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Abstract. Rewrite rules with side conditions can elegantly express many classical compiler optimizations
for imperative programming languages. In this paper, programs are written in an intermediate language and
transformation-enabling side conditions are specified in a temporal logic suitable for describing program data flow.

The purpose of this paper is to show how such transformations may be proven correct. Our methodology is illus-
trated by three familiar optimizations: dead code elimination, constant folding, and code motion. A transformation
is correct if whenever it can be applied to a program, the original and transformed programs are semantically equiv-
alent, i.e., they compute the same input-output function. The proofs of semantic equivalence inductively show that
a transformation-specific bisimulation relation holds between the original and transformed program computations.
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1. Introduction

This paper shows that temporal logic can be used to validate some classical compiler
optimizations in a very strong sense.

First, typical optimizing transformations are shown to be simply and elegantly expressible
as conditional rewrite rules on imperative programs, where the conditions are formulae in
a suitable temporal logic. In this paper the temporal logic is an extension of CTL with free
variables. The first transformation example expresses dead code elimination, the second
expresses constant folding and the third expresses loop invariant hoisting. The first involves
computational futures, the second, computational pasts and the third, involves both the
computational future and past.

Second, the optimizing transformations are proven to be fully semantics-preserving: in
each case, if π is a program and π ′ is the result of transforming it, an induction relation
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is established between the computations of π and π ′. A consequence is that if π has a
terminating computation with “final answer” v, then π ′ also has a terminating computation
with the same final answer v; and vice versa.

Compiler optimizing transformations. A great many program transformations are done by
optimizing compilers; an exhaustive catalog may be found in Muchnick [28]. These have
been a great success pragmatically, so it is important that there be no serious doubt of their
correctness: that transformed programs are always semantically equivalent to those from
which they were derived.

Proof of transformation correctness must, by its very nature, be a semantics-based en-
deavor.

1.1. Semantics-based program manipulation

Much has happened in this field since the path-breaking 1977 Cousot and Cousot paper [7]
and 1980 conference [15]. The field of “abstract interpretation” [1, 6, 7, 17, 31, 32] arose as
a mainly European, theory-based counterpart to the well-developed more pragmatic North
American approach to program analysis [2, 14, 29]. The goal of semantics-based program
manipulation ([16] and the PEPM conference series) is to place program analysis and
transformation on a solid foundation in the semantics of programming languages, making
it possible to prove that analyses are sound and that transformations do not change program
behaviors.

This approach succeeded well in placing on solid semantic foundations some program
analyses used by optimizing compilers, notable examples being sign analysis, constant prop-
agation, and strictness analysis. An embarrassing fact must be admitted, though: Rather less
success was achieved by the semantics-based approach toward the goal of validating cor-
rectness of program transformations, in particular, data-flow analysis-based optimizations
as used in actual compilers.

One root of this problem is that semantic frameworks such as denotational and opera-
tional semantics describe program execution in precise mathematical or operational terms;
but representation of data dependencies along computational futures and pasts is rather
awkward, even when continuation semantics is used. Worse, such dependency information
lies at the heart of the most widely used compiler optimizing transformations.

1.2. Semantics-based transformation correctness

Transformation correctness is somewhat complex to establish, as it involves proving a sound-
ness relation among three “actors”: the condition that enables applying the transformation
and the semantics of the subject program both before and after transformation. Denotational
and operational semantics (e.g., Winskel [46]) typically present many example proofs of
equivalences between program fragments. However most of these are small (excepting the
monumental and indigestible [27]), and their purpose is mainly to illustrate proof method-
ology and subtle questions involving Scott domains or program contexts, rather than to
support applications.
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A problem is that denotational and operational methods seem ill-suited to validating
transformations that involve a program’s computational future or computational past. Even
more difficult are transformations that change a program’s statement ordering, notable
examples being “code motion” and “strength reduction.”

