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Abstract

Background: The wealth of gene expression values being generated by high throughput microarray technologies
leads to complex high dimensional datasets. Moreover, many cohorts have the problem of imbalanced classes where
the number of patients belonging to each class is not the same. With this kind of dataset, biologists need to identify a
small number of informative genes that can be used as biomarkers for a disease.

Results: This paper introduces a Balanced Iterative Random Forest (BIRF) algorithm to select the most relevant genes
for a disease from imbalanced high-throughput gene expression microarray data. Balanced iterative random forest is
applied on four cancer microarray datasets: a childhood leukaemia dataset, which represents the main target of this
paper, collected from The Children’s Hospital at Westmead, NCI 60, a Colon dataset and a Lung cancer dataset. The
results obtained by BIRF are compared to those of Support Vector Machine-Recursive Feature Elimination (SVM-RFE),
Multi-class SVM-RFE (MSVM-RFE), Random Forest (RF) and Naive Bayes (NB) classifiers. The results of the BIRF approach
outperform these state-of-the-art methods, especially in the case of imbalanced datasets. Experiments on the
childhood leukaemia dataset show that a 7%∼ 12% better accuracy is achieved by BIRF over MSVM-RFE with the
ability to predict patients in the minor class. The informative biomarkers selected by the BIRF algorithm were validated
by repeating training experiments three times to see whether they are globally informative, or just selected by
chance. The results show that 64% of the top genes consistently appear in the three lists, and the top 20 genes remain
near the top in the other three lists.

Conclusion: The designed BIRF algorithm is an appropriate choice to select genes from imbalanced
high-throughput gene expression microarray data. BIRF outperforms the state-of-the-art methods, especially the
ability to handle the class-imbalanced data. Moreover, the analysis of the selected genes also provides a way to
distinguish between the predictive genes and those that only appear to be predictive.

Background
The huge number of gene expression values generated
by microarray technology leads to very complex datasets,
and many cohorts have the imbalanced classes problem
(e.g. 80% alive vs. 20% deceased). These complexities raise
the challenge of how to identify the biomarkers that are
strongly associated with the disease and that can be used
to distinguish classes of patients. Hence, feature selection
is a critical technique in the field of bioinformatics [1] and
it has been used in various domains for large and complex
data, such as gene expression datasets.
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Gene expression datasets are typically noisy and often
consist of a limited number of observations (hundreds)
relative to the large number of gene expression values
(thousands of genes). In practical applications, datasets
often exist in an unbalanced form. That is, at least
one of the classes constitutes only a small minority of
the data. For example, the following well-known and
publicly available microarray datasets are imbalanced:
malignant pleural mesothelioma (MPM) and lung adeno-
carcinoma (ADCA) gene expression dataset with a 17%
class imbalanced (31 MPM versus 150 lung ADCA); acute
lymphoblastic leukaemia (ALL) and acute myeloblastic
leukaemia (AML) dataset with a 32% class imbalanced (23
samples of AML versus 49 samples of ALL). For problems
such as these, the practical classification interest usually
leans towards correct classification of the minor class.
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Generally, most of the classifiers used to select features
suffer from the imbalanced classes and many have poor
performance because they are biased to the large sam-
ples and pay less attention to the rare class. Consequently,
unsatisfactory classification performance results andmost
of the rare class features are not recognized. These char-
acteristics result in difficulties in working with standard
machine learning techniques, which must be modified to
deal with the complexities of gene expression data and to
build an effective feature selection algorithm. These char-
acteristics also adversely affect the analysis of microarray
datasets that have received significant attention in the
field of cancer diagnosis and treatment.
Acute Lymphoblastic Leukaemia (ALL) is the most

common childhood malignancy [2]. It is a type of can-
cer that affects the blood and bone marrow. The causes
of ALL are still unknown, but are thought to most likely
result from mutations of genes [3]. Nowadays, ALL is
diagnosed by a full blood count and a bonemarrow biopsy.
Based on these examinations, an ALL patient’s risk of
relapse and appropriate treatment are identified. Most
children achieve an initial remission, yet approximately
20% of children with ALL suffer a relapse [4]. This relapse
problem, where the cancer recurs, is considered as one of
the major obstacles to curing ALL patients. One reason
for relapse is incorrect therapy due to mis-classification
of risk factors of ALL patients [4]. Consequently, accu-
rate risk assessment of patients is crucial for successful
treatment.
With microarray technology, it is becoming more fea-

