2|~x| . (3.3)

A ’t Hooft loop operator which is globally annihilated by Q and J + R, can be con-

structed by choosing — without loss of generality — the support of the ’t Hooft operator

to be the maximal circle on S4

X2
1 +X2

2 = r2, X3 = X4 = X5 = 0 , (3.4)

which is located at the equator of S4 and left invariant by the action of J (see (2.4)). We

find it convenient to study the localization equations Q ·Ψ = 0 in (2.9) in the presence of

the circular ’t Hooft loop by choosing the following coordinates on S4 (see appendix C for

various useful coordinate systems)

ds2 =

∑3
i=1 dx

2
i

(

1 + |~x|2

4r2

)2 + r2

(

1− |~x|2

4r2

)2

(

1 + |~x|2

4r2

)2dτ
2 . (3.5)

The coordinates xi, where |~x|2 ≤ 4r2, define a three-ball B3. In these coordinates, the

support of the circular ’t Hooft loop (3.4) is the maximal circle parametrized by the coor-

dinate τ located at xi = 0. In these coordinates the action of J , defined in (2.4), is (see

equation (C.15))

x1 + ix2 → eiε(x1 + ix2)

τ → τ + ε .
(3.6)

Therefore, the north and south poles of the S4 — the fixed points of the action of J — are

located at ~x = (0, 0, 2r) and ~x = (0, 0,−2r) respectively.

Now by using the invariance of the saddle point equations (2.9) under the Weyl trans-

formation (2.10), the solutions to the saddle point equations on S4 can be obtained from

the solutions of the saddle point equations in B3 × S1

ds2B3×S1 =
3
∑

i=1

dx2i + r2
(

1− |~x|2
4r2

)2

dτ2 . (3.7)

They are related by the transformation (2.10) with Ω =
(

1 + |~x|2

4r2

)

.

11This follows by noting that a ’t Hooft loop sourcing the scalar field Φ9 shares common supersymmetries

with the Wilson loop considered in [2] — which couples to the scalar field Φ0 — and which by construction

is annihilated by the supercharge Q. We will soon explicitly show that the exact ’t Hooft loop singularity

is invariant under the action of Q.

– 8 –
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One advantage of this choice of Weyl frame is that the exact singularity produced by

the circular ’t Hooft loop operator in B3 ×S1 is identical to the one produced by inserting

a static point-like monopole in flat spacetime. The exact circular ’t Hooft loop background

on B3 ×S1 annihilated by Q when the topological angle vanishes — that is when θ = 0 —

is given by12

F =
B

4
ǫijk

xi

|~x|3dx
k ∧ dxj

Φ9 =
B

2|~x| .
(3.8)

When the topological angle is non-trivial — that is when θ 6= 0 — then the particle

inserted by the ’t Hooft operator is a dyon, which acquires electric charge through the

Witten effect [17]. If the ’t Hooft operator is labeled by a magnetic weight B, the induced

electric weight is g2θB/4π. Moreover, the scalar field Φ0 also acquires a singularity near

the loop. The exact background created by a supersymmetric ’t Hooft loop on B3 × S1 is

given by 12

Fjk = −B
2
ǫijk

xi
|~x|3 , Fi4̂ = −ig2θ B

16π2
xi
|~x|3 ,

Φ9 =
B

2|~x| , Φ0 = −g2θ B

16π2
1

|~x| .
(3.9)

The corresponding singularity created by the insertion of the circular ’t Hooft loop in S4 can

then be simply obtained by performing the Weyl transformation (2.10) with Ω =
(

1 + |~x|2

4r2

)

.

3.1 Symmetries and fields

We now proceed to determining the partial differential equations for the bosonic fields

in the N = 2 vectormultiplet on B3 × S1 whose solutions yield the saddle points of the

localization path integral upon Weyl transforming them back to S4.13 We first have to

choose the supercharge Q with which to localize the ’t Hooft loop path integral.

The supersymmetry transformations of an N = 2 gauge theory on a four manifold

with metric hµν is parametrized by a sixteen component Weyl spinor of Spin(10) which

solves the conformal Killing spinor equation14

∇µǫ = Γ̃µǫ̃ (3.10)

subject to the projection

Γ5678ǫ = −ǫ . (3.11)

ǫ̃ is determined in terms of ǫ by ǫ̃ = 1
4Γ

µ∇µǫ.
15 It satisfies

Γ̃µ∇µǫ̃ = −R

12
ǫ , (3.12)

where R is the scalar curvature derived from hµν .

12In appendix D we show that this background solves the localization saddle point equations Q · Ψ = 0

derived in the next subsection.
13As we mentioned earlier, the saddle point equations for the hypermultiplets force the fields in the

multiplet to vanish.
14The theory has maximal number of supersymmetries when the metric is conformally flat.
15The spinor ǫ is referred to as a conformal Killing spinor because its defining equation ∇µǫ =

1
4
Γ̃µΓ

ν∇νǫ

is invariant under the Weyl transformation (2.10).
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The equations on B3 × S1 that we need to analyze are16

1

2
FmnΓ

mnǫ− 1

2
ΦAΓ

Aµ∇µǫ+ iKjΓ
8 j+4ǫ = 0 , (3.13)

for an specific choice of ǫ = ǫQ. Here ǫ is the (commuting) conformal Killing spinor of the

N = 2 gauge theory on B3 × S1 which parametrizes the supersymmetry transformation

generated by the supercharges of the OSp(2|4) symmetry of the N = 2 gauge theory.

The general conformal Killing spinor on B3 × S1 — with metric (3.7) — is given by (see

appendix A for details and conventions)

ǫ = cos(τ/2)
(

ε̂s + xiΓ̃i ε̂c

)

+ sin(τ/2) Γ̃4

(

2r ε̂c +
xi

2r
Γi ε̂s

)

, (3.14)

where ε̂s and ε̂c are two constant ten dimensional Weyl spinors of opposite ten dimensional

chirality obeying Γ5678ε̂s = −εs and Γ5678ε̂c = −εc.
We now identify the spinor ǫQ which parametrizes the supersymmetry transformations

of the supercharge Q generating the SU(1|1) subgroup of the OSp(2|4) symmetry of an

N = 2 theory in S4. This is the supercharge used in our localization analysis. We take the

spinor ε̂s to be

ε̂s =
1
2(1, 0, 0, 0, 0

4, 1, 0, 0, 0, 04) (3.15)

and the spinor ε̂c

ε̂c = − i

2r
Γ120ε̂s =

1

4r
(0, 0, 0,−1, 04, 0, 0, 0,−1, 04) . (3.16)

Therefore, the conformal Killing spinor associated to Q is given by

ǫQ =
1

4r







































2r cos
(

τ
2

)

− x3 cos
(

τ
2

)

x1 sin
(

τ
2

)

+ x2 cos
(

τ
2

)

x2 sin
(

τ
2

)

− x1 cos
(

τ
2

)

x3 sin
(

τ
2

)

− 2r sin
(

τ
2

)

04

2r cos
(

τ
2

)

+ x3 cos
(

τ
2

)

−x1 sin
(

τ
2

)

− x2 cos
(

τ
2

)

x1 cos
(

τ
2

)

− x2 sin
(

τ
2

)

−2r sin
(

τ
2

)

− x3 sin
(

τ
2

)

04







































, (3.17)

and has norm ǫQǫQ = 1
2

(

1 + |~x|2

4r2

)

.17

We note that the spinor ǫQ generates one of the unbroken supersymmetries18 preserved

by the circular Wilson loop coupled to the scalar field Φ0 in the N = 2 vectormultiplet

Tr exp

(∮

S1

[

Aµ
dxµ

ds
+ i|ẋ|Φ0

]

ds

)

(3.18)

16In our conventions Q acts on a field as a fermionic operator and therefore ǫ is a commuting spinor.
17Using (2.10) the norm of the spinor on S4 is therefore 1/2.
18Which obey (1 + iΓ̃4Γ0)ε̂s = 0 and (1 + iΓ0Γ̃4)ε̂c = 0.
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supported on the maximal circle at ~x = 0 in B3 × S1. Therefore Q can be used to localize

the path integral in the presence of this Wilson loop operator, as in [2].

Given our choice of supercharge Q, we can now calculate Q2, that is the symmetries

and gauge transformation that Q2 generates when acting on the fields of the N = 2 gauge

theory. Due to the addition of suitable auxiliary fields, this symmetry is realized off-shell,

as required for localization.

The spacetime symmetry transformation induced by Q2 is generated by the Killing

vector

vµ(x, τ) ≡ eµµ̂v
µ̂ = 2ǫQΓ

µǫQ =

(

−x2
r
,
x1
r
, 0,

1

r

)

, (3.19)

where eî = ei = dxi for i = 1, 2, 3 and e4̂ = r
(

1− |~x|2

4r2

)

dτ is a vielbein basis for the

metric on B3 × S1 given in (3.7). Therefore, Q2 yields the infinitesimal U(1)J spacetime

transformation (3.6) generated by J .

The operator Q2 also generates a U(1)R R-symmetry transformation. It acts on the

fields of the theory as a U(1)R ⊂ SU(2)R subgroup of the SU(2)R symmetry present

when the N = 2 theory is in flat spacetime. Therefore, it acts on the gauginos Ψ in the

vectormultiplet and the scalars (q, q̃†) in the hypermultiplet. The infinitesimal R-symmetry

transformation generated by Q2 is parametrized by the rotation parameter19

vR ≡ −4ǫ̃Q Γ56ǫQ = −4ǫ̃Q Γ78ǫQ =
1

r
. (3.20)

As advertised, our choice of supercharge Q corresponding to the Killing spinor (3.17)

generates an SU(1|1) subalgebra of OSp(2|4)

Q2 = J +R [J +R,Q] = 0 , (3.21)

where J +R generates U(1)J+R ≡ (U(1)J ×U(1)R)diag.

In the presence of NF hypermultiplets transforming in a representation R of G, the

N = 2 gauge theory has a flavour symmetry group GF, and the masses mf with f =

1, . . . NF of the hypermultiplets take values in the Cartan subalgebra of the flavour symme-

try algebra, which has rank NF. The action of Q2 on the hypermultiplets fields generates

an infinitessimal flavour symmetry transformation with parameters mf , while the flavour

symmetry action on vectomultiplet fields is trivial.

Finally, the operator Q2 further generates a gauge transformation with gauge group G

on all the fields in the theory. The gauge transformation is a function of the scalar fields

ΦA = (Φ9,Φ0) of the N = 2 vectormultiplet. The associated gauge parameter is given by

Λ ≡ ΦAv
A , (3.22)

where

vA ≡ 2ǫQΓ
AǫQ A = 9, 0 . (3.23)

19Where ǫ̃Q = 1
4
Γµ∇µǫ =

1
4r

(

− sin( τ
2
), 02,− cos( τ

2
), 04,− sin( τ

2
), 02,− cos( τ

2
), 04

)

.
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Explicit calculation using (3.17) and Weyl transforming to S4 using (2.10) gives20

Λ = iΦ0 −
x3/r

1 + |~x|2

4r2

Φ9 . (3.24)

This implies that the gauge transformation parameter at the north and south poles of S4

— which are located at ~x = (0, 0,±2r) — are

Λ(N) = iΦ0(N)− Φ9(N)

Λ(S) = iΦ0(S) + Φ9(S) .
(3.25)

Therefore the gauge transformation acts differently at the north and south poles of the

S4, which are the fixed points of the action of the U(1) generator J . This observation will

have far reaching consequences in our computation of the expectation value of ’t Hooft

operators in these theories. At the equator of S4, the component A4 of the gauge field also

enters in the gauge parameter,

Λ(E) = v0Φ0 + v4A4 . (3.26)

In summary, Q2 acting on the bosonic fields of the N = 2 vectormultiplet — whose

localization equations we are after — generates a J+R and a G-gauge transformation that

can be encoded in terms of the vector field

vm = 2ǫQΓ
mǫQ =

(

−x2
r
,
x1
r
, 0,

1

r
,−x3

r
, i

(

1 +
|~x|2
4r2

))

m = 1, 2, 3, 4, 9, 0 . (3.27)

More explicitly, the action of Q2 on these fields is 10

Q2 ·Aµ = −[vmDm, Dµ]

Q2 · ΦA = −[vmDm,ΦA] .
(3.28)

Including the action on hypermultiplets, we conclude that the action of Q2 on all fields in

the N = 2 theory defined on B3 × S1 generates an U(1)J+R ×G×GF transformation.

3.2 Localization equations in B3 × S1

Given our choice of superchargeQ, we can now proceed to finding the saddle point equations

(2.9) of the localization path integral

Q ·Ψ =
1

2
FmnΓ

mnǫQ − 2ΦAΓ̃
Aǫ̃Q + iKjΓ

8 j+4ǫQ = 0 , (3.29)

where we have used that

∇µǫQ = Γ̃µǫ̃Q , (3.30)

and ǫQ is given in (3.17). The equations can be found by projecting (3.29) on a basis of

spinors generated by21

ΓmǫQ m = 1, 2, 3, 4, 9 (3.31)

Γ8 j+4ǫQ j = 1, 2, 3 . (3.32)

20See below for more details.
21Since the N = 2 theory has eight supercharges, there are eight independent equations.
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We note that the projection equations along Γ0ǫQ can be obtained from a linear combination

of the projection equations along (3.31) since the conformal Killing spinor ǫQ satisfies the

linear constraint

vmΓmǫQ = 0 , (3.33)

with vm given in (3.27).

In order to develop intuition for the saddle point equations, we first study them in the

point ~x = 0, τ = 0 in B3 × S1. Projecting (3.29) along Γm̂ǫQ yields

2ǫQΓm̂Q ·Ψ = (Fm̂4 + iDm̂Φ0)−
1

r
Φ9 δm̂3 = 0 m̂ = 1 . . . 4, 9. (3.34)

These equations have a simple interpretation. They describe the Q2-invariance equations

of the bosonic fields in the N = 2 vectormultiplet (obtained by setting equations (3.28)

to zero), which at ~x = τ = 0 are generated by the vector field vm = (0, 0, 0, 1r , 0, i) (see

equation (3.27)). This captures the combined action of a J and a G-gauge transformation

with vector field vµ = (0, 0, 0, 1r ) and gauge parameter Λ = iΦ0 respectively. The invariance

equation for the scalar field Φ0 is a linear combination of (3.34), a fact which follows from

(3.33).

Projection of (3.29) along Γ8 j+4ǫQ gives three dimensional equations. They are the

Bogomolny equations

2ǫQΓj+4,8Q ·Ψ = −DjΦ9 + (∗3F )j + iKj +
i

r
δj3Φ0 = 0 j = 1, 2, 3 . (3.35)

We can move to an arbitrary point τ 6= 0 at ~x = 0 by acting on the equations (3.34)

(3.35) by the U(1)J transformation generated by J . The invariance equations (3.34) remain

the same while the three dimensional equations take the same form (3.35) upon replacing

the auxiliary scalar fields Ki by rotated ones
(

K1

K2

)

→
(

cos τ sin τ

− sin τ cos τ

)(

K1

K2

)

. (3.36)

We can now consider the general equations with ~x 6= 0 and τ 6= 0. The Q2-invariance

equations, obtained by projecting (3.29) along ΓmǫQ, are given by22

1

2r
F14 +

[

D1,
i

2

(

1 +
|~x|2
4r2

)

Φ0 −
x3
2r

Φ9

]

+
x1
2r
F12 = 0 [D1, v

mDm] = 0

1

2r
F24 +

[

D2,
i

2

(

1 +
|~x|2
4r2

)

Φ0 −
x3
2r

Φ9

]

− x2
2r
F21 = 0 [D2, v

mDm] = 0

1

2r
F34 +

[

D3,
i

2

(

1 +
|~x|2
4r2

)

Φ0 −
x3
2r

Φ9

]

+
x1
2r
F32 −

x2
2r
F31 = 0 [D3, v

mDm] = 0

[

D4,
i

2

(

1 +
|~x|2
4r2

)

Φ0 −
x3
2r

Φ9

]

+
x1
2r
F42 −

x2
2r
F41 = 0 [D4, v

mDm] = 0

1

2r
[Φ9, Dτ ] +

[

Φ9,
i

2

(

1 +
|~x|2
4r2

)

Φ0

]

+
x1
2r

[Φ9, D2]−
x2
2r

[Φ9, D1] = 0 [Φ9, v
mDm] = 0 .

(3.37)

22As already mentioned, the invariance equation for Φ0 is a linear combinations of these equations.
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The three dimensional equations, which we call deformed monopole equations, are

obtained by projecting (3.29) along Γ8 j+4ǫQ. They are given by

−(4r2 + x21 − x22 − x23)[D1Φ9]− 2x1x2[D2Φ9]− 2x1x3[D3Φ9]− 4rx2[D4̂Φ9]+

−2x1Φ9 − 2x1x3F12 + 2x1x2F13 + (4r2 − x21 + x22 + x23)F23+

−4rx3F14̂ + i(4r2 + |~x|2)K1 + 4rx1F34̂ = 0 .

(3.38)

−(4r2 − x21 + x22 − x23)[D2Φ9]− 2x1x2[D1Φ9]− 2x2x3[D3Φ9] + 4rx1[D4̂Φ9]+

−2x2Φ9 − 2x2x3F12 − 2x1x2F23 − (4r2 + x21 − x22 + x23)F13+

−4rx3F24̂ + i(4r2 + |~x|2)K2 + 4rx2F34̂ = 0 ,

(3.39)

2x1x3[D1Φ9] + 2x2x3[D2Φ9]− (4r2 + x21 + x22 − x23)[D3Φ9] + 2x3Φ9 + 4irΦ0+

+(4r2 − x21 − x22 + x23)F12 + 2x1x3F23 − 2x2x3F13+

−4rx2F24̂ − 4rx3F34̂ − 4rx1F14̂ + i
(

4r2 + |~x|2
)

K3 = 0 .

(3.40)

We note that the equations near the location of the ’t Hooft loop — at ~x = 0 — reduce to

the familiar Bogomolny equations in R
3, thus justifying their name. These equations are a

supersymmetric extension of well known equations, which interpolate between F+ = 0 at

the north pole, the Bogomolny equations at the equator and F− = 0 at the south pole. This

concludes our derivation of the saddle point equations of the ’t Hooft loop path integral.

In appendix D we explicitly show that the background created by the insertion of a

circular ’t Hooft loop — given in equations (3.8) (and (3.9) when θ 6= 0) — is a solution

of the localization equations derived in this section. This confirms that we can study the

expectation value of a supersymmetric circular ’t Hooft loop operator in any N = 2 gauge

theory on S4 by localizing the path integral with our choice of supercharge Q.

We can now anticipate some key features in the evaluation of the ’t Hooft loop path

integral of the N = 2 theory defined on S4. As explained earlier, the fields and conformal

Killing spinor in B3 × S1 and S4 are related by the Weyl transformation (2.10) with

Ω =
(

1 + |~x|2

4r2

)

. We note that the conformal Killing spinor in S4 — which we denote by

ǫsphereQ — has negative/positive four dimensional chirality at the fixed points of the U(1)

action of J , denoted as north/south poles of S4 respectively. In formulas23

Γ4̂1̂2̂3̂ǫsphereQ (N) = −ǫsphereQ (N)

Γ4̂1̂2̂3̂ǫsphereQ (S) = +ǫsphereQ (S) ,
(3.41)

and therefore instantons and anti-instantons are supersymmetric at the north and south

poles of S4 respectively.

Moreover, in the neighborhood of the north pole the Q-complex of the N = 2 theory on

S4 generated by ǫsphereQ reduces to the complex of the equivariant Donaldson-Witten twist24

23The volume form is given by ǫ4̂1̂2̂3̂ = 1.
24Also known as N = 2 gauge theory in the Ω-background [8].
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in R
4 [8], described by the instanton equations F+ = 0. Likewise, in the neighborhood of

the south pole the Q-complex of the N = 2 theory on S4 reduces to that of the equivariant

conjugate Donaldson-Witten twist in R
4, described by the anti-instanton equations F− = 0.

This implies that the path integral for a ’t Hooft loop receives contributions from equiv-

ariant instantons at the north pole and equivariant anti-instantons at the south pole. These

are singular solutions to the localization equations which must be included in the compu-

tation of the ’t Hooft loop expectation value. The equivariant instanton/anti-instanton

partition function in R
4 is captured by the so-called Nekrasov partition function [8], which

will play a prominent role in our analysis.

From our expression for the action of Q2 on the fields (see (3.27)), we find that the

U(1)ε1 ×U(1)ε2 equivariant rotation parameters (ε1, ε2) in Nekrasov’s partition function [8]

at the north and south poles in S4 are fixed to

ε1 = ε2 = ε =
1

r
, (3.42)

since U(1)ε1 ×U(1)ε2 acts on R
4 as

X1 + iX2 → eiε1(X1 + iX2) X3 + iX4 → eiε2(X3 + iX4) . (3.43)

Here (X1, . . . , X4) are the S4 embedding coordinates (2.3) which parametrize the local

R
4 near the north and south poles. As Nekrasov’s partition function is for the N =

2 topologically twisted theory in R
4 — which mixes the SU(2) Lorentz with SU(2) R-

symmetry generators — the U(1)J+R symmetry generated by Q2 in the physical theory on

S4 gets identified at the north and south poles with the (U(1)ε1 ×U(1)ε2)diag symmetry in

Nekrasov’s partition function.

Moreover, it follows from equation (3.27) that the equivariant parameter â ∈ t for the

action of constant G-gauge transformations in R
4 in Nekrasov’s partition function is fixed

at the north and and south poles of the S4 to25

â(N) = iΦ0(N)− Φ9(N) â(S) = iΦ0(S) + Φ9(S) (3.44)

respectively. Since the ’t Hooft loop induces a non-trivial background for the scalar field

Φ9 (3.9), which is non-vanishing at the north and south poles, the instanton/anti-instanton

partition function contributions arising from the fixed points of J explicitly depend on the

magnetic weight B labeling the ’t Hooft operator. We will return to the instanton and

anti-instanton contributions to the ’t Hooft loop path integral in section 5.

Likewise, there are singular solutions to the localization equations arising from the

equator in S4, where the ’t Hooft loop is inserted. As we have shown, near the equator

we must consider solutions to the Bogomolny equations in the presence of the singular

monopole configuration created by the ’t Hooft loop operator. We will consider the con-

tribution of these singular solutions to the saddle point equations in sections 6.3 and 7.

Our next task is to study the non-singular solutions of the localization equations.

25Here we note that the value of scalar fields at the north and south poles of B3 × S1 and S4 are related

by ΦS4 = 2ΦB3×S1 through Weyl rescaling, while at the equator ΦS4 = ΦB3×S1 .