Few formal proofs have been made of correctness of such transformations. Two works
relating the semantics-based approaches to transformation correctness: Nielson’s thesis [30]
has an unpublished chapter proving correctness of “constant folding” perhaps omitted from
the journal paper [31], because of the complexity of its development and proof. Havelund’s
thesis [13] carefully explores semantic aspects of transformations from a Pascal-like mini-
language into typical stack-based imperative intermediate code, but correctness proofs were
out of its scope (and would have been impractically complex in a denotational framework,
witness [27]).

Cousot provides a general framework for designing program transformations whose anal-
yses are abstract interpretations [9], this framework is given at a higher level of generality
than the proofs given in this paper, though in some ways the proofs could be seen as fitting
into that framework. Some transformation correctness proofs have been made for functional
languages, especially the sophisticated work by Wand and colleagues, for example [39],
using “logical relations.” These methods are mathematically rather more sophisticated than
those of this paper, which seem more appropriate for traditional intermediate-code opti-
mizations.

1.3. Model checking and program analysis

This situation has improved with the advent of model checking approaches to program
analysis [5, 34–37, 42]. Work by Steffen and Schmidt [36, 37, 40, 41] showed that temporal
logic is well-suited to describing data dependencies and other program properties exploited
in classical compiler optimizations. In particular, work by Knoop et al. [18] showed that
new insights could be gained from using temporal logic, enabling new and stronger code
motion algorithms, now part of several commercial compilers.

More relevant to this paper: The code motion transformations could be proven correct.

1.4. Kleene algebra with tests

Another approach to correctness of compiler optimizations is presented by Kozen and
Patron [19]. Using an extension of Kleene algebra, Kleene algebra with tests (KAT), an
extensive collection of instances of program transformations are proven correct, i.e., a
concrete optimization is proven correct given a concrete source program and the transformed
program. Programs are represented as algebraic terms in KAT and it is shown that the
original and transformed programs are equal under the algebraic laws of KAT. In many
instances these terms are not ground, that is, they contain variables, and thus the reasoning
could be applied to more general programs. One has to note that the paper sets out with a
different perspective than ours on program transformation. It is geared towards establishing
a framework where one can formally reason about program manipulations specified as
KAT equalities that imply semantic equivalence. Unfortunately the results in the paper are
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not directly applicable to compilers since no automatic method is given for applying the
optimizations described.

In contrast, the present paper aims to formalize a framework for describing and formally
proving classical compiler optimizations. We claim that these specifications (once proven
correct) can be directly and automatically utilized in optimizing compilers.

1.5. Model checking and program transformation

In this paper we give a formalism (essentially it is a subset of Lacey and de Moor [23])
for succinctly expressing program transformations, making use of temporal logic; and use
this formalism to prove the universal correctness (semantics preservation for all programs)
of the three optimizing transformations: dead code elimination, constant folding and loop
invariant hoisting. The thrust of the work is not just to prove these three transformations
correct, though, but rather to establish a framework within which a wide spectrum of
classical compiler optimizations can be validated. More instances of this paper’s approach
may be found in the paper [11], in the longer unpublished report [10], and in the thesis
[22].

The approach is similar to other approaches to specifying transformations and analyses
together, for example in [3, 44, 45]. This paper shows how our method of specification is
particularly useful when considering correctness. A recent development: Technical report
[26] was directly inspired by Lacey et al. [24]. In essence it allows a small subset of our
temporal program properties to be specified, but it has been more fully automated than this
work, building on a platform described in Lerner et al. [25]. One may regard their work as
a “proof of concept and relevance” of our approach to compiler transformation correctness
proofs.

Many optimizing transformations can be elegantly expressed using rewrite rules of form:
I ⇒ I ′ if φ, where I, I ′ are intermediate language instructions and φ is a property expressed
in a temporal logic suitable for describing program data flow. Its reading [23]: If the current
program π contains an instruction of the form I at some control point p, and if flow
condition φ is satisfied at p, then replace I by I ′ creating the transformed program π ′.
The purpose of this paper is to show how such transformations may be proven correct.
Correctness means that if a transformation changes any program π into a program π ′,
then the two programs are semantically equivalent, i.e., they compute the same input-
output function. Section 4 shows how semantic equivalence can be established between π

and π ′.