sible to look at the problem from a genetic point of view
and to perform genetic-based risk assessment for each
patient. However, too many features or genes in a dataset
adversely affect similarity measurement and classification
performance, because many of these genes are irrelevant
to specific traits of interest [5]. Consequently, biologists
need to identify a small number of informative genes that
can be used as biomarkers for the disease in order to
understand gene expression in cells and to facilitate diag-
nosis and treatment of patients. To achieve this, a real
childhood leukaemia gene expression dataset collected
from The Children’s Hospital at Westmead is provided
for this project that aims to identify biomarkers that are
strongly associated with the risk of relapse of patients with
the eventual aim of supporting clinicians and biologists in
diagnosis and treatment of ALL patients. The dataset is
composed of 110 patients and each patient has more than
twenty two thousand gene expression values. Patients are
classified into three categories based on the cancer’s risk
type: standard, medium and high risk. The majority of 78
patients are classified as a medium risk, 21 patients are
classified as a standard risk and theminority of 11 patients
are classified as high risk. This imbalanced classes prob-
lem adversely affects the classification performance in the

feature selection process, because it can result in a trivial
classifier that classifies all patients as the majority class.
Therefore, ignoring this critical data characteristic may
result in very poor feature selection.
The random forest algorithmwas developed by Breiman

[6], and is known as one of the most robust classification
algorithms developed to date. It is an ensemble classi-
fier consisting of many decision trees. Many classification
trees are grown during training. A training set is created
for each tree by random sampling with replacement from
the original dataset. During the construction of each tree,
about one-third of the cases are left out of the selection
and this becomes the out-of-bag cases that are used as a
test set. The classification performance of the test set is
evaluated based on the out-of-bag error rates.
Random forest has been used extensively in the biomed-

ical domain [7,8] because it is well suited for microarray
data. Features will not be deleted based on one decision or
one tree, but many trees will decide and confirm elimina-
tion of features. Another positive characteristic of random
forest is that it is applicable to very high dimensional data
with a low number of observations, a large amount of
noise and high correlated variables. Moreover, random
forest is less prone to over-fitting and can handle the prob-
lem of imbalanced classes. All these characteristics make
the random forest classifier an appropriate choice for gene
expression datasets.
This paper addresses the problem of gene selection in

the case of imbalanced datasets. Several authors have pre-
viously used random forest for gene selection but they
haven’t addressed that complex problem (multi class-
imbalanced data) and they did not take advantage of
random forest in dealing with imbalanced classes. Diaz-
Uriarte and Alvarez de Andres [7] explored the potential
of random forest for attribute selection and proposed
a method for gene selection using the out-of-bag error
rates. The authors thoroughly examined the effects of
changes in the parameters of random forest specifically,
mtry, ntree and nodesize. However, the authors did
not address the problem of imbalanced classes and how
the parameters cutoff and sampsize can handle that
problem. Archer and Kimes [8] performed a similar eval-
uation of the random forest classifier and achieved feature
selection using variable importance measures obtained
by random forest, but they did not address the prob-
lem of imbalanced classes. Moorthy et al [9] also use
random forest for gene selection based on the out-of-
bag-error rates. The only difference is that [9] aims to
obtain the biggest subset of genes with the lowest error
rates. They have performed experiments to see whether
the classification performance of the larger subset of genes
outperformed the smaller subset of genes. These experi-
ments also have been performed in this paper, but with the
consideration of the classification performance effects on
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the imbalanced classes. Overall, these proposed methods
[7-9] might not be the appropriate choice for our purposes
as we have to select genes from imbalanced data. This
paper also considers the problem of over-fitting, which
must be addressed in any machine learning algorithm that
is dealing with datasets having a low number of samples
compared to a very high number of attributes. Finally, and
as in [7], the last issue addressed in this paper is the evalu-
ation of the selected genes to determine whether they are
stable and appear in multiple executions, or selected only
once.
This paper proposes a feature selection method called

Balanced Iterative Random Forest (BIRF) to select genes
that are relevant to a specific trait of interest from gene
expression datasets. This work is different to the previous
approaches because it enhances the gene selection process
of imbalanced data by tuning the parameters cutoff and
sampsize of the random forest classifier.

