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1 Introduction

The AdS/CFT correspondence [1–4], or more generally, gauge/gravity duality, has been

proven to be a powerful tool for studying the dynamics of strongly coupled field theories.

This paradigm has been applied to understand the low-temperature physics of strongly-

coupled electron systems (AdS/CMT), such as superconductors [5, 6] and (non-)Fermi

liquids [7–9].

In most of the realistic condensed matter systems, one basic ingredient is the presence

of a finite charge density. Therefore we need a conserved global charge in the gravity dual,

i.e. we consider charged black hole solutions. The initial study of holographic systems

at finite density focused on Reissner-Nordström black holes in AdS space, which may be

considered as the simplest laboratory for exploring AdS/CMT. In particular, the fermionic

two-point function in this background displays the behavior of fermionic quasi-particles

corresponding to a non-Fermi liquid. This is due to the emergent AdS2 near-horizon

geometry in the extremal RN-AdS background [7–9]. However, the RN-AdS black hole has

a significant disadvantage from a condensed matter point of view: it has finite entropy at

extremality, i.e. at zero temperature.

A further step towards constructing gravity duals of strongly-coupled systems at finite

density is to include the leading order relevant scalar operators, which on the gravity side

corresponds to the Einstein-Maxwell-Dilaton system with a scalar potential. This makes

the theory flow to an IR fixed point which is not the near-horizon RN-AdS geometry.
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There are models in this class which have zero entropy at extremality and are therefore

of interest for condensed matter applications. These models have been extensively studied

in [10], where they are characterized by studying the thermodynamics, spectra and con-

ductivities. The analysis is based on the concept of Effective Holographic Theory (EHT).

The central point of EHT is to truncate a string theory to a finite spectrum of low-lying

states. Intuitively, we may argue that the truncation is reasonable if the neglected states

are irrelevant in the IR. In [10] the EHTs of the Einstein-Maxwell-Dilaton theory were

parametrized in terms of the IR asymptotics of the scalar functions: the scalar potential

and the nontrivial Maxwell coupling. Hence the exact solutions of the Einstein-Maxwell-

Dilaton theory describe the IR asymptotic geometry. The EHT has the advantage that it

provides descriptions of large classes of IR dynamics, although the understanding of the

dual field theory is less clear.

The (d + 2)-dimensional Einstein-Maxwell-Dilaton theory admits the hyperscaling

violation metric as an exact solution,

ds2 =
1

r2

(

− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 +

d
∑

i=1

dx2i

)

, (1.1)

where z denotes the dynamical exponent and θ is the hyperscaling violation parameter.

The background possesses the following scaling property,

t → λzt, xi → λxi, ds → λθ/dds. (1.2)

The entropy density at finite temperature scales as s ∼ T (d−θ)/z. It has been observed

in [11] that for general finite z and θ, the behavior of the spectral densities in these space-

times seem to better describe the properties of theories with bosonic degrees of freedom

rather than with fermionic ones. However, in the same paper the authors consider the limit

z → ∞, which allows for low-energy modes at all momenta, resembling features found in

fermionic systems. Furthermore, to avoid the undesirable ground state entropy density, we

may take the following limits [11],

z → ∞, θ → −∞, η ≡ −θ

z
fixed. (1.3)

Then the metric becomes

ds2 =
1

r2

(

− dt2

r2d/η
+

dr2

r2
+

d
∑

i=1

dx2i

)

. (1.4)

This metric is conformal to AdS2×R
d, which can be seen by taking a new radial coordinate

r = ξη/d,

ds2 =
1

ξ
2η
d

[

−dt2

ξ2
+

dξ2

ξ2
+

d
∑

i=1

dx2i

]

. (1.5)

In the corresponding non-extremal solution the entropy density scales as s ∼ T η, which

means that the entropy density goes to zero in the extremal limit. In [12] the AdS2 × R
d
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Figure 1. Connected and disconnected solution for the strip case.

near-horizon geometry of the (d + 2)-dimensional extremal RN-AdS black hole is referred

to as a holographic semi-local quantum liquid, characterized by a finite spatial correlation

length, an infinite correlation time and a non trivial scaling behavior in the time direction.

Since the background (1.4) is conformal to AdS2 × R
d, it may be seen as a generalization

of the dual of holographic semi-local quantum liquids. Backgrounds with hyperscaling vio-

lation and semi-locality were first investigated in [13]. Holographic semi-local backgrounds

with broken U(1) symmetry were studied in [14] and universal scaling properties of extremal

cohesive holographic phases including those with semi-locality were discussed in [15].

It is straightforward to characterize properties of Fermi surfaces in backgrounds with

semi-locality by performing an analysis of the fermionic correlations as in [9]. However,

there is a further quantity which may help in characterizing the presence of Fermi surfaces:

the entanglement entropy. It was conjectured in [16] that systems with Fermi surfaces

exhibit a logarithmic violation of the ‘area law’ behavior of the entanglement entropy. In

the same paper, the authors construct a gravity dual which displays the expected behavior

for non-Fermi liquids. Furthermore, it has been shown that when the hyperscaling violation

parameter θ = d − 1, the background (1.1) also exhibits a violation of the ‘area law’ [17].

However, the interpretation of this violation as a sign for a Fermi surface stands in contrast

to the results of [11], where the spectral density does not seem to describe a fermionic system

(see discussion above eq. (1.3)). For subsequent developments in this direction, see [18–20].

One may wonder how the entanglement entropy will behave if we take the limit (1.3)

in the background with hyperscaling violation. It has been observed in [11] that when the

entangling region on the boundary is a strip, then only for a strip width l = lcrit there is a

connected minimal surface solution (see figure 1). For all other values of l the solution is a

disconnected minimal surface, i.e. two slabs reaching into the bulk without ever touching

each other. It was conjectured in [11] that if the hyperscaling violating geometry is an

IR completion of an asymptotically AdS spacetime, then the connected minimal surface

may exist for separation lengths l < lcrit, while for l > lcrit two disconnected minimal sur-

faces dominate. This describes a phase transition between the disconnected and connected

solutions. Interestingly, a similar behavior is observed in confining geometries [21]. The

holographic entanglement entropy of five-dimensional extremal two-charge black hole in
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type IIB supergravity was considered in [22], where the near-horizon geometry is of the

type (1.4) with d = 3, η = 1. Also in this case, the same behavior of the entanglement en-

tropy for the strip as described above was found. An advantage of the background studied

in [22] is that the full geometry is explicitly known, hence the following picture may emerge:

for sufficiently large boundary separation length l the hypersurface in the bulk should probe

the IR limit of the geometry, which means that the background may be approximated by

the semi-local geometry. Then there exists a maximal value of l = lcrit beyond which only

the disconnected hypersurfaces contribute. For sufficiently small l, the entangling surface

probes the UV and the full geometry should be taken into account. These arguments are

confirmed by numerics in [22], where the authors also state that the transition at lcrit is

second order. On the other hand, for a spherical entangling region a phase transition of

this type was not observed.