2. Programs and their semantics

In this section we provide fundamental definitions used in our representations of programs.
In Section 2.1 we introduce a simple imperative programming language that we use to
demonstrate program transformations and their proofs of correctness. Section 2.2 defines
the semantics of the language, including the notion of semantic equivalence which is key
to defining the correctness of transformations.
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2.1. A simple programming language

Definition 1. A program π has the form:

π = read x; I1; I2; ... Im−1; write y

where I1, . . . , Im−1 are instructions. By convention every instruction has a unique label in
Nodesπ = {0, 1, 2, . . . , m}, with 0 labeling the initialread x and m labeling the finalwrite
y. Further, let instruction I0 be the initial read x, and instruction Im be the concluding
write y. The read and write instructions must, and can only, appear respectively at the
beginning and end of a program. The syntax of all other instructions in π is given by the
following grammar:

Inst � I ::= skip | X := E |
if X goto n else n′

Expr � E ::= X | O E...E

Op � O ::= various unspecified operators o,
each with arity(o) ≥ 0

Var � X ::= x | y | z | . . .
Label � n, n′ ::= 1 | 2 . . . | m

Program semantics is as expected and are formally defined below in Section 2.2. Figure 1
contains an example program. For readability it has explicit instruction labels, and operators
are written in infix position.

In order to provide a simple framework for proving correctness this language has no
exceptions or procedures. We expect the technique can be extended to include such features
and maintain its fundamental nature, but this is future work.
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0: read x;

1: five := 5;

2: y := 0;

3: c := five;

4: y := y + c * x;

5: x := x-1;

6: if x goto 4 else 7;

7: write y

Figure 1. Example program and control flow graph.
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2.2. Program semantics

In this section we define the semantics of the simple programming language introduced in
Definition 1. In Section 5 we use this semantics to show for a program π and its transformed
version π ′ that their semantics are the same. That is, [[π ]] = [[π ′]].

Definition 2 (Semantic framework). We assume the following have been fixed in advance,
and apply to all programs:

– A set Value of values (not specified here), containing a designated element true.
– A fixed interpretation of every n-ary operator symbol o as a function [[o]]op : Valuen →

Value. Note that [[o]]op ∈ Value if n = 0.
We assume that these functions are total. In Section 6.3 we discuss the issues raised

by partial functions and exceptions, such as division by zero, and describe how our proof
method is general enough to accommodate them.

Definition 3 (Expression evaluation). A store is a function σ ∈ Store = Var ⇀ Value.
Expression evaluation [[Expr]]exp : Store → Value is defined by:

[[X]]expσ = σ (X)

[[O E1 . . . En]]expσ = [[O]]op([[E1]]expσ, . . . , [[En]]expσ )

Define σ\X to be the store function σ restricted to its original domain minus X. Further,
σ [X �→ v] is the same as σ except that it maps X to v ∈ Value.

Definition 4 (Semantics). At any point in its computation, program π will be in a state
of the form s = (p, σ ) ∈ Stateπ = Nodesπ × Store. The initial state for input v ∈ Value
is In(v) = (0, σ ) where σ (x) = v and σ (Z) = true for all other variables appearing in
program π . A final state is one that has the form (m, σ ), where m is the label of the last
instruction in π .

The state transition relation → ⊆ State × State is defined by:

1. If Ip = skip or Ip = (read x) then (p, σ ) → (p + 1, σ ).
2. If Ip = (X := E) then (p, σ ) → (p + 1, σ [X �→ [[E]]expσ ]).
3. If Ip = (if X goto p′ else p′′) and σ (X) = true

then (p, σ ) → (p′, σ ).
4. If Ip = (if X goto p′ else p′′) and σ (X) 
= true

then (p, σ ) → (p′′, σ ).

Note that the read x has no effect on the store σ since the initial value v of x is set in the
initial state.

The operational semantics of a program is given the form of a transition system: the
execution transition system Trun.
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Definition 5. A transition system is a pair T = (S, →), where S is a set and → ⊆ S × S.
The elements of S are referred to as states or nodes.

