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Abstract

Background: Exact sample annotation in expression microarray datasets is essential for any type of
pharmacogenomics research.

Results: Candidate markers were explored through the application of Hartigans’ dip test statistics to a publically
available human whole genome microarray dataset. The marker performance was tested on 188 serial samples
from 53 donors and of variable tissue origin from five public microarray datasets. A qualified transcript marker panel
consisting of three probe sets for human leukocyte antigens HLA-DQA1 (2 probe sets) and HLA-DRB4 identified
sample donor identifier inconsistencies in six of the 188 test samples. About 3% of the test samples require
root-cause analysis due to unresolvable inaccuracies.

Conclusions: The transcript marker panel consisting of HLA-DQA1 and HLA-DRB4 represents a robust,
tissue-independent composite marker to assist control donor annotation concordance at the transcript level.
Allele-selectivity of HLA genes renders them good candidates for “fingerprinting” with donor specific
expression pattern.
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Background
Clinical molecular research and biomarker development
rely on a high level of data quality. Ensuring data quality
extends beyond the establishment of reproducible tech-
nical processes involved in measurement of variables.
Obtaining accurate clinical metadata is of utmost im-
portance for meaningful clinical research, as they are
necessary for finding clinical disease-treatment or disease-
biomarkers relationships [1]. Drawing conclusions based
on incorrect metadata can have detrimental consequences
in short-term or long-term patient care. Typical sample
annotation errors may be due to sample mix-ups, database
entry errors, or subjectivity, e.g. grading of a biopsy. In
pharmacogenomics analyses, unrecognized annotation er-
rors or sample mix-ups impact any supervised statistical
analysis, such as certain steps during biomarker discovery
and qualification, and patient stratification. Estimates of
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sample mix-ups or annotation errors in clinical datasets
range up to 18% [2]. Several statistical approaches have
been devised to address annotation uncertainty during
classifier development [3-5]. These sophisticated and
extremely valuable approaches are applied as part of a
later phase the analytical process. To begin addressing
annotation uncertainty already at the database level, we
have recently reported on a transcript marker for gender
annotation which can be applied to clinical datasets of
whole genome microarrays immediately after the gener-
ation of data [6]. The so-called “REDKX” gender marker
is based on heterosome genes with gender-dependent
expression-characteristic. Application of this marker in-
forms about the correctness of the gender annotation of a
donor. In addition, control for inter-individual sample
mix-up clinical datasets with multiple, e.g. longitudinal,
sampling is an absolute must, and gender annotation
QC is not sufficient to that goal, since sample mix-
ups between individuals of the same gender would go
undetected.
Of particular interest are genes with largely unchanged

expression levels in samples of a donor, which would
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have a significantly different expression level in another
donor. At best, those probe sets would display an inter-
individual bimodal “on/off”-expression characteristic.
Bimodal distribution of (signal intensity) data is a de-
viation from the assumed normal distribution of mea-
surements within a population, and can be recognized
by the presence of two modes, each characterized by a
peak. Bimodality can occur by differential expression,
heterosome-specific expression, or, as observed e.g. in can-
cer biology, by genomic lesions in some donors but not in
others [7]. Candidate genes with bimodal expression
characteristics exhibit heterosome-specific and/or haplotype-
specific expression. Some Affymetrix probe sets were
designed in polymorphic mRNA sequences and are (unin-
tentionally) haplotype specific. Messenger RNA (mRNA)
derived from a donor with a certain haplotype or poly-
morphism does not hybridize with the same affinity to a
locus of different haplotype or lacking the polymorphism,
resulting in an extremely different expression level for the
latter sample. The reason for the decreased or increased
affinity is of technical nature: hybridization of a labelled
mRNA fragment to a site with a single nucleotide poly-
morphism (SNP) causes nucleotide mispairing, leading to
the creation of a virtual bubble at the site of the SNP. The
result is a less stringent binding of the mRNA fragment to
the probe target, and lower signal intensity. Hence, sites
with SNPs could be used for indirect genotyping, or “fin-
gerprinting” [8,9].
In order to systematically assess deviation from unim-