In this paper we study holographic entanglement entropy of (d+2)-dimensional semi-

local quantum liquids for general η. For completeness we first review the exact solution

with semi-locality both at extremality and at finite temperature. Even though the solu-

tions only describe the IR geometry, we may still study their thermodynamical properties

by dimensional analysis and scaling arguments. Then we calculate the holographic entan-

glement entropy in the extremal background with the entangling surfaces being a strip and

a sphere. For the strip case we find, similarly to the cases discussed above, that there

exists only a connected solution if the boundary separation length l is constant. For the

sphere case, we are able to calculate the entanglement entropy analytically and find that

the leading order contribution exhibits an area law behavior. As discussed in the previous

paragraph, the full geometry is needed if the boundary separation length is sufficiently

small, therefore we construct the full (d + 2) dimensional geometry for generic values of

η (see eq. (1.3)), which is asymptotically AdS and possesses semi-locality in the IR. We

compute the holographic entanglement entropy in this geometry. For the strip case, the be-

havior of the entanglement entropy is as expected: the connected hypersurface dominates

when the boundary separation length l is small, while the disconnected hypersurfaces dom-

inate when l > lcrit. However, in the sphere case we do not find such a transition. Finally

as proposed in [22], we calculate the entanglement entropy for an annulus entanglement

surface in order to interpolate between the sphere and the strip case. The annulus is sup-

posed to approximate the spherical entanglement entropy behavior when the inner radius

is very small compared to the outer radius, while the same behavior as in the strip case is

obtained for both radii large and their difference small. We find that there is a transition

taking place between two concentric spheres (disconnected solution) and a deformed an-

nulus (connected solution) at a critical value (∆ρ)crit of the difference between the outer

and inner radius. Several aspects of this transition are very interesting: first as opposed

to the strip case where the transition from the disconnected to the connected solution is

second order, here, depending on the dimension and the value of the inner and outer radii

we find a swallow tail behavior, known from first order phase transitions. For larger radii

we see a second order transition, this is an indication that for large radii we are indeed

approximating the strip case. Second, the maximal radii difference (∆ρ)max for which a

connected solution exists, approximates lcrit (critical width of the strip) with increasing
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values of the radii. Note that (∆ρ)max = (∆ρ)crit only in the cases where we find a second

order transition. Finally, we do not find a solution with vanishing inner radius in order

to approximate the sphere. This is due to the fact that for decreasing values of the outer

radius, the difference between the radii also decreases, with the difference being smaller.

The paper is organized as follows: we review the exact solutions both at extremality

and finite temperature and study the corresponding thermodynamics in section 2. Then

we calculate the entanglement entropy in the extremal background for both the strip and

the sphere cases in section 3. After constructing solutions asymptotic to AdS in the UV

in section 4, we revisit the holographic entanglement entropy for entangling regions being

a strip, a sphere and an annulus in section 5. A summary and an interpretation of the

results are given in section 6.

2 The background with semi-locality

In this section we study the background with semi-locality. After reviewing the solu-

tions both at extremality and at finite temperature, we will study the thermodynamics by

dimensional analysis and scaling arguments.

2.1 The background

We start from the action of Einstein-Maxwell-Dilaton theory,

S =

∫

dd+2x
√
−g

(

1

2κ2
R− Z(Φ)

4e2
FµνF

µν − 1

κ2
(∂Φ)2 − 1

2κ2L2
V (Φ)

)

, (2.1)

with effective gauge coupling and scalar potential

Z(Φ) = Z2
0e

αΦ, V (Φ) = −V 2
0 e

−βΦ. (2.2)

Here Z0, V0, α, β are constants characterizing the theory. Theories of this type were named

“Effective Holographic Theory” in [10]. The backgrounds with hyperscaling violation and

general semi-locality as used in the subsequent sections were first investigated in [13]. The

equations of motion are given by

∂µ(
√
−gZ(Φ)Fµν) = 0,

∂µ(
√
−g∂µΦ) =

κ2

8e2
√
−g

∂Z

∂Φ
FρσF

ρσ +
1

4L2

√
−g

∂V

∂Φ
,

Rµν −
1

2
Rgµν − 2∂µΦ∂νΦ+ gµν(∂Φ)

2

− κ2

e2
Z(Φ)FµλFν

λ +
κ2

4e2
Z(Φ)gµνFρσF

ρσ +
V (Φ)

2L2
= 0. (2.3)

It was observed in [17] that the above theory admits the exact solution

ds2 =
L2

r2

(

−f(r)dt2 + g(r)dr2 +
d
∑

i=1

dx2i

)

,

f(r) = f0r
− 2d(z−1)

d−θ , g(r) = g0r
2θ
d−θ , (2.4)
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where f0 and g0 are constants determined by Z(Φ) and V (Φ), which will not be explicitly

written down here. θ is the hyperscaling violation parameter and z is the dynamical

exponent, which are determined by α and β,

θ =
d2β

α+ (d− 1)β
, z = 1 +

θ

d
+

8(d(d− θ) + θ)2

d2(d− θ)α2
. (2.5)

We are interested in the limit

z → ∞, θ → −∞ while η ≡ −θ/z fixed, (2.6)

following [11]. This requirement leads to

β = −
√

8/d

1 + d/η
, α = −(d− 1)β, (2.7)

which can be easily obtained by taking such a limit in (2.5). Then the solution at extremal-

ity is given by

ds2d+2 =
L2

r2

(

− dt2

r2d/η
+

g0
r2

dr2 +

d
∑

i=1

dx2i

)

,

g0 =
d2

V 2
0

(

1 +
1

η

)2

, Φ =

√

d

2

√

1 +
d

η
log r,

At =
eL

κ
h(r), h(r) =

h0

rd(1+1/η)
, h0 =

1

Z0
√
1 + η

. (2.8)

Such a background possesses the following scaling properties

t → λt, r → λη/dr, ⇒ ds → λ−η/dds. (2.9)

Furthermore, in this background only t and r are involved in the scaling symmetries

while the spatial coordinates xi are spectators, hence the background geometry is “semi-

local” [12] and it can be easily seen that it is conformal to AdS2 × R
d.