Definition 6. The execution transition system for program π and input v ∈ Value is by
definition

Trun(π, v) = (Nodesπ × Store, →)

where s1 → s2 is as in Definition 4.

Definition 7. The semantic function [[π ]] : Value ⇀ Value is the partial function defined
by:

[[π ]](v) = σ (y)

iff there exists a finite sequence from the initial state to a final state

In(v) = s0 → s1 → . . . → st = (m, σ )

In order to reason about the computational history of program executions we will also
introduce the notion of computational prefix, and a corresponding transition system Tpfx

(both defined in Section 4).

3. Analysis and transformation

In Section 3.1 we describe the control flow graph representation of programs that serves
as the model over which the temporal logic formulae in the rewrite rules are checked. The
temporal logic CTL with free variables is presented in Section 3.2. The rewriting rules are
defined in Sections 3.3 and 3.5 provides the specifications for the dead code elimination
and constant folding transformations.

3.1. Modeling program control flow

In order to reason about the program with a view to transform it, we look at the control flow
graph of the program. This is type of transition system and it also an example of a model
(as used in model checking). Models are transition systems where each state is labeled with
certain information:

Definition 8. A model (or Kripke structure [20]) is a triple M = (S, →, L) (and a set
of propositions P) where (S, →) is a transition system and labeling function L : S → 2P

labels each state in S with a set of propositions in P.
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The control flow graph for program π is a system whose states are program points and
whose transitions from one program point to another could occur consecutively in the
execution.

Definition 9. Tcf(π ) = (Nodesπ , →cf) is the control flow graph for π , where the (total)
relation →cf is defined by n1 →cf n2 if and only if

(In1 ∈ {X := E, skip, read x} ∧ n2 = n1 + 1)

∨ (In1 = if X goto n else n′ ∧ (n2 = n ∨ n2 = n′))
∨ (In1 = write y ∧ n2 = n1)

∨ (In1 = read x ∧ n2 = n1)

Note that the self-loop transitions on the read and write nodes do not have corresponding
transitions in the execution transition system Trun(π, v). They exist in Tcf(π ) only to satisfy
the totality requirement (in both arguments) of →cf imposed by CTL-FV, see Section 3.2.

We will sometimes drop the cf subscript when it is clear that the control flow transition
relation is being used.

We set up a control flow model by labeling the states of the control flow graph (program
points in this case) with propositions of interest. These will include the instruction at that
program point plus information on which variables are defined or used at that point. Figure 2
shows the control flow model for the program in Figure 1 in which node 2, whose instruction
y := 0 is labeled by the propositions node(2), stmt(y := 0), def (y), and conlit(0).

Nodesπ = {0, 1, 2, 3, 4, 5, 6, 7}
→cf = {0 →cf 0, 0 →cf 1, 1 → 2, 2 →cf 3, 3 →cf 4,

4 →cf 5, 5 →cf 6, 6 →cf 7, 6 →cf 4, 7 →cf 7}

Lπ (0) = {node(0), stmt(read x), def (x)} ∪ trans0

Lπ (1) = {node(1), stmt(five := 5), def (five), conlit(5)} ∪ trans1

Lπ (2) = {node(2), stmt(y := 0), def (y), conlit(0)} ∪ trans2

Lπ (3) = {node(3), stmt(c := five), def (c), use(five)} ∪ trans3

Lπ (4) = {node(4), stmt(y := y+ c ∗ x), def (y),
use(y), use(c), use(x)} ∪ trans4

Lπ (5) = {node(5), stmt(x := x− 1), def (x), use(x),
conlit(1)} ∪ trans5

Lπ (6) = {node(6), stmt(if x goto 4 else 7), use(x)} ∪ trans6

Lπ (7) = {node(7), stmt(write y), use(y)} ∪ trans7

Figure 2. Control flow model for the example program.
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Definition 10. The control flow model for program π is defined as Mcf(π ) =
(Nodesπ , →cf, Lπ ) where (Nodesπ , →cf) are as in Definition 9, and Lπ (n) is defined as
follows for n ∈ Nodesπ :