– 15 –



J
H
E
P
0
5
(
2
0
1
2
)
1
4
1

3.3 Vanishing theorem

In the evaluation of the ’t Hooft loop path integral using localization we must sum over all

the saddle points of the localization actionQ·V which have a prescribed singularity, induced

by insertion of the ’t Hooft operator. Therefore, we wish to obtain the most general solution

of the localization equations (3.37)–(3.40) satisfying the appropriate boundary conditions

imposed by the presence of the circular ’t Hooft loop operator. The boundary condition

requires that the solutions to the localization equations approach the background (3.9)

near the location of the ’t Hooft loop, supported at the equator of S4.

In this section we obtain the most general non-singular solution to these equations

(besides the singularity due to the ’ t Hooft operator). Singular solutions to the localization

equations, however, will play a central role in our computations. We will discuss singular

solutions supported at the north and south poles of the S4 and their contribution to the

expectation value of the ’t Hooft loop operator in section 5, while the contribution of the

singular solutions supported at the equator will be analyzed in section 7.

In appendix D we show that the field configuration

Fjk = −B
2
ǫijk

xi
|~x|3 , Fi4̂ = −ig2θ B

16π2
xi
|~x|3 , Φ9 =

B

2|~x| ,

Φ0 = −g2θ B

16π2
1

|~x| +
a

1 + |~x|2

4r2

, K3 = − a/r
(

1 + |~x|2

4r2

)2 ,
(3.45)

solves the saddle point equations Q · Ψ = 0. This field configuration is the ’t Hooft loop

background (3.9) deformed by a “zeromode”26 of Φ0, which is labeled by a. The auxiliary

field K3 in the N = 2 vectormultiplet is also turned on. Therefore, evaluation of the path

integral requires integrating over the “zeromode” a ∈ t, which takes values in the Cartan

subalgebra t of the gauge group G.

We will now show that the only solutions to Q ·Ψ = 0 which are smooth away from the

loop are given by (3.45). For this it suffices to consider the deformed monopole equations,

the differential equations (3.38)–(3.40). We find it more transparent, however, to take

instead a projection of the localization equations Q ·Ψ = 0 along Γ9µǫQ. This gives

0 = ǫQΓµ9Q·Ψ = −(∗F )µνvν+
i

2r
Dµ(x3Φ0)−Dµ

[

1

2

(

1 +
|~x|2
4r2

)

Φ9

]

+i

3
∑

j=1

w(j)
µ Kj , (3.46)

where we have used [Φ9,Φ0] = 0, which follows from the imaginary part of the last equation

in (3.37). We have also defined three real 1-forms w
(j)
µ = ǫQΓµ9Γ

8 j+4ǫQ.

The field strength F = F (r) + iF (i) has real and imaginary parts. The imaginary part

is due to the presence of the ’t Hooft operator background with θ 6= 0, while the fluctuating

part of the field that we integrate over in the path integral must be real. The imaginary

part of equations (3.38) and (3.39) imply that

K1 = K2 = 0 , (3.47)

26The corresponding field configuration is annihilated by Dµ
[(

1 + |~x|2

4r2

)

Φ0

]

= 0 since the background

gauge field is abelian.
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while the imaginary part of (3.37) requires that

1

2r
F

(i)
j4 +

[

Dj ,
i

2

(

1 +
|~x|2
4r2

)

Φ0

]

= 0 j = 1, 2, 3

x1F
(i)
42 − x2F

(i)
41 = 0 .

(3.48)

Therefore, these equations completely determine Φ0 in terms of the electric field produced

by the ’t Hooft operator when θ 6= 0 up to a zeromode, which we parametrize by a in

(3.45). Moreover, the imaginary part of (3.40) locks in the value of the auxiliary field K3

in terms of the zeromode part of Φ0. Therefore, the most general solution to the localization

equations for the electric field Fj4 and the scalar fields Φ0,K1,K2 and K3 is given in (3.45).

Now it remains to show that the most general solution to the localization equations for the

magnetic field Fij and the scalar field Φ9 is also given by (3.45).

From the real part of (3.46) we obtain

iv ∗ F (r) −D

[(

1 +
|~x|2
4r2

)

Φ9

]

= 0 . (3.49)

We also note that the real part of the Q2-invariance equations (3.37) implies that

− ivF +D(v9Φ9) = 0 , ivDΦ9 = 0 . (3.50)

Let us define a 1-form ṽ = dxµvµ/(vνv
ν) dual to the four-vector v, so that ivṽ = 1.27 Now,

in terms of the redefined gauge field

Â = A+ v9Φ9 ṽ , (3.51)

the Q2-invariance equations (3.50) imply that

ivF̂ = 0 , (3.52)

where F̂ = dÂ+ Â ∧ Â. Indeed,

ivF̂ = ivF + ivD(v9Φ9 ṽ) = ivF + iv(D(v9Φ9) ∧ ṽ) + iv(v
9Φ9Dṽ) =

= ivF + (ivD(v9Φ9)) ∧ ṽ −D(v9Φ9) ∧ (ivṽ) + v9Φ9 iv(Dṽ) , (3.53)

which using ivṽ = 1 and the equations in (3.50) makes the first three terms vanish. The

last term vanishes for any Riemannian metric invariant under the action generated by the

vector field v. In this situation Lvṽ = 0 and since Lv = Div + ivD we have that indeed

ivDṽ = −D(ivṽ) = −D(1) = 0. Therefore, the Q2-invariance equations (3.52) reduce the

whole system of equations in S4 to equations in the three-dimensional spaceM3 = S4/U(1),

since v generates the U(1)J spacetime transformation corresponding to J .

The scalar field in the S4 conformal frame is Φ = Φ9

(

1 + |~x|2

4r2

)

. In the S4 metric28

(see appendix C)

ds2S4 = r2dϑ2 +
r2

4
sin2 ϑdΩ2 + r2 sin2 ϑ(dψ + ω)2 (3.54)

27The definition of ṽ is invariant under Weyl rescaling of the metric.
28The orientation is such that the volume form is proportional to dτdx1dx2dx3 ∝ dϑdψvol(S2).
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equation (3.49) reads

iv ∗ F (r) = DΦ . (3.55)

In this metric, the 1-form ṽ is given by ṽ = r(dψ+ω), and the redefined gauge field (3.51) is

Â = A(r) − Φr cosϑ(dψ + ω) . (3.56)

Let us also redefine the scalar as

Φ̂ = Φ sin2 ϑ . (3.57)

In terms of the redefined fields, equation (3.55) becomes

iv ∗ F̂ − 1

sin2 ϑ
DΦ̂ = 0 . (3.58)

We can obtain quantities with nice properties by considering the background values of

Â and Φ̂ specified by (3.9). We define 1-forms λ and ρ, as well as a function h as quantities

that appear in (3.9).29

Â = −Bλ , A = −Bρ , Φ̂ =
B

2
h (in the background) . (3.60)

Since the background solves the equation (3.58), λ and h satisfy the relation

0 = iv ∗ dλ+
dh

2 sin2 ϑ
. (3.61)

In order to derive useful identities, let us square the left-hand side of the equation (3.58)

and integrate it with an appropriate measure:

0 =

∫

S4

1

2h

∣

∣

∣

∣

∣

∣

∣

∣

iv ∗ F̂ − 1

sin2 ϑ
DΦ̂

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∫

S4

1

2h





∣

∣

∣

∣

∣

∣

∣

∣

iv ∗ F̂ − Φ

h
dh

∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h

sin2 ϑ
D

(

Φ̂

h

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2




+

∫

S4

1

sin2 ϑ
Tr

[

D

(

Φ̂

h

)

∧ ∗
(

iv ∗ F̂ − Φ

h
dh

)

]

.

(3.62)

We are using both Φ and Φ̂ to simplify the equations. Now we will show that the integrand

in the cross term is the total derivative of a suitable 3-form. First we can write it as

ṽ ∧ dTr
[

Φ̂

h

(

F̂ +
Φ̂

h
dλ

)]

. (3.63)

29In the gauge where the Dirac singularity is at x3 < 0, x1 = x2 = 0, we have explicitly

λ =
1

2
dψ +

1

2

(

1−
1 + cos η

2

cosϑ
(

cos2 ϑ+ sin2 ϑ sin2 η
2

)1/2

)

dϕ ,

ρ =
1

2

(

1−
cosϑ

(

cos2 ϑ+ sin2 ϑ sin2 η
2

)1/2

)

(dψ + dϕ) , h =
sin2 ϑ

r

(

1− sin2 ϑ cos2
η

2

)−1/2

.

(3.59)
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We denote by D̂ the covariant derivative with respect to the gauge field Â. Note that Â+

Bλ, which is the difference of two connections, is a globally defined smooth 1-form. Using

that dTr[(Â+Bλ)Φ̂/h] = Tr
[

(F̂+Bdλ+(Â+Bλ) ∧ (Â+Bλ))Φ̂/h− (Â+Bλ) ∧ D̂(Φ̂/h)
]

,

one can check that the expression (3.63) equals30

ṽ

4
∧ dTr

[

(

F̂ +
2

h
Φ̂dλ− (Â+Bλ) ∧ (Â+Bλ)

)(

2

h
Φ̂−B

)

+ 2(Â+Bλ) ∧ D̂
(

Φ̂

h

)]

.

We try to write this as a total derivative:

− d

(

ṽ

4
∧ Tr

[

(

F̂ +
2

h
Φ̂dλ− (Â+Bλ) ∧ (Â+Bλ)

)(

2

h
Φ̂−B

)

+ 2(Â+Bλ) ∧ D̂
(

Φ̂

h

)])

+
dṽ

4
∧ Tr

[

(

F̂ +
2

h
Φ̂dλ− (Â+Bλ) ∧ (Â+Bλ)

)(

2

h
Φ̂−B

)

+ 2(Â+Bλ) ∧ D̂
(

Φ̂

h

)]

.

(3.64)

In the last line, F̂ can be dropped because dṽ ∧ F̂ is a 4-form annihilated by iv, and thus

has to vanish.31 For the same reason dλ can also be dropped. Continuing this argument,

the equality 0 = iv(−Bdλ − F̂ ) = ivD̂(−Bλ − Â) + iv((−Bλ − Â) ∧ (−Bλ − Â)) implies

that the last line of (3.64) can be written as

dṽ

4
∧ Tr

[

−D̂(Â+Bλ) ·
(

2

h
Φ̂−B

)

+ 2(Â+Bλ) ∧ D̂
(

Φ̂

h

)]

= −d
(

dṽ

4
∧ Tr

[

(Â+Bλ) ·
(

2

h
Φ̂−B

)])

(3.65)

Thus the term in the last line of (3.62) is an integral of a total derivative, and we need to

study the potential contributions from regions where some quantities are singular, including

the equator where the ’t Hooft loop is inserted as well as the north and south poles where

ṽµṽµ diverges.

Let us denote by Σ(δ) = ΣN ∪ ΣS ∪ Σeq the boundary of small neighborhoods that

contain the poles and the equator. Specifically, we take a constant δ > 0 and define

ΣN := {ϑ = δ}, ΣS := {ϑ = π − δ} and Σeq := {|~x| = δ}, where ~x denotes the spatial

position in the B3 × S1 coordinate system. Noting that Â + Bλ = A + Bρ and that

30This expression in fact descends from the Chern-Simons 3-form for a four-dimensional gauge field

constructed, via Kronheimer’s correspondence, from Â which can be regarded as a three-dimensional gauge

field on M3 = S4/U(1).
31Any 4-form α can be expressed as α = f vol(S4) where f is a function and vol(S4) is the volume form

on S4. If iv annihilates α we have 0 = ivα = fivvol(S
4). Since ivvol(S

4) is non-zero, f , and therefore α,

have to vanish.
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Φ̂/h = (sin2 ϑ/h)Φ, we obtain

∫

S4

1

2h





∣

∣

∣

∣

∣

∣

∣

∣

iv ∗ F̂ − Φ

h
dh

∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h

sin2 ϑ
D

(

Φ̂

h

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2




= − lim
δ→0

∫

Σ(δ)
Tr

([(

F + 2
sin2 ϑ

h
Φdρ− (A+Bρ) ∧ (A+Bρ)

)(

2
sin2 ϑ

h
Φ−B

)

+2(A+Bρ) ∧D
(

sin2 ϑ

h
Φ

)]

∧ ṽ

4
+ (A+Bρ) ·

(

2
sin2 ϑ

h
Φ−B

)

∧ dṽ

4

)

.

(3.66)

Because the fields must obey the boundary conditions associated to the ’t Hooft operator

at the equator of S4, their values on Σeq must approach the background values (3.60), for

which the integrand vanishes as δ → 0. On the hypersurfaces ΣN(δ) and ΣS(δ) where ϑ = δ

is constant, the integrand32 vanishes as δ → 0 for smooth configurations. Hence (3.66)

vanishes.

Then the squares in the first line of (3.66) must vanish separately, and we have in

particular

D

(

Φ̂

h

)

= 0 . (3.67)

The boundary condition near the operator then requires that Φ̂ = Bh/2 up to a gauge

transformation, corresponding to the original ’t Hooft operator background we started

with.

In summary, the most general non-singular solution to the localization equations is the

field configuration (3.45).

4 Classical contribution

In this section we calculate the classical contribution to the localization path integral

computing the expectation value of a supersymmetric ’t Hooft loop in an arbitrary N = 2

gauge theory on S4. The classical contribution to the path integral is obtained by evaluating

the N = 2 gauge theory action on S4 — including suitable boundary terms — on the saddle

point solutions of the localization equations.

Using that the localization equations set to zero the scalar fields in the N = 2 hyper-

multiplet, the classical contribution to the path integral arises from evaluating the bosonic

action of the N = 2 vectormultiplet on S4 on the Weyl transformed (2.10) saddle point

solution (3.45). The relevant part of the N = 2 gauge theory action on S4 of radius r is

given by

SN=2 = − 1

g2

∫

S4

√
hTr

(

1

2
FµνF

µν +DµΦAD
µΦA +

R

6
ΦAΦA +K2

3

)

− iθ

8π2

∫

S4

Tr (F ∧ F ) ,
(4.1)

32We can take ΣN,S(δ) to be three-spheres parametrized by ψ and the position on S2. We note that F ,

dρ, D
(

sin2 ϑ
h

Φ
)

, and in particular A + Bρ are regular as differential forms at the north and south poles.

Therefore their components not involving the ϑ-direction vanish as δ → 0. Forms ṽ = r(dψ + ω) and

dṽ = (r/2)vol(S2) are finite in this limit.
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where we have denoted by hµν the S4 metric and R = 12/r2 is the scalar curvature. The

classical action (4.1) is invariant under the Weyl transformation (2.10). Therefore, we

can calculate the classical contribution to the expectation value of the ’t Hooft loop by

computing the N = 2 gauge theory action on B3 × S1 (3.7) evaluated on the background

(3.45). The non-topological part of the action is thus33

−2π · 4π
g2

∫ 2r

0
dx r

(

1− x2

4r2

)

x2Tr





1

2
FijFij + Fi4̂Fi4̂ +DiΦADiΦA +

ΦAΦA

2r2
(

1− x2

4r2

) +K2
3



 ,

(4.2)

while the topological term is34

iθ

8π2
· 2π · 4π

∫ 2r

0
dx r

(

1− x2

4r2

)

x2ǫijk Tr
[

Fi4̂Fjk
]

. (4.3)

Explicit computation using the saddle point configuration (3.45) gives

S
(0)
N=2 = −8π2

g2
r2Tr a2 + θ rTr(aB)− TrB2

(

4π2

g2
+
g2θ2

16π2

)

r

∫ 2r

δ
dx

1

x2
. (4.4)

The unregulated on-shell action is clearly divergent, as it measures the infinite self-energy

of a point-like monopole. This divergence — which is proportional to the length of the

curve on which the ’t Hooft loop is supported — can be regulated by introducing a cutoff

δ in the integration over x, and subtracting terms in the action proportional to 1/δ. This

subtraction can be implemented by adding to the action (4.1) covariant boundary terms

supported on the x = δ hypersurface Σ3.

The relevant boundary terms are

− 2

g2

∫

Σ3

Tr (Φ9 F ) ∧ dτ + i
2

g2

∫

Σ3

Tr (Φ0 ∗4F ) ∧ dτ . (4.5)

The first term coincides with the boundary action introduced in [18] to cancel the divergence

due to a singular monopole inserted along a loop with an arbitrary shape.35 The second

term in (4.5) is its electric version, and is necessary for non-zero values of the theta angle.

Evaluating them on the saddle point solution (3.45) we get

− 2

g2

∫

Σ3

Tr (Φ9 F ) ∧ dτ = − 2

g2
Tr

(

B

2δ
· (−2πB)

)

2πr =
1

δ

4π2r

g2
TrB2 (4.6)

and

i
2

g2

∫

Σ3

Tr (Φ0 ∗4F ) ∧ dτ = i
2

g2
Tr

((

−g2θ B

16π2
1

δ
+ a

)

·
(

ig2θ
B

4π

))

2πr =

=
1

δ

g2θ2r

16π2
TrB2 − θ rTr(aB) .

(4.7)

33Where we have used the SO(3)×SO(2) symmetry of the background (3.45) and that the B3×S
1 metric

(3.7) has R/6 = 1/
(

2r2
(

1− x2

4r2

))

. x is the radial coordinate in B3

34The volume form is given by ǫ4̂123 = 1.
35Since the Bogomolny equations appear as the Q-variation of the fermion, the Q-exact expression

Q(Bogomolny eq.,Ψ) contains a positive semi-definite bosonic part |Bogomolny eq.|2, which can be rewrit-

ten as the usual kinetic term plus the boundary term. Thus the boundary term complements the divergent

part of the original action to make it locally Q-exact.
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The terms proportional to 1/δ in the boundary terms cancel the self-energy divergences

in the bulk on-shell action in (4.4). Moreover, the on-shell boundary term (4.7) generates

a finite contribution, which precisely cancels the corresponding one appearing in the bulk

on-shell action (4.4). Therefore, the leading classical action for the circular ’t Hooft loop

in the N = 2 gauge theory is given by

S
(0)total
N=2 = −8π2

g2
r2Tr a2 +TrB2

(

2π2

g2
+
g2θ2

32π2

)

. (4.8)

The classical action (4.8) can be split into the sum of two terms, which are the complex

conjugate of each other

S
(0)total
N=2 = −1

2
r2

[

(

−8π2

g2
+ iθ

)

Tr

(

ia− ig2θ
B

16π2r
− B

2r

)2

+

(

−8π2

g2
− iθ

)

Tr

(

ia− ig2θ
B

16π2r
+
B

2r

)2
]

. (4.9)

This observation leads to an illuminating interpretation. The classical result for the ’t Hooft

loop path integral on S4 is captured by the classical contribution to Nekrasov’s equivariant

instanton and anti-instanton partition functions on R
4 [8] localized at the north and south

poles of the S4 respectively. As we shall see, the classical, one-loop and instanton factors

in Nekrasov’s equivariant instanton/anti-instanton partition function in R
4 [8] will enter

in the computation of the ’t Hooft loop on S4.

We first recall that the classical contribution to the N = 2 equivariant instanton par-

tition function in R
4 — or the partition function of the N = 2 theory in the Ω-background

— is given by [8]

Zcl(â, q) = exp

[

1

2ε1ε2
2πiτ Tr â2

]

. (4.10)

The constant field â ∈ t is the equivariant parameter for the action of G-gauge trans-

formations on the moduli space of instantons in R
4, while ε1 and ε2 are the equivariant

parameters of the U(1)ε1 ×U(1)ε2 action on R
4 = C⊕ C

z1 → eiε1z1

z2 → eiε2z2 .
(4.11)

The parameter q = exp (2πiτ) is the instanton fugacity while q is the fugacity for anti-

instantons, where τ is the complexified coupling constant of the N = 2 gauge theory

τ =
θ

2π
+

4πi

g2
. (4.12)

In section 3.2 we have already mentioned that the supercharge Q with which we localize

the ’t Hooft loop path integral becomes near the north and south poles of the S4 the

supercharge which localizes the equivariant instanton and anti-instanton partition function
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in R
4 [8] respectively, with the following equivariant parameters

ε1 = ε2 = ε =
1

r

â(N) = iΦ0(N)− Φ9(N)

â(S) = iΦ0(S) + Φ9(S) .

(4.13)

Therefore, inspection of the solution of the localization saddle point equations at the north

and south poles36 in (3.45) yields

â(N) = ia− ig2θ
B

16π2r
− B

2r
â(S) = ia− ig2θ

B

16π2r
+
B

2r
. (4.14)

This implies that the classical equivariant instanton/anti-instanton partition functions aris-

ing from the north and south poles are given by

Znorth,cl = Zcl(â(N), q) Zsouth,cl = Zcl(â(S), q) . (4.15)

Therefore, the classical expectation value (4.9) for the ’t Hooft loop operator with magnetic

weight B in anyN = 2 gauge theory on S4 factorizes into a classical contribution associated

to the north and south poles respectively

exp
(

−S(0)total
N=2

)

= Znorth,cl · Zsouth,cl =

∣

∣

∣

∣

Zcl

(

ia− ig2θ
B

16π2r
− B

2r
, q

)∣

∣

∣

∣

2

, (4.16)

the south pole contribution being the complex conjugate of the north pole one

Zsouth,cl = Znorth,cl . (4.17)

The identification of the integrand of the ’t Hooft loop path integral with contributions

arising from the north and south poles of S4 will be a recurrent theme in our computation

of the ’t Hooft loop expectation value. As we shall see, however, an important contribution

also arises from the equator of S4.

5 Instanton contribution

In the previous section we have calculated the classical contribution to the expectation

value of a ’t Hooft loop with magnetic weight B on S4 due to the non-singular solutions of

the localization equations (besides the obvious singularity created by the insertion of the

’t Hooft operator), which are labeled by a ∈ t (3.45). As discussed earlier, however, there

exist singular solutions to the localization equations supported at the north and south

poles. In this section we determine their contribution to the ’t Hooft loop expectation

value.

36We have evaluated the scalar field Φ0 and Φ9 at the north and south poles of S4. From equation (3.45)

we find that the value of the field Φ9 (Φ0) at the north and south poles of B3 × S1, which are located at

~x = (0, 0,±2r), is Φ9 = B
4r

(Φ0 = ia
2
− ig2θ B

32π2r
). Weyl transforming to S4 using ΦS4 = 2ΦB3×S1 , we get

the formula (4.14).
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The localization equations (3.38)-(3.40) at the north and south pole of the S4 become,

respectively, the instanton and anti-instanton equations

north : F+ = 0 south : F− = 0 . (5.1)

These equations describe singular field configurations, corresponding to point-like instan-

tons, which are localized at the poles of S4. The inclusion of these singular field configu-

rations in the localization computation implies that we must enrich the result in section 4

with the contribution of point-like instantons and anti-instantons arising at the north and

south pole respectively. We now identify these contributions and include their effect in the

computation of the ’t Hooft loop path integral.

