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Abstract

This article deals with the problem of blind source separation in the case of a linear and instantaneous mixture. We
first investigate the behavior of known independent component analysis (ICA) methods in the case where the
independence assumption is violated: specific dependent sources are introduced and it is shown that, depending on
the source vector, the separation may be successful or not. For sources which are a probability mixture of the previous
dependent ones and of independent sources, we introduce an extended ICA model. More generally, depending on
the value of a hidden latent process at the same time, the unknown components of the linear mixture are assumed
either mutually independent or dependent. We propose for this model a separation method which combines: (i) a
classical ICA separation performed using the set of samples whose components are conditionally independent, and
(ii) a method for estimation of the latent process. The latter task is performed by iterative conditional estimation (ICE).
It is an estimation technique in the case of incomplete data, which is particularly appealing because it requires only
weak conditions.

Keywords: Blind source separation, Dependent sources, Independent Component Analysis (ICA),
Higher order statistics, Iterative Conditional Estimation (ICE)

1 Introduction
For the last decades, blind source separation (BSS) has
been an active research problem: this popularity comes
from the wide panel of potential applications such as
audio processing, telecommunications, biology, etc. In
the case of a linear multi-input/multi-output (MIMO)
instantaneous system, BSS corresponds to independent
component analysis (ICA), which is now a well recog-
nized concept [1]. Contrary to other frameworks where
techniques take advantage of a strong information on the
diversity, for instance through the knowledge of the array
manifold in antenna array processing, the core assump-
tion in ICA is much milder and reduces to the statistical
mutual independence between the inputs. However, the
latter assumption is not mandatory in BSS. For instance,
in the case of static mixtures, sources can be separated
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if they are only decorrelated, provided that their nonsta-
tionarity or their color can be exploited. Other properties
such as the fact that sources belong to a finite alphabet can
alternatively be utilized [2,3] and do not require statisti-
cal independence. We consider in this article the case of
dependent sources without assuming nonstationarity nor
color.
To the best of authors’ knowledge, only few references

have tackled the issue of dependent source separation
[4-15], although the interest in dependent sources has
been witnessed by studies in various applied domains
such as cosmology [6,13,14], biology/medicine [7,8,16],
feature extraction [17]. Among the interesting proposed
extensions of ICA to dependent components, we should
mention tree-dependent models [11] and models with
dependence in variance profiles [12]. Contrary to the
mentioned articles, our approach is based on the selection
of an appropriately chosen sub-sample of the available
data, which then feeds the entry of a classical ICAmethod.
Among ICA or BSS methods, one can distinguish two

approaches: some methods recover the sources one by
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one, which is what we refer to as multi-input/single-
output (MISO) approaches. These approaches are often
used in conjunction with a so-called deflation pro-
cedure [18,19]. In contrast, other approaches, which
will be referred to as MIMO recover all the sources
simultaneously.
Inspired from [20-23], we investigate in a first part of

the article the behavior of the kurtosis contrast function:
this criterion is well-known in MISO BSS approaches and
we study some of its properties in some specific cases of
dependent sources.
In a second part of the article, we investigate a particular

model which combines an ICA model with a probabilis-
tic model on the sources, making them either dependent
or independent at different time instants. Our method
exploits the “independent part” of the source compo-
nents. Although it is possible to refine our model by
introducing a temporal dependence, it assumes neither
nonstationarity nor color of the sources. We would like
to outline the difference between our study and [17]: the
latter assumes a conditional independence of the sources,
whereas, depending on a hidden process, we assume
either conditional independence or dependence. The pro-
posed separation method which is introduced relies on
iterative conditional estimation (ICE), which has been
introduced recently [24].
The considered model and notations are specified in

Section 2. In Section 3, specific dependent sources are
introduced and the behavior of the kurtosis contrast func-
tion is investigated. Then, Section 4 introduces a genuine
model of dependent sources, for which separation is pos-
sible. The principles of our method and a discussion on
ICE are provided in Section 5. The algorithm is precisely
described in Section 6, where a parallel is also made with
the accept-reject random generation method. Some simu-
lations are provided in Section 7 and Section 8 concludes
authors’ study.

2 Mixturemodel
2.1 Linear mixture
We consider a set of T samples of vector observations.
At each time instant t ∈ {1, . . . ,T} the observed vec-
tor is denoted by x(t) � (x1(t), . . . , xN (t))T . We assume
that these observations result from a linear mixture of N
unknown and unobserved source signals. More precisely
and in other words, there exists a matrix A ∈ R

N×N and a
vector valued process s(t) � (s1(t), . . . , sN (t))T such that:

x(t) = As(t), ∀t ∈ {1, . . . ,T}. (1)

Let X � (x(1), . . . , x(T)) be the N × T matrix with all
samples of the observations and S � (s(1), . . . , s(T)) be
the N × T matrix with all sources samples. The matrix
A is unknown and the objective consists in recovering S
from X only: this is the so-called blind source separation

problem. We will assume here that A is a square left-
invertible matrix and the problem thus reduces to the esti-
mation of A or its inverse. A solution has been developed
for long and is known as ICA [1]. It generally requires
two assumptions: the source components should be non
Gaussian—except possibly one of them—and they should
be statistically mutually independent. With these assump-
tions, it is known that one can estimate a matrix B ∈
R
N×N such that y(t) = Bx(t) restores the sources up to

some ambiguities, namely ordering and scaling factors. In
this article, with no loss of generality, we assume that the
sources are zero-mean and have unit power. Finally, note
that if A is a tall matrix (i.e., there are more observations
than sources), a dimensionality reduction technique such
as the principal component analysis (PCA) can be used to
obtain a mixture with as many observations as sources.

2.2 Notations
In the following, B denotes the estimated inverse of A and
is referred to as the separating matrix. Defining G � BA
the combined mixing-separating matrix, the BSS problem
is solved if G is a so-called trivial matrix, i.e., the prod-
uct of a diagonal matrix with a permutation: these are well
known ambiguities of BSS.
In Section 3, we will study separation criteria as func-

tions of G. Source separation sometimes proceeds iter-
atively, extracting one source at a time (e.g., deflation
approach). In this case (and particularly in Section 3),
we will write y(t) = bx(t) = gs(t) where b and g =
bA, respectively, correspond to a row of B and G and
y(t) denotes the only output of the separating algorithm.
In this case, the separation criteria are considered as
functions of g.
Finally, Cum {.} denotes the cumulant of a set of random

variables (see e.g., [1]) and Var{.} denotes the variance of
a random variable. For a random vector s = (s1, . . . , sN )

T

and for any multi-index i = (i1, . . . , iN ), we introduce the
notation:

κ
(s)
i � Cum

⎧⎪⎨
⎪⎩s1, . . . , s1︸ ︷︷ ︸

i1

, . . . , sN , . . . , sN︸ ︷︷ ︸
iN

⎫⎪⎬
⎪⎭

We denote by N (μ, σ 2) the Gaussian law with mean
μ and variance σ 2 and by L(λ) the Laplace (i.e.,
double-exponential) distribution with zero-mean and
scale parameter λ. The symbol∼ denotes the law followed
by a random variable or equality between probability dis-
tributions; the conditional distribution of a random vari-
able (or vector) r knowing X under a parameter value θ

is denoted by P(r |X; θ). Finally, we denote by δ(.) the
Kronecker function which equals 1 if the argument in
parenthesis holds true and 0 otherwise.
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3 A class of dependent sources
In this section, we introduce particular dependent sources
based on products of independent signals. These models
were shown to be useful when dealing with underdeter-
mined [20] and nonlinear [23] mixtures. We assume that
all processes are stationary. At each time instant t, the vec-
tors s(t) and x(t) are realizations of random vectors. Since
no confusion is possible, in this section only, we drop the
time index t and these vectors are denoted, respectively,
by s and x.