Lπ (n) = {stmt(In) | 0 ≤ n ≤ m}
∪ {node(n)}
∪ {def (X) | In has form X:=E or read X}
∪ {use(X) | In form: Y:=E with X in E, or

In = if X goto p else p′}
∪ {use(Y) | n = m and In = write Y}
∪ {conlit(O) | O is a constant in In , i.e., an

operator with arity(O) = 0}
∪ transn

where

transn = {trans(E) | E is an expression in π and
In is not of form: X:=E′ or
read X with X in vars(E)}

The predicates stmt(I ), def(X), use(X), conlit(O), trans(E) are the building blocks for the
conditions that specify when optimizing transformations can be safely applied. These con-
ditions are specified as CTL-FV formulae. Note that trans(E) is the set of transparent
expressions on a node: the expressions whose value is not changed by the node.

3.2. CTL with free variables

A path over → is an infinite sequence of nodes n0 → n1 → . . . such that ∀i ≥ 0 : ni →
ni+1. A backwards path is an path over the inverse of → (written as →◦) and is written as
either n0 →◦ n1 →◦ . . . or n0 ← n1 ← . . . .

The temporal logic CTL-FV used in specifying transformation conditions is in two re-
spects a generalization of CTL [4]. First, as is common, the existential and universal temporal
path quantifiers E and A are extended to also quantify over backwards paths in the obvious
way. Our notation for this:

←−
E and

←−
A . We consider a branching notion of past which is

infinite, as in POTL [33, 47] and not the finite branching past in CTLbp [21]. A branching
past is more appropriate here than the linear past in PCTL∗ [12] which can also be used to
augment branching time logics with past time operators.

Second, propositions are generalized to predicates over free variables. (A traditional
atomic proposition is simply a predicate with no arguments.) For example, the formula
stmt(x := e) where stmt is from the set Pr of predicate names, has free variables x and
e ranging over program variables and expressions, respectively. These free variables will
henceforth be called CTL-variables to avoid confusion with variables or program points
appearing in the program being transformed or analyzed.

The effect of model checking will be to bind CTL-variables to program points or bits of
program syntax, e.g., dead variables or available expressions.
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A CTL-FV formula is either a state formula φ or a path formula ψ , generated by the fol-
lowing grammar with non-terminals φ, ψ , terminals true, false, pr ∈ Pr and free variables
x1, . . . , xn , start symbol φ and the productions:

φ ::= true | false | pr (x1, . . . , xn)

| φ ∧ φ | φ ∨ φ | ¬φ

| E ψ | A ψ | ←−E ψ | ←−A ψ

ψ ::= X φ | φ U φ | φ W φ

Operational interpretation. A model checker will not simply find which nodes in a model
satisfy a (state) formula, but will instead find the instantiation substitutions that satisfy
the formula. Mathematically, we model this by extending the satisfaction relation n |= φ

to include a substitution θ binding its free variables. The extended satisfaction relation
n |=θ φ is defined in Figure 3 and will hold for any θ such that n |= θ (φ). Here, θ (φ) is
a standard CTL formula with no free variables and |= is as traditionally defined in Clarke
et al. [4]. Thus, the standard abbreviations from CTL, e.g. Fφ ≡ true U φ, Gφ ≡ ¬F¬φ

and φ1 W φ2 ≡ (φ1 U φ2) ∨ Gφ1, hold in CTL-FV as well.

State Formulae:

n |=θ true iff true
n |=θ false iff false
n |=θ pr (x1, . . . , xn) iff pr (θx1, . . . , θxn) ∈ Lπ (n)
n |=θ ¬φ iff not n |=θ φ

n |=θ φ1 ∧ φ2 iff n |=θ φ1 and n |=θ φ2

n |=θ φ1 ∨ φ2 iff n |=θ φ1 or n |=θ φ2

n |=θ E ψ iff ∃ path (n = n0 → n1 → n2 . . .): (ni )i≥0 |=θ ψ

n |=θ A ψ iff ∀ path (n = n0 → n1 → n2 . . .): (ni )i≥0 |=θ ψ

n |=θ
←−
E ψ iff ∃ path (. . . n2 → n1 → n0 = n): (ni )i≥0 |=θ ψ

n |=θ
←−
A ψ iff ∀ path (. . . n2 → n1 → n0 = n): (ni )i≥0 |=θ ψ

Path Formulae:

(ni )i≥0 |=θ X φ iff n1 |=θ φ

(ni )i≥0 |=θ φ1 U φ2 iff
∃k ≥ 0 : [nk |=θ φ2 ∧ ∀i : [0 ≤ i < k implies ni |=θ φ1]]

(ni )i≥0 |=θ φ1 W φ2 iff
(∃k ≥ 0 : [nk |=θ φ2 and ∀i : 0 ≤ i < k ⇒ ni |=θ φ1])
or (∀k ≥ 0 : [nk |=θ φ1])

Figure 3. CTL-FV satisfaction relation.
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The job of the model checker is thus, given φ, to return the set of all n and θ such that
n |=θ φ. For the example program in Figure 1 and formula def(x) ∧ use(x), the model
checker returns the following set of instantiation substitutions. (For brevity, CTL-variable
n is bound to the program point in the substitutions.)

{θ1, θ2} = {[n �→ 4, x �→ y], [n �→ 5, x �→ x]}

Of particular interest when analyzing the control flow model is the universal weak until
operator (AW ). Its use ensures that loops in the control flow model do not invalidate
optimization opportunities where they can be safely applied, where as AU would.

3.3. Rewriting

Definition 11. A rewrite rule has form: I ⇒ I ′ if φ, where I, I ′ are instructions built from
program and CTL variables, andφ is a CTL-FV formula. By definition Rewrite(π, π ′, n,I ⇒
I ′ if φ) is true if and only if for some substitution θ , the following holds:

n |=θ stmt(I ) ∧ φ

π = read x; I1; ... In; ... Im−1; write y,
where In = θ (I ), and

π ′ = read x; I1; ... θ (I ′); ... Im−1; write y

Sometimes we may want to alter the program at more than one point. In this case we
specify several rewrites and side conditions at once. For example, to transform two nodes
the form of the rewrite would be:

n : I1 ⇒ I ′
1

m : I2 ⇒ I ′
2

if

n |= φ1

m |= φ2

The operational interpretation of this is that we find a substitution θ that satisfies both
n |=θ stmt(I1) ∧ φ1 and m |=θ stmt(I2) ∧ φ2 and then use this substitution to alter the
program at places n and m.

3.4. Computational aspects

We discuss computational aspects only briefly; more can be found in Lacey and de Moor
[23] and related papers.

Model checking with respect to I ⇒ I ′ if φ yields a set of pairs {(p1, θ1), . . . , (pk, θk)}
satisfying φ. Consequence: {p1, . . . , pk} is the set of all places where this rule can be
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applied. For instance, all immediately dead assignments can be found by a single model
check.

The time to model check n |= p for transition system T is a low-degree polynomial, near
linear for many transition systems, and |T |2 · |φ| in the worst case. Of course, in the case
of model checking CTL-FV formulae times could be higher, since |T | depends on the size
of labelling function L : Nodesπ → 2AP as in Definition 10. For each node n, Lπ (n) can
be found in time proportional at most to the size of the instruction In , with one exception:
Propositions trans(E) can require time and space proportional to the size of π at each node
n. For greater efficiency these can be treated specially, maintaining a single global data
structure for the transparency relation.

Experience from Lacey and de Moor [23] and related work indicates that their algorithm
for model checking CTL-FV is not too expensive in practice, i.e., that the free variables do
not impose an unreasonable time cost.

3.5. Sample transformations

Following are versions of three classical optimizations (simplified in comparison to compiler
practice, to make it easier to follow the techniques used in the proofs).

We express code removal as replacement of an instruction by skip, and code motion
as simultaneous replacement of an instruction I and skip by (respectively) skip and
instruction I . This is convenient since it means the original and transformed programs have
labels in a 1-1 correspondence. (We assume the compiler will remove useless occurrences
of skip.)