Nekrasov’s equivariant instanton (anti-instanton) partition function in R
4 [8] computes

the contribution of instantons (anti-instantons) to the path integral of an N = 2 gauge

theory in the so-called Ω-background. We denote it by [8]

Zinst(â, m̃f , ε1, ε2, q) , (5.2)

where (ε1, ε2, â, m̃) are the equivariant parameters for the U(1)ε1×U(1)ε2×G×GF symme-

tries of the N = 2 gauge theory. m̃f with f = 1, . . . , NF denote the equivariant parameters

for the flavour symmetry group GF associated to the hypermultiplet and q is the instanton

fugacity.

Since the N = 2 gauge theory action on S4 and Q-complex near the poles reduces to

those of the N = 2 gauge theory in the Ω-background, the contribution of the singular

field configurations in our localization computation due to point-like instantons and anti-

instantons at the north and south poles respectively, are precisely captured by Nekrasov’s

instanton and anti-instanton partition function.

As we have already mentioned, the Q-complex of the N = 2 theory near the

north (south) pole of S4 reduces to that describing Nekrasov’s equivariant instanton

(anti-instanton) partition function on R
4 with U(1)ε1 × U(1)ε2 equivariant parameters

ε1 = ε2 = 1/r. Furthermore, the equivariant parameter â ∈ t for the action of the gauge

group G on the instanton moduli space is given respectively by equations (4.13), (4.14)

â(N) = iΦ0(N)− Φ9(N) = ia− ig2θ
B

16π2r
− B

2r

â(S) = iΦ0(S) + Φ9(S) = ia− ig2θ
B

16π2r
+
B

2r
.

(5.3)

Therefore, the contribution to the ’t Hooft loop expectation arising from the solutions to

the F+ = 0 equations at the north pole is given by

Znorth,inst = Zinst

(

ia− ig2θ
B

16π2r
− B

2r
,
1

r
+ imf ,

1

r
,
1

r
, q

)

, (5.4)

while that due to the solutions of the F− = 0 equations at the south pole is

Zsouth,inst = Zinst

(

ia− ig2θ
B

16π2r
+
B

2r
,
1

r
+ imf ,

1

r
,
1

r
, q

)

. (5.5)
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We have used the relation

m̃f =
ε1 + ε2

2
+ imf f = 1, . . . , NF (5.6)

derived in [19] between the physical mass mf of a hypermultiplet and the equivariant

parameter m̃f in Nekrasov’s instanton partition function.

Taking into account the following identity obeyed by the instanton partition func-

tion [19, 20]

Zinst(â, m̃f , ε1, ε2, q) = Zinst(−â, ε1 + ε2 − m̃f , ε1, ε2, q) , (5.7)

we find that the anti-instanton south pole contribution is the complex conjugate of the one

in the instanton north pole one

Zsouth,inst = Znorth,inst . (5.8)

We can now combine the results of this section with the ones found in the previous

one and write down the “classical” contribution to the expectation value of a ’t Hooft loop

with magnetic weight B. Summing over all saddle points of the localization equations —

including both non-singular and singular solutions at the north and south poles — which

are labeled by a ∈ t, leads to37

〈T (B)〉 ≃
∫

da

∣

∣

∣

∣

Zcl

(

ia− B

2r
, q

)

Zinst

(

ia− B

2r
,
1

r
+ im,

1

r
,
1

r
, q

)∣

∣

∣

∣

2

, (5.9)

with Zcl and Zinst given in (4.10) and (5.2) respectively.

6 One-loop determinants

The calculation of a path integral using localization enjoys the drastic simplification of

reducing the computation to one-loop order with respect to the deformation parameter

t, while being exact with respect to the original gauge theory coupling constant. In this

section we calculate the relevant determinants required for computing the expectation value

of ’t Hooft operators on S4. Computation of the one-loop determinants in the N = 2 gauge

fixed action is performed by expanding to quadratic order in all field fluctuations — which

include vectomultiplet, hypermultiplet and ghost multiplet fields — the deformation term

Q̂ · V̂ around the saddle point configuration background (3.45). In the gauge fixed theory,

the supercharge Q combines with the BRST operator QBRST as Q̂ = Q+QBRST , such that

the deformed action Q · V (2.1) together with gauge fixing terms can be written as Q̂ · V̂ ,

with V̂ = V + Vghost [2]. As shown in [2], the saddle points of Q̂ · V̂ coincide with those

of Q · V , and we can borrow the saddle point configuration in (3.45) for the calculation of

the determinants.

Direct evaluation of the determinants by diagonalization of the quadratic fluctuation

operator in the saddle point background is rather complicated. Instead, we calculate the

37We have trivially shifted the integration variable ia→ ia+ ig2θ B
16π2r

.
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relevant one-loop determinants using an index theorem. More precisely we use the Atiyah-

Singer index theorem for transversally elliptic operators [21], which was also used in [2] to

compute the partition function of N = 2 gauge theories on S4.

Even though we are considering the physical N = 2 gauge theory on S4 (not a topolog-

ically twisted theory), the combined supersymmetry and BRST transformations generated

by Q̂ can be written in cohomological form [2]. Fields of opposite statistics are paired

into doublets under the action of Q̂. Schematically, denoting the fields of even and odd

statistics with a subindex e and o respectively, we have that

Q̂ · ϕe,o = ϕ̂o,e

Q̂ · ϕ̂o,e = R · ϕe,o .
(6.1)

Here R is the generator of the U(1)J+R × G × GF symmetries discussed in section 3.1,

corresponding to the group U(1)J+R combining the U(1)J rotation on S4 (2.4) with an

SO(2)R R-symmetry transformation, the G-gauge and the GF flavour symmetries respec-

tively. Therefore, Q̂ acts as an equivariant cohomological operator since

Q̂2 · ϕe,o = R · ϕe,o , (6.2)

and Q̂2 is nilpotent on R-invariant field configurations. The invariance of the deformation

term Q̂ · V̂ under the action of Q̂ and the pairing of of the fields as in (6.1) leads to can-

cellations between bosonic and fermionic fluctuations. The remainder of this cancellation

is the following ratio of determinants over non-zeromodes [2]

detCokerDvmR|o
detKerDvmR|e

· detCokerDhmR|o
detKerDhmR|e

. (6.3)

The differential operatorsDvm andDhm are obtained from the expansion of the deformation

term Q̂ · V̂ for the vectormultiplet and hypermultiplet fields respectively.

Therefore, the one-loop determinants that appear in the localization computation of

the partition function of an N = 2 gauge theory on S4 are given by the product of weights

for the group action R generated by Q̂2 on the vectormultiplet and hypermultiplet fields.

Furthermore, the weights appearing in the determinants (6.3) can be determined from the

computation of the R-equivariant index

indD = trKerDe
R − trCokerDe

R , (6.4)

for D = Dvm and D = Dhm. In order to convert the index (Chern character) indD in (6.4)

into a fluctuation determinant (Euler character), we read off the weights wα(ε1, ε2, â,mf )

from the index and combine them to get the determinant according to the rule
∑

j

cje
wj(ε1,ε2,â,m̂f ) →

∏

j

wj(ε1, ε2, â, m̂f )
cj , (6.5)

where (ε1, ε2, â,mf ) denote the equivariant parameters for U(1)ε1×U(1)ε2×G×GF.
38 The

relevant R-equivariant indices can then be calculated from the equivariant Atiyah-Singer

index theorem for transversally elliptic operators [21], to which we now turn.

38We recall that U(1)J+R = (U(1)ε1 ×U(1)ε2)diag.
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The index theorem localizes contributions to the fixed points of the action of R, that

is to the north and south poles of S4. Therefore, the relevant index corresponds to the

equivariant index of the vectormultiplet and hypermultiplet complexes of the N = 2 theory

in the Ω-background, to which the N = 2 gauge theory on S4 reduces at the poles. The

presence of a ’t Hooft loop, however, introduces a further contribution, arising from the

equator, where the operator is supported.

6.1 Review of the Atiyah-Singer equivariant index theory

Consider a pair of vector bundles (E0, E1) over a manifold M . Let Vi = Γ(Ei) be the space

of sections of Ei, i = 1, 2.

Let T = U(1)n be the maximal torus of a compact Lie group G acting on M and the

bundles Ei, and let D : V0 → V1 be an elliptic differential operator commuting with the

G-action. In this situation we can define the G-equivariant index of the operator D as a

formal character

indD(t) = trH0 t− trH1 t t = (t1, t2, . . . , tn) ∈ T , (6.6)

where H0 = kerD,H1 = cokerD. If D is elliptic and M is compact, H0 and H1 are finite

dimensional vector spaces.

The index does not depend on small deformations of the operator D and, therefore, is

a topological invariant. If the action of G on M has a discrete set of fixed points, Atiyah

and Singer represent the index as a sum over the set of fixed points F

indD(t) =
∑

p∈F

trE0(p) t− trE1(p) t

detTMp(1− t)
. (6.7)

Each fixed point contribution to the Atiyah-Singer index formula (6.7) is a rational

function in t. For an elliptic operator D on a compact manifold M the sum over all of

the fixed point contributions to the index is a finite Laurent polynomial in t = (t1, . . . , tn),

since the spaces H i are finite dimensional.

The basic example is the equivariant index of the Dolbeault operator ∂ : Ω0,0(C) →
Ω0,1(C) from the space of functions to the space of (0, 1)-forms on the complex planeM = C

under the T = U(1) action z 7→ tz. Computing the index of ind(∂)(t) directly using (6.6)

we just need to evaluate the U(1) character on the space of holomorphic functions

f(z) =
∑

k≥0

ckz
k , (6.8)

since coker ∂ is trivial in C. Under the U(1) action the functions transform as f̃(z̃) = f(z)

for z̃ = tz, that is f̃(z) = f(t−1z). Hence ck 7→ c̃k = t−kck. Therefore

ind(∂)(t) =

∞
∑

n=0

t−n =
1

1− t−1
, (6.9)

where the last equality should be understood formally since for |t| = 1 the series does not

actually converge.
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On the other hand, we can evaluate ind(∂)(t) using the Atiyah-Singer fixed point

theorem (6.7). Since there is a single fixed point at z = 0 of the U(1) action, we get39

ind(∂)(t) =
1− t

(1− t)(1− t−1)
=

1

1− t−1
, (6.10)

thus reproducing the previous computation.

The index theory for elliptic operators can be generalized to transversally elliptic op-

erators [21]. Let T be the maximal torus of a Lie group G that acts on a manifold M . An

operator D on M is called transversally elliptic with respect to the G action on M if it is

elliptic in all directions transversal to the G-orbits on M . As in the elliptic case, the index

of D possesses the excision property. Therefore the index can be computed as a sum of

local contributions, a sum over the fixed points of the G action. The total index indD(t)

is an infinite formal Laurent series
∑

n cnt
n with n ∈ Z, since the cohomology spaces H i

can be infinite dimensional. However, for each cn, the multiplicity of the representation n

in ⊕(−1)iH i, is finite. Atiyah-Singer theory allows us to find cn unambiguously since the

theory specifies whether each fixed point contribution is to be expanded in powers of t or

t−1, after choosing a deformation of the symbol for D.40

In the paper [2], the partition function and the Wilson loop expectation value were

computed, with the one-loop contributions evaluated using an index theorem. In the set-

up of [2] and the current paper, the manifold is M = S4 and the spacetime part of the

relevant group G = U(1)J+R ×G×GF is generated by J (2.4). The differential operators

that appear in the quadratic part of Q̂ · V̂ fail to be elliptic on the equatorial S3, but they

are still transversally elliptic and the generalized index theorem can be applied. In [2] the

index is a sum of local contributions from the north and south poles of S4, which are the

fixed points of J .

When we turn on the singular monopole background (3.45), there is an extra compli-

cation since some of the fields are singular along the equatorial S1 where the loop operator

is inserted. This gives rise to an extra contribution to the one-loop determinant, associated

with the equator of S4. We believe that the index theorem for transversally elliptic op-

erators can be generalized to the situation where such singular monopoles are present. A

similar index theorem was established in [22] using a relation between singular monopoles

and U(1)-invariant instantons [14]. Assuming the existence of such an index theorem, we

will compute local contributions from the equatorial S1, for which there is a natural expan-

sion. The specific choice of a deformation of the symbol made in [2] led to the expansion

in positive and negative powers of t at the north and south poles, respectively. In the

presence of a ’t Hooft loop we will apply the same deformation, and therefore obtain the

same rules for expansion at the north and south poles.

39The fiber (E0)z=0 transforms trivially, the fiber (E1)z=0 transforms as f̃z = fz(dz/dz̃) = fzt
−1

= fzt for

|t|2 = 1, hence the numerator in the Atiyah-Singer theorem is (1− t). The denominator is detTMp
(1− t) =

(1− t)(1− t−1) as (z, z) 7→ (tz, t−1z).
40After summing over fixed points, cn is independent of the choice of deformation.
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6.2 North and south pole contributions

We wish to compute the vectormultiplet and hypermultiplet one-loop determinant contri-

butions from the north and south poles, which are the fixed point set of J . The relevant

complex for the vectormultiplet calculation is the self-dual complex while for the hyper-

multiplet it is the Dirac complex. We now consider the associated equivariant indices and

one-loop determinants.

Vectormultiplet determinant. As in [2], near the north pole, we consider the com-

plex41 of vector bundles associated with linearization of the anti-self-dual equation F+ = 0

on R
4

DSD : Ω0 d→ Ω1 d+→ Ω2+ , (6.11)

where d is the de Rham differential and d+ is the composition of the de Rham differential

and self-dual projection operator. We want to compute the equivariant index of DSD with

respect the T = U(1)ε1 ×U(1)ε2 action which rotates R4 = C⊕C as (z1, z2) 7→ (t1z1, t2z2).

For the moment we take t1 and t2 generic though we will set t1 = t2 in the end, as

U(1)J+R corresponds to (U(1)ε1 × U(1)ε2)diag in the self-dual/anti-self-dual complex at

the north/south pole. The Atiyah-Singer formula (6.7) for the complexification of (6.11)

gives42

ind(DSD,C)(t1, t2) =
(t1t2 + t−1

1 t−1
2 + 2)− (t1 + t−1

1 + t2 + t−1
2 )

(1− t1)(1− t−1
1 )(1− t2)(1− t−1

2 )

=
1 + t1t2

(1− t1)(1− t2)
. (6.12)

The index for the real complex (6.11) is the half of (6.12).

Unless there is a further input from the transversally elliptic Atiyah-Singer theory, we

can expand the function (6.12) in various ways depending on whether we take |ti| > 1 or

|ti| < 1. For example, expanding in positive powers of t1, t2 we get

1 + t1t2
(1− t1)(1− t2)

=
∑

n1,n2≥0

(1 + t1t2)t
n1

1 t
n2

2 , (6.13)

while expanding in negative powers of t1, t2 we get

1 + t1t2
(1− t1)(1− t2)

=
∑

n1,n2≥0

(1 + t−1
1 t−1

2 )t−n1

1 t−n2

2 , (6.14)

and there are several other available expansions as well.

In order to calculate the one-loop determinant for the N = 2 vectormultiplet, we must

consider the self-dual complex (6.11) tensored with the adjoint representation of the gauge

41The complex (6.11) can be turned into the two-term complex in (6.6) by “folding” the complex as

DSD : Ω1 d
∗⊕d+
−→ Ω0 ⊕ Ω2+, where d∗ is the conjugate of d.

42The weights of the U(1)2 action are: {(0, 0)} for Ω0, {(±1, 0), (0,±1)} for Ω1, and

{(0, 0), (1, 1), (−1,−1)} for Ω2+.
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group G, and study the U(1)ε1 × U(1)ε2 × G × GF-equivariant index for such a complex

(see (6.1)). It is given by43

ind(Dvm) =
(1 + t1t2)

2(1− t1)(1− t2)
χadj(g), g ∈ G , (6.15)

where χadj(g) is the character of G in the adjoint representation. More explicitly, let us

denote t1 = exp(iε1), t2 = exp(iε2) and g = exp(iâ), where ε1, ε2 and â are the elements

of the Lie algebra of U(1)ε1 × U(1)ε2 and of the Cartan subalgebra t of G respectively.

Denoting by w be the weights of the adjoint representation of G, the index (6.15) can be

written as

ind(Dvm)(ε1, ε2, â) =
(1 + eiε1+iε2)

2(1− eiε1)(1− eiε2)

∑

w∈adj

eiw·â . (6.16)

As mentioned earlier, the one-loop determinant in the localization computation of the

’t Hooft loop path integral can be computed as the product over all the weights of the gen-

erator R of the U(1)J+R×G×GF action on the space of fields (see (6.1)). Mathematically,

the product of weights computes the equivariant Euler class of the normal bundle to the

fixed point set. The corresponding index or equivariant Chern character determines the

one-loop determinant or equivariant Euler character by taking the weighted product of all

weights extracted from the exponents in the Chern character (using (6.5)). Therefore, we

will calculate the one-loop determinant of the N = 2 vectormultiplet by determining the

weights under the action of U(1)J+R×G×GF from the index (6.16). We remove the terms

with w = 0 because they are independent of â, so that we are only left with the sum over

the roots α of g.

Let us now consider the north pole contribution to the index and the associated one-

loop determinant for the vectormultiplet. As we mentioned earlier, the deformation of the

symbol requires that the index in (6.16) be defined by taking the positive expansion for

the U(1)ε1 × U(1)ε2 weights as in (6.13). This uniquely determines the weights under the

action of U(1)ε1 ×U(1)ε2 ×G×GF to be

n1ε1 + n2ε2 + α · â for n1, n2 ≥ 0 ,

(n1 + 1)ε1 + (n2 + 1)ε2 + α · â for n1, n2 ≥ 0
(6.17)

with multiplicities 1/2. The one-loop determinant contribution from the north pole of the

N = 2 vectormultiplet labeled by a root α of the Lie algebra g is therefore

∏

n1,n2≥0

[n1ε1 + n2ε2 + α · â]1/2 [(n1 + 1)ε1 + (n2 + 1)ε2 + α · â]1/2 . (6.18)

In our localization calculation on S4, we must specialize to the values ε1 = ε2 = ε =

1/r, which correspond to the U(1)J+R symmetry. The expression is divergent, and we

regularize it by identifying it with the Barnes G-function [23] (see for example section 5.17

43Recall that GF acts trivially on vectormultiplet fields.
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in [24]). It is an analytic function that has a zero of order n at x = −n for all integers

n > 0, and can be defined by the infinite product formula

G(1 + z) = (2π)z/2e−((1+γ)z2+z)/2
∞
∏

n=1

(

1 +
z

n

)n
e−z+

z2

2n . (6.19)

Therefore, the corresponding vectormultiplet one-loop determinant is given by44

Zvm
1-loop,pole(â) =

∏

α

G1/2

(

α · â
ε

)

G1/2

(

2 +
α · â
ε

)

. (6.20)

At the other fixed point — at the south pole — we need to consider the anti-self-dual

complex and an expansion in negative powers of t1 and t2. However, the index of the

anti-self-dual complex at the south pole coincides with the index of the self-dual complex

at the north pole. Relative to the north pole, the difference amounts to the sign change

(ε1, ε2) → (−ε1,−ε2), which can be absorbed into the redefinition of roots α→ −α, which
just exchanges positive and negative roots, yielding once again (6.20).

Therefore, recalling that the equivariant parameters for the G-action at the north and

south poles are fixed (4.13), (4.14)

â(N) = ia− ig2θ
B

16π2r
− B

2r
â(S) = ia− ig2θ

B

16π2r
+
B

2r
, (6.21)

we obtain that the vectormultiplet one-loop determinant contributions from the north and

south poles are

Zvm
north,1-loop = Zvm

1-loop,pole(â(N)) Zvm
south,1-loop = Zvm

1-loop,pole(â(S)) , (6.22)

with Zvm
1-loop,pole(â) given in (6.20). Furthermore, the south pole contribution is the complex

conjugate of the north pole

Zvm
south,1-loop = Z

vm
north,1-loop , (6.23)

precisely the same relation that we found earlier for the classical and instanton contribu-

tions.

Let us now compare these results with the computation in [2]. In the absence of a ’t

Hooft loop we have â(N) = â(S) = ia, and

|Zvm
1-loop,pole(â)|2 (6.24)

is precisely the one-loop determinant for the vectormultiplet obtained in [2], up to the

ghosts-for-ghosts contributions. The ghosts-for-ghosts were introduced to gauge-fix the

constant gauge transformations on S4, and they had the effect of removing the Vander-

monde
∏

α>0 α·â from the one-loop factor, while the square of the Vandermonde reappeared

as the volume of the adjoint orbit {gâg−1|g ∈ G}. In the approach of this paper, we do not

introduce ghosts-for-ghosts, and the Vandermonde is included in the one-loop factor (6.20).

44 For asymptotically free gauge theories see discussion after equation (6.32).
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Hypermultiplet determinant. The index of the complex for the Dirac operator DDirac

that maps the space of positive-chirality spinors S+ to the space of negative-chirality spinors

S− in R
4

DDirac : S
+ → S− , (6.25)

with a suitable inversion of the grading, computes the contribution of a hypermultiplet

to the one-loop determinant [2]. By applying the fixed-point formula (6.7) to the Dirac

complex, we obtain45

indDDirac =
t
1/2
1 t

1/2
2 + t

−1/2
1 t

−1/2
2 − (t

1/2
1 t

−1/2
2 + t

−1/2
1 t

1/2
2 )

(1− t1)(1− t−1
1 )(1− t2)(1− t−1

2 )

=
t
1/2
1 t

1/2
2

(1− t1)(1− t2)
. (6.26)

The kinetic operator for a hypermultiplet in the adjoint representation of the gauge

group and the one-loop factor were analyzed in [2] in detail. The corresponding index is

given by tensoring the Dirac bundle with the adjoint bundle. We also need to remember

that the GF = SU(2) flavour symmetry associated to an adjoint hypermultiplet acts on the

bundle. Therefore the U(1)ε1 ×U(1)ε2 ×G×GF equivariant index for this complex, taking

into account the inversion of the grading, is given by

indDhm
adj(ε1, ε2, â, m̂) = − e

1
2
(iε1+iε2)

(1− eiε1)(1− eiε2)

eim̂ + e−im̂

2

∑

w∈adj

eiw·â . (6.27)

We recall that the equivariant parameter m̂ = im for the SU(2) flavour symmetry, which

takes values in the SU(2) Cartan subalgebra, is interpreted as the mass m of the adjoint

hypermultiplet.