Methods
Balanced iterative random forest for feature selection
This paper introduces a new method for feature selection
based on random forest called Balanced Iterative Random
Forest (BIRF). Balanced iterative random forest is an
embedded feature selector that follows a backward elim-
ination approach. The base learning algorithm is random
forest, which is involved in the process of determining
what features are removed at each step. The algorithm
starts with the entire set of features in the dataset. At
every iteration, the number of the attributes is reduced
by removing those attributes that have zero importance
value. After discarding those genes, a new random forest is
built with the selected set of genes that yields the smallest
out-of-bag (OOB) error rate.
This algorithm is mainly tested on the real childhood

leukaemia gene expression dataset collected from The
Children’s Hospital atWestmead. All specimens, as well as
the associated comprehensive patient clinical data, used
to generate the microarray dataset upon which we devel-
oped the BIRF algorithm, were made available to the chief
investigators with the approval of and according to the
guidelines established by the Children’s Hospital at West-
mead’s Human Research Ethics Committee and Tumour
Bank Committee and is compliant with the Declaration of
Helsinki.
The R package randomForest is used in this paper.

The two main parameters of random forest are mtry,
the number of input variables randomly chosen at each
split and ntree, the number of trees in the forest. These
two parameters are set to their default values (ntree =
500; mtry = √

d, where d is the number of features).
Two other parameters are very important in this algo-
rithm due to the problem of imbalanced classes and
ignoring them may result in poor feature selection.

The two parameters are cutoff, a vector weight for each
class, and sampsize, the number of cases to be drawn to
grow each tree. These two parameters are carefully tuned
in order to achieve a successful feature selection process
that able to recognize features in the minority classes and
not ignoring them.
Similar to standard classifiers, random forest also has

the problem of learning from extremely imbalanced class
datasets. However, random forest has the capacity to mit-
igate this problem, and two solutions are applied on the
BIRF to alleviate it: balanced sample and cost sensitive
learning. The balanced sample solution is based on the
parameter sampsize, which aims to induce random for-
est to build trees from a balanced bootstrap sample, which
is a bootstrap sample that is drawn from theminority class
with the same number of samples from the majority class.
In the case of imbalanced data, there is a high probabil-
ity that random forest will build a tree from a bootstrap
sample that contains only a few samples from the minor-
ity class, resulting in poor performance for predicting the
minority class.
The second solution aims to apply a cost sensitive learn-

ing technique through the parameter cutoff in order to
make random forest more suitable for learning extremely
imbalanced data. Cost sensitive learning assigns a high
cost for mis-classification of the minority class and min-
imisation of the cost of the major class. As random forest
generates votes to classify the input case, cost weights are
applied on those votes in order to make the calculation of
the votes as proportion, rather than whole. This solution
aims to balance the distribution of classes without alter-
ing the semantics of the dataset or by down-sampling or
over-sampling the dataset.

Algorithm of balanced iterative random forest
A balanced iterative random forest algorithm is proposed
to select the most relevant genes for the disease and can
be used in the classification and prediction process. Due
to the large size of gene expression datasets, and in order
to have a fast feature selection process, it was not prac-
tical to run BIRF algorithm on all genes of the dataset
because it takes too long. Consequently, we split the data,
by the number of genes, randomly into different datasets
only in the first iteration of the algorithm. This splitting
of the dataset is optionally in the BIRF algorithm. By split-
ting the dataset, BIRF will run fast, but random forest may
lose some global correlation in the first iteration However,
it will be able to include it in the rest of the algorithm.
Without splitting, the BIRF algorithm takes too long to
run, but it is able to include the global correlation in all
iterations.
The BIRF algorithm (including splitting the data) is

run on each dataset to select the informative genes. The
selected genes from each dataset are then combined to
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form a new gene expression dataset with fewer attributes.
With this obtained dataset, BIRF then begins an iterative
attribute elimination process and without losing the global
correlation. It is presented below as Algorithm 1.