While most programmers do not write code that contains dead code or opportunities
for constant folding, other transformations (especially automated ones) often enable these
optimizations.

Dead code elimination. Dead code elimination removes assignment statements that assign
a value that is never used. In our model, the rewrite replaces the assignment with the skip
instruction:

x := e ⇒ skip

The side condition on the rewrite must specify that the value assigned is never referenced
again. This is exactly the kind of condition that temporal logic can specify. We can thus
express dead code elimination as a rewrite rule with a side condition:

x := e ⇒ skip

if

AX A( ¬use(x) W def (x) ∧ ¬use(x)).

Since we do not care whether x is used at the current node, we skip past it with the
AX operator. After this point we stipulate that x is never used again or not used until it is
redefined (when def(x) holds).
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Constant folding. A weak form of constant folding is a transformation to replace a variable
reference with a constant value:

x := y ⇒ x := c.

One method of implementing constant folding for a variable Y is to check whether all
possible assignments to Y assign it the same constant value. To check this condition we use
the past temporal operators, specifying the complete transformation as follows1:

x := y ⇒ x := c

if

←−
A (¬def (y) ∧ ¬stmt(read x) W stmt(y := c) ∧ conlit(c))

The clause ¬stmt(read x) ensures that all paths from the entry read instruction to the
instruction x := y contain an instruction x := c.

Code motion/loop invariant hoisting. First, an example program, where the statement
x:=a+b may be lifted from label 3 to label 1:

1: skip;

2: if . . . then 3 else 6;

3: x := a + b;

4: y := y − 1;

5: if y then 3 else 6;

6: x := 0;

A restricted version of a “code motion” transformation (CM) that covers the “loop invariant
hoisting” transformation is defined as

p : skip ⇒ x := e
q : x := e ⇒ skip

if

p |= A(¬use(x) W node(q))
q |= ¬use(x) ∧←−

A ((¬def (x) ∨ node(q)) ∧ trans(e) ∧ ¬stmt(read x) W node(p))

This transformation involves two (different) statements in the subject program. The trans-
formation moves an assignment at label q to label p provided that two conditions are met:
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1. The assigned variable x is dead after p and remains so until q is reached. If this re-
quirement holds, then introducing the assignment x := e at label p will not change the
semantics of the program.

2. The second requirement (in combination with the first rewrite rule) states that the ex-
pression e should be available at q after the transformation.

This transformation could also be obtained by applying two transformations: One that inserts
the statement x := e provided that x is dead between p and q, followed by the elimination
of available expressions transformation. With the two transformations one would need
some mechanism of controlling where to insert which assignments. By formulating the
transformation as a single transformation, the two labels p and q are explicitly linked.

Since not all paths from p may eventually reach q, it is possible to move assignments to
labels such that e is still available in q and x is dead in all paths not leading to q, which would
still be a semantics preserving transformation. (In general the transformation by itself could
slow down the computation, as is the case in our illustrating example, since there is no need
to compute the expression if the expression is not needed; but this is not our point.)

Note that we use the weak until (W ). This is so that the transformation is not disabled by
cycles in the control flow graph that do not affect the correctness of the transformation.

4. A method for showing semantic equivalence

Our method proves that the transformed program’s computations are bisimilar with those
of the original.

Definition 12. A bisimulation between transition systems T = (C, →) and T ′ = (C ′, →′)
is a relation R ⊆ C × C ′ such that if s ∈ C, s ′ ∈ C ′ and sRs ′ then

1. s → s1 implies s ′ → s ′
1 for some s ′

1 with s1Rs ′
1

2. s ′ → s ′
1 implies s → s1 for some s1 with s1Rs ′

1

Transformation correctness. For each rewrite rule I ⇒ I ′ if φ we need to show that if
Rewrite(π, π ′, p,I ⇒ I ′ if φ), i.e., if π is transformed into π ′ then [[π ]] = [[π ′]], meaning
that for any input v, program π has a terminating computation In(v) →∗ (m, σ ) if and only
if program π ′ has a terminating computation In(v) →∗ (m ′, σ ′) with σ (y) = σ ′(y). The
problem now is how to link the temporal property φ, which concerns “futures” and “pasts”,
to the transformation I ⇒ I ′.