The finite-temperature counterparts can be written as follows

ds2d+2 =
L2

r2

(

−χ(r)dt2

r2d/η
+

g0
r2χ(r)

dr2 +
d
∑

i=1

dx2i

)

, χ(r) = 1−
(

r

rh

)d(1+1/η)

, (2.10)

while the other field configurations remain invariant as in the extremal case. The temper-

ature and entropy density of this black hole are given by

T =
V0

4π
r
−d/η
h , s =

Ld

4rdh
. (2.11)

Note that we always have s ∼ T η, irrespective of the number of spatial dimensions.
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2.2 Thermodynamics

Let us study the thermodynamics of the semi-local geometry. Generally, the full solution

should be considered when considering the thermodynamics, while for our case the exact

solution just describes the IR geometry. However, we can still discuss the thermodynamics

by dimensional analysis and scaling arguments, following [23, 24].

As discussed in previous subsection, it can easily be obtained that

T ∝ r
−d/η
h , s ∝ r−d

h , ⇒ s ∼ T η, (2.12)

which holds in arbitrary dimensions. Note that the scaling dimensions of the temperature

T and the chemical potential µ are both of [Mass]−1, so the entropy density scales as

s ∼ T ηµd−η. On the other hand, in (d+ 2)−dimensional bulk spacetime, the entropy may

be evaluated from the on-shell action. Therefore a prefactor Ld/GN should exist, where

GN denotes the Newton’s constant. Thus we have

s = aCT ηµd−η, (2.13)

where C ∼ LdGN and a depends on the coupling constant η. The specific heat is given by

CV = T

(

ds

dT

)

µ

= aCηT ηµd−η, (2.14)

which is always positive. The other thermodynamical quantities are determined by the

Gibbs-Duhem relation

sdT + ndµ− dP = 0,

where P is the pressure and n denotes the number density.

The pressure reads

P =
a

η + 1
CT η+1µd−η + bCe(d+1)ηφ0µd+1, (2.15)

where the first term can be obtained by integrating the Gibbs-Duhem relation while keeping

µ fixed, and the second term can be fixed by dimensional analysis. Here φ0 is the asymptotic

value of the dilaton. The number density is given by

n =
∂P

∂µ
=

a(d− η)

η + 1
CT η+1µd−η−1 + b(d+ 1)Ce(d+1)ηφ0µd. (2.16)

Finally the energy density is

ρ = Ts+ µn− P =
d

η + 1
aCT η+1µd−1 + bdCe(d+1)ηφ0µd+1, (2.17)

which leads to

P =
1

d
ρ. (2.18)

Note that the results are valid when T ≪ µ. As the temperature increases for fixed µ, the

geometry is no longer a good approximation and the corrections to the above formulae will

become important. Moreover, the suscetibility is given by

χ =

(

∂n

∂µ

)

T

=
(d− η)(d− η − 1)

η + 1
aCT η+1µd−η−2 + bd(d+ 1)Ce(d+1)ηφ0µd−1. (2.19)
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Note that when d > η+1 or d < η, the first term is positive, when η < d < d+1, the first

term is negative, while the second term is always positive. The susceptibility characterizes

the stability of the system. However, to determine whether χ actually turns negative,

which signals a phase transition, requires to consider the regime beyond the limit T ≪ µ.

3 Holographic entanglement entropy in the semi-local background

In this section we calculate the holographic entanglement entropy in the background with

semi-locality at zero temperature, with the entangling surface being a strip and a sphere.

For this purpose we consider the case where g0 = 1 in (2.8),

ds2 =
L2

z2

[

−dt2

zp
+

dz2

z2
+

d
∑

i=1

dx2i

]

, p = 2d/η. (3.1)

This metric is conformal to AdS2 × R
d, which may be seen explicitly after taking the

coordinate transformation z = ξ2/p,

ds2 =
L2

ξ
2η
d

[

−dt2

ξ2
+

dξ2

ξ2
+

d
∑

i=1

dx2i

]

. (3.2)

The metric (3.1) is used when calculating the entanglement entropy of a strip, while the

metric (3.2) is considered when dealing with the case of a sphere. For the strip case we

find that the boundary separation length is always constant, which means that in the

deep IR, the disconnected surfaces dominate. For the sphere case we are able to extract

the leading order behavior of the entanglement entropy analytically, following [25].1 The

analytic results are confirmed by numerical evaluations and the leading order behavior

exhibits an ‘area law’.

3.1 The strip

The holographic entanglement entropy (HEE) in Einstein gravity is determined by [27–29]

SA =
Area(γA)

4GN
, (3.3)

where GN denotes the Newton constant and γA is the codimension two minimal area

surface which coincides with ∂A at the boundary. This formula has been proven in [30]

for a spherical entangling region and in [31] for more general cases. Let us consider the

strip case,

x1 ≡ x ∈
[

− l

2
,
l

2

]

, xi ∈ [0, Lx], i = 2, · · · , d, (3.4)

where l ≪ Lx. The induced metric is given by

ds2ind =
L2

z2

(

(

1

z2
+ x′2

)

dz2 +
d
∑

i=2

dx2i

)

, (3.5)

1The corresponding subsection is based on unpublished notes [25] for d = 2, 3 cases were studied in,

which we generalize to arbitrary d.
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where we have parameterized the minimal surface area γA by x = x(z). Therefore the

minimal surface area reads

A(γ) = 2

∫

Ld

zd

√

1

z2
+ x′2

= 2LdLd−1
x

∫

dz

zd

√

1

z2
+ x′2. (3.6)

Since the Lagrangian does not explicitly contain x, there exists a conserved quantity

C ≡ x′

zd
√

1
z2

+ x′2
, (3.7)

which leads to

x′ =
( z
z∗
)d

z
√

1− ( z
z∗
)2d

. (3.8)

Here z∗ denotes the turning point where x′ diverges. The boundary separation length l is

related to z∗ by

l

2
=

∫ z∗

0
dz

( z
z∗
)d

z
√

1− ( z
z∗
)2d

, (3.9)

which gives

l = lcrit =
π

d
, (3.10)

which is constant in arbitrary d dimensions.