odality of individual probe sets we have utilized the
principle of the dip statistic. The dip test had been pro-
posed as a test statistic for unimodality [10]. It estimates
the maximum difference between the empirical distribu-
tion function and the unimodal distribution function
that minimizes that maximum difference. In order to as-
sess the significance of the Dip Test statistic, we ran 1 ×
106 simulations, where a sample of the same size as the
dataset in question, was drawn from a normal distribu-
tion, and a Dip Test applied to each of the draws in
order to generate 1 × 106 simulated Dip Test statistics.
As a result, we were able to derive an empirical p-value
for each probe set. Here we report on the application of
the Hartigans’ dip test to transcriptome wide clinical
gene expression microarray datasets, in the search of
probe sets which would help flag samples with potential
donor-ID annotation mix-up.

Results
The transcript marker was trained on a publically
available dataset of 47 Affymetrix HG-U133_Plus_2 mi-
croarrays from a study of systemic juvenile idiopathic arth-
ritis (GSE7753, http://www.ncbi.nlm.nih.gov/geo) [11].
After normalization and intensity filtering (see Methods),
21,044 probe sets entered the Hartigans’ dip test. To
compute empirical p-values assessing the significance
of an individual dip test statistic value, the dip test
statistic was computed for a simulated dataset of 47
samples, the same sample number as the GSE7753 data-
set, and 1 × 106 permutations per probe set. Empirically
we filtered those probe sets with a p-value < 0.001. An-
other selection criterion was the minor allele frequency.
The selected marker should have a minor allele frequency
of less than 50%. Probe sets with the smallest p-values are
listed in Table 1. The list is populated with many bimod-
ally expressed genes located on one of the heterosomes,
such as RPS4Y1, EIF1AY, DDX3Y, KDM5D, and XIST
(the genes of the REDKX gender QC marker [6]), but also
probe sets for genes located on autosomes, such as human
leukocyte antigen (HLA)-genes HLA-DRB4 (209728_at),
and HLA-DQA1 (203290_at). Further investigation re-
vealed that the nucleotide sequence of probe set
203290_at aligns to a highly polymorphic region of the 3’
untranslated region of HLA-DQA1, and is identical to the
DQA1*0401 allele, but contains at least one probe with
SNPs present in alleles *0101, *0102, *0103, *0201, *0301,
and *0501 (Table 2, left panel). The presence of poly-
morphic SNP sites in a probe set target region is a feature
which may confer “fingerprinting”-quality. Inspection of
the dip test results lead to the identification of another
probe set for HLA-DQA1, 213831_at (p-value 0.006). The
213831_at probe set was further pursued, revealing se-
quence identity to DQA1-allele *0103 and single nucleo-
tide polymorphisms in at least one probe for the other
alleles mentioned above (Table 2, right panel). Thus, both
HLA-DQA1 probe sets 203290_at and 213831_at met an
important criterion of candidate fingerprinting genes,
allele-selectivity. The candidate marker panel was composed
of three probe sets: 203290_at (HLA-DQA1*0401 allele),
209728_at (HLA-DRB4), 213831_at (HLA-DQA1*0103 al-
lele). The dip test data for the candidate marker probe sets
are shown in Figure 1. The simulated dip data were ran-
domly distributed, as they fall onto the identity line in the
quantile-quantile plot (Q-Q plot). The computed dip test
data for GSE7753 largely followed the random distribu-
tion, but some probe sets including the candidate markers
deviate from the unimodal distribution. Figure 2 illustrates
the bimodal signal intensity distribution of the three probe
sets in the dataset GSE7753, and indicates the cut-off
value of 7 (log2 scale) which has been developed empiric-
ally after visual inspection of the data. The measured sig-
nal intensity per probe set is then flagged with a 1 if it
surpasses the threshold or 0 if it does not. Samples from
the same donor are expected to have the same score. Since
the same score may apply to different donors, one has to
assume a certain leakiness of this scoring system, as the
same score may apply to different donors. To increase the
power to detect donor annotation inconsistencies, we
strongly recommend using the REDKX marker in addition