Given the formula for the equivariant index for the hypermultiplet in the adjoint rep-

resentation, group theory completely determines the corresponding index for an arbitrary

representation R of the gauge group. To explain this claim, let us recall that the precise

flavour symmetry depends on the type of matter representation, and that in general we

need to consider half-hypermultiplets although in the end half-hypermultiplets pair up into

full hypermultiplets. For a complex irreducible representation R, half-hypermultiplets al-

ways appear as copies of conjugate pairs NF · (R⊕R), and the flavour symmetry is U(NF).

Half-hypermultiplets in a real irreducible representation R can only arise in an even num-

ber 2NF, in which case the flavour symmetry is enhanced to Sp(2NF).
46 If the irreducible

representation R is pseudo-real, classically an arbitrary number n of half-hypermultiplets

45The index can also be obtained by noting that the Dirac complex in C
2 = R

4 is related to the Dolbeault

operator ∂ : Ω0,0 → Ω0,1 → Ω0,2. The bundle S+ is given by Ω0,0 ⊕ Ω0,2 twisted by K1/2 while S− is

given by Ω0,1 twisted by K1/2, where K is the canonical bundle. We want to compute the equivariant

index of DDirac with respect the T = U(1)ε1 × U(1)ε2 action (z1, z2) 7→ (t1z1, t2z2). Hence up to the twist

by K1/2, which contributes a factor of (t1t2)
1/2 to the index, the Dirac complex (6.25) is isomorphic to

standard Dolbeault complex in C
2. The relative factor t

−1/2
1 t

−1/2
2 between (6.26) and the Dolbeault index

t1t2/[(1− t1)(1− t2)] accounts for the twist by K1/2.
46 In our convention Sp(2N) has rank N . Also Sp(2) = SU(2).
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can appear with SO(n) as the flavour symmetry group, but for odd n an anomaly renders

the theory inconsistent [25]. Thus n = 2NF has to be even and the flavour symmetry is

enhanced to SO(2NF). In every case, the flavour symmetry group acts in the defining rep-

resentation and there are NF mass parameters m̂f = imf with f = 1, . . . NF parametrizing

the Cartan subalgebra of GF. As shown in appendix E, the following expression for the

index holds for a hypermultiplet in an arbitrary representation R of G:

indDhm
R (ε1, ε2, â, m̂f ) = − e

1
2
(iε1+iε2)

2(1− eiε1)(1− eiε2)

NF
∑

f=1

∑

w∈R

(

eiw·â−im̂f + e−iw·â+im̂f
)

. (6.28)

At the north and south poles, we expand the index (6.28) in positive and negative powers

of (t1, t2) respectively, from which we read the weights of the the U(1)ε1 ×U(1)ε2 ×G×GF

action. Both expansions give rise to identical one-loop determinants, given in terms of the

weights by (6.5).

The relevant hypermultiplet one-loop determinant of the theory on S4 is obtained

by setting ε1 = ε2 = ε = 1/r, the G-equivariant parameters at the north and south

poles to (6.21) and m̂f = imf , where mf with f = 1, . . . , NF are the masses of the NF

hypermultiplets. Therefore the one-loop determinants of NF massive hypermultiplets in a

representation R of G arising from the north and south poles are given by

Zhm
north,1-loop = Zhm

1-loop,pole(â(N), imf ) Zhm
south,1-loop = Zhm

1-loop,pole(â(S), imf ) .

(6.29)

with 44

Zhm
1-loop,pole(â, m̂f ) =

NF
∏

f=1

∏

w∈R

G−1/2

(

1 +
w · â
ε

− m̂f

ε

)

G−1/2

(

1− w · â
ε

+
m̂f

ε

)

, (6.30)

where w are the weights of the representation R. We note that for an arbitrary representa-

tion R, the hypermultiplet one-loop determinant at the south pole is the complex conjugate

of the determinant at the north pole47

Zhm
south,1-loop = Z

hm
north,1-loop . (6.31)

We can now start gathering the results obtained until now. Combining the vectormul-

tiplet and hypermultiplet determinants given in (6.20) and (6.30), we conclude that the

pole contribution to the one-loop determinant for an arbitrary N = 2 Lagrangian theory

in S4 in the presence of a ’t Hooft operator can be written in terms of

Z1-loop,pole(â, m̂f ) =

∏

α [G (rα · â)G (2 + rα · â)]1/2
∏NF

f=1

∏

w∈R [G (1 + rw · â− rm̂f )G (1− rw · â+ rm̂f )]
1/2

, (6.32)

where we recall that ε = 1/r. Formula (6.32) holds for an arbitrary N = 2 gauge theory

admitting a Lagrangian description, and can be explicitly calculated given the choice of

gauge group G and of a representation R of G under which the hypermultiplet transforms.

47The expression |Zhm
north,1-loop|

2 reproduces the one-loop determinant obtained in [2] when there is no ’t

Hooft loop, corresponding to â(N) = â(S) = ia, m̂f = imf .
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For asymptotically free gauge theories, the localization calculation is most accurately

performed by embedding such a theory into one that is ultraviolet finite, which then flows

to the asymptotically free theory upon taking the mass parameters of the finite theory

to be very large. As a prototype of this construction, N = 2 pure super Yang-Mills

with arbitrary gauge group G can be regulated by embedding it in the N = 2∗ theory,

consisting of a vectormultiplet and massive hypermultiplet in the adjoint representation

of G, by then taking the mass of the hypermultiplet to be very large. This construction

exists for an arbitrary asymptotically free four dimensional N = 2 gauge theory. Given an

asymptotically free N = 2 gauge theory, the end result of this procedure in the localization

computation is that the one-loop determinants are given by (6.32) for the field content of

the asymptotically free theory, together with the replacement of the bare coupling constant

τ of the theory with the familiar one-loop corrected running coupling constant τren.

The complete one-loop determinants in our localization computation arising at the

north and south poles are thus given by

Znorth,1-loop = Z1-loop,pole(â(N), imf ) Zsouth,1-loop = Z1-loop,pole(â(S), imf ) , (6.33)

with â(N) and â(S) in (6.21). Combining the one-loop result with the classical and in-

stanton contributions computed in the previous two sections, we have that the expectation

value of a ’t Hooft loop labeled by a coweight B in an N = 2 gauge theory with gauge

group G and NF massive hypermultiplets in a representation R of G is given by48

〈T (B)〉 ≃
∫

da

∣

∣

∣

∣

Zcl

(

ia− B

2r
, q

)

Z1-loop,pole

(

ia− B

2r
, imf

)

Zinst

(

ia− B

2r
,
1

r
+ imf ,

1

r
,
1

r
, q

)∣

∣

∣

∣

2

(6.34)

with Zcl, Z1-loop,pole and Zinst given in (4.10), (6.32) and (5.2) respectively.

Therefore, the path integral completely factorizes into north and south pole contribu-

tions as

〈T (B)〉 ≃
∫

daZnorth · Zsouth =

∫

da |Znorth|2 , (6.35)

with

Znorth = Zcl (â(N), q)Z1-loop,pole(â(N), imf )Zinst

(

â(N),
1

r
+ imf ,

1

r
,
1

r
, q

)

Zsouth = Zcl (â(S), q)Z1-loop,pole(â(S), imf )Zinst

(

â(S),
1

r
+ imf ,

1

r
,
1

r
, q

)

,

(6.36)

which furthermore are complex conjugate to each other

Zsouth = Znorth . (6.37)

When the gauge theory is asymptotically free, we must replace the bare instanton fugacity q

by the renormalized one qren in Znorth and Zsouth. The ≃ symbol is used in (6.34) and (6.35)

48After trivially shifting the integration variable ia→ ia+ ig2θ B
16π2r

.
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since in the presence of a ’t Hooft loop operator, an extra contribution supported on the

loop must be included, to which we now turn.49

6.3 Equator contribution

In the absence of a ’t Hooft loop, the index is a sum of local contributions from the north and

south poles [2], which are the fixed points of J . In defining the ’t Hooft loop path integral

in gauge theory, we must impose boundary conditions along the loop compatible with the

field configuration of a singular monopole. In this subsection we calculate the contributions

to the vectormultiplet and hypermultiplet indices as well as one-loop determinants from

the equatorial S1 where the ’t Hooft loop is located, which are functions of the weights for

the group action U(1)J+R ×G×GF generated by Q2 (also by Q̂2).

Let us recall from section 3.1 that the isometry generator J in Q2 acts on B3 × S1 as

a spatial rotation along the x3-axis as well as a shift in the periodic coordinate τ . The

conformal killing spinor ǫQ in (3.14) with which we localize the ’t Hooft loop path integral

can be written as

ǫQ = e−τ
Γ56+Γ78

4

(

1− i
xi

2r
Γ̃iΓ

120

)

ε̂s . (6.38)

Note that ǫQ changes its sign when going around the S1, under τ → τ + 2π. Therefore

while all the bosons are periodic, all the fermions in the vielbein basis are antiperiodic.

In particular, within each supermultiplet bosons and fermions obey different boundary

conditions around S1.

Recall that Q2 also includes the U(1)R transformation (see (3.20)), which is generated

by J56 + J78. When we apply the index theorem it is convenient to redefine fields of the

theory and ǫQ using U(1)R as50

ǫQ → eτ
Γ56+Γ78

4 ǫQ ,

AM →
(

eτ
J56+J78

2

)

MNAN ,

Ψ → eτ
Γ56+Γ78

4 Ψ ,

χ→ χ ,

(6.39)

where we have normalized the ten-dimensional Lorentz generators in the vector representa-

tion as (JMN )PQ = δMP δNQ−δMQδNP and used that U(1)R is generated by Γ56+Γ78 when

acting on spinors. After the field redefinition, the whole vectormultiplet is periodic, and

all fields in the hypermultiplet are antiperiodic.51 This redefinition makes the spinor ǫQ

49In section 7 we will include yet another contribution due to monopole screening, which is non-

perturbative in nature.
50Here we are using ten dimensional notation for the bosonic fields of the N = 2 theory, so that AM =

{Aµ, q, q̃,Φ9,Φ0} with M = 1, . . . , 9, 0.
51The R-symmetry group U(1)R acts non-trivially on the fermions in the vectormultiplet and on the

scalars in the hypermultiplet.
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independent of τ . The shift in τ now induces an R-symmetry transformation52 in addition

to the S1 part of isometry J .

Vectormultiplet determinant. As we saw in section 3.2, the localization equations

near the location of the ’t Hooft operator — which wraps the S1 at the origin in B3 — are

approximately the Bogomolny equations

∗3 F = DΦ (6.40)

in B3 × S1. The differential operator that appears in the kinetic term for the vector-

multiplet is obtained by linearizing the Bogomolny equations. Linearization of the gauge

transformation and the Bogomolny equations is described by the complex53

DBogo : Ω
0 → Ω1 ⊕ Ω0 → Ω2 (6.41)

in R
3−{0}. In appendix F, we explain Kronheimer’s observation that the Bogomolny equa-

tions in R
3 with a monopole singularity at the origin — where the ’t Hooft operator resides

— is equivalent to the anti-self-duality equations for gauge fields in R
4 invariant under

the action of a spacetime symmetry group U(1)K . Using Kronheimer’s correspondence, we

can obtain this complex by projecting the self-dual complex (6.11) to the U(1)K-invariant

sections. We can compute the index of the complex (6.41) by averaging the index of the

self-dual complex over the U(1)K action, picking up the contributions only from the U(1)K
invariant sections.54

In equation (6.9), the index for the Dolbeault operator ∂ on C was obtained as the

U(1) character on the space of holomorphic functions. In this toy example the index is an

infinite power series corresponding to infinitely many monomials. The same logic can be

used to derive the index (6.12) for the complex (6.11) through an expansion in a basis of

local sections. Among such sections, those which are invariant under U(1)K correspond to

the ordinary spherical harmonics for the bundles in three dimensions. We can keep track

of the original expansion by introducing an infinitesimal positive parameter δ > 0:

indδ(DSD)(t1, t2) =
(1 + t−1

1 t−1
2 )(1− t1)(1− t2)

2(1− e−δt1)(1− e−δt−1
1 )(1− e−δt2)(1− e−δt−1

2 )
. (6.42)

We now parametrize the U(1)×U(1) weights as

t1 = e−iν+i
1
2
ε , t2 = eiν+i

1
2
ε , (6.43)

where ν is the parameter for the group U(1)K used in Kronheimer’s construction: (C2 −
{0})/U(1)K ≃ R

3 − {0}. The parameter ε is the angle for a rotation along the x3-axis

52To be precise, the R-symmetry accounted for by a shift in τ is half the full amount. The rest combines,

as in topological twist, with the spatial part of J so that gauginos transform as 0- and 1-forms, and the

hypermultiplet scalars as spinors under U(1)J+R.
53This complex can also be turned into a two-term complex as in (6.6) by folding the complex.
54A similar computation was done in [22], where more than one singular monopole was considered on a

compact manifold. While our integrand to be averaged is a rational function with poles on the integration

contour, the integrand in [22] was a polynomial due to cancellations among singular monopoles.
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in R
3, and the factors of 1/2 ensure that for ε = 2π this rotation acts as −1 on C

2 even

though it acts as +1 on R
3.

In order to describe the singular monopole background due to the ’t Hooft operator, we

also need to twist by the adjoint gauge bundle on which the gauge group G and U(1)K act

as eâ+Bν , with B being the magnetic weight labeling the operator. The four-dimensional

sections invariant under U(1)K can be identified with the monopole harmonics [26] of the

corresponding bundles over R3 − {0}. The index for the self-dual complex twisted by the

gauge bundle is given by

indδ(DSD)(ν, ε, â) =
(1 + e−iε)(1− e−iν+iε/2)(1− eiν+iε/2)

2(1−e−δeiν−iε/2)(1−e−δe−iν+iε/2)(1−e−δe−iν−iε/2)(1−e−δeiν+iε/2)
×
∑

w∈adj

eiw·â+iw·Bν . (6.44)

By averaging over U(1)K , we get the desired index for the complex (6.41)

ind(DBogo) = lim
δ→0

∫ 2π

0

dν

2π
indδ(DSD)(ν, ε, â)

= lim
δ→0

∮

|z|=1

dz

2πi

(1 + e−iε)(z − eiε/2)(1− eiε/2z)

2(1− e−δe−iε/2z)(z − e−δeiε/2)(z − e−δe−iε/2)(1− e−δeiε/2z)

×
∑

w∈adj

e−iw·âz−w·B , (6.45)

where we have renamed w as w → −w. We can evaluate the integral by summing over

residues for the poles inside the unit circle. For w ·B > 0 a pole at z = 0 contributes

∑

w·B>0

e−iw·â
(1 + e−iε)

2(w ·B − 1)!

(

∂

∂z

)w·B−1
∣

∣

∣

∣

∣

z=0

1

(1− e−iε/2z)(z − e−iε/2)

= −e
iε/2 + e−iε/2

2

∑

w·B>0

e−iw·â
(

ei
w·B−1

2
ε + ei

w·B−3
2

ε + . . .+ e−i
w·B−1

2
ε
)

= −e
iε/2 + e−iε/2

2

∑

w·B>0

e−iw·â
ei(w·B)ε/2 − e−i(w·B)ε/2

eiε/2 − e−iε/2
. (6.46)

In addition there are always two poles at z = e−δeiε/2, e−δe−iε/2. In the limit δ → 0, the

contribution of the pole at z = e−δeiε/2 is given by

(1 + e−iε)(e−δeiε/2 − eiε/2)(1− eiεe−δ)

2(1− e−2δ)(e−δeiε/2 − e−δe−iε/2)(1− e−2δeiε)

∑

w∈adj

e−iw·âe−w·B(−δ+iε/2)

→ −1

4

eiε/2 + e−iε/2

eiε/2 − e−iε/2

∑

w∈adj

e−iw·âe−iw·Bε/2 , (6.47)

– 37 –



J
H
E
P
0
5
(
2
0
1
2
)
1
4
1

while the pole at z = e−δe−iε/2 contributes

(1 + e−iε)(e−δe−iε/2 − eiε/2)(1− e−δ)

2(1− e−2δe−iε)(e−δe−iε/2 − e−δeiε/2)(1− e−2δ)

∑

w∈adj

e−iw·âe−w·B(−δ−iε/2)

→ 1

4

eiε/2 + e−iε/2

eiε/2 − e−iε/2

∑

w∈adj

e−iw·âei(w·B)ε/2 . (6.48)

Combining the residues we get

ind(DBogo) = −e
iε/2 + e−iε/2

2

∑

w·B>0

e−iw·â
ei(w·B)ε/2 − e−i(w·B)ε/2

eiε/2 − e−iε/2

+
1

4
(eiε/2 + e−iε/2)

∑

w·B 6=0

e−iw·â
ei(w·B)ε/2 − e−i(w·B)ε/2

eiε/2 − e−iε/2

= −1

4
(eiε/2 + e−iε/2)

∑

α>0

(eiα·â + e−iα·â)
ei(α·B)ε/2 − e−i(α·B)ε/2

eiε/2 − e−iε/2
. (6.49)

In the last line we replaced the sum over the adjoint weights satisfying w · B > 0 by the

sum over positive roots α > 0. This is possible because by taking B to be in the Weyl

chamber all such w’s are positive roots.

For the vectormultiplet one-loop determinant computation, we also need to tensor with

the space of periodic functions on S1. Thus we need to compute
∑

n∈Z e
inεind(DBogo). A

simplification arises because the parameter n is summed over, and can be shifted by an

integer freely. Finally, the equatorial index for the vectormultiplet is

ind(Dvm
eq )(ε, â) =

∑

n∈Z

einε ind(DBogo)

= −
∑

n∈Z

einε
eiε/2 + e−iε/2

4

∑

α>0

(eiα·â + e−iα·â)
(

ei
α·B−1

2
ε + ei

α·B−3
2

ε + . . .+ e−i
α·B−1

2
ε
)

= −
∑

α>0

(α ·B)
eiα·â + e−iα·â

2
×
∑

n∈Z

{

einε if α ·B is even,

ei(n+1/2)ε if α ·B is odd.
(6.50)

Note that we can write the last sum as
∑

n∈Z e
i(n+α·B/2)ε in both cases.55 Applying the

rule (6.5) to the index (6.50), we obtain the one-loop determinant56

Zvm
1-loop,eq(â, B) =

∏

n∈Z

∏

α>0

(

nε+
α ·B
2

ε+ α · â
)−α·B/2(

nε+
α ·B
2

ε− α · â
)−α·B/2

=
∏

α>0

[

sin

(

πα ·
(

â

ε
+
B

2

))]−α·B

. (6.51)

55Physically, half-odd integer coefficients appear in the exponential for odd α · B because the relation

between the angular momentum and statistics is reversed when the monopole charge is odd [26].
56We regulate the product by identifying it with the product representation of the sine function.
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The equivariant parameter â to be used for the gauge group action at the equator is

the gauge parameter Λ(E) given in (3.26). To evaluate it explicitly, note that the field

strength given in (3.9) leads to the gauge potential

Aτ = ig2θ
B

16π2
r

|~x|

(

1 +
|x|2
4r2

)

+ C (6.52)

where C is a constant. As one sees from (3.5) the S1 parametrized by τ shrinks at |~x| = 2r.

Therefore the component Aτ has to vanish at |~x| = 2r, and this fixes the value of C to

−ig2θ B
16π2 . Then

â(E) = lim
|~x|→0

(

v0Φ0 + v4Aτ
)

= ia− ig2θ
B

16π2r
, (6.53)

where we used the values of v0 and v4 given in (3.27). The singular terms in Φ0 and Aτ
canceled out to leave a finite quantity. Setting ε = 1/r, the equatorial one-loop determinant

for the vectormultiplet is given by

Zvm
equator = Zvm

1-loop,eq

(

ia− ig2θ
B

16π2r
,B

)

. (6.54)

Hypermultiplet determinant. We deal with the hypermultiplet in a similar way. The

relevant differential operator is the Dirac operator plus a coupling to the Higgs field Φ9. In

Kronheimer’s correspondence, this lifts simply to the Dirac operator on C
2 given in (6.26).

We regularize the index (6.26) by specifying the expansion in a local basis as

indδ(DDirac)(t1, t2) =
t
−1/2
1 t

−1/2
2 (1− t1)(1− t2)

(1− e−δt−1
1 )(1− e−δt1)(1− e−δt−1

2 )(1− e−δt2)
. (6.55)

We can twist the Dirac complex by a vector bundle whose sections transform in represen-

tation R of the gauge group. Including the action of the gauge and flavour groups G×GF

as in (6.28), and then averaging over U(1)K , we obtain

ind(DDH) = lim
δ→0

∫ 2π

0

dν

2π
indδ(DDirac)(t1, t2, â, m̂f )

= −1

4

NF
∑

f=1

∑

w∈R,w·B>0

(eiw·â−im̂f + e−iw·â+im̂f )
ei(w·B)ε/2 − e−i(w·B)ε/2

eiε/2 − e−iε/2

+
1

4

NF
∑

f=1

∑

w∈R,w·B<0

(eiw·â−im̂f + e−iw·â+im̂f )
ei(w·B)ε/2 − e−i(w·B)ε/2

eiε/2 − e−iε/2
.(6.56)

We noted above that the hypermultiplet fields are antiperiodic in τ . Thus we must

tensor with the space of anti-periodic functions on S1, and change the sign for the index

because we shift the degrees for physical fields in the complex (as we did already for the

hypermultiplet contribution at the poles). The equatorial index for the hypermultiplet is
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thus

ind(Dhm
R,eq)(ε, â, m̂f ) = −

∑

n∈Z

ei(n+1/2)ε ind(DDH)

=
1

4

NF
∑

f=1

∑

w∈R

|w ·B|(eiw·â−im̂f + e−iw·â+im̂f )×
∑

n∈Z

{

einε if w ·B is even,

ei(n+1/2)ε if w ·B is odd.
(6.57)

Therefore, the one-loop determinant contribution from the equator of NF hypermulti-

plets in a representation R of the gauge group is

Zhm
equator = Zhm

1-loop,R,eq(ia, imf , B) , (6.58)

where

Zhm
1-loop,R,eq(â, m̂f , B) =

NF
∏

f=1

∏

w∈R

[

sin

(

πw ·
(

â

ε
+
B

2

)

− π
m̂f

ε

)]|w·B|/2

. (6.59)

Combining the vectormultiplet (6.51) and hypermultiplet (6.59) determinants, the

complete equator contribution is given by

Z1-loop
equator = Z1-loop,eq

(

ia− ig2θ
B

16π2r
, imf , B

)

(6.60)

with57

Z1-loop,eq(â, m̂f , B) =

∏NF

f=1

∏

w∈R

[

sin
(

πw ·
(

â
ε +

B
2

)

− π
m̂f
ε

)]|w·B|/2

∏

α>0

[

sin
(

πα ·
(

â
ε +

B
2

))]|α·B|
. (6.61)

We are now in the position of writing the exact expectation value of a ’t Hooft loop

in an N = 2 gauge theory on S4 with magnetic weight B. Multiplying the contributions

associated to the poles and the equator, we have that58

〈T (B)〉 =
∫

daZnorth · Zsouth · Z1-loop
equator =

∫

da |Znorth|2 · Z1-loop
equator (6.62)

where

Znorth = Zcl (a(N), q)Z1-loop,pole(a(N), imf )Zinst

(

a(N),
1

r
+ imf ,

1

r
,
1

r
, q

)

Zsouth = Zcl (a(S), q)Z1-loop,pole(a(S), imf )Zinst

(

a(S),
1

r
+ imf ,

1

r
,
1

r
, q

)

Z1-loop
equator = Z1-loop,eq(a(E), imf , B) ,

(6.63)

with Zcl, Z1-loop,pole, Zinst and Z1-loop,eq given in (4.10), (6.32), (5.2) and (6.61).