The constant boundary separation length has been observed for several other examples,

for example, for NS5-branes in [28] and for backgrounds with semi-locality [11, 22]. As

argued in [11], this result indicates that a minimal surface connecting the lines at the

boundary only exists for a specific separation l = lcrit, and a connected minimal surface

only exists for separations l < lcrit. As l → lcrit, the minimal surface droops increasingly

further into the IR and when l > lcrit, the disconnected minimal surface (two surfaces

falling into the IR at constant separation) dominates. This behavior is reminiscent of

holographic entanglement entropy in confined phases [21]. Moreover, as claimed in [22],

when l is sufficiently large, the hypersurface should probe the IR geometry, which is just our

background (3.1). In this case there exists a maximal value l = lcrit which corresponds to

the curved solution. The trivial solution x′ = 0, i.e. disconnected hypersurface dominates

when l > lcrit. When l is sufficiently small, the entangling surface should probe the UV of

the geometry, and l is expected to be a smooth function of z∗. We will see that this picture

holds when working with the UV-completed geometry.

3.2 The sphere

In this subsection we calculate the holographic entanglement entropy with a spherical

entangling surface. For convenience we work with the metric (3.2), which is explicitly

conformal to AdS2 × R
d. The spherical entangling region is parameterized by

d
∑

i=1

x2i = R2,

– 9 –
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Figure 2. The plot of the embedding profile ξ(ρ), which is the numerical solution to (3.13). The

blue, red and green curves correspond to the cases d = 2, 3, 4 respectively.

and the induced metric is given by

ds2 =
L2

ξ
2η
d

[(

1 +
ξ′2

ξ2

)

dρ2 + ρ2dΩ2
d−1

]

. (3.11)

We find that the minimal surface area reads

A(γ) = Ld

∫

dΩd−1dρ
ρd−1

ξη

√

1 +
ξ′2

ξ2

= LdVol(Ωd−1)

∫

dρ
ρd−1

ξη

√

1 +
ξ′2

ξ2
, (3.12)

which leads to the equation of motion

∂

∂ρ





ρd−1ξ′

ξη+2
√

1 + ξ′2

ξ2



 = − ρd−1

ξη+3
√

1 + ξ′2

ξ2

(

ηξ2 + (η + 1)ξ′2
)

. (3.13)

Following [25], let us take the ansatz ξ(ρ) = λe−AρB , where A,B and λ are constants.

Note that in large R limit, most of the hypersurface lies in the near horizon region, hence

the metric (3.2) provides an approximate description. The value of λ may be fixed as

follows: we impose the condition that the crossover from the near-horizon region to the full

metric to happen at ρ ∼ R, which leads to ξ(R) ∼ 1, hence λ = eARB
. After substituting

the ansatz for ξ(ρ) to (3.13), the equation of motion becomes

ηρ4 + ηA2B2ρ2+2B −A3B3(d− 1)ρ3B −AB(B + d− 2)ρ2+B = 0. (3.14)

The values ofA andB can be determined by extracting the leading order (largeR) behavior,

B = 2, A =
η

2(d− 1)
, ⇒ ξ(ρ) = λe

− η
2(d−1)

ρ2
. (3.15)

The behavior of ξ(ρ) in different dimension d is plotted in figure 2. It should be emphasized

that there is no trivial solution ξ′ = 0 in this case, hence the phase transition seen in the

strip case cannot be observed here.
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left is for the d = 2 case and A1 = A(γ) − R. The plot on the right is for d = 3. The blue curves

denote the numerical results and the purple curves denote the leading order results in (3.18).

The holographic entanglement entropy is given by

S ∝
∫

dρ
ρd−1

ξη

√

1 +
ξ′2

ξ2

≃
∫

dρρdeAηρ2 . (3.16)

It can be verified that for all dimensions d, the leading order term is given by Rd−1, which

means that the area law always holds. Note this is an IR behavior while the usual ‘area

law’ refers to the UV behavior. In particular, we have the following results for d = 2, 3,

d = 2, S ∼ A(γ) = R− 1

Rη4
, (3.17)

d = 3, S ∼ A(γ) = R2. (3.18)

In figure 3 we fit our leading order results (3.17) and (3.18) with straightforward numerical

integrations. Note that for the d = 2 case we fit A1 ≡ A(γ) − R = −1/R with the result

given by taking A(γ) to be the numerical integration in (3.12). the d = 3 case we fit A(γ)

in (3.18) with the numerical integration in (3.12). It can be seen that the analytic results

match the numerical results very well.

Let us comment on the result for d = 2 (3.17). According to [10], our model has a

mass gap. However, at T = 0 the ground state is non-degenerate, so the system is not

topological. Our result is in agreement with this observation since there is no constant

term in the entanglement entropy (known as the topological entanglement entropy), as

there would be in topological systems.

4 The AdS completion

In this section we construct solutions which are asymptotically AdS and possess semi-

locality in the IR. As argued in [22], when the full geometry is considered, for sufficiently

large boundary separation length l the hypersurface in the bulk should probe the IR geome-

try. However, there exists a critical value lcrit which corresponds to the maximal separation
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length for which there still is a connected hypersurface. For l > lcrit only the disconnected

solution exists. The transition between the connected and disconnected hypersurfaces is

second order, since the former asymptotically approaches the latter as l → lcrit. When l is

sufficiently small, the hypersurface probes the UV region of the geometry, and l is expected

to be a smooth function of the turning point z∗. The background studied in [22] involves a

two-charge dilatonic black hole, which is an exact solution of type IIB supergravity trun-

cated on S5 with only two of the three U(1) charges being equal and nonzero. The black

hole is asymptotically AdS5 and possesses semi-locality with η = 1 in the IR. Therefore in

order to show that the picture works at a more general level, we should first perform the

AdS completion.