3.1 Three dependent sources
3.1.1 Specific sources and properties
Binary phase shift keying (BPSK) signals have specificity
that will allow us to obtain source vectors with interesting
properties. By definition, BPSK sources take values s =
+1 or s = −1 with equal probability 1/2. We define the
following source vector:

A1. Let ε be a BPSK random variable and a a real-valued
non Gaussian random variable with non-zero
fourth-order cumulant κ

(a)
4 �= 0. We assume also

that a is independent of ε and E{a} = E{a3} = 0,
E{a2} = 1. Then, we define the source vector
s � (s1, s2, s3)

T as follows:

s1 = a s2 = aε s3 = ε

Interestingly, the following lemma holds true:

Lemma 1. The sources s1, s2, s3 defined by A1 are zero-
mean, unit variance, mutually dependent, decorrelated
and their fourth-order cross-cumulants values are such
that:

κ
(s)
0,0,4 = −2

κ
(s)
4,0,0 = κ

(s)
0,4,0 = κ

(a)
4 �= 0

κ
(s)
2,2,0 = Var{a2} = κ

(s)
4,0,0 + 2

κ
(s)
i1,i2,i3 = 0 for any other i1 + i2 + i3 = 4.

Proof. From A1, s1 = a and s3 = ε have zero-mean by
definition and so does s2 = aε by independence of a and
ε. Hence E{s1} = E{s2} = E{s3} = 0 and for such cen-
tered random variables, it is known that cumulants can be
expressed in terms of moments as follows:

Cum
{
si, sj

} = E{sisj} (2)

Cum
{
si, sj, sk , sl

} = E{sisjsksl} − E{sisj}E{sksl}
− E{sisk}E{sjsl} − E{sisl}E{sjsk}

(3)

It is then possible to check all cases of Equations (2) and
(3), using again A1. We obtain that (2) vanishes for i �= j

and the decorrelation of the sources follows. The values
of the fourth-order cumulants in the lemma are obtained
similarly.
On the other hand, the third order cross-cumulant

reads:

Cum {s1, s2, s3} = E{s1s2s3} = E{a2ε2} = E{a2} = 1 > 0

and this proves that s1, s2, s3 are mutually dependent.

Depending on s1 = a, more can be proved about the
source vector defined by A1. For example, if the proba-
bility distribution of a is symmetric, then s2 and s3 are
independent. On the contrary s1 and s2 are generally not
independent. An evenmore specific case is obtained when
s1 = a is itself BPSK. Using in Lemma 1 the fact that, in
the latter specific case s22 = a2 = 1, and calculating also
the pairwise probability functions, we obtain the following
result:

Lemma 2. Consider the source vector defined by A1. If in
addition s1 = a is BPSK, the source vector s satisfies:

• each component si (i = 1, 2 or 3) is BPSK,
• (s1, s2, s3) are mutually dependent,
• (s1, s2, s3) are pairwise independent and hence

decorrelated,
• all fourth order cross cumulants of s vanish, that is:

κ
(s)
4,0,0 = κ

(s)
0,4,0 = κ

(s)
0,0,4 = −2 (4)

κ
(s)
i1,i2,i3 = 0 for any other i1 + i2 + i3 = 4.

3.1.2 Properties of the kurtosis contrast function with
sources satisfying A1

Consider a source vector s which satisfies Assumption A1.
If in addition s1 = a is BPSK, the arguments in [22] prove
that a mixture of such a source vector can be separated by
many classical ICA algorithms such as CoM2 [25], JADE
[26], and FastICA [27]: this follows straightforwardly from
Lemma 2 and the fact that the corresponding algorithms
rely only on the vanishing of the cross-cumulants of the
sources, that is on Equation (4). We now extend this result
to more general distributions of a and state the following
propositiona:

Proposition 1. Let y = gs where the vector of sources is
defined by A1. If κ(a)

4 = κ
(s)
4,0,0 �= 2 the function

g �→ |κ(y)
4 |α , α ≥ 1 (5)

defines a MISO contrast function, that is, its maximiza-
tion over the set of unit norm vectors (‖g‖2 = 1) leads to a
vector gwith only one non-zero component. More precisely,
depending on the fourth order cumulant κ

(a)
4 = κ

(s)
4,0,0 of s1:
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• If κ(a)
4 > 2, the maximization of (5) leads to

extraction of either s1 = a or s3 = ε,
• if −2 < κ

(a)
4 < 2, the maximization of (5) leads to

extraction of s3 = ε,
• if κ(a)

4 = −2, the maximization of (5) leads to
extraction of either one of the sources s1, s2 or s3,

• if κ(a)
4 = 2, (5) does not define any contrast function

and its maximization leads either to extraction of s3
or to a mixture of s1 and s2 only.

Remark 1. Since a is zero-mean, unit-variance, the
fourth-order cumulant satisfies κ

(a)
4 ≥ −2. This follows

from Var{a2} = E{a4} − E{a2}2 ≥ 0 and Equation (3). All
cases are hence given in the above proposition.

Remark 2. The above result characterizes the global
maximum of the criterion. However, one should remem-
ber that most optimization algorithms search for a local
maximum only and may therefore fail to reach the global
maximum: however, in simulations (Section 3.3), we did
not observe convergence to any spurious local maximum.
The same remark holds for Propositions 2, 3, and 4.

Proof. First note that for all α ≥ 1, the criterion in (5)
reaches its maxima for the same values of g. We hence
consider α = 1 in the proof. Using y = gs, the multilinear-
ity of the cumulants and Lemma 1 which holds for sources
satisfying A1, we obtain:

κ
(y)
4 = κ

(a)
4 (g41 + g42) − 2g43 +

(
κ

(a)
4 + 2

)
g21g

2
2

Since the maxima of the criterion (5) under the constraint
‖g‖2 = g21 + g22 + g23 = 1 are either minima or maxima of
κ

(y)
4 under the same constraint, we introduce the following
Lagrangian:

L = κ
(a)
4 (g41+g42)−2g43+

(
κ

(a)
4 + 2

)
g21g

2
2−λ(g21+g22+g23−1)

(6)

The sought extrema necessarily satisfy:

∂L
∂g

= 0 and:
∂L
∂λ

= 0 (7)

The corresponding system is polynomial. Using well-
known algebraic techniques now implemented in many
computer algebra systems [28], one can get a system of tri-
angular equations equivalent to (7), whose solutions can
be given explicitly. For κ

(a)
4 �= 2, there are 26 solutions

to (7), some of them being complex-valued depending on
κ

(a)
4 . In Table 1, we give the real-valued solutions to (7)
and the corresponding value of κ

(y)
4 . We also indicate for

which values of κ(a)
4 the solutions hold.

For all values of κ
(a)
4 �= 2 in Proposition 1 one can then

consider all potential maxima in Table 1 and check which
one maximizes |κ(y)

4 |.
For κ

(a)
4 = 2, then κ

(y)
4 = 2(g21 + g22)2 − 2g43 and, using

again the Lagrangian, it can be checked by hand that the
extrema of κ

(y)
4 subject to ‖g‖2 = 1 satisfy either g1 =

g2 = 0, g23 = 1 or g21 + g22 = 1, g3 = 0.

Amazingly, the above result does not hold any longer if
one considers a mixture of only the first two components
of the sources given by Assumption A1.