Algorithm1: BIRF(Matrix dataset,Vector cutoff ,Vector
sampSize,Boolean splitting,Matrix Valid.dataset)

current.OOB.error ← 1
current.valid.error ← 1
reducedDataset is an empty matrix
if (splitting)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

randSamples ←

⎧⎪⎪⎨
⎪⎪⎩

Divide the dataset randomly into
different samples
by the number of features
(without replacing)

for i ← 1 to number(randSamples)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

randomforest(randSamples[ i] , cutoff ,
sampSize)
Find the importance value for each feature
eliminated.features ← feature with importance
value <= 0
randSamples[ i]← randSamples[ i]
(−eliminated.features)
reducedDataset ← reducedDataset+
randSamples[ i]
Valid.dataset ← Valid.dataset
(−eliminated features)

dataset ← reducedDataset

REPEAT⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

randomforest(dataset, cutoff , sampSize)
Find the importance value for each feature
eliminated.features ← feature with importance value
<= 0
dataset ← dataset(−eliminated.features)
Valid.dataset ← Valid.dataset(−eliminated.features)
previous.OOB.error ← currentOOB.error
current.OOB.error ← Calculate the OOB error
previous.valid.error ← current.valid.error
current.valid.error ← Calculate the error rate of the
Valid.dataset
UNTIL
current.valid.error >= previous.valid.error or current.
OOB.error >= previous.OOB.error

return (dataset)

Validation of over-fitting
Over-fitting occurs in statistics and machine learning
algorithms especially when these algorithms are dealing
with complex datasets, such as gene expression datasets

(many attributes relative to small number of samples) [5].
We also established in the Background that one of the
characteristics of random forest is that it is less prone to
over-fitting. Nevertheless, to further support the process
of feature selection, additional experiments are performed
to ensure that there is no over-fitting in the gene selec-
tion process. Early-stopping [10,11] is used here to avoid
over-fitting by stopping the elimination of genes once
over-fitting starts to happen. This is achieved by splitting
the training set into a new training set and a valida-
tion set, which is used in the genes selection process
to decide when to stop. In each iteration, after remov-
ing the irrelevant genes from the new training set, the
same genes are eliminated from the validation set and
classification performance is evaluated on the validation
set (see Algorithm 1). Once the classification error rate
of the validation dataset starts to increase after reach-
ing a minimum value, it is assumed that the new training
set is over-trained and that the algorithm should stop at
this stage.

Validation of the selected genes
The decision about how many attributes to use during the
feature selection process is critical and has two effects.
Selecting too many attributes from the original dataset
makes it difficult to analyse these genes in terms of their
effect on the disease. On the other hand, in order to build
a generalizable classifier or gene-based similarity mea-
surement model, it is important to incorporate as much
information as possible. Therefore, it is possible to make
a principled decision by testing the effect of the selected
number of attributes on the classification performance
to know whether more genes provide new information
or not.
Although the error rate of the validation dataset with the

selected genes may reach a minimum value and provides
a good classification performance, these selected genes
may still require further exploration to determine whether
they are globally informative or if they are just selected
by chance and may be only predictive to that particular
dataset. In order to support the gene selection process
and to distinguish between predictive attributes and those
that only appear to be predictive, this paper proposes
a methodology to decide what genes best describe the
original dataset. The methodology repeats experiments,
training the BIRF algorithm several times and reduces the
training dataset into several subsets (resultant attribute
lists). The resultant attributes in each subset are then
compared to see what attributes are selected in multiple
executions, and which attributes are only selected once.
The assumption is that the attributes that appear in mul-
tiple subsets are more informative than attributes that
appear in a single subset. The subset that contains the
most common attributes with the minimum error rates
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on the validation dataset is the one that best describes the
original dataset.

Results and discussion
Several experiments are performed on the balanced iter-
ative random forest algorithm in order to demonstrate
the validity of the proposed algorithm, to evaluate the
algorithm on different datasets and to compare our
achieved results to other algorithms by using the same
datasets.