Following [16], let us begin with the Einstein-Maxwell-dilaton action

S =

∫

dd+2x
√
−g

[

R− 1

2
(∇Φ)2 − V (Φ)− 1

4
Z(Φ)FµνF

µν

]

. (4.1)

The corresponding equations of motion are given by

∂µ(
√
−gZ(Φ)Fµν) = 0, (4.2)

∂µ(
√
−g∂µΦ) =

1

4

√
−g

∂Z(Φ)

∂Φ
FρσF

ρσ +
√
−g

∂V

∂Φ
, (4.3)

Rµν −
1

2
Rgµν +

1

2
gµνV (Φ)− 1

2
∇µΦ∇νΦ+

1

4
gµν(∇Φ)2

− 1

2
Z(Φ)FµλF

λ
ν +

1

8
Z(Φ)gµνFρσF

ρσ = 0. (4.4)

The ansatz for the solution is as follows:

ds2d+2 =
L2

z2

[

−f(z)dt2 + g(z)dz2 +

d
∑

i=1

dx2i

]

, At = At(z). (4.5)

The Einstein tensor can be obtained by making use of (4.5),

Gtt = −df(z)((d+ 1)g(z) + zg′(z))

2z2g(z)2
,

Gzz =
d((d+ 1)f(z)− zf ′(z))

2z2f(z)
,

Gii = − 1

4z2f(z)2g(z)2

[

z2g(z)f ′2(z)− 2df(z)2

(

(d+ 1)g(z) + zg′(z)
)

+ zf(z)
(

zf ′(z)g′(z) + 2g(z)
(

df ′(z)− zf ′(z)
))

]

. (4.6)

An appropriate energy condition should be imposed in order to have a physically sensible

solution, so here we consider the null energy condition (NEC), TµνN
µNν ≥ 0, where Nµ

denotes any null vector and Tµν = Gµν . We can take the following components of the

null vector,

N t =
1

√

f(z)
, N z =

cos θ
√

g(z)
, Nx = sin θ, (4.7)
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where θ is an arbitrary constant. Then it can be seen that

TµνN
µNν = − sin2 θ

4zf(z)2g(z)2

[

zg(z)f ′2(z)

+ f(z)
(

zf ′(z)g′(z) + g(z)
(

2df ′(z)− 2zf ′′(z)
))

]

− cos2 θ
d(g(z)f ′(z) + g′(z)f(z))

2zf(z)g(z)2
. (4.8)

The NEC is satisfied if and only if

g(z)f ′(z) + g′(z)f(z) ≤ 0, (4.9)

zg(z)f ′2(z) + f(z)
(

zf ′(z)g′(z) + g(z)
(

2df ′(z)− 2zf ′′(z)
))

≤ 0. (4.10)

Note that we are looking for asymptotically AdSd+2 solutions where the AdS boundary

is located at z = 0, so f(0) = g(0) = 1. Moreover, we introduce a scale zF such that z ≫ zF
corresponds to the IR limit and z ≪ zF corresponds to the UV limit. The solution for the

U(1) gauge field is easily obtained by substituting the background metric into the equation

of motion,

A′
t(z) =

A

Z(Φ)

√

f(z)g(z)zd−2, (4.11)

where A is the integration constant. The solutions for Φ, V (Φ), Z(Φ) are as follows,

V (Φ) =
1

4L2f(z)2g(z)2

[

z2g(z)f ′2(z) + 2df(z)2
(

2(d+ 1)g(z) + zg′(z)
)

+ zf(z)
(

zf ′(z)g′(z) + 2g(z)
(

2df ′(z)− zf ′′(z)
))

]

, (4.12)

Φ′2 = −d (g(z)f ′(z) + f(z)g′(z))

zf(z)g(z)
, (4.13)

1

Z(Φ)
= − L2

2A2f(z)2g(z)2z2d−1

[

zg(z)f ′2(z)+

f(z)
(

zf ′(z)g′(z) + 2g(z)
(

df ′(z)− zf ′′(z)
))

]

. (4.14)

Note that if we impose physical constraints Φ′2 ≥ 0, Z(Φ) ≥ 0, the above equations lead

to exactly the same expressions as those derived from NEC.

For completeness we first consider the IR solution,

f(z) = kz−p, g(z) =
z2F
z2

, (4.15)

where p ≡ 2d/η and k is a positive constant. The solution for V (Φ),Φ and Z(Φ) are

given by

V (Φ) = −(p+ 2d)2z2

4L2z2F
, Φ′2 =

d(p+ 2)

z2
, Z(Φ) =

2A2z2F z
2d−2

L2p(p+ 2d)
. (4.16)
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We write V (Φ) and Z(Φ) in terms of Φ,

Φ =
√

d(p+ 2) log z,

V (Φ) = −(p+ 2d)2

4L2z2F
e

2Φ√
d(p+2) ,

Z(Φ) =
2A2z2F

p(p+ 2d)L2
e

2(d−1)Φ√
d(p+2) . (4.17)

The black hole solution reads

g(z) =
z2F

z2h(z)
, f(z) =

k

zp
h(z), h(z) = 1−

(

z

zH

)d+p/2

, (4.18)

while the other field configurations remain the same.

Next we will embed the zero-temperature IR solution (4.15) into AdS spacetime. We

may take the following ansatz for f(z) and g(z),

f(z) =
k

k + zp
, g(z) =

z2F
z2 + z2F

. (4.19)

It can be seen that f(0) = g(0) = 1 and f(z), g(z) reduce to the IR solution (4.15) when

z → ∞. Then the solutions for Φ and Z(Φ) are given by

Φ′2 =
d
[

2kz2 + (p+ 2)zp+2 + pz2F z
p
]

z2 (k + zp)
(

z2 + z2F
) , (4.20)

1

Z(Φ)
=

L2pzp−2d

2A2(k + zp)2z2F

[(

z2 + z2F
)

(2d(k + zp)− 2kp+ pzp) + 2 (k + zp) z2F
]

. (4.21)