In section 7 we will identify further non-perturbative corrections to this result arising

due to monopole screening.

57Up to a phase, this expression is valid even if B is not in the Weyl chamber.
58Shitfing variables ia→ ia+ ig2θ B

16π2r
.

– 40 –



J
H
E
P
0
5
(
2
0
1
2
)
1
4
1

6.4 Examples

The formulae we have found for the one-loop determinants in the localization computation

is valid for an arbitrary N = 2 gauge theory on S4 admitting a Lagrangian description.

Combining the contributions from the north pole, south pole and equator we get for a ’t

Hooft operator of magnetic weight B

Z1-loop,pole

(

ia− B

2
, im

)

Z1-loop,pole

(

ia+
B

2
, im

)

Z1-loop,eq(ia, im) . (6.64)

The choice of gauge group G and representation R characterizing the N = 2 theory is

encoded in the one-loop determinant formulae (6.32) and (6.61) in the choice of the root

system {α}, which characterizes the gauge group, and of the weights {w} of R. Here we

write explicitly these formulae for two simple N = 2 gauge theories with G = SU(N):

N = 2∗ and N = 2 conformal SQCD. We also consider N = 4 super Yang-Mills, which is

a special case of N = 2∗. From now on we set ε = r = 1.

The N = 2∗ SU(N) theory. For this theory the hypermultiplet is in the adjoint

representation and has mass m. We parametrize

a = i diag(a1, . . . , aN ) , (6.65)

with
∑

i ai = 0. The magnetic weight B of an arbitrary ’t Hooft loop is

B = i diag(n1, . . . , nN )− i1N×N
1

N

∑

i

ni ni ∈ Z . (6.66)

Therefore, the pole one-loop contribution (6.32) is given by

Z1-loop,pole(â, m̂) =





∏

i 6=j

G(âi − âj)G(2 + âi − âj)

G(1 + âi − âj − m̂)G(1 + âi − âj + m̂)





1/2

. (6.67)

Up to a phase, we have for the equator one-loop contribution (6.61)

Z1-loop,eq(ia, im,B)

=





∏

i<j

sinh
[

π(ai − aj)− πm− πi
ni−nj

2

]

sinh
[

π(ai − aj) + πm− πi
ni−nj

2

]

sinh2
[

π(ai − aj)− πi
ni−nj

2

]





|ni−nj |

2

.(6.68)

If we further restrict to the special case of G = SU(2), so that

a = i diag(a,−a) B = i diag(p/2,−p/2) , α = i diag(1,−1) , (6.69)

we have that α·B ≡ −Tr(αB) = p. Here the new a is a real number, and p is a non-negative

integer (it is twice the usual SU(2) spin). The pole contribution (6.61) is thus

Z1-loop,pole(â, m̂) =

(

G(2â)G(2 + 2â)G(−2â)G(2− 2â)

G(1 + 2â+ m̂)G(1 + 2â− m̂)G(1− 2â+ m̂)G(1− 2â− m̂)

)1/2

,

(6.70)
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while the equator contribution (6.61) is

Z1-loop,eq(ia, im, p) =















sinhp/2[π(2a+m)] sinhp/2[π(2a−m)]

sinhp(2πa)
for p even,

coshp/2[π(2a+m)] coshp/2[π(2a−m)]

coshp(2πa)
for p odd.

(6.71)

The N = 4 SU(N) theory. We note that for the N = 4 super Yang-Mills theory,

obtained by setting m = 0 in the N = 2∗ expressions, the equatorial one-loop contri-

bution (6.61) becomes trivial for arbitrary gauge group G. Furthermore, in N = 4 super

Yang-Mills, the one-loop pole contribution (6.32) reduces to the Vandermonde determinant

corresponding to the gauge group G

∏

α>0

α · â . (6.72)

For N = 4 super Yang-Mills, the one-loop factors trivialize. This result was already

demonstrated in the perturbative computation of the ’t Hooft loop path integral in [9] (see

also [18, 27]).

Conformal SQCD. This theory has gauge group SU(N) and NF = 2N massive hyper-

multiplets in the fundamental representation of SU(N) with massesmf with f = 1, . . . , 2N .

We are interested in the ’t Hooft loop specified by the magnetic weight

B = i diag(n1, . . . , nN )
∑

i

ni = 0 . (6.73)

Dirac quantization requires that ni ∈ Z. The one-loop pole contribution (6.61) is given by

Z1-loop,pole(â, m̂f ) =

(

∏

i 6=j G(âi − âj)G(2 + âi − âj)
∏NF

f=1

∏N
i=1G(1 + âi − m̂f )G(1− âi + m̂f )

)1/2

. (6.74)

Up to a phase, the equatorial one-loop contribution (6.61) is given by

Z1-loop,eq(ia, imf , B) =

∏2N
f=1

∏N
j=1

(

sinh
[

πaj − πmf − πi
nj
2

])|nj |/2

∏

i<j

(

sinh
[

π(ai − aj)− πi
ni−nj

2

])|ni−nj |
. (6.75)

As in (6.71), each sinh becomes cosh when nj in the numerator or ni−nj in the denominator

is odd.

Specializing further to G = SU(2), we have NF = 4 fundamental hypermultiplets.

With the same parametrization as in the N = 2∗ case, p = 2n needs to be even for Dirac

quantization. Up to a phase, the one-loop factor (6.32) is

Z1-loop,pole(â, m̂f )

=

(

G(2â)G(2 + 2â)G(−2â)G(2− 2â)
∏4
f=1G(1 + â− m̂f )G(1− â− m̂f )G(1− â+ m̂f )G(1 + â+ m̂f )

)1/2 (6.76)
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for the north and south poles, and

Z1-loop,eq(ia, imf , 2n) =



















∏4
f=1 sinh

n/2[π(a+mf )] sinh
n/2[π(a−mf )]

sinh2n(2πa)
for n even,

∏4
f=1 cosh

n/2[π(a+mf )] cosh
n/2[π(a−mf )]

sinh2n(2πa)
for n odd

(6.77)

for the equator.

We note that for real values of ai and mf , one encounters no branch point upon

integrating over ai in (6.62). When the exponent of a sinh is a half-odd integer, the sinh

actually becomes a cosh and has no zero.

7 Non-perturbative effects of monopole screening

7.1 Physical picture of monopole screening

In the absence of a ’t Hooft loop, Q-invariance requires the curvature F to vanish every-

where on S4, except at the north and south poles.59 If we allowed only smooth configura-

tions, we would conclude that only trivial gauge field configurations contribute. As shown

in [2], however, localization permits instanton corrections at the north and south poles,

which are precisely captured by the Nekrasov partition function.

One can argue in two steps that such corrections are necessary [2]. First, Q-invariance

requires that the field strength F vanish only away from the north and south poles. If

singular configurations arise as a limit of smooth configurations, there can be contributions

to the path integral localized at the poles. Second, the localization Lagrangian Q ·V in the

neighborhood of the poles is approximately that of the twisted N = 2 Lagrangian in the Ω-

background in R
4 with the specific values of the equivariant parameters ε1 = ε2 = 1/r. The

approximation becomes exact at the poles. Building on the earlier work [28–30], Nekrasov

showed that the path integral of such a theory computes the equivariant integral of certain

differential forms defined on the instanton moduli space [8]. The integral can be computed

by a localization formula as a sum over fixed points. The fixed points in the moduli space

of instantons indeed correspond to gauge field configurations that are non-trivial only at

the origin of R4. We studied these instanton corrections in the presence of a ’t Hooft loop

in section 5 and found that the instanton contributions are given by the Nekrasov partition

function at the north and south poles with its arguments shifted due to the insertion of

the ’t Hooft operator at the equator.

In this section we study another type of non-perturbative corrections due to the screen-

ing of magnetic charge associated to a ’t Hooft operator. We begin by explaining how such

corrections arise in our localization framework.

Monopole screening. As we showed in section 3.3 the only possible field configurations

that can contribute to the path integral are those of the form (3.9) in the bulk of S4. They

are only allowed to deviate from (3.9) in an infinitesimal neighborhood of either the poles

59This is a special case of the vanishing theorem in section 3.3.
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or the equator. The deviations at the poles were considered in [2] and have been reviewed

in section 5; they are the small instanton solutions of the anti-self-dual/self-dual equations

that approximate the Q-invariance equations near the poles. In the neighborhood of the

loop, we saw in section 3 that the Q-invariance equations are approximately the Bogomolny

equations. Therefore we should study the monopole moduli space and look for the analog

of small instanton field configurations.

The monopole moduli space Mmono relevant for us is the space of solutions on R
3, up

to gauge transformations, to the Bogomolny equations with a prescribed singularity at the

origin corresponding to the insertion of a ’t Hooft operator. Since we are only interested

in the behavior at the origin, the boundary condition at the infinity of R3 is irrelevant.

It is simplest to consider the solutions that have a vanishing Higgs expectation value at

infinity. The vanishing Higgs vev will allow us to use the ADHM construction of instantons

to describe the monopole moduli space in section 7.2.60 We will describe the moduli space

explicitly in the case G = SU(2). For the moment we proceed assuming that G is a general

Lie group.

The magnetic charge of the singular monopole configuration created by the ’t Hooft

operator is specified by a coweight w ≡ B. Generally, smooth monopoles that surround

the singular monopole screen its magnetic charge so that the asymptotic behavior of the

fields at infinity is that of the background configuration (3.9) with the coweight w replaced

by a smaller coweight v. This is because the magnetic charge of a smooth monopole is

labeled by a coroot of G, and can screen the charge of the singular monopole by that

amount. The coweight v is such that its corresponding weight appears in the irreducible
LG-representation specified by the highest weight corresponding to w. In the terminology

of [31], such v is said to be associated to w. One can show that the magnetic charge v seen

at infinity must have a smaller norm than w by applying a method similar to the one we

used to prove completeness of solutions in section 3.3.61

Denoting by M(w; v) the moduli space of solutions whose asymptotic magnetic charge

is given by v, we have that the relevant moduli space to consider is

Mmono(w) =
⋃

v

M(w; v) , (7.1)

where the union is over coweights v such that (if we identify coweights with weights using

a metric) v is a weight that appears in the highest weight representation specified by w.

The spaces Mmono(w) and M(w; v) are in general singular. To understand the nature

of the singularities in these spaces, it is useful to recall the situation with instantons. The

Uhlenbeck compactified instanton moduli space Minst [32] is singular due to instantons of

zero size. For G = U(N) the moduli space Minst can be conveniently resolved by turning

on a Fayet-Illiopolous parameter for the real ADHM equation. The resolved space Minst

is known to be isomorphic to the moduli space of non-commutative instantons [33], or the

Gieseker resolution [34] in terms of torsion free sheaves.

60When the gauge group G is a classical group the moduli space can be constructed using the ADHM

construction. In this paper we focus on the case where G is U(N) or SU(N).
61The difference w ·w−v ·v can be expressed in terms of the integral of the instanton density, upon lifting

the field configuration to instantons in C
2 using Kronheimer’s correspondence explained in appendix F.
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As explained in [31], a natural resolution Mmono of the moduli space of monopoles with

a monopole singularity labeled by w at the origin involves all the coweights w′ associated

to the coweight w. The coweights w′ represent the magnetic charge at the origin reduced

by the smooth monopoles that are attracted to the singular monopole there. This effect

was called monopole bubbling in [31]. This means that a natural resolution M(w; v) of a

component in (7.1) contains smaller moduli spaces in its boundary,

∂M(w; v) ⊃
⋃

w′

M(w′; v) , (7.2)

with w′ being the coweights such that w′ is associated to w while v is associated to w′. In

the case G = U(N), one can see this structure explicitly using the ADHM construction.

Thus we have the resolution of the whole moduli space

Mmono(w) =
⋃

v

M(w; v) , (7.3)

where the union is over the coweights v associated to w.

We only need to study the neighborhood of the monopole bubbling locus, where all the

smooth monopoles are almost on top of the singular monopole, because only these would

be the approximate solutions to our genuine Q-invariance equation. For example, for gauge

group SU(2) and for a ’t Hooft operator with w = (1,−1) (spin 1) and v = (0, 0) (spin

0) the bubbling locus is the zero-section P
1 in the resolved A1 space M(w; v) = T ∗

P
1 (see

section 7.3 for details). Because Q-invariance implies in particular the invariance under the

U(1)J+R generated by Q2 we are only interested in the U(1)J+R fixed points. Such fixed

points are necessarily in the bubbling locus because when lifted by one dimension so that

monopoles become instantons, the fixed points of the U(1)J+R × U(1)K action sit in the

small-instanton locus; see section 7.2. Thus these fixed points represent all the subleading

saddle points of the original gauge theory path integral. Upon evaluating the path integral,

we need to sum over the fixed points.

At each fixed point of M(w; v), we need to compute the fluctuation determinants.

The common factor that appears for fixed magnetic weight v was computed in section 6.3,

where it was called Z1-loop,eq(ia, imf , v). Let us denote by Zmono(ia, imf ;w; v) the sum of

contributions from fluctuations at the fixed points in a single component M(w; v) divided

by Z1-loop,eq(ia, imf , v). The function Zmono(ia, imf ;w; v) is the monopole analog of the

Nekrasov instanton partition function, whose computation is reviewed in appendix G from

a related point of view.

Therefore, given the decomposition of the moduli space in (7.3), the expectation value

of the ’t Hooft loop operator with magnetic charge B = w takes the form

〈T (w)〉 =
∫

da
∑

v

Zmono(ia, imf ;w, v)Z1-loop,eq(ia, imf , v)

×
∣

∣

∣

∣

Zcl

(

ia− v

2r
, q
)

Z1-loop,pole

(

ia− v

2r
, imf

)

Zinst

(

ia− v

2r
,
1

r
+ imf ,

1

r
,
1

r
, q

)∣

∣

∣

∣

2

.

(7.4)
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Except Zmono(ia, imf ;w; v), all the expressions in the integrand were already calculated in

the previous sections. Our remaining task is to compute this factor.

7.2 ADHM construction of the monopole moduli space

To perform explicit calculations we need an efficient way to describe the monopole moduli

space Mmono. The connection between monopoles and instantons [14] reviewed in ap-

pendix F, combined with the ADHM construction of instantons [35], provides a useful

method to manipulate the monopole moduli space.

Let us briefly review the ADHM construction of instantons in C
2. For simplicity we

will take the gauge group G to be U(N). The basic data in the construction are encoded

in the complex

0 → H α(z)→ H⊗ U ⊕ E∞
β(z)→ H⊗∧2U → 0 , (7.5)

where H ≃ C
k, U ≃ C

2, E∞ ≃ C
N . On U the U(1)K acts as (z1, z2) 7→ (e−iνz1, e

iνz2). The

z-dependent maps α(z) and β(z) are given by

α(z) =







z2 −B2

−z1 +B1

−J






, β(z) = (z1 −B1, z2 −B2,−I) , (7.6)

and their cohomology Ez = Kerβ(z)/Imα(z) is identified with the fiber of the gauge

bundle (in the fundamental representation). We are particularly interested in Ez=0 since

it encodes the singularity of the ’t Hooft loop. The U(1)K action on a vector space V is

specified by the character χ(V ), which is a Laurent polynomial of eiν ∈ U(1)K . The ’t

Hooft loop with charge w = idiag(p1, . . . , pN ) corresponds to the case

χ(E0) =
N
∑

i=1

eipiν . (7.7)

The U(1)K action on (z1, z2) implies that

χ(U) = eiν + e−iν . (7.8)

The characters of H and E∞ take the form

χ(H) = Tr eiKν , χ(E∞) = Tr eiMν , (7.9)

where K is a diagonal k× k matrix and M = diag(q1, . . . , qN ) is a diagonal N ×N matrix

related to the coweight v = i(q1, . . . , qN ) corresponding to the magnetic charge at infinity.

Both K and M have integer entries that we choose to be in the descending order. The

characters of various spaces are related as

χ(E0) = χ(E∞) + (χ(U)− 2)χ(H) , (7.10)

For given w = i(p1, . . . , pN ), the choice of K and M is not necessarily unique, but we

have the non-trivial condition that the whole right hand side of (7.10) has only positive

coefficients.
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The moduli space M(w; v) is given as a hyperKähler quotient of the space of U(1)K-

invariant ADHM data (B1, B2, I, J). The action of U(1)K on (B1, B2, I, J) can be read

off from the complex (7.5) and the action on (z1, z2). In the usual ADHM construction

of the instanton moduli space, we take a quotient by a certain action of the U(k) group.

This action of U(k) on the ADHM data is induced from its natural action on H ≃ C
k.

The choice of K breaks the U(k) symmetry into the commutant subgroup
∏

r U(kr), where

k =
∑

r kr and kr is the number of entries of the r-th largest integer in the diagonal of K.

Thus the moduli space is given as the hyperKähler quotient

M(w, v) =



















(B1, B2, I, J)

∣

∣

∣

∣

∣

∣

∣

∣

∣

−B1 + [K,B1] = 0

B2 + [K,B2] = 0

KI − IM = 0

MJ − JK = 0



















///

∏

r

U(kr) . (7.11)

The hyperKähler quotient denoted by “///” can be implemented by imposing the ADHM

equations

µC ≡ [B1, B2] + IJ = 0 , (7.12)

µR ≡ [B†
1, B1] + [B†

2, B2] + II† − J†J = 0 (7.13)

and then considering the solutions up to the action of
∏

r U(kr). Or alternatively, if we are

only interested in the complex structure, we can drop the real equation µR = 0 and divide

by the complexified group
∏

r U(kr)C. A resolution M(w, v) of the moduli space can be

achieved by setting µR to a non-zero constant matrix instead of requiring it to vanish.

The U(1)J+R-fixed points can be found by demanding that for any eiε ∈ U(1)J+R there

exists eφ ∈∏r U(kr) such that62

eiε/2eφBse
−φ = Bs , s = 1, 2 ,

eiε/2eφI = I , (7.14)

eiε/2Je−φ = J .

By construction, the fixed points of U(1)J+R in M(w; v) automatically correspond to

the fixed points of U(1)K×U(1)J+R in the instanton moduli space. The fixed points in the

instanton moduli space were classified in [36], and they were found to sit on the boundary

components of the moduli space corresponding to small instantons. This in turn implies

that the U(1)J+R-fixed points on the monopole moduli space sit on the bubbling locus. We

also know from the experience with instantons that the fixed points of U(1)K ×U(1)J+R×
G×GF coincide with the fixed points of U(1)K ×U(1)J+R.

At each fixed point, the ratio Z1-loop(w; v)/Z1-loop(v; v) can be calculated from the

weights of the equivariant group action on the tangent space and the Dirac zeromodes.

The ADHM construction provides a concrete procedure to derive such weights.

62In our convention the U(1)J+R acts both on I and J as eiε/2, implying that it also acts on E∞ as eiε/2.

– 47 –



J
H
E
P
0
5
(
2
0
1
2
)
1
4
1

The tangent space can be described by considering the linearization of the ADHM

system. Namely, let us consider the complex

0 →
{

δφ ∈ Lie

(

∏

r

U(kr)C

)}

h1→



















(δB1, δB2, δI, δJ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

−δB1 +KδB1 − (δB1)K = 0

δB2 +KδB2 − (δB2)K = 0

KδI − (δI)M = 0

MδJ − (δJ)K = 0



















h2→ {δµC ∈ EndH⊗ ∧2U | [K,X] = 0} → 0 , (7.15)

where the two maps h1 and h2 are the linearizations of the
∏

r U(kr)C transformation and

the complex ADHM equation µC = 0:

h1(δφ) = ((δφ)B1 −B1δφ, (δφ)B2 −B2δφ, (δφ)I,−Jδφ) ,
h2(δB1, δB2, δI, δJ) = [δB1, B2] + [B1, δB2] + (δI)J + IδJ . (7.16)

The tangent space of the moduli space at the point (B1, B2, I, J) is given by the cohomology

kerh2/imh1. The fixed-point equations for the action of U(1)J+R ×G×∏r U(kr)

i
ε

2
Bs + [φ,Bs] = 0 , s = 1, 2 ,

i
ε

2
I + φI − Iâ = 0 , (7.17)

i
ε

2
J − Jφ+ âJ = 0 ,

determine φ as a function of ε and â, i.e., they define a homomorphism U(1)J+R × G →
∏

r U(kr) at each fixed point. Thus we have an action of U(1)J+R×G on the complex (7.15),

and the character on the tangent space is given as

− TrV1(g) + TrV2(g)− TrV3(g) , (7.18)

where V1, V2, V3 are the three vector spaces that appear in (7.15) and g = (eiε, eâ) ∈
U(1)J+R ×G.

There is another method, heuristic but efficient, which can be used to compute the

weights on the tangent space based on the character on the space of holomorphic functions.

It is best explained in the example we consider next.

7.3 Example: SU(2) N = 2∗ theory

For G = SU(2), we can label the coweights with integers (corresponding to twice the spin).

Also we slightly modify the ADHM construction above and allow w, v and K to have half

odd integers. We define the integers p ≥ 0 and q by63

w = i(p/2,−p/2) , v = i(q/2,−q/2) . (7.19)

63Denoting reduced magnetic charge by q should not cause confusion with the instanton parameter e2πiτ

as the latter does not appear in this subsection.
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Since v is associated to w, p − q is non-negative and even. The constraint (7.10) then

implies that k = p− 1 and also that

χ(H) =
ei
p
2
ν + e−i

p
2
ν − ei

q
2
ν − e−i

q
2
ν

(ei
1
2
ν − e−i

1
2
ν)2

. (7.20)

As a character, χ(H) is a polynomial with positive coefficients for −p ≤ q ≤ p. For ease of

writing we will assume q ≥ 0, and sum over q < 0 in the end remembering that the Weyl

group acts as q → −q, â→ −â. We can then write

eiKν = χ(H) = ei(
p
2
−1)ν + . . .+

p− q

2
ei
q
2
ν + . . .+

p− q

2
e−i

q
2
ν + . . .+ e−i(

p
2
−1)ν , (7.21)

where in the last expression the coefficient of the exponential increases from 1 to p−q
2

monotonically, stays constant, and then decreases monotonically to 1.