http://www.ncbi.nlm.nih.gov/geo


Table 1 Result of Hartigans’ dip test

Probeset ID Gene symbol Entrez gene ID Cytoband Dip statistic Empirical p-value

205000_at DDX3Y 8653 Yq11 0.147 <1.00E-06

203290_at HLA-DQA1 3117 6p21.3 0.147 <1.00E-06

228492_at USP9Y 8287 Yq11.2 0.143 <1.00E-06

232618_at TXLNG2P 246126 Yq11.222 0.140 <1.00E-06

201909_at RPS4Y1 6192 Yp11.3 0.139 <1.00E-06

209728_at HLA-DRB4 3126 6p21.3 0.137 <1.00E-06

223646_s_at TXLNG2P 246126 Yq11.222 0.133 <1.00E-06

224588_at XIST 7503 Xq13.2 0.131 <1.00E-06

206700_s_at KDM5D 8284 Yq11 0.130 <1.00E-06

204409_s_at EIF1AY 9086 Yq11.223 0.124 <1.00E-06

205001_s_at DDX3Y 8653 Yq11 0.123 <1.00E-06

214218_s_at XIST 7503 Xq13.2 0.121 <1.00E-06

227671_at XIST 7503 Xq13.2 0.120 <1.00E-06

224590_at XIST 7503 Xq13.2 0.118 <1.00E-06

231592_at TSIX 9383 Xq13.2 0.117 <1.00E-06

221728_x_at XIST 7503 Xq13.2 0.116 <1.00E-06

211149_at UTY 7404 Yq11 0.113 <1.00E-06

226736_at CHURC1 91612 14q23.3 0.108 <1.00E-06

235446_at — — — 0.107 <1.00E-06

1560263_at — — — 0.103 2.00E-06

223645_s_at TXLNG2P 246126 Yq11.222 0.099 6.00E-06

208067_x_at UTY 7404 Yq11 0.096 1.00E-05

230760_at ZFY 7544 Yp11.3 0.093 1.60E-05

204410_at EIF1AY 9086 Yq11.223 0.093 1.80E-05

224589_at XIST 7503 Xq13.2 0.092 2.90E-05

205048_s_at PSPH 5723 7p11.2 0.090 4.00E-05

214131_at TXLNG2P 246126 Yq11.222 0.089 4.70E-05

207805_s_at PSMD9 5715 12q24.31 0.089 5.60E-05

238900_at HLA-DRB1 3123 6p21.3 0.088 6.70E-05

1559003_a_at CCDC163P 126661 1p34.1 0.088 7.10E-05

208909_at UQCRFS1 7386 19q12 0.086 0.000112

215333_x_at GSTM1 2944 1p13.3 0.085 0.000158

208919_s_at NADK 65220 1p36.33 0.085 0.000163

241808_at ZC2HC1A 51101 8q21.12 0.082 0.000287

225318_at — — — 0.081 0.000345

212262_at QKI 9444 6q26 0.081 0.000379

225236_at RBM18 92400 9q33.2 0.081 0.000434

206279_at PRKY 5616 Yp11.2 0.080 0.000554

1554094_at ENTPD5 957 14q24 0.080 0.000554

203280_at SAFB2 9667 19p13.3 0.080 0.000574

226990_at CAPRIN1 4076 11p13 0.079 0.000628

203056_s_at PRDM2 7799 1p36.21 0.079 0.000726

241033_at — — — 0.078 0.000844
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Table 1 Result of Hartigans’ dip test (Continued)