Proposition 2. Let y = gs where the vector of sources
is given by the first two components s = (s1, s2)T of
the sources defined by A1. The function in Equation (5)
satisfies:

• If κ(a)
4 < − 2

7 or κ
(a)
4 > 2, it is a contrast function and

its maximization leads to extraction of either s1 or s2
(that is: g = (±1, 0) or g = (0,±1)),

• if − 2
7 ≤ κ

(a)
4 ≤ 2, it is not a contrast function and its

maximization leads to a non-separating solution of
the type g = (± 1√

2
,± 1√

2
).

Table 1 List of all 26 solutions to Equation (7) for κ
(a)
4 �= 2 (second column), corresponding value of κ

(y)
4 (third column)

and condition for the solution g to be real-valued (last column)

Separating gT = (g1, g2, g3) κ
(y)
4 Number of solutions Solution inR

yes (±1, 0, 0) κ
(a)
4 2

yes (0,±1, 0) κ
(a)
4 2

no
(
± 1√

2
,± 1√

2
, 0
)

3κ(a)
4 +2
4 4

yes (0, 0,±1) −2 2

no

(
0,±

√
−2

κ
(a)
4 −2

,±
√

κ
(a)
4

κ
(a)
4 −2

)
2κ(a)

4

2−κ
(a)
4

4 κ
(a)
4 ≤ 0

no

(
±
√

−2
κ

(a)
4 −2

, 0,±
√

κ
(a)
4

κ
(a)
4 −2

)
2κ(a)

4

2−κ
(a)
4

4 κ
(a)
4 ≤ 0

no

(
±
√

−4
3κ(a)

4 −6
,±
√

−4
3κ(a)

4 −6
,±
√

3κ(a)
4 +2

3κ(a)
4 −6

)
2(3κ(a)

4 +2)

3(2−κ
(a)
4 )

8 κ
(a)
4 ≤ − 2

3
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Proof. The proof is similar to the proof of Proposition 1.
Indeed, we have κ

(y)
4 = κ

(a)
4 (g41 +g42)+

(
κ

(a)
4 + 2

)
g21g

2
2 and

the Lagrangian readsL = κ
(a)
4 (g41+g42)+

(
κ

(a)
4 + 2

)
g21g

2
2−

λ(g21 + g22 − 1). Using a computer algebra system, one can
then check that (7) is satisfied at 8 points. These points
correspond to values of (g1, g2) and κ

(y)
4 which are given

in the first three rows of Table 1 (precisely those rows for
which g3 = 0). Then, (5) is a contrast function if and only
if its maximization yields a separating solution, that is if

and only if |κ(a)
4 | > | 3κ

(a)
4 +2
4 |. The proposition then follows

easily.

3.2 Pairwise andmutual independence
3.2.1 Pairwise independent sources
We now investigate the particular case of pairwise inde-
pendent sources and introduce the following source vec-
tor:

A2. s = (s1, s2, s3, s4)T where s1, s2 and s3 are
independent BPSK and s4 = s1s2s3.

This case has been considered in [20], where it has been
shown that

∀i ∈ {1, . . . , 4}, Cum {si, si, si, si} = −2 , (8)
Cum {s1, s2, s3, s4} = 1

and all other cross-cumulants vanish. The latter cumu-
lant value shows that the sources are mutually dependent;
although it can be shown that they are pairwise indepen-
dent. It should be clear that pairwise independence is not
equivalent to mutual independence but in an ICA context,
it is relevant to recall the following proposition, which is a
direct consequence of Darmois’ theorem ([25], p. 294):

Property 1. Let s be a random vector with mutually
independent components, and x = Gs. Then the mutual
independence of the entries of x is equivalent to their
pairwise independence.

Based on this proposition, the ICA algorithm in [25]
searches for an output vector with pairwise independent
components. Let us stress that this holds only if the source
vector has mutually independent components: pairwise
independence is indeed not sufficient to ensure identifia-
bility as we will see in following section.

3.2.2 Pairwise independence is not sufficient
We first have the following preliminary result:

Lemma 3. Let y = gs where the vector of sources is
defined by A2. Assume that the vector (s1, s2, s3) takes all 23

possible values. If the signal y has values in {−1,+1}, then
g = (g1, g2, g3, g4) is either one of the solutions below:{ ∃i ∈ {1, . . . , 4} gi = ±1, and: ∀j �= i, gj = 0

∃i ∈ {1, . . . , 4} gi = ±1/2, and: ∀j �= i, gj = −gi
(9)

Proof. If y = gs, using the fact that s2i = 1 for i =
1, . . . , 4, we have with the particular sources given by A2:

y2 = g21 + g22 + g23 + g24
+ 2

[(
g1g2 + g3g4

)
s1s2 + (g1g3 + g2g4

)
s1s3

+ (g2g3 + g1g4
)
s2s3
]

Since (s1, s2, s3) take all possible values in {−1, 1}3, we
deduce from y2 = 1 that the following equations
necessarily hold:{

g21 + g22 + g23 + g24 = 1
g1g2 + g3g4 = g1g3 + g2g4 = g2g3 + g1g4 = 0

(10)

First observe that values given in (9) indeed satisfy (10).
Yet, if a polynomial system ofN equations of degree d inN
variables admits a finite number of solutionsb, then there
can be at most dN distinct solutions. Hence we have found
them all in (9), since (9) provides us with 16 solutions for
(g1, g2, g3, g4).

Using the above result, we are now able to specify the
output of classical ICA algorithms when applied to a
mixture of sources which satisfy A2.

Constant modulus and contrasts based on fourth
order cumulants The constant modulus (CM) criterion
is one of the most known criteria for BSS. In the real
valued case, it simplifies to:

JCM(g) � E

{(
y2 − 1

)2} with: y = gs (11)

Proposition 3. For the sources given by A2, the mini-
mization of the constant modulus criterion with respect to
g leads to either one of the solutions given by Equation (9).

Proof. We know that the minimum value of the con-
stant modulus criterion is zero and that this value can be
reached (for g having one entry being±1 and other entries
zero). Moreover, the vanishing of the constant modulus
criterion implies that y2−1 = 0 almost surely and one can
then apply Lemma 3.

A connection can now be established with the
fourth-order auto-cumulant if we impose the following
constraint:

E{y2} = 1 (or equivalently ‖g‖2 = 1 since y = gs)
(12)
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Because of the scaling ambiguity of BSS, the above nor-
malization can be freely imposed. Under (12), we have
κ

(y)
4 = E

{(
y2 − 1

)2} − 2 and minimizing JCM(g) thus

amounts to maximizing −κ
(y)
4 . Unfortunately, since κ

(y)
4

may be positive or negative, no simple relation between
|κ(y)

4 | and JCM(g) can be deduced from the above equation.
Recall that usual results on contrasts do not apply here
since source s4 depends on the others ([1], pp. 83–85).
However, we can state:

Proposition 4. Let y = gs where the vector of sources is
defined by A2. Then, under the constraint (12) (‖g‖ = 1),
we have:

(i) The maximization of g �→ −κ
(y)
4 leads to either

one of the solutions given by Equation (9).
(ii) |κ(y)

4 | ≤ 2 and the equality |κ(y)
4 | = 2 holds true

if and only if g is one of the solutions given in
Equation (9).

Proof. Part (i) follows from the arguments given above.
In addition, using multilinearity of the cumulants and (8),
we have for y = gs:

κ
(y)
4 = −2

(
g41 + g42 + g43 + g44

)+ 24
(
g1g2g3g4

)
(13)

The result then follows straightforwardly from the study
of the polynomial function in Equation (13). Indeed, opti-
mizing (13) leads to the following Lagrangian:

L = −2
4∑

i=1
g4i + 24

4∏
i=1

gi − λ

( 4∑
i=1

g2i − 1
)

(14)

After solving the polynomial system which cancels the
Jacobian of the above expression, one can check that
all solutions are such that |κ(y)

4 | ≤ 2. Part (ii) of the
proposition easily follows.