In order to illustrate the analysis, we start with the simplest non-trivial case that

involves monopole screening, namely w = i(1,−1), v = (0, 0) corresponding to p = 2, q = 0.

We now explicitly work out the details of calculations involving M(2; 0). In this case the

constraint (7.10) is solved by

χ(E0) = eiν + e−iν , χ(E∞) = 2 , χ(H) = 1 . (7.22)

Let us write B1 = (b1), B2 = (b2), I = (i1, i2), J = (j1, j2)
T . The non-trivial U(1)K action

is given by b1 → e−iνb1, b2 → eiνb2. Thus a U(1)K invariant instanton has to be centered

at the origin, i.e., b1 = b2 = 0. The remaining variables satisfy the ADHM equations

i1j1 + i2j2 = ξC , (7.23)

|i1|2 + |i2|2 − |j1|2 − |j2|2 = ξR , (7.24)

and are subject to the U(k) = U(1) equivalence relation

(i1, i2, j1, j2) ∼ (eiφi1, e
iφi2, e

−iφj1, e
−iφj2) . (7.25)

We have introduced the deformation parameters ξ = (ξC, ξR).

The moduli space M(2; 0) can be smoothed by turning on ξ. Using a hyperKähler

rotation we can set ξC = 0 and ξR > 0. Then (i1, i2) cannot vanish. The equation (7.23) can

be solved by introducing a charge-(−2) variable µ via (j1, j2) = µ(i2,−i1)/
√

|i1|2 + |i2|2.
We see that (i1, i2, µ) are essentially the variables for T ∗

P
1 that appear in the gauged linear

sigma model description [37].

The fixed points of the U(1)J+R ×G action are found by demanding that the ADHM

data are invariant up to (7.25):

(i1, i2, j1, j2) = (ei(φ+
ε
2
−â)i1, e

i(φ+ ε
2
+â)i2, e

i(−φ+ ε
2
+â)j1, e

i(−φ+ ε
2
−â)j2) , (7.26)

where eiε ∈ U(1)J+R and diag(eiâ, e−iâ) ∈ G = SU(2). We find two fixed points P1 and P2:

P1 :i2 6= 0 , i1 = j1 = j2 = 0 , φ = −â− ε

2
,

P2 :i1 6= 0 , i2 = j1 = j2 = 0 , φ = â− ε

2
.

(7.27)
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At each fixed point, we have the complex (7.15) with the vector spaces V1 = {δφ} ≃
C, V2 = {(δi1, δi2, δj1, δj2)} ≃ C

4, V3 ≃ C representing the tangent space. The weights of

U(1)J+R ×G are given by

TrV1(g) = 1 , (7.28)

TrV2(g) =

{

e−2iâ + 1 + e2iâ+iε + eiε at P1 ,

1 + e2iâ + eiε + eiε−2iâ at P2 ,
(7.29)

TrV3(g) = eiε . (7.30)

Thus at P1 the character on the tangent space is e−2iâ + e2iâ+iε, corresponding to the

weights (e−2iâ, e2iâ+iε). At P2 the weights are (e2iâ, eiε−2iâ).

At P1, we get an extra contribution to the index ind(DBogo) in (6.49):

ind(DBogo) → ind(DBogo) + ind(DBogo)mono , (7.31)

where ind(DBogo)mono = −1 + e−iε

2
(e−2iâ + e2iâ+iε) . (7.32)

Here the factor (1 + e−iε)/2 has the same origin as in (6.44).

We also get the extra contribution for the adjoint hypermultiplet. To understand this,

note the relations among the indices of the Dirac, self-dual, and Dolbeault complexes in

four dimensions

ind(DSD) =
1 + e−iε1−iε2

2
ind(D) , (7.33)

ind(DDirac) = e−
i
2
(ε1+ε2)

eim̂ + e−im̂

2
ind(D) . (7.34)

Since the indices for the Bogomolny and Dirac-Higgs complexes are obtained from ind(DSD)

and ind(DDirac) by averaging over U(1)K respectively, they are related as

(

e
i
2
ε + e−

i
2
ε
)

ind(DDH) =
(

eim̂ + e−im̂
)

ind(DBogo) . (7.35)

The index that leads to the fluctuation determinants is

∑

n∈Z

einεind(DBogo)−
∑

n∈Z

ei(n+1/2)εind(DDH)

=
∑

n∈Z

einε
(

1− eim̂ + e−im̂

2

)

ind(DBogo) (7.36)

According to the rule
∑

cje
wj(â,m̂,ε) →∏

wj(â, m̂, ε)
cj , this leads to the one-loop determi-

nant

∏

n∈Z

[(nε+ m̂+ 2â)(nε+ m̂− 2â)(nε− m̂+ 2â)(nε− m̂− 2â)]1/2

(nε+ 2â)(nε− 2â)

=
sin (2πrâ+ πrm̂) sin (2πrâ− πrm̂)

sin2(2πrâ)
(7.37)
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where we have used that ε = 1/r. The second fixed point P2 contributes the same amount.

Thus

Zmono(â, m̂; 2, 0) = 2
sin[πr(2â+ m̂)] sin[πr(2â− m̂)]

sin2[2πrâ]
. (7.38)

There is another method based on contour integrals as applied in [38, 39] to instantons.

Let us temporarily ignore the matter contribution. In this approach,64 we compute the

character of the space holomorphic functions on the moduli space M = M(p; q), identify

it with the index of the Dolbeault operator on the resolved moduli space and read off

the weights. The holomorphic functions depend on B1, B2, I, J , and we need to take into

account the complex ADHM equation (7.12) and the quotient by the group
∏

r U(kr).

Schematically, the character is computed by averaging over h ∈∏r U(kr),

ch(g) =
1

Vol

∫

dh
detequations(1− eweighth)

detvariables(1− eweighth)
, (7.39)

where the determinants are taken in the spaces of equations and variables and Vol is the

volume of
∏

r U(kr). For M(2; 0),

ch(g) =

∫ 2π

0

dφ

2π

1− eiε

(1− ei
1
2
ε−iâ+iφ)(1− ei

1
2
ε+iâ+iφ)(1− ei

1
2
ε+iâ−iφ)(1− ei

1
2
ε−iâ−iφ)

. (7.40)

To evaluate the integral by residues we need to specify the precise contour. Following [38]

we assume that Im ε > 0 and treat φ and â as real variables. we find two poles in z = eiφ,

and the character is given as

ch(g) =
1

(1− e−2iâ)(1− eiε+2iâ)
+

1

(1− e2iâ)(1− eiε−2iâ)
. (7.41)

Given the weights we found above, (7.41) is consistent with the identification of the char-

acter with the index

ind(∂) ≡
dimM
∑

k=0

(−1)k Tr
H0,k

∂
(M)

(g)

=
∑

P : fixed
points

1
∏

j(1− ewj(P ))
, (7.42)

where j runs over the holomorphic tangent directions.

After this practice, let us now include the matter contribution. It is convenient to

consider the so-called χy-genus:
65

χy(M) =
∑

k,l≥0

yk(−1)l Tr
Hk,l

∂
(M)

(g)

=
∑

P : fixed
points

∏

j

1− yewj(P )

1− ewj(P )
, (7.43)

64It requires no explicit resolution of singularities, and therefore can be applied to any group that admits

an ADHM construction.
65The χy-genus also appeared in the instanton calculus for N = 2∗ theory [40].
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with y = eim̂. Each weight wj(P ) will be of the form

wj = inj â+
i

2
ljε , (7.44)

where nj and lj are integers. (7.33) implies that the contribution to ind(DBogo) at the fixed

point P is given by −1+e−iε

2

∑

j e
wj . Then the contribution to (7.36) is given by

∑

n∈Z

einε
(

eim̂ + e−im̂

2
− 1

)

∑

j

einj â+
i
2
ljε . (7.45)

Summing over the fixed points P , the contribution to the path integral is

Zmono(â, m̂;w, v) =
∑

P : fixed
points

∏

j

∏

n∈Z

(nε+ m̂+ nj â+ ljε/2)
1/2(nε− m̂+ nj â+ ljε/2)

1/2

(nε+ nj â+ ljε/2)

=
∑

P : fixed
points

∏

j

sin1/2[π(njrâ+ rm̂+ lj/2)] sin
1/2[π(njrâ− rm̂+ lj/2)]

sin[π(njrâ+ lj/2)]
,

(7.46)

where we recall that ε = 1/r. On the other hand, the χy genus in (7.43) can be written as

χy(M) = e
i
2
(dimC M)m̂

∑

P : fixed
points

∏

j

sin1/2[12(nj â+ m̂+ ljε/2)] sin
1/2[12(nj â− m̂+ ljε/2)]

sin[12(nj â+ ljε/2)]
.

(7.47)

Thus we find that

Zmono(â;w, v) = e−
i
2
(dimC M)m̂χy(M(w; v))

∣

∣

∣

(ε,m̂,â)→(2π,2πrm̂,2πrâ)
. (7.48)

This is why the χy-genus is useful for us.

We now calculate the χy genus using the ADHM construction of the monopole moduli

space. Locally at the origin of the space of ADHM data, the space of holomorphic sections is

the tensor product of the space of holomorphic functions and the space of Dirac zeromodes.

(7.43) corresponds to Tr[det(1 − yg)], where the trace is over the holomorphic functions

and the determinant is over the zeromodes. Since the space of zeromodes is given by

the cohomology of the complex (7.15), the determinant over the zeromodes is given by

detV2(·)/ detV1(·) detV3(·). Thus

χy(M)

=
1

Vol

∫

dh
detequations(1−eweighth)
detvariables(1−eweighth)

detV2(1−yeweighth)
detV1(1−yeweighth) detV3(1−yeweighth)

. (7.49)
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In the case of M(2; 0),

χy(M(2; 0))

=

∫ 2π

0

dφ

2π

(1− eiε)(1− eim̂+i 1
2
ε−iâ+iφ)(1− eim̂+i 1

2
ε+iâ+iφ)

(1− ei
1
2
ε−iâ+iφ)(1− ei

1
2
ε+iâ+iφ)(1− ei

1
2
ε+iâ−iφ)(1− ei

1
2
ε−iâ−iφ)

×(1− eim̂+i 1
2
ε+iâ−iφ)(1− eim̂+i 1

2
ε−iâ−iφ)

(1− eim̂)(1− eim̂+iε)

=
(1− eim̂−2iâ)(1− eim̂+iε+2iâ)

(1− e−2iâ)(1− eiε+2iâ)
+

(1− eim̂+2iâ)(1− eim̂+iε−2iâ)

(1− e2iâ)(1− eiε−2iâ)
. (7.50)

We note that (7.38) is indeed obtained from (7.50) using the relation (7.48).

The magnetic charge p can be screened by monopoles and get reduced to q, also an

even integer. We set l := p − q. The moduli space M(p; q) can be described using the

ADHM construction as follows. The action of U(1)K is specified by the matrix

K =







































p−2
2 I1×1

p−4
2 I2×2

. . .
p−l
2 I l

2
× l

2

. . .

−p−l
2 I l

2
× l

2

. . .

−p−4
2 I2×2

−p−2
2 I1×1







































, (7.51)

and the action of G by

M =

(

q
2 0

0 − q
2

)

. (7.52)

The conditions of U(1)K-invariance

B1 + [K,B1] = 0 , −B2 + [K,B2] = 0 ,

KI − IM = 0 , MJ − JK = 0
(7.53)
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require that the ADHM matrices take the following form:

B1 =

















0

B21 0

0 B32 0
. . .

. . .
. . .

0 Bp−1,p−2 0

















, B2 =



















0 B̃12 0

0 B̃23
. . .

0
. . . 0
. . . B̃p−2,p−1

0



















, (7.54)

I =





































0 0
...

...

0 0

Il/2,1 0
...

...

0 Ip−l/2,2
0 0
...

...

0 0





































, J =

(

0 · · · J1,l/2 · · · 0 · · · 0

0 · · · 0 · · · J2,p−l/2 · · · 0

)

. (7.55)

We consider the space of solutions to the complex ADHM equation

[B1, B2] + IJ = 0 (7.56)

and then take the quotient by the complexification of the group
∏p−1
r=1 U(kr) with

(k1, k2, . . . , kp−1) := (1, 2, . . . , l/2, . . . , l/2, . . . , 1) . (7.57)

Counting shows that the resulting space M(p; q) has complex dimension l. This is the

singular moduli space of monopoles on R
3 in the presence of a singular monopole of charge

p at the origin with the boundary condition that the fields look like the charge p−lmonopole

at infinity. The group U(1)J+R generated by Q2 and the maximal torus U(1)∞ ⊂ SU(2) of

the group of global gauge transformations act on M(p; q) according to

Bs → ei
1
2
εBs , s = 1, 2 , (7.58)

I → ei
1
2
εI

(

e−iâ

eiâ

)

, (7.59)

J → ei
1
2
ε

(

eiâ

e−iâ

)

J . (7.60)
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We thus obtain a contour integral expression for the χy-genus of M(p; q):

χy(M) =
1

∏p−1
r=1 kr!

∮ p−1
∏

r=1

kr
∏

i=1

dzr,i
2πizr,i

∏

i<j

−zr,i
zr,j

(1− zr,j/zr,i)
2

×
p−1
∏

r=1

∏

i,j

(

1− eiεzr,i/zr,j
)

(1− eim̂zr,i/zr,j) (1− eim̂eiεzr,i/zr,j)

×

k l−2
2
∏

i=1

(1− eim̂eiâ+i
1
2
ε/z l−2

2
,i)
(

1− eimei
1
2
ε−iâz l−2

2
,i

)

k l−2
2
∏

i=1

(1− eiâ+i
1
2
ε/z l−2

2
,i)
(

1− ei
1
2
ε−iâz l−2

2
,i

)

×

k
p− l

2
−1

∏

i=1

(

1− eimeiâ+i
1
2
εzp−1−l/2,i

)(

1− eim̂ei
1
2
ε−iâ/zp−1−l/2,i

)

k
p− l

2
−1

∏

i=1

(

1− eiâ+i
1
2
εzp−1−l/2,i

)(

1− ei
1
2
ε−iâ/zp−1−l/2,i

)

×

p−2
∏

r=1

kr
∏

i=1

kr−1
∏

j=1

(

1− eim̂ei
1
2
εzr,i/zr−1,j

)

p−2
∏

r=1

kr
∏

i=1

kr+1
∏

j=1

(

1− eim̂ei
1
2
εzr,i/zr+1,j

)

p−2
∏

r=1

kr
∏

i=1

kr−1
∏

j=1

(

1− ei
1
2
εzr,i/zr−1,j

)

p−2
∏

r=1

kr
∏

i=1

kr+1
∏

j=1

(

1− ei
1
2
εzr,i/zr+1,j

)

.

(7.61)

The first line on the right hand side represents the Haar measure on
∏

r U(kr), which would

be clearer if the integral is written in terms of φr,i such that zr,i = eiφr,i . We again choose

to use the prescription where we integrate over each zr,i along the unit circle |zr,i| = 1,

assuming that â ∈ R and Im ε > 0. The integral can be evaluated by residues, and the

computation can be automated as a Mathematica code. Applying the rule (7.48), we find

experimentally66 that

Zmono(â, m̂; p, q) =
p!

(p−q2 )!(p+q2 )!
×



















cos
p−q
2 [πr(2â+ m̂)] cos

p−q
2 [πr(2â− m̂)]

cosp−q[2πrâ]
for p odd,

sin
p−q
2 [πr(2â+ m̂)] sin

p−q
2 [πr(2â− m̂)]

sinp−q[2πrâ]
for p even.

(7.62)

Combined with (6.71), the dependence of Zmono(ia, im; p, q)Z1-loop,eq(ia, im; q) on q is in

fact only in the binomial coefficient.

66We have checked this for (p, q) = (2, 0), (3, 1), (4, 2), (5, 3), (4, 0), (6, 2), and (6, 0).
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We now put everything together. Including the terms with q ≤ 0, we get

〈Tp〉 =
∑

q=p,p−2,...,−p

p!

(p−q2 )!(p+q2 )!

∫

da
∣

∣

∣Z1-loop,pole

(

ia− q

4r

)

Zcl

(

ia− q

4r

)

× Zinst

(

ia− q

4r

)∣

∣

∣

2
×















cosh
p
2 [πr(2a+m)] cosh

p
2 [πr(2a−m)]

coshp[2πra]
for p odd,

sinh
p
2 [πr(2a+m)] sinh

p
2 [πr(2a−m)]

sinhp[2πra]
for p even.

(7.63)

This is the complete gauge theory result for ’t Hooft loops in SU(2) N = 2∗ theory. We

checked numerically for low values of p and generic values of τ and m that (7.63) agrees

with the expectation value of the S-dual Wilson loops.

This analysis, with the philosophy described, can be extended to other gauge theories.

8 Gauge theory computation vs Toda CFT

In this section we compare the results of our gauge theory analysis for the expectation value

of ’t Hooft loop operators in N = 2 gauge theories on S4 with formulae in [10–12], which

were obtained from computations in two dimensional Liouville/Toda CFT. As we shall

see, for the theories for which we explicitly carry out the comparison, we find beautiful

agreement.

In [10, 11] a dictionary was put forward relating the exact expectation value of gauge

theory loop operators in N = 2 gauge theories on S4 and Liouville/Toda correlation

functions in the presence of Liouville/Toda loop operators (topological defects). This

enriches the AGT correspondence [20], which identifies the gauge theory partition function

with a correlation function in Liouville/Toda (see also [41]), to encompass more general

observables. The identification in [10, 11] has yielded explicit predictions for the exact

expectation value of ’t Hooft loop operators in N = 2 gauge theories on S4.

We compare the Liouville/Toda results for ’t Hooft operators in N = 2∗ with the

corresponding gauge theory computations for both the one-loop determinants as well as

for the non-perturbative contributions due to monopole screening.

8.1 ’t Hooft loop determinants from Toda CFT

We now explicitly compare the results obtained for ’t Hooft operators in the N = 2∗ theory

— corresponding to an N = 2 SU(N) vectormultiplet with a massive hypermultiplet in

the adjoint representation — with loop operator computations in Toda CFT on the once-

punctured torus. For a ’t Hooft loop labeled by a magnetic weight B = h1 — corresponding

to the fundamental representation of SU(N) — the Toda CFT calculation yields [12]

∫

daC(ia, im)Zcl(ia, q)Zinst(ia, 1+im, q)
N
∑

k=1

Tk(ia, im)Zcl(ia−hk, q)Zinst(ia−hk, 1+im, q) ,

(8.1)

where

Tk(ia, im) =
1

N

j 6=k
∏

1≤j≤N

Γ(i(aj − ak))Γ(2 + i(aj − ak))

Γ(1 + i(aj − ak)− im)Γ(1 + i(aj − ak) + im)
,
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m is the mass of the adjoint hypermultiplet and hi are the N weights of the fundamental

representation of SU(N).67 The result in (8.1) is expressed as much as possible in terms of

gauge theory quantities introduced in previous sections. The factor Zcl(ia, q) is the classical

contribution to Nekrasov’s equivariant instanton partition function (4.10)

Zcl(ia, q) = exp [πiτa · a] = exp

[

πiτ
N
∑

l=1

a2l

]

, (8.2)

while Zinst(ia, 1+ im, q) is the instanton contribution (5.2).68 Finally C(ia, im) is the Toda

CFT three-point function69 relevant for the once-punctured torus description of N = 2∗ (à

la [42])

C(ia, im) =

∏

α>0Υb=1(−iα · a)Υb=1(iα · a)
∏N
i,j=1Υb=1(1 + i(hi − hj) · a+ im)

, (8.3)

with α the roots of the SU(N) Lie agebra. Since Υb=1(x) = G(x)G(2− x)/2π, with G(x)

being the Barnes G-function (6.19) and because α = hi − hj for j > i if α > 0 we obtain70

C(ia, im) =

∏

αG(iα · a)G(2 + iα · a)
∏

α>0

∏

±,±G(1± iα · a± im)
. (8.4)

We note that C(ia, im) is precisely given by the square of the one-loop factor in Nekrasov’s

partition function of N = 2∗ in R
4 (see (6.32) and (6.67))

C(ia, im) = |Z1-loop,pole(ia, im)|2 , (8.5)

with

Z1-loop,pole(ia, im) = Z1-loop,pole(−ia,−im) = Z1-loop,pole(ia, im)

=

[

∏

αG(iα · a)G(2 + iα · a)
∏

α>0

∏

±,±G(1± iα · a± im)

]1/2

. (8.6)

Thus we can write the Toda loop correlator as
∫

da |Z1-loop,pole(ia, im)|2 Zcl(ia, q)Zinst(ia, 1 + im, q)

×
N
∑

k=1

Tk(ia,m)Zcl(ia− hk, q)Zinst(ia− hk, 1 + im, q) . (8.7)

We note that the result is given by the sum of N terms, associated to the N weights of the

fundamental representation of SU(N). Each of the N weights yields an identical contribu-

tion, and therefore we can focus on the contribution of the highest weight term, labeled by

67Explicitly, hi = (δij − 1/N)Nj=1.
68To lighten notation we have set r = 1, have omitted the ε1, ε2 dependence of the instanton partition

function Zinst(â, m̂, ε1, ε2, q) → Zinst(â, m̂, q) and also used that m̂ = 1 + im (5.6).
69This is the three-point function of two non-degenerate and one semi-degenerate primary operators in

Toda CFT when the background charge b = 1.
70In this section, in order to avoid cluttering formulas, we drop inessential overall numerical factors.
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h1. It is important to remark at this point that genuine new contributions appear for loop

operators labeled by a representation with highest weight B for which not all weights are

in the Weyl orbit of B (non-minuscule representations). These contributions correspond

precisely to the non-perturbative contributions due to monopole screening encountered in

our gauge theory analysis! Section 8.2 demonstrates for ’t Hooft loops with higher mag-

netic weight B that Liouville theory precisely reproduces the non-perturbative screening

contributions discussed in section 7.2.

Focusing on the highest weight vector contribution, we trivially rewrite the answer as

∫

daZ1-loop,pole(−ia,−im)Zcl(−ia, q)Zinst(−ia, 1− im, q)× T1(ia, im)

×Z1-loop,pole(ia, im)Zcl(ia− h1, q)Zinst(ia− h1, 1 + im, q) .

(8.8)

Without encountering any residues, we now shift the contour of integration ia→ ia+h1/2

to express the answer in a more symmetric form

∫

da |Zcl(ia− h1/2, q)Zinst(ia− h1/2, 1 + im, q)|2

Z1-loop,pole(−ia− h1/2,−im)Z1-loop,pole(ia+ h1/2, im) T1(ia+ h1/2, im) .