205173_x_at CD58 965 1p13 0.078 0.000872

235104_at ERAP2 64167 5q15 0.078 0.000882

The table shows probe sets with an empirical p-value < 0.001, sorted by descending dip test statistics. About 47% of the genes in the list are located on heterosomes,
among those all genes of the gender marker “REDKX” ([6], italicized for visualization purposes). Probe sets for HLA-genes, which were further considered during the
marker validation process, are highlighted in bold.
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to the candidate HLA-score proposed in the present study.
We have tested the HLA-score along with the REDKX
gender QC marker in five publically available datasets of
188 samples from 53 donors. The normalized data for all
samples can be accessed in Additional file 1: Table S1.
Table 3 exemplifies many aspects of the performance of
the donor ID-marker: (1) differentiation between donors,
(2) identification of mislabelled samples, (3) providing
additional information, where the REDKX QC marker
is insufficient for donor discrimination, and (4) support of
the REDKX gender QC. (1) The HLA-score for all four
samples of donor 55 are the same, no quality flags for ei-
ther the HLA-score or the REDKX gender score. Also, the
HLA-score of the four samples from donor 54 is the same,
but different from the score of donor 55. The result for
those 8 samples indicates a high probability that those
samples indeed come from different donors. (2) For donor
45, the HLA-score for time point 1 is different from
the other HLA-score of the other three samples assigned
to this donor, because the intensity value of 187 for
209728_at in the time point 1 sample is well above the
threshold of 128, yielding a value of 1 in the HLA-score.
The intensity values in the other samples are below the
threshold, and yield a 0. This HLA-score difference should
prompt the user to investigate and look closer at the data.
In our experience, a slight transgression of the threshold
is not critical, considering that all other marker intensity
values follow a similar pattern as in the case of donor 45.
(3) Two incidences were found in two samples from
donor 35. Strikingly, three different HLA-marker scores
Table 2 Allele-specificity of HLA-DQA1 probe sets

Gene

Probe set 203290_at

Probe 1 2 3 4 5 6 7 8 9 10

Allele (predicted)

HLA-DQA1*0101.1 0 0 0 0 0 1 0 0 0 0

HLA-DQA1*0102 0 0 0 0 0 1 0 0 0 0

HLA-DQA1*0103 0 0 0 0 0 1 0 0 0 0

HLA-DQA1*0201 0 0 0 0 0 0 0 0 0 0

HLA-DQA1*0301.1 0 0 0 0 1 0 0 0 0 0

HLA-DQA1*0401 1 1 1 1 1 1 1 1 1 1

HLA-DQA1*0501 1 1 1 0 0 1 1 1 1 1

The nucleotide sequence of 203290_at perfectly matches the *0401 allele, and contains
the *0103 allele, and contains at least one mismatched probe for other alleles. Perfect m
are found for the four samples of this donor. The sample
time point 1 is interesting, as not only the HLA-score is
different from the rest of the HLA-scores for this donor,
but also the REDKX gender marker indicates that this
sample belongs to a female, not to a male, as the other
three samples. The sample of time point 4, which comes
from a male as shown by the REDKX marker, is again very
different from the two other samples from (a) male(s), at-
tributed this donor. The intensities for two probe sets of
time point 4 of donor 35 are about 10 to 46 times different
from the corresponding values in time point 2 and 3. This
intensity pattern should raise a flag and initiate a follow-
up investigation to determine whether this sample is in-
deed what the annotation claims. (4) Both the REDKX
panel as well as the HLA-score indicate that the sample
from time point 2 of donor 32 may be from a different in-
dividual. The flag would initiate follow-up investigations
of the cause.
Table 4 summarizes the findings in 188 samples from

53 donors in five studies of four tissues types, whole
blood, peripheral blood mononuclear cells (PBMC), and
lung biopsy. Six samples were flagged for suspicious
gender- and/or donor ID annotation, five of which in a
single dataset. Three samples had incorrect gender an-
notation according the REDKX gender QC. Based on
the HLA-score results, seven samples had potentially in-
correct donor identifiers. The annotation of 5 of the six
flagged samples could not be resolved given the informa-
tion resources provided in the public domain. Three of
those five samples had incorrect gender and donor ID
HLA-DQA1

213831_at

11 1 2 3 4 5 6 7 8 9 10 11

0 1 1 1 1 1 0 0 1 1 1 1

0 1 1 1 1 1 1 1 0 0 0 1

0 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

at least one mismatched probe for other alleles while 213831_at perfectly matches
atches are indicated as an italicized bold 1. Allele sequences from [12].