Datasets
The experiments are performed on a childhood leukaemia
gene expression dataset that has been collected from
The Children’s Hospital at Westmead. This dataset is
also available in the public domain and can be explored
through the Oncogenomics Section of the Paediatric
Oncology Branch at the National Cancer Institute NIH,
USA (http://pob.abcc.ncifcrf.gov/cgi-bin/JK). The dataset
was normalized by the Distance Weighted Discrimi-
nation (DWD) algorithm [12]. The entire childhood
leukaemia gene expression dataset is composed of 110
patients with expression values for 22,678 genes. However,
stratified random sampling is applied on the gene
expression dataset and it is divided into training and test
datasets. The training dataset is composed of 70 patients
who are classified as follows:

• Standard risk (11 patients)
• Medium risk (53 patients)
• High risk (6 patients)

The test dataset is composed of 40 patients and they are
classified as follows:

• Standard risk (10 patients)
• Medium risk (25 patients)
• High risk (5 patients)

Three other publicly available microarray datasets: NCI
60, Colon cancer and Lung cancer datasets have been used
in this paper for evaluation of BIRF. These datasets are
characterized by a relatively small number of samples with
a high dimensional space. For the two datasets (Colon and
Lung), the same training and test data reported in the
previous studies are used in these experiments, without
changing the sample sizes, so that the obtained results can
be objectively compared with earlier published results.
However, a stratified random sampling is applied on the
NCI 60 dataset and it is divided into training and test
datasets.

• NCI 60 dataset is a well-studied publicly available
microarray benchmark collected by Ross et al [13]
and is produced using Affymetrix HG-U133A chips.

The data we used is the same as the data used in [7].
The dataset consists of 61 samples that are classified
into eight categories. Each sample is measured over
5,244 gene expression values (see Table 1).

• Colon dataset is a publicly available microarray
dataset that was obtained with an Affymetrix
oligonucleotide microarray [14]. The Colon dataset
contains 62 samples, with each sample containing the
expression values for 2000 genes. Each sample
indicates whether or not it came from a tumour
biopsy. This dataset is used in many different
research papers on feature selection of gene
expression datasets [15-17]. The dataset is quite noisy
but the real challenge is the shape of the data matrix
where the dimensionality of the feature space is very
high compared to the number of cases. It is important
to avoid over-fitting in this dataset. Although the
number of cases is very low, the dataset is split into
two: a training dataset and a test dataset composed of
38 and 34 samples, respectively (see Table 1).

• Lung cancer dataset is also used in the experiments
and it was generated with an Affymetrix
oligonucleotide microarrays and normalized by
z-score [18]. Each sample it indicates whether it came
from a malignant pleural mesothelioma (MPM) or
adenocarcinoma (ADCA). There are 181 tissue
samples (31 MPM and 150 ADCA) that have already
been broken into training and testing samples. The
training dataset contains 32 of samples, 16 MPM and
16 ADCA. The remaining 149 samples are used for
testing. Each sample is described by 12533 genes.
Similar to the Colon dataset, the Lung cancer dataset
is also noisy but with more samples and genes. These
samples are broken into two datasets: a training
dataset and test dataset composed of 32 and 149
samples, respectively (see Table 1).

Experiments on childhood leukaemia dataset
Balanced Iterative Random Forest is validated with the
childhood leukaemia gene expression dataset collected
from The Children’s Hospital at Westmead. It is impor-
tant to note that the main purpose of these experiments
is to find a subset of genes most closely correlated with
the leukaemia risk type distinction. Also, it is impor-
tant to incorporate as much data as possible without
including so much data that it may result in losing inter-
esting separations between patients. The set of infor-
mative genes to be used in the prediction of risk type
was chosen to be the 107 genes (see Additional file 1)
selected at a lowest error rate 0.04. In order to vali-
date the results obtained from this experiment, the test
dataset is processed by random forest to view the clas-
sification performance of the selected genes. Table 2
shows the confusion matrix for classification of the test

http://pob.abcc.ncifcrf.gov/cgi-bin/JK
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Table 1 Microarray gene expression datasets

Datasets Number of classes Number of features Number of training Number of testing Profiles

samples samples

childhood leukaemia 3 22,678 70 40 Risk of relapse

NCI 8 5,244 45 16 8 phenotypes

Colon cancer 2 2,000 38 34 Cancer/Normal

Lung cancer 2 12,533 32 149 MDM/ADCA

dataset and demonstrates that the classifier generalised
reasonably well.