3.3 Simulations
3.3.1 Context
We illustrate with a few simulations Propositions 1 and
2. The random variable a in Assumption A1 has been
generated as the following mixture of Gaussians:

a ∼ 1
2
N (μ, σ 2) + 1

2
N (−μ, σ 2) (15)

μ can take any value in ] 0, 1[ and we have set σ 2 = 1 −
μ2. The latter choice ensures that E{a2} = 1, whereas we
obviously have E{a} = E{a3} = 0. Finally, we have κ

(a)
4 =

−2μ4 and we choose the particular values μ = 0.5 and
μ = 0.9, which corresponds respectively to κ

(a)
4 = −0.125

and κ
(a)
4 ≈ −1.3122.

We generated mixtures of the sources given by Assump-
tion A1: we mixed the three sources s1, s2, s3 or the two

sources s1, s2 only with a matrix A randomly generated in
R
3×3 or R2×2, respectively.

3.3.2 Algorithm
We used the algorithm CoM2 described in [25] and ([1],
Chap. 5). It relies on the following MIMO extension of
criterion (5):

G �→
N∑
i=1

∣∣∣κ(yi)
4

∣∣∣α , α ≥ 1. (16)

The algorithm in [25] first operates a prewhitening and
the maximization of the above criterion is performed over
the set of orthogonal matrices. From the results of Propo-
sitions 1 and 2 we expect the separation results which
are given in Table 2, depending on κ

(a)
4 and the number

of mixed sources. In Table 2, G is said separating when
Above, G is said separating when G = PD where P is
a permutation matrix and D = diag(±1, . . . ,±1) and

G extracts s3 when G = P

⎛
⎝ ∗ ∗ 0

∗ ∗ 0
0 0 1

⎞
⎠ and the elements

denoted ∗ have absolute value 1/
√
2.

3.3.3 Results
We provide some results illustrating Propositions 1 and 2
through the behavior of the algorithmCoM2. Let us define
the following performance criterion:

τk = min
i

(
1 − |Gik|2∑N

j=1 |Gij|2
)

We have 0 ≤ τk ≤ 1 and τk is close to zero whenever
source k is well separated.
We performed 100 Monte-Carlo runs both in the case

where the three sources A1 and in the case where only
s1, s2 are mixed. The average results are provided in
Tables 3 and 4. We see in Table 3 that τ3 is small in all
cases, indicating that the source s3 is indeed separated by
the algorithm. On the contrary, one can see in Tables 3 and
4 that τ1, τ2 are small only for μ = 0.9: this corresponds
to a value of κ

(a)
4 for which the obtained G is theoretically

separating. On the contrary, for μ = 0.5, corresponding
to a value of κ

(a)
4 for which the obtained G does not theo-

retically separate s1 and s2, the values of τ1 and τ2 are close
to 0.5.

Table 2 Separation result provided by CoM2 for
dependent sources satisfying A1

κ
(a)
4 ∈[ −2

7 , 2] κ
(a)
4 /∈[ −2

7 , 2]

s1 and s2 only Gmixing, Gij = ± 1√
2

G separating

s1, s2 and s3 G extracts s3 G separating
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Table 3 Separation results of randomly drivenmixtures of
the three sources given by Assumption A1, average values
over 100Monte-Carlo runs

Number of samples T = 1000 T = 10000

parameter of the sources μ = 0.5 μ = 0.9 μ = 0.5 μ = 0.9

τ1 0.4995 0.0109 0.5000 0.0051

τ2 0.5001 0.0161 0.5000 0.0051

τ3 0.0117 0.0053 2.80e-4 2.76e-5

4 Extended ICAmodel
We have seen that, depending on the value of κ

(a)
4 , the

classical optimization criteria in Equations (5) and (16) are
not contrasts any longer for the first two sources given by
Assumption A1. We now introduce a new statistical model
of dependent sources, which consists in a probability mix-
ture of sources. One component of the probability mixture
satisfies the requirement of ICA, whereas the other com-
ponent of the probability mixture is dependent. As an
interesting example of dependent sources, we will con-
sider the first two sources defined by A1, where a is the
mixture of Gaussians proposed in Section 3.3 with μ =
0.5: this choice is justified by the previous results, which
state that such sources cannot be separated by classical
algorithms. We show that for our model, the separation is
possible based on ICA and on the subset of samples where
ICA assumptions are satisfied.

4.1 Latent variables
We first extend ICA methods and relax the independence
assumption. The basic idea consists in introducing a hid-
den process r(t) such that, depending on the particular
value of r(t) at instant t, the independence assumption
is relaxed at time t. In this article, we will assume that
r(t) can take two values only in the set {0, 1}. Let r �
(r(1), . . . , r(T)). We assume more precisely:

A3. Conditionally on r, the components
s(1), . . . , s(T) of S at different times are independent
and for all t ∈ {1, . . . ,T} we have
P(s(t) | r) = P(s(t) | r(t)).
A4. Conditionally on r(t), when r(t) = 0, the
components of s(t) are mutually independent and
non Gaussian, except possibly one of them;

Table 4 Separation results of randomly drivenmixtures of
mixtures of the first two sources (s1, s2) given by
Assumption A1, average values over 100Monte-Carlo runs

Number of samples T = 1000 T = 10000

parameter of the sources μ = 0.5 μ = 0.9 μ = 0.5 μ = 0.9

τ1 0.4997 4.36e-4 0.5000 4.72e-5

τ2 0.5003 4.38e-4 0.5000 4.73e-5

A5. Conditionally on r(t), when r(t) = 1, the
components of s(t) are dependent.

One can see that, conditionally on r(t) = 0, the source
components s(t) at time t satisfy the usual assumptions
required by ICA. In a BSS context, if r were known,
one could easily apply ICA techniques by discarding the
time instants where the sources do not satisfy the ICA
assumptions. To be more precise, let us define:

I0 � {t ∈ {1, . . . ,T} | r(t) = 0} (17)
and: X0 � (x(t))t∈I0 (18)

The set I0 is the set of time instants where the compo-
nents of s(t) are independent and non Gaussian, except
possibly one of them. Then the subset X0 of the whole
set X of the observations satisfies the assumptions usually
required by ICA techniques. The core idea of our method
consists in performing alternatively and iteratively an esti-
mation of B (corresponding to A−1) and of the hidden
data r.

4.2 Typical sources separated by the proposedmethod
The sources that we consider satisfy Assumptions A3., A4.,
and A5. given previously in Section 4.1. We now detail
our particular choices for A4., A5., which have been used
in simulations and in the sequel to illustrate the assump-
tions. These particular choices are denoted hereunder by
A4.’ and A5.’ or A5.”.
We have considered two particular examples with N=2

sources. In both cases, Assumption A4. particularizes to:

A4.’ When r(t) = 0, the components of s(t) are
mutually independent, uniformly distributed on
[−√

3,
√
3] (that is: zero-mean and unit variance).

4.2.1 Example 1
As a first example, we particularize Assumption A5. as
follows:

A5.’ When r(t) = 1, then s1(t) = a(t) and
s2(t) = ε(t)a(t), where ε(t) is an independent BPSK
random variable and a(t) is an independent
zero-mean, unit-variance random variable.