Figure 1 Quantile-quantile plot of Hartigans’ dip test statistics.
The line of identity (in red) indicates unimodal distribution of data.
Simulated data are distributed along this line, while some of the
probe sets from the dataset GSE7753 deviate from unimodal
distribution. Three candidate marker probe sets, 203290_at
(HLA-DQA1*0401), 213831_at (HLA-DQA1*0103), and 209728_at
(HLA-DRB4) are pointed out.
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annotation, two presented HLA-score data which could
not be explained without further investigation, which
was beyond the scope of the current project. In sum-
mary, based on the HLA-score and the REDKX gender
QC, 3% of the samples are not usable for further analysis
and would yield incorrect results.

Discussion
Notwithstanding technical precision, annotation preci-
sion is a major component contributing to high data
quality. In an effort to standardize annotation, metadata da-
tabases have been developed which provide user guidance
Figure 2 Bimodal intensity distribution of three candidate marker pro
samples. Horizontal lines on the Y-axes indicate the intensity thresholds wh
box plots represent (from bottom to top) the 10th, 25th, 50th, 75th and 90
by implementation of controlled vocabulary [13]. However,
Quantile-quantile plot of Hartigans’ dip test statisticshuman
error and subjectivity is still a common source of incorrect-
ness in such databases [1]. Analysis errors and wrong con-
clusions with possibly detrimental consequences can be the
result if annotation errors remain undetected [4]. Current
strategies of dealing with annotation errors include statis-
tical tests at a relatively late stage of the analysis. We hy-
pothesized that transcript markers could aid in improving
detection of annotation precision at an early stage, at best
before the analysis.
Our approach was to investigate, design, develop and

implement quality control tools to qualify microarray
data in the context of the donor sample. As an initial
step we have recently developed and qualified the so-
called REDKX marker which is a transcript panel marker
based on expression of genes located on heterosomes,
indicating gender of sample donors in clinical micro-
array studies [6]. However, in studies with multiple sam-
ples from donors, correct gender annotation still leaves
an uncertainty about the correct assignment of a sample
to a donor, as samples with the same gender annotation
may come from different subjects of that gender. Hence,
we devised a second annotation transcript quality con-
trol marker, which would increase the detectability of
samples with donor identification mislabels.
By applying the Hartigans’ Dip Test statistic we identi-

fied probe sets with bimodal expression pattern. Of par-
ticular interest are probe sets which show allele-selectivity,
such as probe sets for histocompatibility genes HLA-
DQA1 and HLA-DRB4. Both genes are located on the
p21 arm of chromosome 6, and could be in a linkage dis-
equilibrium region. The markers do not represent expres-
sion quantitative trait locus (eQTL) genes, and are
expressed independent of gender. HLA genes code for cell
surface proteins which are expressed by antigen present-
ing cells and in the immune system serve the purpose of
be sets in the dataset GSE7753. The training set consisted of 47
ich were empirically determined for each probe set separately. The
th percentile of the distribution. Number of bins = 50.



Table 3 Application of the score to public datasets

Individual Sample description CEL file ID 203290_at
HLA-DQA1 *0401

213831_at
HLA-DQA1 *0103

209728_at
HLA-DRB4

HLA-Score REDKX
gender QC

Flag Reason for flag Decision

55 Time point 1 GSM155503.CEL 28 4182 48 010 F

Time point 2 GSM155504.CEL 23 4606 72 010 F

Time point 3 GSM155505.CEL 10 2412 24 010 F

Time point 4 GSM155506.CEL 28 4765 21 010 F

54 Time point 1 GSM155499.CEL 33 516 985 011 F

Time point 2 GSM155500.CEL 49 681 1245 011 F

Time point 3 GSM155501.CEL 28 1073 3142 011 F

Time point 4 GSM155502.CEL 26 914 2573 011 F

45 Time point 1 GSM155495.CEL 45 8041 187 011 F HLA-score Intensity of 209728_at
HLA-DRB4 slightly
above threshold

Not critical

Time point 2 GSM155496.CEL 59 7619 123 010 F

Time point 3 GSM155497.CEL 32 6385 105 010 F

Time point 4 GSM155498.CEL 59 7062 40 010 F

35 Time point 1 GSM155475.CEL 1218 42 6444 101 F HLA-score and
REDKX QC-score

Gender different for
patient samples

Possible sample
mix-up; follow up

Time point 2 GSM155476.CEL 436 1491 231 111 M

Time point 3 GSM155477.CEL 508 1751 200 111 M

Time point 4 GSM155478.CEL 126 113 5 000 M HLA-score Intensity of 209728_at
HLA-DRB4 and 213831_at
HLA-DQA1 10× to 46×
smaller than those from
other patient samples