Note that Φ′2 is always ≥ 0 while it is not the case for Z(Φ). However, we may impose a

sufficient but not necessary condition 2kd − 2kp > 0 so that 1/Z(Φ) > 0, which leads to

p < d. The UV behavior of these fields may be obtained by taking z → 0,

Φ ≃
√
2d

zF
z, Z(Φ) ≃ A2k

L2p(d+ 1− p)

z2d−p
F

(2d)d−p/2
Φ2d−p. (4.22)

On the other hand, the scalar potential is given by

V (Φ) = − 1

4L2(k + zp)2z2F

[

4k2d(d+ 1)z2F + 4d2k2z2

+ 2k
(

4d2 − p(p− 1) + 2d(p+ 2)
)

z2F z
p + 2k

(

4d2 + 2dp− p2
)

zp+2

+ (p+ 2d)(p+ 2d+ 2)z2F z
2p + (p+ 2d)2z2p+2

]

, (4.23)

If we take the UV limit z → 0, it becomes

V (Φ) = −d(d+ 1)

L2
− d

2L2
Φ2. (4.24)

The first term is just the cosmological constant and the second term gives the mass square

m2 = −d. Note that the BF bound in AdSd+2 is m2 ≥ −(d + 1)2/4, so the BF bound is

satisfied in our case. The behavior of V (Φ) and Z(Φ) with d = 2 is plotted in figure 4.
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Figure 4. The plots for V (Φ) and Z(Φ) with d = 2. V (Φ) reproduces the value of the cosmological

constant at the leading order in the UV z → 0 and blows up in the IR z → 0, which mimics the

behavior of the exponential scalar potential. Z(Φ) is strictly positive in the whole geometry. We

set p = k = L = zF = 1.

5 HEE for the full solution

After constructing the full solution which is asymptotically AdS in the UV and possesses

semi-locality in the IR, we consider the holographic entanglement entropy for this geometry.

We find that for a strip entangling region, the behavior of the entanglement entropy agrees

with the picture proposed in [22], i.e. the boundary separation length l is a smooth function

of the turning point and it approaches lcrit as z∗ is large enough. As a result, the connected

surface dominates when l is sufficiently small and the disconnected surface dominates for

l which is large enough. We also consider the cases in which the entangling region is a

sphere and an annulus.

5.1 The strip

Let us consider strip case,

x1 ≡ x ∈
[

− l

2
,
l

2

]

, xi ∈ [0, Lx], i = 2, · · · , d, (5.1)

where l ≪ Lx. The induced metric can be read off from the solution (4.5)

ds2ind =
L2

z2

(

(

g(z) + x′2
)

dz2 +
d
∑

i=2

dx2i

)

, (5.2)

where we have parameterized x = x(z). The minimal surface area is given by

A(γ) = 2

∫

Ld

zd

√

g(z) + x′2

= 2LdLd−1
x

∫

dz

zd

√

g(z) + x′2. (5.3)

We get the conserved quantity

C ≡ x′

zd
√

g(z) + x′2
, (5.4)
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Figure 5. The boundary separation length in the full solution (blue curve) and the IR solution (red

curve). The plot on the left hand side is for d = 2 and the one on the right hand side is for d = 3.

For both cases l and lcrit have significant differences when z∗ is sufficiently small, which means that

the minimal surface just probes the geometry near the UV. As z∗ increases, the minimal surface

goes deeper into the IR and l approaches lcrit.

which leads to

x′ =

√

g(z)
(

z
z∗

)d

√

1−
(

z
z∗

)2d
, (5.5)

where z∗ denotes the turning point. The boundary separation length is given by

l

2
=

∫ z∗

0
dz

√

g(z)
(

z
z∗

)d

√

1−
(

z
z∗

)2d
. (5.6)

Recall that in the IR, g(z) = z2F /z
2, hence

l = lcrit =
πzF
d

, (5.7)

which is constant. If we consider the full solution g(z) = z2F /
(

z2 + z2F
)

, the boundary

separation length reads

l = 2

∫ z∗

0
dz

zF
√

z2 + z2F

√

(

z∗
z

)2d − 1
. (5.8)

The behavior of l vs z∗ is plotted in 5 for d = 2, 3 with zF = 1.

It can be seen that l is a smooth function of z∗. When z∗ is small, significant differences

between l and lcrit can be observed. However, when z∗ is sufficiently large, l approaches lcrit.

Recall that the holographic entanglement entropy is determined by

S =
A(γ)

4G
(d+2)
N

, (5.9)
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Figure 6. The finite part of the entanglement entropy. The plot on the left is for d = 2 and the

one on the right is for d = 3. As l → lcrit the entanglement entropy tends to be constant.
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Figure 7. The differences between the HEE of the connected minimal surface and the disconnected

one. The plot on the left is for d = 2 and the one on the right is for d = 3. When l is sufficiently

small, the connected minimal surface dominates. As l → lcrit the disconnected one dominates.

where A(γ) denotes the minimal surface area. In figure 6, we plot the finite part

Afinite =
1

2LdLd−1
x

(A(γ)−Adiv)

=

∫ z∗

0

dz

zd

√

g(z)

1−
(

z
z∗

)2d
− 1

(d− 1)ad−1
, (5.10)

while taking the limit a → 0. Note that the divergent term is the standard result obtained

in [28]. On the other hand, the disconnected surface is given by x′ = 0, so the minimal

surface area reads

Adis(γ) = LdLd−1
x

∫

dz

zd
√

g(z)
. (5.11)

The behavior of ∆A = Afinite − Adisfinite for d = 2, 3 is plotted in figure 7, where we have

subtracted the divergent term for Adis(γ). It can be seen that when l < lcrit, the con-

nected surface dominates, as l → lcrit, the difference tends to zero, which signifies that the

disconnected surface will dominate. This behavior agrees with the picture proposed in [22].
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5.2 The sphere

Next we consider the case of a spherical entangling region with ρ ∈ [0, R]. The induced

metric is given by

ds2ind =
L2

z2
[(

g(z) + ρ′2
)

dz2 + ρ2dΩ2
d−1

]

. (5.12)

The minimal surface area is

Asphere = LdVol(Ωd−1)

∫

dz

zd
ρd−1

√

g(z) + ρ′2, (5.13)

from which we can derive the equation of motion for ρ(z),

∂z

(

ρd−1ρ′

zd
√

g(z) + ρ′2

)

=
(d− 1)ρd−2

zd

√

g(z) + ρ′2. (5.14)