In simulations, we choose a(t) as a mixture of Gaussians
whose distribution is given in Equation (15). A typical
realization of a distribution satisfying A3., A4.’ and A5.’
is illustrated by the simulated values shown in Figure 1a.
Conditionally on r(t) = 1, the vector (s1(t), s2(t))T corre-
sponds to the first two sources in Assumption A1, which
means that for r(t) = 1, (s1(t), s2(t))T lie on one of
the two bisectors of the horizontal and vertical axes.
According to the discussion in Sections 3.1 and 3.3, for
κ

(a)
4 ∈[− 2

7 , 2], algorithms based on the kurtosis contrast



Castella et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:62 Page 8 of 18
http://asp.eurasipjournals.com/content/2013/1/62

0 1 2 3

0

1

2

3

s 2
(t
)

s1(t) x1(t)

sources

0 1 2 3
−3

−2

−1

−3

−2

−1

−3 −2 −1 −3 −2 −1

0

1

2

3

x 2
(t
)

observationsa b

Figure 1 Typical density plot of the sources s in example 1 (a) and corresponding observations x = As (b).

functions (such as CoM2) should not separate any lin-
ear mixture of (s1(t), s2(t))T based on the samples where
r(t) = 1.
On the contrary, considering the samples X0 only

amounts to removing the set of dependent points that
lie on the two bisectors of Figure 2a. In such a case, the
remaining samples in X0 satisfy the usual requirement for
ICA and any ICA algorithm should succeed in separating
a linear mixture of the sources.

4.2.2 Example 2
The previous example is an extreme case where, condi-
tionally on r(t) = 1, either s1(t) = s2(t) or s1(t) = −s2(t).
Thus, the set of samples where s1(t) and s2(t) are depen-
dent lies on the two bisectors of the horizontal and vertical

axes. We considered in this example the case where, con-
ditionally on r(t) = 1, the components of (s1(t), s2(t))T
are dependent but have a continuous joint density. We
particularize Assumption A5. as follows:

A5.” Let u1 ∼ N (0, σλ) and: u2 ∼ L(λ) be
independent random variables where λ is a positive
parameter and σ 2

λ = 2(1 − 1
λ2

). When r(t) = 1,
P(s(t) | r(t) = 1) is such that:(

s1(t)
s2(t)

)
= 1√

2

(
u1 + u2
u1 − u2

)
To say it differently, the two components of

u = 1√
2

(
s1(t) + s2(t)
s1(t) − s2(t)

)
(19)
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b

Figure 2 Typical density plot of the sources s in example 2 with: (a) λ = 5 and (b) λ = √
2.
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are independent, the first one being Gaussian and the sec-
ond one being Laplace distributed. One can verify that the
choice of σ 2

λ ensures that, conditionally on r(t) = 1, the
sources are unit-variance. Such a distribution density is
illustrated by simulated values in Figure 2a with λ = 5 and
in Figure 2b with λ = √

2. Considering X0 only amounts
to removing the cloud set of dependent points on the
distributions. Visually, this seems much more difficult in
Figure 2b than in Figure 2a, andmuchmore difficult in this
example than in Example 1 in Figure 1a. We will discuss
further in Section 7 the influence of a good knowledge of
r: surprisingly, it is not necessarily crucial in our method
to have a good knowledge of r.

5 Separationmethod for the extended ICAmodel
5.1 Complete and incomplete data
Let us denote by θ = (B, η) the set of parameters to be
estimated from the data: in this notation, we stress that
θ consists of the separating matrix B and of the parame-
ter vector η which characterize the distribution of r. Let
us call (r,X) the set of complete data, whereas X alone is
the set of incomplete data: since r is a hidden process, the
model described in Section 4 corresponds to the situa-
tion where only incomplete data is available for estimation
of the searched parameters θ . Note that the adjective
blind is used to emphasize that S is unavailable, whereas
incomplete emphasizes that r is unavailable.

5.2 Iterative conditional estimation
Iterative conditional estimation (ICE) is an iterative esti-
mation method that applies in the context of incomplete
data and that has been proposed in the problem of image
segmentation [24,29,30].
Another well-known iterative estimation technique is

the expectation-maximization (EM) algorithm, which is
based on the maximum likelihood estimator. Contrary to
EM, the underlying estimator in ICE can be of any kind.
This makes ICE more widely applicable in cases where
the likelihood computation or maximization becomes
intractable [29,31], for example in the non gaussian case.
In the case where the maximum likelihood is chosen as
the underlying estimator, ICE show similarities with EM
(see e.g., [32] for an experimental comparative study). It
has been proven in [33] that in the case of distributions
belonging to the exponential family, EM is one particular
case of ICE. Finally, the interest of ICE and its convergence
in the case of data that are probability mixtures has been
showed in [34].
We now shortly describe ICE. The prerequisites in order

to apply ICE are the following:

• there exist an estimator from complete data θ̂ (r,X),
• one is able either to calculate E{θ̂ (r,X) | X; θ} or to

draw random variables according to P(r |X; θ).

Starting from an initial guess of the parameters, the
method consists in finding iteratively a sequence of esti-
mates of θ , where each estimate is based on the previous
one. More precisely, if θ̂ [0] is the first guess, the sequence
of ICE estimates is defined by:

θ̂ [q] = E{θ̂ (r,X) | X; θ̂ [q−1]}, (20)

where E{. | X; θ̂ [q−1]} denotes the expectation condition-
ally on X and with parameter values θ̂ [q−1]. If the above
conditional expectation cannot be computed, it can be
replaced by a sample mean, that is (20) can be replaced by:

θ̂ [p] = 1
K

K∑
k=1

θ̂ (r(k),X), (21)

where K ∈ N
∗ is fixed and each r(k) is drawn according to

the a posteriori law P(r |X; θ̂ [q−1]). Note that if θ is vector-
valued, (20) can be used for those components for which
it can be computed, and (21) can be used otherwise.
Remark that the two conditions requested in order to

apply ICE are very weak, which is the reason for our
interest in ICE. In fact concerning the first one, there
would be no hope to perform incomplete data estimation
if no complete data estimator exists, whereas the sec-
ond requirement consists only in being able to simulate
random values according to the a posteriori law.

5.3 Applicability of ICE and assumed distributions
In this section, we give details about how the two condi-
tions given in 5.2 for applicability of ICE are fulfilled.
First, as explained in Section 4.1, knowing r provides an

easy way of estimating a separating matrix by considering
as in (18) the subset X0 of the samples. A complete data
estimator θ̂ (r,X) hence exists.
To use ICE, one should additionally know the law

P(r |X; η). Since X = AS, we have

P(r |X; η) = P(r,X; η)

P(X; η)
= P(r, S; η)

P(S; η)
(22)

and P(r |,X; η) is identical to the law P(r | S; η), where
S = A−1X = BX. An expression for the latter law is
available if a model is assumed for P(S, r; η). Importantly,
the chosen model used in the ICE estimation algorithm
can be different from the model followed by the simulated
data that are processed by the algorithm. This is cru-
cial, because actual distributions are generally unknown
in practical BSS problems. In particular, we here choose
a model which follows Assumptions A3., A4., and A5., but
which is different from the particular Assumptions A4.’,
A5.’, and A5.” in Section 4.2. More precisely, translating
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Assumption A3. only, the joint distribution of (r, S) under
the parameter value η reads:

P(r, S; η) = P(r; η)

T∏
t=1

P(s(t) | r(t); η) (23)

The above equation holds both for the assumed distribu-
tion and for the distribution of the simulated data. On the
contrary, the expressions of P(r; η) and P(s(t) | r(t); η) that
are assumed in ICE differ from the ones of the simulated
data and they are given in the next paragraphs.