Possible sample
mix-up; follow up

32 Time point 1 GSM155471.CEL 1235 32 8231 101 F HLA-score and
REDKX QC-score

Time point 2 GSM155472.CEL 420 1878 291 111 M Gender different for
patient samples

Possible sample
mix-up; follow up

Time point 3 GSM155473.CEL 1807 49 7332 101 F

Time point 4 GSM155474.CEL 1128 42 7122 101 F

Each sample of the dataset is labelled with a three-digit score (one “1” or “0” flag per probe set). The presence of intra-score differences elicits further follow-up investigation as to the nature and source of the difference.
Intensity thresholds mark an “on” or “off”-status of the transcript expression, flagged as “1” or “0”, respectively. The thresholds were empirically determined for each marker separately. In some instances, the score difference is
due to mild threshold violation, in other instances it may be due to sample mix-ups. The score picks up those samples which are being flagged by the REDKX gender QC, and detects further samples with issues (labeled in
bold). REDKX panel expression values are provided in Additional file 1: Table S1.
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Table 4 Summary of the score tests

Dataset ID Tissue Number of
samples

Number of
donors with

repeat
measures

Flagged
samples

Reason for suspicion Fail after
inspection

(not resolvable)

Decision

REDKX- gender
QC fail

Score differences
(intra-donor)

N° samples N° samples N° samples

GSE6751 PBMC 59 15 5 3 5 4 Follow-up

GSE6281 Skin 33 11 0 0 0 0 NA

GSE20489 Whole blood 54 11 1 0 1 1 Follow-up

GSE24206 Lung 12 6 0 0 0 0 NA

GSE32473 Skin 30 10 0 0 0 0 NA

Summary 5 datasets 4 tissues 188 53 6 3 6 5

The candidate markers were applied to datasets from the public domain (http://www.ncbi.nlm.nih.gov/geo). About 3% of samples have annotation issues which
could not be resolved by visual inspection of the intensity data alone. The individual REDKX marker intensity values are not shown. Individual results are shown in
Additional file 1: Table S1.
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self- vs. nonself-discrimination [14]. Hence, HLA gene ex-
pression patterns represent highly specific “fingerprinting”
of individual donors. In general, our results receive support
in the independent findings of Joehanes et al. who have
suggested that gene expression levels, including those of
HLA genes, could serve as “fingerprinting” data in micro-
array datasets [15]. The authors came to this conclusion as
part of their assessment of gene expression analysis from
different blood-derived RNA sources. Here, we identify a
candidate marker consisting of HLA genes in an unsuper-
vised analysis and qualify it by training and testing its per-
formance on a number of publically available datasets.
HLA genes are essential contributors to susceptibility to

risk or resistance to several autoimmune diseases such
as multiple sclerosis, rheumatoid arthritis, and Type 1
Diabetes [16-18]. As sequencing of the HLA locus con-
tinues and more alleles are being identified, the number of
allele-disease associations will grow [19-22]. For our ex-
ploratory marker analysis we applied expression data for
three HLA probe sets. As a consequence of the extremely
high multiplexing of parameters interrogated by a micro-
array it is not surprising that the behaviour of a single
transcript in a large transcript population is not always
100% predictable and is the result of multiple factors
such as assay and array performance. A three-digit sam-
ple identifier score yields 8 different score types, not suffi-
cient to completely discriminate all donors in studies with
9 or more donors. However, as shown in the case of donor
32 in GSE67511, only the combination of the REDKX
gender marker and the score has the potential to further
reduce sample ID ambiguities by eliciting follow-up inves-
tigations should discrepancies between scores within a
sample collection of a single donor arise. In the present
analysis, we found that about 5% of the publically available
samples used herein rewarded follow-up investigations,
where half of those cases could not be resolved by
interrogating the data alone. Despite our encouraging
results from public datasets of 4 tissue types, we recom-
mend the optimal intensity thresholds be developed
related to each tissue of interest. The reason for this sug-
gestion lies in the tissue dependent expression level varia-
tions as well as in technical dissimilarities, which may lead
to deviations in global signal intensity, e.g. by different
scaling settings.
Context-dependent biomarker qualification is driven by