Validation of Results in terms of Over-Fitting
It is important to be able to validate results and prove that
they are not due to over-fitting of the training data. The
Early-stopping is used here and iterative random forest
is run again on the training dataset to select the rele-
vant biomarkers. Simultaneously, the validation dataset is
involved in this process to ensure that the training process
does not over-train. The training process of the itera-
tive random forest on the childhood leukaemia dataset is
shown in Figure 1.
As can be seen from the graph and based on the train-

ing dataset, the out-of-bag error decreases as the num-
ber of irrelevant features and noise is eliminated at each
iteration. After several iterations, the out-of-bag error
becomes stable in a range between 0.1 and 0.04. With
respect to the validation dataset, the error rates also
decreases as the number of irrelevant features from the
training dataset are eliminated at each iteration. The error
rates of the validation dataset consistently decreases in
the first eight iterations. After the eighth iteration, the
error rates of the validation dataset increases again and
becomes unstable for several iterations. The training stops
at the eighth iteration when the lowest error rates are
achieved for the validation dataset (0.16). It is important to
note that there is no over-training of the dataset in the first
eight iterations and that the number of features is greater
than 100. After the ninth iteration, the error rates of the
validation dataset starts to increase again after reaching
the minimum.

Table 2 A confusionmatrix for the childhood leukaemia
test dataset

Predicted
high

Predicted
medium

Predicted
standard

Actual High 3 1 1

Actual Medium 0 22 3

Actual Standard 0 2 8

Analysis of selected genes
To further evaluate the attribute-selection process, experi-
ments with the balanced iterative random forest algorithm
are repeated three times. The resultant attribute lists
from each repetition are then compared to the attributes
obtained from the initial experiment where 107 genes
have been selected. The goal is to see whether the 107
selected attributes appear in the three resultant attribute
lists, or not. It is interesting to note that 80% of the top
20 genes consistently appear in the three lists, and the top
20 genes remain near the top in the other three lists. Sixty
four percent of the top 100 selected genes from each list
are the same. This supports the fact that the top selected
genes are globally predictive and have not been selected
by chance. Moreover, it also indicates that the feature
selection process was not over-trained.
Classification performance of the three resultant

attribute lists are also compared to see whether the list
that contains the most common attributes provides good
separation between the patients. The error rates of the of
the three lists are 0.28, 0.21 and 0.18, respectively. It can
be clearly seen from this analysis that the dataset with
the selected 107 genes (see Additional file 1) contains the
most common attributes. It provides the minimum error
rates (0.16) and is the best for describing the original
dataset.

Experiments on the three public microarray datasets
One of the most important aspects of any experiment
is validating the algorithm. Validation is achieved by
applying the proposed algorithm on three publicly avail-
able microarray datasets. If the algorithm performs well
then the feature selection process has been completed
correctly.
Balanced Iterative Random Forest is initially validated

on the NCI 60 dataset. The same procedure, that is early
stopping, is applied on the NCI 60 dataset in order to
validate the results in terms of over-fitting. The train-
ing process of the iterative random forest on the NCI60
dataset is shown in Figure 2. The graph shows that the
out-of-bag error rates of the training dataset decreases
until they reach the minimum reduction of genes, which
is realized at 89 genes with the lowest out-of-beg error
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Figure 1 Comparison variations the error rates of the validation and training datasets during selecting the features from childhood
leukaemia dataset.

rates 0.02. With respect to the validation set, the mini-
mum error rates of 0.17 are achieved at 112 genes. The
error rates are then increased again to reach 0.23 at 44
genes. The number of the selected genes from this process
is 112 with a 0.17 error rates.
Balanced Iterative Random Forest is also validated on

the Lung cancer dataset [19]. The minimal o error rates
of zero is achieved at 57 features, which are selected as
the most important features for classification. This result

is also validated in order to ensure that the feature selec-
tion process has not over-fitted to that training dataset.
With the selected 57 features, 97% accuracy have been
achieved on the test dataset with only one patient is
wrongly classified.
The same procedure is applied to the Colon dataset [14].