5.3.1 Assumed P(s(t) | r(t)) in ICE
First, note that in the following, similarly to the real
data distribution, P(s(t) | r(t); η) = P(s(t) | r(t)) does not
depend on the parameters η to be estimated.
Experimentally, we observed that, for robustness rea-

sons, the distribution P(s(t) | r(t)) assumed in ICE should
not have a bounded support or be too specific. For this
reason, we assumed the following distributions:

• P(s(t) | r(t) = 0) ∼ N (0, 1),
• P(s(t) | r(t) = 1) is such that both components of u

defined in (19) have the distribution
1
2L(λ) + 1

2N
(
0, σ 2

λ

)
.

A typical realization of the distribution of (s1(t), s2(t))T
assumed in ICE is given in Figure 3. This distribution is
of course different from the ones of the simulated data in
Figures 1 and 2. However, simulations will confirm that it
is a reasonable choice.
Conditionally on r(t) = 0, (s1(t), s2(t))T is assumed

an independent, zero-mean, unit-variance Gaussian vec-
tor: this is an uninformative distribution having a density
with non bounded support. Conditionally on r(t) = 1,

each component of u in the assumed distribution is a mix-
ture of a Laplace and a Gaussian law. Experimentally, and
from the observation of Figures 1 and 3, the latter choice
seems a relevant approximation of the data model from
Example 1 in Section 4.2.1. The parameter λ should make
a compromise between a good fit to the data (λ large) and
robustness of the method (λ small). Also, the assumed
conditional distribution P(s(t) | r(t) = 1) is invariant with
respect to any permutation and sign change. Such a sym-
metry is necessary in our method because ICA algorithms
leave permutation ambiguities. For this reason, the same
distribution has been considered to model the data source
signals generated in Example 2 (Section 4.2.2).

5.3.2 AssumedP(r; η) in ICE
We propose two different models for the latent process r.
I.i.d. latent process
The simplest case is when r is an i.i.d. Bernoulli process,

that is η is a scalar parameter in [ 0, 1] and:

P(r; η) =
T∏
t=1

P(r(t); η) (24)

with for all t ∈ {1, . . . ,T}:
P(r(t) = 0) = η and P(r(t) = 1) = 1 − η (25)

Markov latent process
We can alternatively consider that r is a stationary

Markov Chain, that is:

P(r) = P(r(1))
T∏
t=2

P(r(t) | r(t − 1)),

where P(r(t) | r(t − 1)) is given by a transition matrix
independent of t. In this case, the parameters η consist

3 2 1 0 1 2 3
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Figure 3 Typical density plot of sources assumed in the ICE algorithmwith: (a)λ = 5 and (b)λ = 20.
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of the different transition probabilities and the ini-
tial probabilities. The main advantage of consider-
ing a Markov model is that the posterior transitions
P(r(t) | r(t − 1),X; η) can be calculated by an effi-
cient forward-backward algorithm [35]. A sampling of
the hidden process according to the posterior law
P(r |X; η) is hence possible, making the ICE method
applicable [29].

6 Combined ICA/ICE separation algorithm
In this section, we first detail our separation algorithm
which combines ICA and ICE. We then interpret ICE in
terms of random variable generation.

6.1 Algorithm
We denote by ICA one among all possible ICA algorithms
[1] such as JADE [26], CoM2 [25], FastICA [27], etc. Given
a set of observation samples X, the separating matrix esti-
mated by the ICA algorithm is denoted by B = ICA(X).
With these notations, a complete data estimator of the
separating matrix is provided by B = ICA(X0), where X0
has been defined in Equation (18). Our algorithm consists
in an ICE estimation of the parameters θ = (B, η). The
parameters η which characterize r are estimated accord-
ing to (20), whereas the separating matrix B is estimated
according to (21) with K = 1. Here is a summary of the
algorithm:

Initialize the parameters θ̂ [0] =
(
B̂[0], η̂[0]

)
. For q = 1,

2, . . . , qmax, repeat:

1. calculate P
(
r |X; θ̂ [q]

)
and draw r̂[q] according to

this distribution,
2. update the separating matrix:

• set: Î [q]
0 = {t | r̂[q](t) = 0

}
and

X̂[q]
0 = (x(t))t∈Î[q]

0

• B̂[q+1] = ICA
(
X̂[q]
0

)
.

3. update the parameters η of the process r.

Steps 1 and 3 of the above algorithm are further detailed
in the following sections. Note that, if the parameters η

are available as an additional information, they need not
be estimated and step 3 of the algorithm is not necessary.

6.2 Details in the case of an i.i.d. latent process
We here detail the three steps of our algorithm in the case
where r is i.i.d. As we will see, in this case, ICE is akin to
generating a set of random samples that satisfy the usual
assumptions of ICA with an accept-reject method.

6.2.1 Step 1
In the case where r is i.i.d., we have from (22), (23), and
(24):

P(r |X; η) =
T∏
t=1

P(r(t); η)P(s(t) | r(t))
P(s(t))

=
T∏
t=1

P(r(t) | s(t); η),

where P(r(t); η) has been given in Equation (25) and
P(s(t) | r(t)) has been described in Section 5.3.1. Writing
αt = P(r(t) = 0 |X; η) (and hence 1 − αt = P(r(t) = 1
|X; η), it follows from the above equation that in step 1, all
samples of r̂[q] are independent and such that{

r̂[q](t) = 0 with probability αt

r̂[q](t) = 1 with probability 1 − αt .

6.2.2 Step 2: accept-reject random variable generation

One can see that, when selecting X̂[q]
0 in the second step of

our algorithm, some samples are kept, others are thrown
away. A close parallel can be drawn with random variable
generation by the acceptance-rejection method.
For clarity, let us define P0(s(t)) = P(s(t) | r(t) = 0) and

P1(s(t)) = P(s(t) | r(t) = 1). At time t, according also to
Equations (25) and (23), the distribution of s(t) is given by:

ηP0(s(t)) + (1 − η)P1(s(t))

We have the following lemma:

Lemma4. Let s be a random variable (or random vector)
with probability distribution given by

s ∼ ηP0(s) + (1 − η)P1(s)

Let r̂ ∈ {0, 1} be a binary random variable with probability
distribution such that:

P(r̂ = 0 | s) = ηP0(s)
ηP0(s) + (1 − η)P1(s)

(26)

P(r̂ = 1 | s) = (1 − η)P1(s)
ηP0(s) + (1 − η)P1(s)

(27)

Then, the conditional distribution P(s | r̂ = 0) is P0(s).

Proof. One can write the joint probability distribution
P(s, r̂) = ηδ(r̂ = 0)P0(s) + (1 − η)δ(r̂ = 1)P1(s) and the
result follows by conditioning.

Lemma 4 relates our algorithm to the accept-reject
algorithm for random variable generation. Indeed, draw-
ing r̂ and conditioning on r̂ = 0 to get P(s | r̂ = 0) is
performed in our algorithm by drawing r̂[q](t) and keep-
ing only those samples s(t) of S, where r̂[q](t) = 0, that is,
it amounts to rejecting those samples where r̂[q](t) = 1.
In other terms, through the ICE algorithm, the target
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distribution P0(s) is generated using the instrumental dis-
tribution g(s) = ηP0(s) + (1 − η)P1(s). Samples from
this instrumental distribution g(s) are given by the data
themselves. By doing so, we obtain a set of data following
the distribution P0(s). Since P0(s(t)) = P(s(t) | r(t) = 0)
and according to Assumption A4., this is precisely the
distribution under which the ICA algorithm is applicable.