the application of the marker. The proposed genomic fit-
for purpose biomarker approach for quality control of
sample ID annotations in transcriptomics clinical datasets
with multiple samples per donor could be applied imme-
diately. As part of our approach to this end, we have im-
plemented the haplotype-based quality control as part of
our microarray quality control pipeline. Microarray data
files are automatically reviewed by the software after they
are produced, with the analysis results cached and made
available through a web interface, where likely problems
are highlighted for further investigation.
In case of detected mismatches to reported metadata,

a root-cause analysis will be necessary to determine the
reason for the error. If the cause cannot be determined
in too many cases or is systematic, the decision could be
not to use the entire dataset [1].
In conclusion, we have identified a set of transcripts,

which, particularly in combination with the REDKX gen-
der marker, is capable that can be used as a starting
point to control for sample ID annotation errors in clin-
ical datasets with multiple samples per donor. In publi-
cally available datasets we have identified about 3% of
unresolvable annotation errors. Thus we recommend ap-
plying the marker broadly in transcriptomics studies and
to follow-up with root cause analysis where necessary.
Direct sequencing will provide further confirmation and
possible expansion of the marker panel.

http://www.ncbi.nlm.nih.gov/geo
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Conclusions
Hartigans’ Dip Test statistic is able to robustly identify probe
sets with non-unimodal expression patterns, namely 203290_at
(HLA-DQA1*0401), 213831_at (HLA-DQA1*0103), and
209728_at (HLA-DRB4). Combination of the so-called
HLA-score and the REDKX marker panels provides a use-
ful molecular quality control metric for sample annotation
in clinical transcriptomics studies. Biological or clinical
interpretation of gene expression data should take the
haplotype specificity of these probe sets into account.

Methods
Data analysis
Publically available microarray datasets were down-
loaded from the data repository Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/). Data analysis
was performed in R [23]. The training of the marker was
performed on MAS5 normalized data. The trimmed mean
intensity (2%) per HG-U133 plus 2 array (www.Affymetrix.
com, http://www.affymetrix.com/catalog/131455/AFFY/
Human-Genome-U133-Plus-2.0-Array#1_1, last accessed
03/2014) was scaled to 150. Intensity based filtering was
applied using the criteria that the 90th percentile had to
be greater than 6 on log2 scale. The dip test statistics were
calculated for every probe set of 47 Affymetrix HG-
U133_Plus_2 microarrays from a study of systemic juven-
ile idiopathic arthritis (GSE7753, http://www.ncbi.nlm.nih.
gov/geo) using the R package dip test (version 0.75-5,
http://cran.r-project.org). To compute empirical p-value
assessing the significance of an individual dip test statistic
value, the dip test statistic was computed with 1 × 106 per-
mutations per probe set on a simulated dataset of the
same sample size as the microarray training dataset. A
proportion of simulated dip test statistic values that were
greater than the observed one was used as an empirical p-
value. Probe sets with empirical p-values < 0.001 were fur-
ther considered. Empirical p-values were adjusted using
the false discovery criterion by Benjamini and Hochberg
[24]. For each probe set the interquartile range (IQR, 95th
to 5th quantile) was calculated. Dip test core cut-offs
using the training set data intensity-thresholds for each in-
dividual marker were empirically determined based on the
distributions of the mean-trimmed MAS5 normalized ex-
pression (see above).
Additional file

Additional file 1: Table S1. Normalized signal intensities for marker
probe sets and scores. For 188 test samples, normalized signal intensities
of the marker probe sets of the HLA-score and the REDKX marker are
shown, along with the panel scores.
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