(8.9)

Our next goal is to rewrite the second line in (8.9) as a complete square of a function

with the same shifted argument ia− h1/2 as in the first line times a remainder, which we

denote by E(ia, im)

∫

da |Zcl(ia− h1/2, q)Z1-loop,pole(ia− h1/2, im)Zinst(ia− h1/2, 1 + im, q)|2 × E(ia, im) .

(8.10)

To anticipate where this path will leads us when comparing with our gauge theory

analysis, the complete square contributions reproduce the classical, one-loop and instanton

contributions that arise from the north and south poles of S4, while the remainder captures

the contribution from the equator!

In order to determine E(ia, im) in (8.10) we need to calculate

E(ia, im) =
Z1-loop,pole(ia+ h1/2, im)

Z1-loop,pole(ia− h1/2, im)
T1(ia+ h1/2, im) . (8.11)

The ratio of one-loop factors can be determined by recalling that aj = a · hj , so that the

shifts ia± h1/2 in the arguments in (8.11) are given by (since hi · hj = δij − 1/N)

iaj → iaj ∓ 1/N j 6= 1

ia1 → ia1 ± 1/2∓ 1/N .
(8.12)

Therefore, only a1j ≡ a1 − aj shifts, by ia1j → ia1j ± 1/2. Since α = hi − hj for j > i if

α > 0, we decompose the product over positive roots appearing in (8.6)

∏

α>0

· =
N
∏

j=2

·
∏

2≤i<j≤N

, (8.13)
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comprising the splitting of positive roots into h1 − hj and the rest. Therefore only the

factors
∏N
j=2 · shift, the rest cancel between the numerator and denominator in (8.11). We

find

Z1-loop,pole(ia+ h1/2, im)

Z1-loop,pole(ia− h1/2, im)
=

N
∏

j=2

[

∏

±

G(12 + ia1j ± im)G(32 − ia1j ± im)

G(32 + ia1j ± im)G(12 − ia1j ± im)

]1/2

[

G(12 + ia1j)G(
5
2 + ia1j)G(−1

2 − ia1j)G(
3
2 − ia1j)

G(−1
2 + ia1j)G(

3
2 + ia1j)G(

1
2 − ia1j)G(

5
2 − ia1j)

]1/2

,

(8.14)

which since G(z + 1)/G(z) = Γ(z) equals

N
∏

j=2

[

∏

±

Γ(12 − ia1j ± im)

Γ(12 + ia1j ± im)

]1/2 [

Γ(−1
2 + ia1j)Γ(

3
2 + ia1j)

Γ(−1
2 − ia1j)Γ(

3
2 − ia1j)

]1/2

. (8.15)

Using the explicit form of the monodromy operators Tk(ia,m) in (8.1) we arrive at

E(ia, im) =

N
∏

j=2

[

Γ(−1
2 + ia1j)Γ(

3
2 + ia1j)Γ(−1

2 − ia1j)Γ(
3
2 − ia1j)

∏

± Γ(12 + ia1j ± im)Γ(12 − ia1j ± im)

]1/2

, (8.16)

which by Euler’s reflection formula Γ(z)Γ(1− z) = π
sin(πz) yields

E(ia, im) =
N
∏

j=2

[

sin(π(12 + ia1j − im)) sin(π(12 − ia1j − im))

sin(π(12 + ia1j)) sin(π(
1
2 + ia1j))

]1/2

. (8.17)

The result can be written in a more covariant form to arrive at the final answer

E(ia, im) =
∏

α>0

sin
|α·B|

2

(

π
[

α·B
2 + iα · a− im

])

sin
|α·B|

2

(

π
[

α·B
2 − iα · a− im

])

sin|α·B|
(

π
[

α·B
2 + iα · a

])

=

∏

w∈adj sin
|w·B|

2

(

π
[

w·B
2 + iw · a− im

)]

∏

α>0 sin
|α·B|

(

π
[

α·B
2 + iα · a

]) .

(8.18)

This is precisely the gauge theory formula for the equatorial one-loop determinant (6.61).

This shows that the Toda prediction for the expectation of the ’t Hooft loop operator

labeled by the fundamental representation in the N = 2∗ theory with SU(N) gauge group

precisely agrees with our gauge theory computation. We identify in the Toda correlator the

factor |Zcl(ia− h1/2, q)Z1-loop,pole(ia− h1/2, im)Zinst(ia− h1/2, 1 + im, q)|2 in (8.10) with

the gauge theory contributions arising from the north and south poles of S4 (see (6.34)),

while comparison of (8.18) with (6.61) demonstrates that indeed E(ia,m) precisely captures

the gauge theory contribution from the equator, so that

E(ia, im) = Z1-loop,eq(ia, im, h1) . (8.19)

The Toda calculation of [12] can be extended to describe ’t Hooft operators with higher

magnetic weight in N = 2∗. We have checked that the Toda calculation for B = 2h1 also

exactly reproduces the gauge theory prediction.
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8.2 Monopole screening from Liouville theory

We now specialize to the A1 Toda theory, i.e., Liouville theory. We compare the results

in [10, 11], which are the special case of the general Toda calculations above, with the non-

perturbative contributions from monopole screening in SU(2) N = 2∗ theory computed in

section 7.3

In Liouville theory, the ’t Hooft loop expectation value is given in terms of shifted

conformal blocks. To simplify formulas we set r = 1 without loss of generality, also set b

to 1 and adapt the normalization of [10]

ZL(â, im, τ) ≡ e−2πiτ â2F (1 + â, 1 + im, τ) , (8.20)

where F(α, αe, τ) is the conformal block of the 1-punctured torus with modulus τ in the

standard normalization [43], with internal and external Liouville momenta α and αe.
71 Up

to a normalization constant, it was shown in [10, 11] that the loop operator expectation

value is given by72

〈(L1,0)
p〉

=

∫

â∈iR
dâ C(1 + â, 1− â, 1 + im)ZL(â, im, τ)[(L1,0)

p · ZL](â, im, τ)

=

∫

â∈iR
dâ C(1 + â, 1− â, 1 + im)ZL(−â,−im,−τ)[(L1,0)

p · ZL](â, im, τ) .(8.21)

The Liouville loop operator L1,0 acts as a difference operator. For any meromorphic

function f(â), let us define the operators ĥ± as multiplication by the functions h±(â):

(ĥ+ · f)(â) ≡ Γ(−2â)Γ(2− 2â)

Γ(−2â+ 1 + im)Γ(−2â+ 1− im)
f(â) ≡ h+(â)f(â) ,

(ĥ− · f)(â) ≡ Γ(2â)Γ(2 + 2â)

Γ(2â+ 1 + im)Γ(2â+ 1− im)
f(â) ≡ h−(â)f(â) .

(8.22)

We also define the shift operator ∆:

(∆ · f)(â) := f(â− 1/4) . (8.23)

With these definitions the Liouville loop operator is defined by

L1,0 = ĥ+∆
2 + ĥ−∆

−2 , (8.24)

and the higher powers of L1,0 take the form

(L1,0)
p =

∑

q=p,p−2,...,−p

ĥp,q∆
2q , (8.25)

71The shift by 1 in αe = 1 + im was clarified in [19].
72The complex conjugate of τ appears with a minus sign because τ enters into ZL through e2πiτ = e−2πiτ .

In this subsection we avoid using the symbol q to denote e2πiτ , in order to avoid confusion with screened

magnetic charge q.
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where ĥp,q is multiplication by a function hp,q(â). This function can be determined by the

recursion relation

hp+1,q(â) = h+(â)[∆
2 · hp,q−1](â) + h−(â)[∆

−2 · hp,q+1](â) . (8.26)

The solution is given by

hp,q(â) =





|q|
∏

r=1

Γ(−2sgn(q)â+ r − 1)Γ(−2sgn(q)â+ r + 1)

Γ(−2sgn(q)â+ r + im)Γ(−2sgn(q)â+ r − im)





× p!
(p+q

2

)

!
(p−q

2

)

!

sin
p−|q|

2 (2πâ+ πim) sin
p−|q|

2 (2πâ− πim)

sinp−|q|(2πâ)
.

(8.27)

Up to â-independent factors, the Liouville three-point function is related to the gauge

theory one-loop determinant as

C(1 + â, 1− â, 1 + im) = |Z1-loop,pole(â, im)|2

= Z1-loop,pole(−â,−im)Z1-loop,pole(â, im) (8.28)

for â ∈ iR, where Z1-loop,pole(â, m̂) is given in (6.70). Thus the Liouville correlator (8.21)

becomes

〈(L1,0)
p〉 =

∫

â∈iR
dâ Z1-loop,pole(−â,−im)ZL(−â,−im,−τ)

× Z1-loop,pole(â, im)
∑

q

[

ĥp,q∆
2q · ZL

]

(â, im, τ) .
(8.29)

Assuming that we can shift the contour without picking up residues,73 we can write this as

〈(L1,0)
p〉 =

∑

q

∫

â∈iR
dâ [∆−q · hp,q](â)

[∆−q · Z1-loop,pole](â, im)

[∆q · Z1-loop,pole](â, im)

× [∆q · Z1-loop,pole](−â,−im)[∆q · ZL](−â,−im,−τ)
× [∆q · Z1-loop,pole](â, im)[∆q · ZL](â, im, τ) .

(8.30)

Using (6.70) and (8.27), we can calculate the combination in the first line and obtain a

simple result:

[∆−q · hp,q](â)
[∆−q · Z1-loop,pole](â)

[∆q · Z1-loop,pole](â)

=
p!

(p+q
2

)

!
(p−q

2

)

!
×















sin
p
2 (2πâ+ πim) sin

p
2 (2πâ− πim)

sinp(2πâ)
for p odd,

cos
p
2 (2πâ+ πim) cos

p
2 (2πâ− πim)

cosp(2πâ)
for p even,

(8.31)

Comparing this with (6.71) and (7.62), this is precisely

Zmono(ia, im; p, q)Z1-loop,eq(ia, im, q).

73We have checked the validity of the contour deformation numerically by comparing with the S-dual

Wilson loop expectation values.
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Using the relation [20]

ZL(â, im, τ) = Zcl(â, e
2πiτ )Zinst(â, 1 + im, e2πiτ ) , (8.32)

we thus obtain

〈(L1,0)
p〉 =

∑

q=p,p−2,...,−p

p!
(p+q

2

)

!
(p−q

2

)

!

∫

daZ1-loop,eq(ia, im, p) (8.33)

×
∣

∣

∣Zcl

(

ia− q

4
, e2πiτ

)

Z1-loop,pole

(

ia− q

4
, im

)

Zinst

(

ia− q

4
, im, e2πiτ

)∣

∣

∣

2
.

After reintroducing the dimensionful parameter r, the gauge theory result (7.63) for 〈Tp〉
and the Liouville theory expression (8.33) for 〈(L1,0)

p〉 precisely agree, including the

monopole screening contributions!

We note that the charge p ’t Hooft loop Tp corresponds to the Liouville operator

(L1,0)
p. Thus our charge p ’t Hooft loop Tp equals the power (T1)

p of the ’t Hooft loop

that is S-dual to the spin 1/2 Wilson loop, and differs from the S-dual of the spin p/2

Wilson loop. The origin of the power is in the natural resolution of the Bogomolny moduli

space. As explained in [31], the moduli space of solutions describing an array of p minimal

’t Hooft loops Tp=1 develops a singularity when two of the loop operators collide. In the

limit that all of them are on top of each other, the magnetic charge of the ’t Hooft loop is

p. Said another way, the singularity of the moduli space can be resolved by replacing the

charge p ’t Hooft loop with a collection of slightly displaced minimal ’t Hooft loops.74

9 Conclusions

We performed an exact localization calculation for the expectation value of supersymmetric

’t Hooft loop opertors in N = 2 supersymmetric gauge theories on S4. These results

combined with the exact computation of Wilson loop expectation values [2] constitute a

suite of exact calculations for the simplest loop operators in these gauge theories and allow

for a quantitative study of S-duality for this rich class of gauge theory observables.

A ’t Hooft loop was defined by specifying a boundary condition of the fields in the

path integral. We integrated over the non-singular and singular solutions to the saddle

point equations in the localization computation.

In the leading classical approximation the expectation value was obtained by evaluating

the on-shell action in the non-singular background (3.9), and the only perturbative quantum

corrections75 in the localization path integral are the one-loop determinants computed using

the Atiyah-Singer index theorem, arising from the north pole, south pole and equator. The

’t Hooft loop expectation value receives two types of non-perturbative corrections. The

first is from instantons and anti-instantons localized at the north and south poles as in [2],

74As noted in [2], the localization supercharge Q is indeed compatible with parallel loop operators each

located at a fixed latitude.
75The one-loop determinants are the unique perturbative corrections with respect to the localization

action Q · V . All the perturbative corrections with respect to the physical action [9] are reproduced by

integrating over the zero-mode a.
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arising because our localization saddle point equations become F+ = 0 and F− = 0 there.

One new feature in our calculation is that the Nekrasov instanton partition functions at the

poles have their argument shifted due to the ’t Hooft loop background. The second type of

non-perturbative correction occurs as new saddle point field configurations, where smooth

monopoles in the bulk of S4 screen the charge of the singular monopole inserted along the

loop. These arise from non-abelian solutions to the Bogomolny equations DΦ = ∗F , which
describe the saddle point equations in the equator. The field configurations were identified

as the fixed points of an equivariant group action on the moduli space of solutions of the

Bogomolny equations.

In this paper we have focused on the computation of ’t Hooft operators for which the

magnetic charge and the electric charge vectors are parallel, where the electric charge is

acquired by the Witten effect, due to the non-vanishing topological angle θ. The techniques

introduced here, however, can be used to compute general dyonic Wilson-’t Hooft operators.

The new ingredient for a dyonic operator is the insertion of a Wilson loop for the unbroken

gauge group preserved by the singular monopole background.

We compared our gauge theory calculations with some of the predictions in [10–12]

obtained from computations with topological defects in Liouville and Toda field theories,

and found a perfect match for all comparisons we have performed. The physical observables

in Liouville/Toda theory are known to be invariant under the modular transformations (or

more generally under the Moore-Seiberg groupoid) that are identified with the S-duality

transformations in gauge theory. Thus our results prove S-duality invariance of the N = 2

gauge theories, in the sector of physical observables involving Wilson and ’t Hooft loop op-

erators. In turn, the progress we made on gauge theory loop operators provides motivation

to study in more depth the two-dimensional observables. In particular the computational

techniques for topological webs, — the defects involving trivalent vertices — are to be de-

veloped in order to make a useful comparison with more complicated loop operators in

higher-rank gauge theories.

In our study an important role was played by the equivariant index for the moduli space

of solutions of the Bogomolny equations in the presence of a singular monopole background,

created by the ’t Hooft operator. The analysis was similar to that of the instanton moduli

space that led to the Nekrasov partition function, and we defined the quantity Zmono which

is an analogous physical quantity in the monopole case. It is possible to generalize and

formalize the definition of Zmono by setting up a localization scheme on S1 × R
3 [44].

The localization techniques we developed for ’t Hooft operators should also admit gen-

eralizations to other supersymmetric disorder operators, such as monopole and vortex loop

operators in three dimensions and surface operators in four dimensions. For example, it

would be interesting to formulate a path integral framework that realizes the mathematical

calculations [45–48] for instantons in the presence of singularities representing surface op-

erators. Also, the localization framework for N = 2 theories on S4 should apply to surface

operators preserving two-dimensional N = (2, 2) supersymmetry. Localization calculations

for such observables should help understand disorder operators in the broad duality web

involving quantum field theories in diverse dimensions.
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A Supersymmetry and killing spinors

The spinors in this paper transform in a representation of Spin(10), whose generators are

constructed from the Clifford algebra Cl(10)

{γM , γN} = 2ηMN where M = 1, . . . , 9, 0 . (A.1)

We take the Euclidean metric ηMN = δMN . In the chiral representation

γM =

(

0 Γ̃M

ΓM 0

)

, (A.2)

where Γ̃M ≡ (Γ1, . . . ,Γ9,−Γ0), and ΓM , Γ̃M are 16× 16 matrices which satisfy

Γ̃MΓN + Γ̃NΓM = 2δMN , ΓM Γ̃N + ΓN Γ̃M = 2δMN . (A.3)

The matrices Γ̃M and ΓM act respectively on the negative and positive chirality spinors of

Spin(10) since

γ(10) ≡ −iγ1 . . . γ9γ0 =
(

−iΓ̃1Γ2 . . . Γ̃9Γ0 0

0 −iΓ1Γ̃2 . . .Γ9Γ̃0

)

=

(

1 0

0 −1

)

. (A.4)

In Euclidean signature, which we use in this paper, ten dimensional spinors are com-

plex. We choose a basis in which Γ1, . . . ,Γ9 are real and Γ0 imaginary. To describe ΓM

explicitly it is convenient to break SO(10) to SO(8) × SO(2) and use the octonionic con-

struction of the Clifford algebra Cl(10). For the explicit expressions which are needed for

explicit construction of the supersymmetry equations in components we use matrices as
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defined in appendix A of [2] with a certain permutation of spacetime indices. If ΓM are

the matrices in [2], then the present ΓM are given by

ΓM = ΓM+1 for M = 1, 2, 3, 5, 6, 7

Γ4 = Γ1 Γ8 = Γ5 Γ9 = Γ9 Γ0 = iΓ0.
(A.5)

The factor of i appears in the relation to Γ0 because our present conventions use the

Euclidean metric ηMN = δMN , while [2] used the Lorentz metric with η00 = −1.

The supersymmetry parameter ǫ and gaugino Ψ in the N = 2 vectormultiplet are

positive chirality spinors of Spin(10), while hyperino χ in the N = 2 hypermultiplet is a

negative chirality spinor; they are subject to the projections

Γ5678ǫ = −ǫ , Γ5678Ψ = −Ψ , Γ5678χ = χ , (A.6)

where Γ5678ǫ = Γ̃5Γ6Γ̃7Γ8ǫ.

The conformal Killing spinor equation (3.10) in the B3 × S1 metric (3.7) is

∇µǫ = Γ̃µǫ̃ (A.7)

Γ̃µ∇µǫ̃ = − 1

4r2
1

(

1− |~x|2

4r2

)ǫ . (A.8)

In the vielbein basis eî = ei = dxi and e4̂ = r
(

1− |~x|2

4r2

)

dτ , the non-zero components of

the spin connection are

w4̂i = −wi4̂ = −x
i

2r
dτ i = 1, . . . , 3 . (A.9)

Equation (A.8) implies that ǫ̃ = ǫc(τ) while the first three equations in (A.7) imply that

ǫ = ǫs(τ) + xiΓ̃iǫc(τ). The solution to the equation

∇τ ǫ = Γ̃τ ǫ̃ (A.10)

is (3.14)

ǫ = cos(τ/2)
(

ε̂s + xiΓ̃i ε̂c

)

+ sin(τ/2) Γ̃4

(

2r ε̂c +
xi

2r
Γi ε̂s

)

, (A.11)

with ε̂s and ε̂c two constant ten dimensional Weyl spinors of opposite chirality.

B Lie algebra conventions

Let G be a compact Lie group and g the Lie algebra of G. As a vector space g is isomorphic

to R dimG. In our conventions, for a gauge theory with gauge groupG, the fields Aµ, Fµν and

ΦA (A = 0, 9) of the vectormultiplet take values in g. In particular, we write the covariant

derivative as D ≡ DA = d + A and the curvature as Fµν = [Dµ, Dν ]. If G is U(N) or

SU(N), the basis {Tα} of the Lie algebra g can be represented by N × N antihermitian

matrices. Given the basis, the real coordinates aα of an element a ∈ g are defined by the

expansion a = aαTα. Let gC = g⊗ C be the complexification of g. An element a = x+ iy
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of gC, where x, y ∈ g, can be written as a = aαTα with aα being complex numbers. We say

that an element a of gC is real if the coordinates aα are real. Complex conjugation acts by

conjugating the coefficients: a = aαTα → aαTα.

If G is a compact Lie group, then the Lie algebra g of G can be equipped with a positive

definite bilinear form (• , •) : g × g → R invariant under the adjoint action of G. Such a

bilinear form g × g → R is defined uniquely up to a scaling, and extends holomorphically

to gC × gC → C. For g = u(N) and g = su(N), we choose (• , •), also donoted by • · •, to
be given by minus the trace in the fundamental representation: (a, b) = −Tr ab.

The basis elements Tα in the Cartan algebra t of u(N) can be represented by the

diagonal N ×N matrices

Tα = i diag(0, . . . , 0, 1, 0, . . . , 0) , (B.1)

where 1 is at the position α. Since in this basis the bilinear form is the identity matrix,

−TrTαTβ = δαβ , we do not distinguish between contravariant and covariant Lie algebra

indices. For an element a = aαTα of t we refer to a using the following equivalent notations

(a1, . . . , aN ) ↔ a↔ aαTα =







ia1 0 . . .

0 ia2 . . .
...

...
. . .






, (B.2)

where aα are real. When dealing with complexification tC we allow aα to be complex. The

notation (B.2) is also used for g = su(N). For example, the Nekrasov instanton partition

function Zinst takes a complex element â of tC, i.e. the Coulomb parameter, as one of its

arguments. We use equivalently the following forms referring to Zinst evaluated at â

Zinst(â; ε1, ε2) = Zinst((â1, . . . , âN ), ε1, ε2) = Zinst(â1, . . . , âN ; ε1, ε2) . (B.3)

It should be clear from the context what â refers to in the main text.

C Coordinates and Weyl transformations on S4

The SO(5) isometry of the round metric on S4 is made manifest by the induced metric on

the following hypersurface in R
5

X2
1 + . . .+X2

5 = r2 . (C.1)

In this paper, a certain U(1)J ⊂ SO(5) isometry of S4 generated by the generator J plays

a key role. It acts on the embedding coordinates as

X1 + iX2 → eiε(X1 + iX2)

X3 + iX4 → eiε(X3 + iX4) ,
(C.2)

and its fixed points X5 = ±r define the north and south pole of S4. The following coordi-

nates are of use in the paper:
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Latitude coordinates: the metric is given by

ds2 = r2(dϑ2 + sin2 ϑdΩ3) (C.3)

where dΩn is the metric on the unit Sn and ϑ is the latitude angle on S4, with ϑ = 0, π/2

and π corresponding to the north pole, equator and south pole respectively. The embedding

coordinates are
Xa = r sinϑna a = 1, 2, 3, 4

X5 = r cosϑ ,
(C.4)

where na is a unit vector in R
4 parametrizing S3.