Note that in this case there is no conserved quantity or trivial solution ρ′ = 0. We can

solve for ρ(z) numerically by fixing the boundary conditions ρ(0) = R, ρ(z∗) = 0, where z∗
denotes the turning point. The plots for d = 2 and d = 3 are shown in figure 8. Moreover,

in figure 9 we plot plot the finite part of the holographic entanglement entropy

Afinite =
1

LdVol(Ωd−1)
(Asphere −Adiv), (5.15)

where

Adiv =
R

a
, d = 2,

Adiv =
R2

2a2
+

1

2
log a, d = 3, (5.16)

are the standard results given in [28]. We are interested in the deviation of the finite part

of HEE from the area law [22], which can be analyzed by performing the numerical fits on

the numerical data. The resulting behavior reads

Afinite = −0.171363− 0.974893R for d = 2,

Afinite = 0.469379− 3.56108R2 for d = 3, (5.17)

which may indicate that for large R the finite HEE is still governed by the area law,

consistent with the conclusion in [22].
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5.3 The annulus

From our evaluation of the holographic entanglement entropy for the cases of a strip and

a sphere we may conclude that there is a phase transition in the strip case, while no such

transition occurs for the sphere case. This behavior has also been observed in [22], where

the background is a charged dilatonic black hole in type IIB supergravity truncated on S5,

whose near horizon geometry possesses semi-locality with η = 1.

As argued in [22], a third scale supplied by the anisotropy of the strip should play a

role in understanding the phase transition. One way to see this is to consider deforming

the sphere entangling surface continuously into an ellipsoid, which can finally result in a

strip shape entangling region. The phase transition should appear suddenly during this

process. However, the ellipsoid is technically quite complex, hence we focus on a simpler

case, the annulus, and leave the ellipsoid to future work.

In the annulus case we expect to approximate a sphere in the limit of vanishing inner

radius and the strip for both, the inner and outer radius, large in comparison to their

difference. We will see that this interpolation between these two geometries will not work

out entirely as expected. In the following we will calculate the holographic entanglement

entropy for annulus entangling region.

In this case we parametrize z = z(ρ) and obtain the induced metric

ds2ind =
L2

z2
[(

1 + g(z)ż2
)

dρ2 + ρ2dΩ2
d−1

]

, (5.18)

where dot denotes partial derivative with respect to ρ. The minimal surface area is given by

Aann = LdVol(Ωd−1)

∫

dρ
ρd−1

zd

√

1 + g(z)ż2, (5.19)

which leads to the equation of motion

∂ρ

(

ρd−1g(z)ż

zd
√

1 + g(z)ż2

)

= −dρd−1

zd+1

√

1 + g(z)ż2 +
ρd−1

2zd
ż2

√

1 + g(z)ż2
∂zg(z), (5.20)
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Figure 10. Finite part of the annulus entangling region for d = 2 versus the difference of the radii

∆ρ = ρ2−ρ1. The left plot has ρ2 = 0.1 and the right one ρ2 = 4 in terms of zF . Note that for small

differences ∆ρ ≤ (∆ρ)max we see different solutions, two connected (deformed annulus) solutions

with the lower one being preferred (blue and red) and the concentric balls solution (yellow). The

transition between the connected and disconnected solutions at (∆ρ)crit is first order for small values

of ρ2 as becomes obvious from the swallow tail form of the left plot. For larger values of ρ2 we have

a second order transition (see right plot). If ∆ρ > (∆ρ)max the disconnected solution is the only

solution, this behaviour is very similar to the strip case discussed in section 5.1. To generate these

plots we set zF = 1 and the cutoff a = 0.001.

with boundary condition z(ρ1) = z(ρ2) = a → 0. We plot the finite part of the minimal

surface area

Afinite =
1

LdVol(Ωd−1)
(Aann −Adiv), (5.21)

where the divergent terms are given by [32],

Adiv =
ρ1 + ρ2

a
, d = 2,

Adiv =
ρ21 + ρ22
2a2

− 1

2
log

ρ1ρ2
a2

, d = 3. (5.22)

We show generic results for the entanglement entropy for d = 2 and d = 3 in figures 10

and 11. There we plot Afinite versus the difference of the radii ∆ρ = ρ2 − ρ1. We find two

connected solutions (deformed annulus, see figure 12) for values of ∆ρ ≤ (∆ρ)max and one

disconnected solution (two concentric balls) for all values of ∆ρ. Note that for each value of

∆ρ the preferred solution is the one with smaller value of Afinite. In the d = 2 case, at a value

(∆ρ)crit we find a first order transition from the preferred connected to the disconnected

solution for small values of the radii and a second order transition for larger ones. For

d = 3 we find a different behavior: in that case we cannot find a transition for values

ρ1, ρ2 < O(1) (the exact value is hard to find, due to difficult numerical computations),

only for large radii we find a second order transition. This behavior is very similar to

the strip case discussed in section 5.1, where there also only exists a connected solutions

for l ≤ lcrit, however, there the transition is second order opposed to the case at hand.

The analogy goes further: increasing the values of the radii ρ1, ρ2 leads to (∆ρ)crit → π/d

(cf. eq. (5.7) with zF = 1). We are not able to check this limit analytically, however our

results using numerical methods are in very good agreement with above statement for d = 2

and d = 3 (see figure 13). Looking closer at this limit in d = 2, we see the swallow tail
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Figure 11. Finite part of the annulus entangling region for d = 3 versus the difference of the radii

∆ρ = ρ2−ρ1. The left plot has ρ2 = 0.3 and the right one ρ2 = 2 in terms of zF . Note that for small

differences ∆ρ ≤ (∆ρ)crit we see different solutions, two connected (deformed annulus) solutions

with the lower one being preferred (blue and red) and the concentric balls solution (yellow). In

contrast to the d = 2 case we don’t find a transition for small values of ρ2 < O(1) and a second

order one for larger values. For larger values of ∆ρ the disconnected solution is the only solution,

this behaviour is very similar to the strip case discussed in section 5.1. To generate these plots

we set zF = 1 and the cutoff a = 0.001. The jagged feature in the right plot is an artifact of the

numerical computation and has no physical interpretation.

becomes smaller turning into a second order transition (see right part of figure 10). From

this behavior we deduce that the annulus tends towards the strip solution for large radii.