Remark 3. It is known that the probability distribution
of s in Lemma 4 can be seen as the marginal of (r, s),
where r is a Bernoulli process and the conditional laws of
s knowing r are given by P0 and P1. However, r̂ is drawn
independently of r and in particular, r̂ is different from r. It
means that in our algorithm, the original latent process r
and the ICE sampling r̂[q] may be quite different, although
the selected samples are distributed following P0. This will
be illustrated in Section 7.1.2.

6.2.3 Step 3
A complete data estimator of the parameter η is given
by the empirical frequency η̂ = 1

T
∑T

t=1 δ(r(t) = 0).
Equation (20) then yields the following update rule for the
parameter η:

η̂[q+1] = 1
T

T∑
t=1

P

(
r(t) = 0 | x(t), θ̂ [q]

)
(28)

6.3 Markov latent process
We here detail the three steps of our algorithm in the case
where r is a Markov process.

6.3.1 Step 1
Here, we assume in the ICE part of the procedure that
r is a Markov process. Then, the posterior probability
P(r |X; θ̂ [q]) is Markov, and its transitions can be calcu-
lated according to the forward-backward or Baum-Welch
algorithm. At each step q of the algorithm, r̂[q] is then
generated according to P(r |X; θ̂ [q]) as a non-stationary
Markov chain. It is out of the scope to further detail
these well-known procedures and the reader is referred to
[29,30,35] and references therein for more explanations.

6.3.2 Step 2
It is unchanged, although the interpretation as an accept-
reject random variable generation does not hold any
longer.

6.3.3 Step 3
From the values of P(r(t) |X, θ̂ [q]) and P(r(t), r(t + 1))
|X, θ̂ [q]), formulas similar to Equation (28) yield the esti-
mated probabilities for r(t) and the pairs (r(t), r(t + 1)).
The transition probabilities are then obtained by the rela-
tion P(r(t + 1)) | r(t),X, θ̂ [q]) = P(r(t),r(t+1)) |X,θ̂ [q])

P(r(t) |X,θ̂ [q]) . The
reader is again referred to [29,30,35] for more details.

7 Simulations
We performed several simulations for different numbers
of samples, respectively, T = 1000, T = 5000, T = 10000.
We have set qmax = 30 in our algorithm: this value has
been determined empirically by testing values of qmax up
to 150. For values greater than qmax = 30, no significant
quality improvement has been observed and this choice
seems hence satisfactory as far as ICE convergence is con-
cerned. Although highly interesting, a more detailed anal-
ysis of the convergence speed/rate of our algorithm is out
of the scope of the article. The separation quality criterion
considered is the mean square error (MSE): the provided
value is a mean of the MSE over all sources. Additionally,
we considered the empirical segmentation rate provided
by the last sampling r̂[qmax] in Step 1 of the ICE procedure.
We define this segmentation rate as follows:

ϒICE = 1
T

T∑
t=1

δ
(
r̂[qmax](t) = r(t)

)
. (29)

This corresponds to the proportion of time samples
which are correctly classified as corresponding either to
independent (r(t) = 0) sources or to dependent (r(t) = 1)
sources. In all cases, the source signals and the mixing
matrix have been randomly generated.
The classical algorithm used in our simulations, which

has been denoted ICA in Section 6 was CoM2 [25]. For
comparison, we considered as a worst case reference the
result when CoM2 is applied to the data, simply ignor-
ing that the ICA assumptions are violated at some sample
times. On the other hand, as an optimal best case refer-
ence, we considered the complete data situation, that is
when r is available and the separation is performed based
on X0.
In our simulations, we generated data according to the

following models:

• sources satisfying Example 1 in Section 4.2. We
chose the process a(t) as a mixture of Gaussians as
defined in Equation (15), with μ = 0.5. According to
Section 3, the CoM2 algorithm, if applied on the
dependent data only, is not successful in separating
the sources.

• sources satisfying Example 2 in Section 4.2. In this
case, we choose λ = √

2.

7.1 I.i.d. latent process with known η

We first provide some simulations in the case where r is
an i.i.d. Bernoulli process with known η parameter (see
Equation (24)).

7.1.1 Example 1
Separation results for sources generated according to
Example 1 with r i.i.d. are gathered in Figures 4 and
5. Values in Figure 4 are average values over 1000



Castella et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:62 Page 13 of 18
http://asp.eurasipjournals.com/content/2013/1/62

0 0.2 0.4 0.6 0.8 1
10

4

10
3

10
2

10
1

10
0

Average MSEa

ICE + CoM2
r+CoM2
CoM2

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1
Average ICE

0 0.2 0.4 0.6 0.8 1
10

5

10
4

10
3

10
2

10
1

10
0

Average MSEb

ICE + CoM2
r+CoM2
CoM2

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1
Average ICE

0 0.2 0.4 0.6 0.8 1
10

5

10
4

10
3

10
2

10
1

10
0

Average MSEc

a b c

ICE + CoM2
r+CoM2
CoM2

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1
Average ICE

Figure 4 Depending on η (known by the algorithm), average MSE and segmentation rateϒ ICE. Sources generated from Example 1 with r
i.i.d., parameter λ = 5. (a) T = 1000 samples, (b) T = 5000 samples, (c) T = 10000 samples.

Monte-Carlo realizations whereas values in Figure 5 are
the individual results for 100 Monte-Carlo realizations.
In Figure 4, theMSE values have been plotted depending

on η ∈[ 0, 1] for T = 1000 (a), T = 5000 (b), T = 10000
(c) samples. Note that for η = 0, all samples of the data
sources are dependent and the complete data separation is
therefore not applicable. Similarly, when setting η to zero
in the ICE algorithm, all samples are necessarily classi-
fied as dependent and our method is not applicable. For
this reason, when η = 0 has been used in the simulated
sources we have set η to 0.1 in the algorithm.
Naturally, the complete data case provides the best

results: when η tends to zero, the number of samples inX0
decreases, which explains the increasing MSE for smaller
η values. On the other hand, ignoring the dependence
provides results that are unacceptable for η smaller than
0.7, approximately. It seems however that CoM2 is able
to separate the particular sources considered for η greater
then 0.7, approximately: from the results in Section 3,
the existence of such a limit value above which CoM2
is successful seems quite natural. For η smaller than 0.7
the proposed method provides a very significant improve-
ment in terms of separation quality. The classification rate
ϒICE has also been plotted in Figure 4 and one can observe
that samples of dependent/independent sources are quite

well classified, which corroborates the good MSE values
obtained with our method.
Depending on the parameter λ, the source distribu-

tion assumed in the ICE estimation and described in
Section 5.3.1 is closer to or farther from the real source
distribution of Example 1, which has part of its samples
lying on the two bisectors (see the comparison between
Figure 1a and Figure 3a,b). In Figure 5, we tested the influ-
ence of the parameter λ for a fixed value of η = 0.5. The
MSE of 100 Monte-Carlo realizations have been plotted
for T = 1000 and T = 10000 samples. The correspond-
ing segmentation rate ϒICE has been plotted in the lower
part of the figures. First, it can be seen in Figure 5 that the
separation results of the Monte-Carlo realizations can be
clearly separated in two groups:

• for a minority of cases, the segmentation rate ϒICE is
close to 0.5, meaning that the procedure completely
fails to classify the latent process r. In such a case,
the corresponding MSE is important (around 0.5)
and separation is unsuccessful. This situation occurs
more often for large values of λ: a greater value of λ
consequently implies less robustness of our method.