Nineteen features are selected as the most important fea-
tures in classification with a minimal error rates of zero.
An accuracy of 96% has been achieved for the test data

Figure 2 Comparison variations the error rates of the training and validation datasets during selecting the features from NCI60 dataset.
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where only one patient is wrongly classified. These results
suggest that BIRF works well for several gene expression
datasets.

Comparison with other state-of-the-art algorithms
In the previous section, we performed experiments on
two different public gene expression datasets that have
been analysed by researchers using various gene selection
methods. We compare the classification performance of
the variable selection approaches used by the following
two classifiers:

• Support Vector Machines (SVM): SVM are
considered as one of the best performers for a
number of classification tasks ranging from text to
microarray data [20]. The goal of SVM is to find the
optimal hyperplane that separates the classes. This
hyperplane separates the classes into two categories.
In case the target data has more than two categories,
several approaches have been proposed, but the one
used here is one-versus-one (OVO) SVM [21] as
implemented in [20]. More introductions and
description of SVM can be found in [22].

• Naive Bayes (NB): NB is a simple probabilistic
classifier based on the so-called Bayesian theorem.
The goal of NB is to calculate the probability for a
given case in order to assign it to a certain class.
Naive Bayes assumes that the features constituting
the case contribute independently for a given class.
Naive Bayes is used for predicting miRNA genes [23],
emotion recognition [24] and gene selection [25].

We report the results achieved by Support Vec-
tor Machine-Recursive Feature Elimination (SVM-RFE),
Multiple SVM-RFE (MSVM-RFE), Random Forest (RF)
based backward elimination procedure [7] and Naive
Bayes (NB) as shown in Table 3. We have used the
standard error rates, that is, subtracting the predicted
samples from the actual samples and then dividing it
by the actual samples. The error rates in BIRF are
calculated using the independent sub-sample method.
However, in [20], the authors calculate the error rates
using Leave-one-out cross validation, and in [7], the
authors use the bootstrap sample. The best performance
on the Colon dataset is achieved at 96% obtained by
BIRF. The accuracy of SVM-RFE, MSVM-RFE, RF and

NB is 83.71% [20], 83.57% [20], 87% [7] and 87% [25],
respectively. With respect to the Lung cancer dataset, 81%
and 88% accuracies are reported (not shown in Table 3)
using the bagging and boosting methods [26] where 97%
is achieved by BIRF and standard random forest. The
results were not available (NA) for RF and NB in the lung
cancer dataset because no results were provided in the
references [7,25].

Comparison of BIRF, RF andMSVM-RFE on the childhood
leukaemia dataset
We have compared the performance of BIRF to MSVM-
RFE and RF gene selectionmethods to show the predictive
performance of BIRF, particularly on the childhood
leukaemia dataset. Multiple SVM-RFE is a widely used
gene selection method that involves iteratively fitting
SVM classification models by eliminating the genes with
the low impact on classification in order to produce a
small subset of genes that provides the best classification
model. One-versus-one (OVO) SVM [21] is used in these
experiments for a multi-class dataset. On the other hand,
random forest based backward elimination procedure
involves iteratively fitting the random forest model. At
each iteration, genes with the smallest importance value
are removed and a new random forest model is built with
less number of genes and smallest out-of-bag error rates.
The childhood leukaemia dataset is used here to

compare the gene selection performance of BIRF to
MSVM-RFE. At each number of selected genes, SVM and
random forest models are built on the training dataset
with the selected genes using the leave-one-out method
to compute the accuracy of classifiers. Table 4 shows
the performance prediction of the two classifiers at dif-
ferent numbers of selected genes. As can be seen from
the table, the accuracies of the two classifiers increased
as the number of the selected genes decreased until the
two classifiers achieved the maximum accuracies. At that
stage, both classifiers’ accuracies decreased as the num-
ber of genes decreased. The highest accuracy of BIRF is
achieved at 0.99. With that accuracy, all the patients in the
two minor classes (High and Standard Risk) are predicted
correctly, while 97.1% were predicted from the majority
class (Medium Risk). The highest accuracy achieved by
MSVM-RFE is 0.92. However, the accuracies of the High,
Medium and Standard risk patients are 88.2%, 100% and