The other limit, however, where we aim at approximating a sphere, does not work entirely

as expected, since for each given pair of radii of the annulus solution, we always find a

maximal difference (∆ρ)max between both which is smaller than outer radius ρ2. Therefore

we can at most approximate two concentric spheres, but never one sphere alone. Even this

is not always possible, as the small radii d = 3 case described above shows. Nevertheless,

the similarity in most of the parameter space to the behavior seen in confining geometries

is astonishing (see [21, 26]). It would be interesting to understand if there is a common

origin to this resemblance. Perhaps this is due to the fact that the system considered here

also has a mass gap [10].

Finally in the annulus as well as in the strip case lcrit = πzF /d plays an important

governing the phase transition, however, to our knowledge, there is no known dual inter-

pretation of this value. This would be interesting to study. Since it is possible to embed

the solution described in section 2 into string theory, at least for the η = 1 case (see [22]),

in principle it should be possible to compute the entanglement entropy in the dual theory,

although probably this is not feasible from a technical point of view.

6 Summary and discussion

We considered the holographic entanglement entropy of semi-local quantum liquids, whose

gravity dual in (d+2)-dimensions is described by a metric which is conformal to AdS2×R
d

in the IR. The near-horizon geometry is an exact solution of the Einstein-Maxwell-Dilaton

theory and its thermodynamics may be investigated, at least qualitatively, by dimensional

analysis and scaling arguments. We calculated the holographic entanglement entropy in

the IR geometry for both a strip and a sphere. In this geometry, the width of the strip at
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Figure 12. Generic connected (annulus) solution. z is the radial AdS coordinate and ρ the radius

of the spherical coordinates on the boundary. Both plots are solutions to the equation (5.20) for

d = 2 and zF = 1. Note that for larger radii ρ1 and ρ2 the resulting minimal surface goes deeper

into the IR (z → ∞) than it is the case for smaller ones. Note that the solution is not a function,

therefore we first generate the blue curve and afterwards search for the matching red one.
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Figure 13. We plot the maximal difference between the radii of the connected solution (∆ρ)max

versus the middle radius (ρ2 + ρ1)/2, for d = 2 (left) and d = 3 (right). It is apparent that

(∆ρ)max → zFπ/d (red line), with zF = 1, for larger values of the radii ρi.

the boundary l is always constant and the disconnected surface dominates when l > lcrit.

The phase transition between the strip and the two disconnected slabs becomes apparent

in the full geometry, which is asymptotically AdS and possesses semi-locality in the IR.

When the value of the turning point z∗ is small, i.e. the boundary separation length l is

small and the surface probes the UV part of the geometry, l is a smooth function of z∗ and

the connected surface dominates. When z∗ is sufficiently large, l approaches the critical

value lcrit and the disconnected surface dominates. However, such a phase transition is not

observed for the spherical entangling region, neither in the IR nor in the full solution. In

this case we find for the full solution that z(r = 0) (turning point of the spherical solution)

grows exponentially with R. This is in agreement with equation (A5) of [33] (zt in that

paper corresponds to z(r = 0) in our case). In addition, the holographic entanglement

entropy may be calculated analytically in the IR for the spherical case, which matches the

numerical results very well.
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In order to interpret the behavior of holographic entanglement entropy with different

entangling regions, we also considered the annulus case as an interpolating geometry be-

tween the sphere and the strip, following [22]. For annulus type solutions we have to rely on

numerics, therefore we restrict ourselves to the d = 2 and d = 3 case. The common features

in both dimensions are that we find two connected solutions, with one being preferred over

the other, i.e. it has lower entanglement entropy. Furthermore for certain values of ∆ρ,

the difference between the outer and inner radius of the annulus at the boundary, we see a

transition from the preferred connected solution to a disconnected solution (two concentric

spheres). In the d = 2 case there always seems to be a transition,which is first order for

small values of the outer radius and becomes a second order transition for increasing values

of the radii. In the d = 3 case for small values of the radii we cannot find any transition at

all. Increasing the values of ρi leads to a second order transition. There is no indication

of a first order transition in d = 3. Finally there is a maximal value of ∆ρ = (∆ρ)max

for a connected solution which in the limit of large radii ρi tends towards the value of

the critical length of the strip lcrit. Therefore for large radii we approximate the strip. In

the other limit of small radii, our solution approaches the case of two concentric spheres,

since ∆ρ < ρ2 with ρ2 being the outer radius, and not to a single sphere with vanishing

inner radius.

The behavior of HEE in our background is in parts similar to that in confining back-

grounds [21, 26]. It was observed in [21] that when the entangling region is a strip in

confining backgrounds, there exist two different types of minimal surfaces. The connected

surface dominates when the boundary separation length l is smaller than a critical value

lcrit while the disconnected one dominates when l > lcrit. This is very similar to what we

see in our strip case. However, for spherical entangling regions in confining geometries a

phase transition was also observed in [26] opposed to what we get.

From the discussions above we see that the spherical solution seems to be special.

This may be due to a missing scale, as proposed in [22], which in the strip case comes from

the anisotropy of the system and in the annulus case corresponds to the middle radius

(ρ1 + ρ2)/2.

A further interpretation for this behavior is provided in [33], where the renormal-

ized entanglement entropy near an IR fixed point is extensively studied. The background

metric reads

ds2 =
L2

z2

(

−dt2 + d~x2 +
dz2

f(z)

)

, (6.1)

where f(z) can approach either a constant or a power law function azn, a > 0, z > 0 in

the IR z → ∞. Clearly our case falls into the class with n = 2. Therefore we also find

the exponential behavior of the turning point of the minimal surface corresponding to the

spherical entangling region described above. Moreover, it was observed in [33] that the

geometry with n ≥ 2 describes a gapped phase while for n = 2 the system has a continuous

spectrum above the gap ∆ = d/2. They argued that the presence of a continuum above

a gap may be responsible for the peculiar behavior of the HEE. Note that in our case the

critical value of the boundary separation length can be rewritten as

lcrit =
πzF
d

=
2πzF
∆

, (6.2)
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which may provide certain physical interpretation of lcrit, relating it to the gap. It would

be interesting to explore the connections between the behavior of HEE and the energy gap

of the system in future work.
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