The U(1)J action induced by J is realized by the Hopf fibration. Consider S3 : |w1|2+
|w2|2 = 1, (w1, w2) ∈ C

2 and the U(1) action (w1, w2) 7→ (eiεw1, e
iεw2). Introduce angular

coordinates on C
2: w1 = ρ cos η2e

iψ and w2 = ρ sin η
2e
iψ+iϕ so that the U(1)J acts by shifts

ψ → ψ + ε, and consider the map C
2 ⊗ C

2 → R
3

~x = w~σw = ρ2(sin η cosϕ, sin η sinϕ, cos η), (C.5)

so that (ρ2, η, ϕ) are the spherical coordinates on R
3. Rewriting the flat metric on C

2 in

the (ρ, η, ϕ, ψ) coordinates we get

ds2 = dρ2 + ρ2
(

1

4
dη2 +

1

2
(1− cos η)dϕ2 + (1− cos η)dϕdψ + dψ2

)

. (C.6)

The unit S3 is at ρ = 1 with metric

dΩ3 =
1

4
dη2 +

1

2
(1− cos η)dϕ2 + (1− cos η)dϕdψ + dψ2 =

1

4
dΩ2 + (dψ + ω)2 , (C.7)

where

dΩ2 = dη2 + sin2 η dϕ2 (C.8)

and

ω =
1

2
(1− cos η)dϕ. (C.9)

In these coordinates, the U(1)J vector field is v = 1
r
∂
∂ψ , and the dual 1-form used in

section 3.3 is

ṽ =
dxµhµνv

ν

vµvµ
= r(dψ + ω) . (C.10)

The 1-form ω satisfies dω = 1
2vol(S

2).

S2 × S1 foliation coordinates: the metric is given by

ds2 = r2(dξ2 + sin2 ξdΩ2 + cos2 ξdτ2) (C.11)

where τ is the coordinate on S1 and 0 ≤ ξ ≤ π/2. The embedding coordinates are given by

X1 + iX2 = r cos ξeiτ

X3 + iX4 = r sin ξ sinαeiφ

X5 = r sin ξ cosα ,

(C.12)
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where dΩ2 = dα2 + sin2 αdφ2. The U(1)J symmetry generator J acts by shifts

τ → τ + ε

φ→ φ+ ε .
(C.13)

In these coordinates the north and south pole are at (ξ = π/2, α = 0) and (ξ = π/2, α = π)

respectively.

B3 × S1 foliation coordinates: the metric is given by

ds2 =

∑3
i=1 dx

2
i

(

1 + |~x|2

4r2

)2 + r2

(

1− |~x|2

4r2

)2

(

1 + |~x|2

4r2

)2dτ
2 , (C.14)

and |~x|2 ≤ 4r2 defines the three-ball B3. The embedding coordinates are given by

X1 + iX2 = r

(

1− |~x|2

4r2

)

(

1 + |~x|2

4r2

)eiτ

XI =
xI−2

(

1 + |~x|2

4r2

) I = 3, 4, 5 .

(C.15)

The U(1)J symmetry generator J acts by

x1 + ix2 → eiε(x1 + ix2)

τ → τ + ε .
(C.16)

In these coordinates the north and south pole are at ~x = (0, 0, 2r) and ~x = (0, 0,−2r)

respectively.

D Q-invariance of the ’t Hooft loop background

The background created by a circular ’t Hooft loop with magnetic weight B located at

~x = 0 in the B3 × S1 metric (3.7) takes the same form as that of a static ’t Hooft line in

flat spacetime (3.8) (for θ = 0)

Fjk = −B
2
ǫijk

xi
|~x|3

Φ9 =
B

2|~x| .
(D.1)

Since B ∈ t takes values in the Cartan subalgebra of the gauge group G, the singularity is

abelian in nature.

We can verify that the the deformed monopole equations (3.38), (3.39), (3.40) are

solved by the ’t Hooft loop background (D.1). For example, let’s consider the first spa-

tial equation (3.38). In the background (D.1) F14̂, F34̂,K1, D4̂Φ9 vanish. We group the

remaining terms to make the structure of cancellation obvious using that (D.1) satisfies

DiΦ9 = ∂iΦ9 = − Bxi
2|~x|3 =

1

2
ǫijkFjk i, j, k = 1, 2, 3 , (D.2)
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where the first equality is due to the abelian nature of the background (D.1). Evaluation

yields for (3.38)

4r2(−D1Φ9 + F23) + (−x21 + x22 + x23)(D1Φ9 + F23) + (−2x1x2)(D2Φ9 − F13)

+(−2x1x3)(D3Φ9 + F12) +−2x1Φ9

= 0 + (−x21 + x22 + x23)
−Bx1
|~x|3 + (−2x1x2)

−Bx2
|~x|3 + (−2x1x3)

−Bx3
|~x|3 − Bx1

|~x|

=
Bx1x

2

|~x|3 − Bx1
|~x| = 0 . (D.3)

The cancellation in the second deformed monopole equation (3.39) is exactly the same with

replacement of indices 1 → 2. In the third equation (3.40), the relative signs are different,

but again all terms cancel similarly. In analyzing the last equation (3.40) we also find that

Φ0 can be turned on as long as

K3 = − Φ0/r

1 + |~x|2

4r2

. (D.4)

This observation plays an important role in finding the most general solution to the saddle

point equations, as discussed in section 3.3.

Similarly, it is very easy to show that the invariance equations (3.37) are satisfied by

the background (D.1). For these only DiΦ9 and Fjk contribute and cancel elementarily

due to formula (D.2). These equations also exhibit that Φ0 has a zeromode, given by

Φ0 =
a

1 + |~x|2

4r2

, (D.5)

and therefore, due to (D.4)

K3 = − a/r
(

1 + |~x|2

4r2

)2 , (D.6)

where a ∈ t is constant. In comparison with [2] the profile of Φ0 is not constant in B3×S1.

However, since the metric on B3 × S1 and S4 are related by a Weyl transformation with

Ω =
(

1 + |~x|2

4r2

)

, it follows from (2.10) that the Weyl transformation makes Φ0 constant in

S4, as found in [2] .

It is straightforward to show that the background created by the ’t Hooft loop when

θ 6= 0 (3.9)

Fjk = −B
2
ǫijk

xi
|~x|3 , Fi4̂ = −ig2θ B

16π2
xi
|~x|3 ,

Φ9 =
B

2|~x| , Φ0 = −g2θ B

16π2
1

|~x| ,
(D.7)

solves the localization equations Q ·Ψ = 0 As we have already demonstrated that the terms

involving Φ0 and Fjk cancel in the invariance equations (3.37) and deformed monopole

equations (3.38)–(3.40), we just have to exhibit cancellation of the terms involving Φ0 and

Fi4. Since the ’t Hooft loop background is τ independent and abelian (i.e. [Φ0,Φ9] = 0),
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we are just left to verify from the invariance equations (3.37) that

1

2r
Fi4 +

[

Di,
i

2

(

1 +
|~x|2
4r2

)

Φ0

]

= 0 i = 1, 2, 3

x1F42 − x2F41 = 0 .

(D.8)

Using that Fi4 = r
(

1− |~x|2

4r2

)

Fi4̂ and Di

((

1 + |~x|2

4r2

)

Φ0

)

= − xi
|~x|2

(

1− |~x|2

4r2

)

Φ0 = i
rFi4, we

conclude that (D.7) solves the equations (3.37).

We now verify that the deformed monopole equations (3.38)–(3.39), 3.40) are solved

by Φ0 and Fi4̂ of the ’t Hooft loop background (D.7). From (3.38) and (3.39) we get

− x3Fi4̂ + xiF34̂ = 0 i = 1, 2 , (D.9)

which is trivially satisfied by (D.7). From (3.40) the relevant equation is

iΦ0 − x1F14̂ − x2F24̂ − x3F34̂ = 0 (D.10)

which is indeed solved by the ’t Hooft loop background (D.7).

This concludes the explicit check that the direct sum of the monopole background

configuration (D.7) and the Φ0 zeromode profile (D.5) with the associated auxiliary field

K3 (D.6) solve the localization equations Q ·Ψ = 0.

E Hypermultiplets in general representations

In this appendix we will derive the formula (6.28) of the one-loop index for hypermultiplets

in an arbitrary representation.

We will do this by generalizing, and also applying in a suitable way, the formula (6.27)

that is valid for the adjoint representation. Let us begin with N = 2∗ theory in flat space

which we regard as a dimensional reduction of the super Yang-Mills in ten dimensions. The

group SO(4) that rotates the 5678 directions factorizes into the product of the R-symmetry

group SU(2)R and the flavour symmetry group SU(2)F.

In order to derive (6.28) for complex and real representations, let us take the gauge

group to be U(2). Applying the adjoint formula (6.27) to this case, we find the index76

− e
1
2
(iε1+iε2)

(1− eiε1)(1− eiε2)

eim̂ + e−im̂

2

(

ei(â1−â2) + e−i(â1−â2)
)

, (E.1)

where diag(eiâ1 , eiâ2) and diag(eim̂, e−im̂) parametrize the maximal tori of U(2) and SU(2)F
that we denote by U(1)1×U(1)2 and U(1)F respectively. Under U(1)1×U(1)2×U(1)F, off-

diagonal fields in the hypermultiplet transform in representations with charges (+1,−1,±1)

and their complex conjugate. The trick is to consider a new N = 2 theory that is ob-

tained by setting all the off-diagonal components of the U(2) adjoint fields in the vector

multiplet to zero, regarding G′ = U(1)1 as a new gauge group. We also project the hy-

permultiplet fields onto those with charges (+1,−1,+1) and their conjugate, and regard

76We neglect the terms with zero weights.
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U(1)′F ≡ [U(1)2×U(1)F]diag as a new flavour group. The hypermultiplet index for the new

theory is obtained from (E.1) by keeping the relevant terms:

− e
1
2
(iε1+iε2)

2(1− eiε1)(1− eiε2)

(

eiâ
′−im̂′

+ e−iâ
′+im̂′

)

, (E.2)

where â′ ≡ â1, and the Coulomb parameter â2 and the original mass parameter m̂ have

combined into a new mass parameter m̂′ ≡ â2−m̂. Thus we have derived the formula (6.28)

for the spacial case of gauge group U(1) and a single charged hypermultiplet. Noting that a

general complex irreducible representation of an arbitrary gauge group G can be thought of

as embedding G into U(dimR) whose maximal torus is U(1)dimR, this U(1) result implies

the formula (6.28) for any complex R.

Similarly any strictly real irreducible representation defines an embedding of G into

SO(dimR) with maximal torus SO(2)[dimR/2]. Noting that the vector representation of

SO(2) ≃ U(1) gives the minimal real irreducible representation, the U(1) formula (E.2)

also generalizes to (6.28) for any real representation R.

To treat the case where R is a pseudo-real representation, let us begin with N = 4

theory with gauge group SU(3) and perform a projection as follows. We pick a subgroup

G′ = SU(2) of SU(3) as a new gauge group, and denote its commutant by U(1)′. We

parametrize the maximal torus of G′ × U(1)′ by diag(ei(â+b̂), ei(−â+b̂), e−2ib̂). Let us keep

only the vectormultiplet fields for G′. Under the embedding

SU(3)× SU(2)F ⊃ SU(2)×U(1)′ ×U(1)F (E.3)

where U(1)F is the maximal torus of SU(2)F, the hypermultiplet splits as

(adj,2) → . . .⊕ 2+1,+1 ⊕ 2+1,−1 ⊕ 2−1,+1 ⊕ 2−1,−1 ⊕ . . . . (E.4)

We project the hypermultiplets onto 2−1,+1 and its conjugate 2+1,−1. Picking the diagonal

U(1)′F ≡ [U(1)′ ×U(1)F]diag, we get half-hypermultiplets in the pseudo-real representation

2 of gauge group SU(2) with flavour symmetry SO(2) ≃ U(1)′. This is the minimal case

involving a pseudo-real representation. We can obtain the hypermultiplet index in the

present case by keeping relevant terms in the adjoint formula (6.27):

− e
1
2
(iε1+iε2)

(1− eiε1)(1− eiε2)

eim̂ + e−im̂

2

(

e2iâ + e−2iâ + eiâ+ib̂ + e−iâ−ib̂ + e−iâ+ib̂ + eiâ−ib̂
)

→ − e
1
2
(iε1+iε2)

2(1− eiε1)(1− eiε2)
(eiâ

′+im̂′
+ e−iâ

′+im̂′
+ eiâ

′−im̂′
+ e−iâ

′−im̂′
) , (E.5)

where the arrow indicates the projection and we have defined m̂′ ≡ m̂ − b̂. The expres-

sion (E.5) is a special case of (6.28). For any gauge group G, a pseudo-real representation

defines a homomorphism from G to the group Sp(dimR) whose Cartan subalgebra is iso-

morphic to that of Sp(2)
1
2
dimR = SU(2)

1
2
dimR. The Cartan subalgebra of flavour SO(2NF)

is isomorphic to that of SO(2)NF ≃ U(1)NF . Thus this minimal case (E.5) implies the

formula (6.28) for any pseudo-real representation R.
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F Singular monopoles and instantons

Solutions of the Bogomolny equations are related to U(1) invariant instantons [14]. Let us

consider a gauge field A in R
4 ≃ C

2. We regard the four-dimensional space C
2 as a U(1)

fibration over R3 using the map

(z1, z2) 7→ (z1, z2)~σ

(

z1
z2

)

=: ~x (F.1)

from C
2 to R

3. The right-hand side is invariant under (z1, z2) → (e−iνz1, e
iνz2). We

will denote this symmetry group by U(1)K . If ψ is a coordinate of the U(1)K orbits, the

four-dimensional metric is given by

ds2
C2 =

1

4x

(

d~x2 + 4x2(dψ + ω)2
)

, (F.2)

where

x = |~x| (F.3)

and ω is a 1-form on R
3 such that

2dω = vol(S2) (F.4)

is the volume form on the unit two-sphere.77 In accord with this fibration structure, we

decompose the four-dimensional gauge field as

A = A+ 2x(dψ + ω)Φ , (F.5)

where A = Aidx
i and Φ are the connection and a scalar on R

3. If we assume that A is

independent of ψ, or equivalently invariant under the U(1)K action, the four-dimensional

curvature F = dA+A ∧A decomposes as

F = dA+A ∧A
= F − 2x(dψ + ω) ∧DΦ+

Φ

x

(

x2vol(S2) + 2xdx ∧ (dψ + ω)
)

, (F.6)

where F = dA+A∧A and D = d+[A, · ] are the three-dimensional curvature and covariant

derivative. Its dual with respect to the four-dimensional metric (F.2) is given by78

∗4 F = −(∗3F ) ∧ 2x(dψ + ω)− ∗3DΦ− Φ

x

(

x2vol(S2) + 2xdx ∧ (dψ + ω)
)

. (F.7)

77For example, if we take angular parametrization z1 = x1/2 cos η
2
e−iψ and z2 = x1/2 sin η

2
eiψ+iϕ, then

ω = 1
2
(1− cos η)dϕ.

78To compute the Hodge star, we need to know the orientation of C2 in terms of our coordinates. The

standard orientation of C
2 corresponds to the sign of the volume form vol(C2) ∝ −dxdηdϕdψ in the

angular parametrization. Indeed, at (x, η, ϕ, ψ) = (1, 0, 0, 0) we have dRez1 ⊃ dx, dImz1 ⊃ −dψ, dRez2 ⊃

dη, dImz2 ⊃ dϕ, so vol(C2) ∝ −dxdηdϕdψ. The three-dimensional volume form is vol(R3) = x2 sin ηdxdηdϕ.
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Comparing (F.6) and (F.7) we see that the anti-self-duality equations F+ = 0 in four

dimensions is equivalent to the Bogomolny equations

F = ∗3DΦ (F.8)

in three dimensions. Thus U(1)K-invariant instantons are in a one-to-one correspondence

with solutions of the Bogomolny equations.

To be more precise, we need to specify the boundary conditions we impose in three

and four dimensions. In three dimensions, we require that the Higgs field Φ vanishes at

infinity. As we see from (F.5) this is indeed necessary if A at infinity becomes pure gauge

g−1dg with g : S3 → G depending only on the angular directions of C2.

To understand the appropriate boundary condition at the origin, let us consider the

trivial background A = 0 on C
2. Let w be a coweight of the gauge group G. We recall

that a coweight is an element of the Lie algebra, and discretely quantized in such a way

that the exponential eBψ is invariant under ψ → ψ + 2π. A singular gauge transformation

by eBψ induces a non-trivial field

A = e−BψdeBψ = −B ω + 2x(dψ + ω)
B

2x
, (F.9)

i.e.,

A = −B ω , F = −B
2
vol(S2) , Φ =

B

2x
. (F.10)

This is precisely the ’t Hooft operator background in the transverse directions to the loop.

If we start with a general gauge field, after the singular gauge transformation by eBψ,

the group U(1)K acts as an isometry that shifts ψ as well as a linear transformation on

the fibers of the gauge bundle. In general, a smooth gauge field on C
2 in variant under

the U(1)K group action becomes a field configuration in three dimensions that obeys the

boundary condition appropriate for the ’t Hooft loop. The linear transformation on the

fiber at the origin encodes the magnetic charge of the ’t Hooft operator. In fact, one can

reverse the logic and use this connection with instantons to define the precise boundary

conditions for singular solutions of the Bogomolny equations, which is otherwise difficult to

specify. See for example [22], where this definition of boundary conditions was concretely

used to compute the dimension of the moduli space by suitably applying the index theorem.

G Instanton partition functions for U(N)

For G = U(N), the localization calculation represents the instanton partition function

Zinst as a sum over the set of the U(1)ǫ1 × U(1)ǫ2 × U(1)N -fixed points on the moduli

space of non-commutative instantons on C
2. For each fixed point, we need to compute the

equivariant Euler character of the self-dual complex

Dvm : Ω0 ⊗ ad(g)
D→ Ω1 ⊗ ad(g)

D+→ Ω2+ ⊗ ad(g) . (G.1)

Note that we can decompose the complexified spaces of differential forms as Ω0
C

≃
Ω0,0, Ω1

C
≃ Ω1,0 ⊕ Ω0,1, Ω2+

C
≃ Ω2,0 ⊕ Ω0,0κ ⊕ Ω0,2, where κ is the Kähler form. Using
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Hodge duality, we also have the relations Ω2,2 ≃ Ω0,0 and Ω2,1 ≃ Ω1,0. It follows that the

complexification of the self-dual complex (G.1) is isomorphic to the Dolbeault complex

D : Ω0,0 ⊗ ad(g)
D→ Ω0,1 ⊗ ad(g)

D→ Ω0,2 ⊗ ad(g) (G.2)

twisted by Ω0,0 ⊕ Ω2,0. The index of the self-dual complex (G.1) differs from the index

of the Dolbeault complex (G.2) by a factor accounting for complexification, and another

computing the weights of the toric U(1)ǫ1 ×U(1)ǫ2 action on the fiber of Ω0,0 ⊕Ω2,0 at the

origin:

ind(Dvm) =
1 + t−1

1 t−1
2

2
ind(D) . (G.3)

Mathematically it is sometimes more convenient to consider the torsion free sheaves,

which are known to be in a one-to-one correspondence with non-commutative instantons.

Deformations of the torsion free sheaves are captured by the Dolbeault complex (G.2).

Each fixed point is labeled by an N -tuple of Young diagrams ~Y = (Y1, . . . , YN ). Each

partition Yα defines an ideal sheaf of rank one EY in the standard way [36]. Let VY be

the space of holomorphic sections of EY . For Y = (λ1 ≥ λ2 · · · ≥ λλ′1), where λi and

λ′i are the number of squares in the i-th column and row respectively, the basis of VY is

given by monomials zi−1
1 zj−1

2 for all (i, j) such that j > λi. (The counting of squares in

each Young diagram starts from (i, j) = (1, 1)). In other words the basis in the VY is

enumerated by the squares outside of the Young diagram Y . Each basis element zi−1
1 zj−1

2

generates an eigenspace of the torus T = U(1)ǫ1 × U(1)ǫ2 with eigenvalue t1−i1 t1−j2 , where

(t1, t2) = (eiε1 , eiε2). Therefore the character of VY as a U(1)ǫ1 ×U(1)ǫ2-module is

ch(VY ) =
∑

(i,j) 6∈Y

t1−i1 t1−j2 =
1

(1− t−1
1 )(1− t−1

2 )
− χ(Y ) , (G.4)

where

χ(Y ) =
∑

(i,j)∈Y

t1−i1 t1−j2 . (G.5)

We also have

χ∗(Y ) =
∑

(i,j)∈Y

ti−1
1 tj−1

2 . (G.6)

For each fixed point ~Y we need to compute the equivariant index of the twisted

Dolbeault complex (G.2) in the background of the connection defined by ~Y . Since

ad(g) = N⊗N where N is the fundamental representation, the adjoint-valued cohomology

space of D is the tensor product of the V ∗
Y and VY modules over the ring of holomorphic

functions. Hence

ind(D) = ch(V ∗
Y ⊗O VY ) = ch(V ∗

Y )ch(VY )/ch(O∗)

=
N
∑

i,j=1

s−1
i sj

(

1

(1− t1)(1− t2)
− χ∗(Yi)

)(

1

(1− t−1
1 )(1− t−1

2 )
− χ(Yj)

)

(1− t1)(1− t2)

(G.7)
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where si = eiâi . We can extract the common infinite part independent of ~Y

ind(D)1-loop =
N
∑

i,j=1

s−1
i sj

1

(1− t−1
1 )(1− t−1

2 )
, (G.8)

and denote the remainder in (G.7) by ind(D)inst:

ind(D) =: ind(D)1-loop + ind(D)inst . (G.9)

To convert the index (Chern character) ind(Dvm) to the fluctuation determinant (Euler

character), we need to expand in powers of (t1, t2) and take the product of weights according

to the rule

∑

α

cαe
wα(ε1,ε2,â) →

∏

α

wα(ε1, ε2, â)
cα . (G.10)

Notice that ind(D) and t−1
1 t−1

2 ind(D) in (G.3) are exchanged by (ε1, ε2, â) →
(−ε1,−ε2,−â). For the common one-loop factor Z1-loop at the north pole, it is impor-

tant to use

ind(Dvm)1-loop =
1 + t−1

1 t−1
2

2
ind(D)1-loop , (G.11)

rather than ind(D)1-loop, before expanding in positive powers of t1, t2 as we did in sec-

tion 6.79 For the finite instanton part Zinst computed by the rule (G.10), however, the

result obtained from

ind(Dvm)inst =
1 + t−1

1 t−1
2

2
ind(D)inst (G.12)

is identical to the result from ind(D)inst because the signs that appear from (ε1, ε2, â) →
(−ε1,−ε2,−â) cancel out in the product. Thus the instanton partition function can be

computed either from the self-dual complex or the Dolbeault complex.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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