• for most of the realizations, ϒICE is significantly
greater than 0.5, indicating that the procedure
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Figure 5 For different values of λ, MSE of 100 Monte-Carlo realizations sorted by increasing values and corresponding segmentation rate
ϒ ICE. Sources generated from Example 1 with r i.i.d. η = 0.5 (known by the algorithm), (a) T = 1000 samples, (b) T = 10000 samples.

succeeds in classifying approximately the latent
process r. In such a case, the corresponding MSE is
low and the separation is successful. One can see
that, in such a case where the separation is successful,
a greater value of λ comes with a greater ϒICE, hence
a better segmentation of r and a lower MSE, hence a
better separation quality.

In conclusion, the choice of λ should be a compromise
between good separation quality (in case of success) and
robustness in order to limit the rate of separation failure.

7.1.2 Example 2
The results for source signals following Example 2 (see
Section 4.2.2 with λ = √

2) are given in Figure 6. Simi-
larly to the previous section, for T = 1000 (a), T = 5000
(b), T = 10000 (c) samples and depending on η ∈[ 0, 1]
the MSE values have been plotted in the top graph and the
segmentation rate ϒICE in the bottom graph.
As expected, the complete data estimation based on X0

of the separating matrix provides again the best results.
In comparison with the case where the dependence of the
sources is ignored, our method provides a very signifi-
cant improvement, in particular for η lying between 0.4

and 0.8, approximately. Very interestingly, as witnessed in
Figure 6, the good performance in terms of separation and
MSE is obtained with very poor performance in terms of
classification of the latent process r: note in particular that
for η = 0.5, we have a low MSE whereas ϒICE is close
to 0.5. The poor classification can be easily understood
when comparing Figure 2b with Figure 1a. The important
point in this observation is that a good classification of the
latent process r is a sufficient but not a necessary condi-
tion for good ICA estimation. This is in contrast with the
former example but is fully justified by the interpretation
of Step 2 of the algorithm in Section 6.2. Indeed, accord-
ing to Lemma 4, the ICE part of our algorithm selects a
set of samples X̂0 which is such that its distribution satis-
fies the usual ICA assumptions, although the classification
may well be very poor.

7.2 I.i.d. latent process with unknown η

We now consider the case where r is i.i.d. but the
parameter η in Equation (25) is unknown. In this case,
η is estimated by the ICE algorithm. The results have
been averaged over 1000 Monte-Carlo realizations and
are gathered in Table 5 for both sources from Example 1
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Figure 6 Depending on η (known by the algorithm), average MSE and segmentation rateϒ ICE. Sources generated from Example 2 with r
i.i.d. and parameter λ = √

2. (a) T = 1000 samples, (b) T = 5000 samples, (c) T = 10000 samples.

and Example 2. In the case of Example 1, we have set
the parameter λ = 5 in the assumed distribution of
Section 5.3.1, whereas we have set λ = √

2 in the case
of Example 2. For comparison, we provide the MSE
results when η is known and when the algorithm CoM2
is applied, just ignoring that the generated source signals
are dependent.
One can see from the values in Table 5 that our sepa-

ration method remains valid even in the case where η is
estimated.

7.3 Markov latent process
As previously indicated, the ICE estimation algorithm is
able to take into account the Markov dependence of r.

We have considered the importance of modeling r as a
Markov or i.i.d. process.
The process r has been generated as a stationary

Markov chain with transition matrix
(0.9 0.1
0.1 0.9

)
, in which

case P(r(t) = 0) = P(r(t) = 1) = 1
2 . On the

corresponding data set with r Markov, our separation
method has been performed both in the case where r
is modeled as i.i.d. and in the case where r is modeled
as a Markov chain. In both cases, the parameters in η

have been estimated from the incomplete data. Figure 7
provides the results for sources from Example 1 (with
λ = 15 in the algorithm) and Figure 8 provides the
results for sources from Example 2 (with λ = √

2 in
the algorithm). The separation results with complete data

Table 5 AverageMSE

Number of samples T = 1000 T = 5000 T = 10000

Parameter η 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

Example 1, η known 4.70e-2 2.70e-2 7.94e-3 1.04e-2 6.66e-3 2.59e-3 9.34e-3 5.42e-3 2.48e-3

Example 1, η estimated 4.35e-1 8.17e-2 9.46e-3 5.36e-1 1.59e-2 4.59e-3 5.73e-1 8.50e-3 4.38e-3

Example 1, CoM2 5.86e-1 5.33e-1 3.62e-2 5.86e-1 5.84e-1 1.29e-3 5.86e-1 5.85e-1 5.43e-5

Example 2, η known 1.91e-1 4.71e-2 3.43e-3 2.51e-1 5.16e-3 6.15e-4 2.76e-1 1.42e-3 3.33e-4

Example 2, η estimated 3.85e-1 6.66e-2 3.53e-3 5.43e-1 6.34e-3 6.60e-4 5.59e-1 1.77e-3 3.55e-4

Example 2, CoM2 5.04e-1 4.16e-1 1.20e-1 5.47e-1 5.38e-1 1.01e-1 5.57e-1 5.54e-1 7.99e-2

Sources generated from Example 1 (λ = 5) and Example 2 (λ = √
2) with r i.i.d.
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Figure 7 For an i.i.d. and a Markov model of r, MSE of 100 Monte-Carlo realizations sorted by increasing values and corresponding segmentation
rate ϒ ICE . Sources generated from Example 1 with rMarkov, λ = 15 (a) T = 1000 samples, (b) T = 10000 samples.

and with CoM2 ignoring the dependence of the sources
have also been plotted and, as expected, they correspond
respectively to the best/worseMSE value. On the top plots
of Figure 7, one can see that, in sources from Example 1,
the performance is improved when taking into account

the Markovianity of r. More precisely, similarly to the
simulations in Section 7.1.1 with λ = 15, the MSE
values show a successful separation for a majority of real-
izations: in such a case, the Markovianity assumption
clearly improves the MSE. However, the Markovianity
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Figure 8 For an i.i.d. and a Markov model of r, MSE of 100 Monte-Carlo realizations sorted by increasing values and corresponding segmentation
rate. Sources generated from Example 2 with rMarkov, λ = √

2. (a) T = 1000 samples, (b) T = 10000 samples.
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property does not significantly improve the robustness of
the method, since the number of realizations where sepa-
ration has failed is approximately identical with a Markov
and an i.i.d. model.
Interestingly, a different behavior can be seen in Figure 8

with data generated according to Example 2. Indeed, the
performance has not improved when r has been modeled
as aMarkov chain. Intuitively, this may come from the fact
that the two components of the probability mixture in the
source distribution are harder to distinguish, as it has been
illustrated in Figure 2.

8 Conclusion
In this article, we have first studied the behavior of kurto-
sis based contrast functions in specific cases of dependent
sources. Observing that the criteria are polynomial func-
tions of the parameters, we have been able to explicitly
give the theoretical maxima as a function of a kurtosis
value parameter κ

(a)
4 . The behavior of the classical kurto-

sis contrast function can thus be understood depending
on κ

(a)
4 and its restricted validity has been proved.

We have then introduced a model of dependent sources
which consists in a probability mixture of two distribu-
tions. One component of the mixture satisfies the ICA
assumption and, using an ICE estimationmethod, we have
been able to exploit this information in order to perform
separation. This example suggests that many more depen-
dent sources might be separated if an adequate model
of their distribution is provided. More generally, since
the distribution model as a probability mixture may be
an approximate one, an interesting problem would be to
know to what extent a given distribution may be approx-
imated by our proposed model in order to perform BSS.
Finally, simulations have confirmed and validated our the-
oretical results.

Endnotes
a It rectifies an error in [22].
b One can show that the number of solutions of (10) is
indeed finite. Note that one can also solve the polynomial
equations, as has been done in the proof of Proposition 1.
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