Table 3 Accuracy results for Colon and Leukaemia datasets

Datasets Measurements BIRF SVM-RFE from [20] MSVM-RFE from [20] Random forest from [7] NB from [25]

Colon
Number of genes 19 7 3 15 2

Accuracy 0.96 0.83 0.83 0.87 0.87

Lung
Number of genes 57 31 33 NA NA

Accuracy 0.97 0.96 0.96 NA NA
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Table 4 Comparison of BIRF andMSVM-RFE on childhood leukaemia dataset

BIRF MSVM-RFE

Number of Features AUC Number of Features AUC

1027 0.54 1024 0.4

540 0.68 512 0.64

221 0.87 256 0.86

127 0.98 128
0.92

H:88.2% M:100% S:88.8%

107
0.99

64 0.88
H:100% M:97.1% S:100%

98 0.92 32 0.79

85 0.95 16 0.69

88.8%, respectively. From this comparison we can con-
clude that BIRF outperforms MSVM-RFE, especially in
predicting the patients in the minor class.
The two built models (SVM and random forest) that

provide better prediction are then used on the indepen-
dent test data (i.e. childhood leukaemia test dataset) to
assess the accuracies of the classifiers with the selected
genes. The AUC (area under the ROC curve) of the ran-
dom forest model built on the 107 BIRF-selected biomark-
ers is 0.874. However, the SVM model built on the 128
MSVM-RFE-selected biomarkers has an AUC of 0.751.
Random Forest (RF) based backward elimination proce-

dure [7] is also applied to the childhood leukaemia gene
expression dataset. This method completely failed to pre-
dict patients in the minority classes without handling the
problem of imbalanced classes. This result suggests that
standard random forest has to be modified in order to
consider the problem of a cohort existing in an imbal-
anced form.

Conclusion
This paper proposes a method called balanced iterative
random forest to select features from imbalanced gene
expression datasets. Feature selection as one of the most
important processes in the field of microarray data has
been considered carefully in this paper. This paper shows
that the feature selection process is undertaken in an intel-
ligent way, especially the way in which the imbalanced
classes and over-fitting problems are handled, and when
the selected genes are evaluated by reducing the dataset
into several subsets of varying sizes to see whether the
selected genes are stable and appear in the multiple sub-
sets. It is unrealistic to assume that the attribute-selection
algorithm, in this case the balanced iterative random for-
est algorithm, will be able to pinpoint what attributes can
describe the risk type of the patient and identify all of
the biologically significant attributes with such a large
and complex dataset. Nevertheless, the attribute selection

process is undertaken carefully by validating the results,
and it produces a small subset containing the most infor-
mative genes. This result was validated and supported
through two different experiments: over-fitting valida-
tion and analysis of the selected genes. The experiments
demonstrated that the classifier did not over-fit the train-
ing dataset. Also, the analysis of attributes to distinguish
between predictive attributes and those that only appear
to be predictive (over-fitted attributes) showed that most
of these attributes appeared in multiple repeats of the
algorithm runs. However, BIRF algorithm has a limita-
tions that is Random Forest will not be able to get global
correlation due to the splitting of the dataset but this is
optional and can be avoided if you don’t want to run BIRF
fast or you have a powerful machine. Another limitation is
tuning the parameter cutoff which is responsible han-
dling the imbalanced classes problem. Balanced Iterative
Random Forest is also applied to three other microarray
datasets: NCI 60, Colon cancer and Lung cancer datasets.
Overall, BIRF resulted in classifiers comparable or supe-
rior in accuracy to SVM-RFE, MSVM-RFE, RF and Naive
Bayes on the Colon and Lung datasets.
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