For this it is not sufficient to regard states one at a time, because the operators AU and←−
A U give access to information computed earlier or later. Our solution is to enrich the

semantics and its transition system by considering computation prefixes of form:

C = π, v � s0 → . . . → st .

Some informal remarks. Suppose we have model checked p |=θ φ on program π ’s control
flow graph. If φ contains only “past” operators, then the resulting substitutions also describe
places in the computation prefix C where φ is true. Conclusion: The results of the model
check contain information about the state sequence in C , thus relating past and present states.
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What about futures? Our choice is to define a prefix transition system Tpfx(π, v) so
C → C1 ∈ Tpfx(π, v) if and only if C1 is identical to C , but with one additional state:

C1 = π, v � s0 → . . . → st → st+1.

Now reasoning that involves futures can be done by ordinary induction: assuming CRC ′,
show C → C1 implies C ′ → C ′

1 for a C ′
1 with C1RC ′

1, and C ′ → C ′
1 implies C → C1 for

a C1 with C1RC ′
1.

Definition 13. For a program π and initial value v ∈ Value, a computation prefix is a
sequence (finite or infinite)

π, v � s0 → s1 → s2 → . . .

such that s0 = In(v) and si → si+1 for i = 0, 1, 2, . . .

A terminating computation prefix is one that reaches the read y instruction.

Definition 14. The computation prefix transition system for program π and input v ∈ Value
is by definition

Tpfx(π, v) = (C, →)

where C is the set of all finite computation prefixes, and C1 → C2 if and only if

C1 = π, v � s0 → s1 → . . . → st ,

C2 = π, v � s0 → s1 → . . . → st → st+1.

where st → st+1 is the state transition relation from Definition 4. Note that we use the same
symbol, →, to represent both the transition relation for the execution transition system Trun

and the computation prefix transition system Tpfx but that the relations can be distinguished
by their context.

Goal. Consider two programs, π and π ′ such that:

π = read x; I1; I2; . . . Im−1; write y

and

π ′ = read x; I ′
1; I ′

2; . . . I ′
m ′−1; write y.

The aim is to show that π and π ′ are semantically equivalent, [[π ]] = [[π ′]]. That is, for any
value v either both [[π ]](v) and [[π ′]](v) are not defined or for any terminating computation
prefix

π, v � In(v) → (p1, σ1) → . . . → (m, σ )

there exists a terminating computation prefix for the transformed program

π ′, v � In(v) → (p′
1, σ

′
1) → . . . → (m ′, σ ′)

such that σ (y) = σ ′(y), and conversely.
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It is natural to try to prove this by induction on the length of computation prefixes. In
practice the art is to find a relation R that holds between finite computation prefixes of the
original program and those of the transformed program. R must be provable, and imply
output equivalence for any program input v.

More explicitly: If C , C ′ are computation prefixes of π , π ′ on the same input v, we show
that siRs ′

j for every corresponding pair of states in C , C ′ where R is a relation on states
that expresses “correct simulation”.

Remark. The transformations in this paper all satisfy m = m ′. Further, CRC ′ holds only
if C, C ′ have the same length, and pi = p′

i for any i . Thus CRC ′ implies that C → C1 for
some C1 iff C ′ → C ′

1 for some C ′
1.

The following lemma details the work that needs to be done to show that semantic
equivalence is preserved by any one step by the transition system.

Lemma 1 (Program equivalence/induction). Programs π and π ′ are semantically
equivalent, [[π ]] = [[π ′]], if there exists a relation R, such that for all values v the fol-
lowing three conditions hold:
1. (Base case) R holds between the initial computation prefixes i.e.,

[π, v � In(v)] R [π ′, v � In(v)]

2. (Step case) If C1RC ′
1, C1 → C2 and C ′

1 → C ′
2 then C2RC ′

2.
3. (Equivalence) If

CRC ′ and

C = π, v � s0 → s1 . . . → (pt , σ ) and

C ′ = π ′, v � s ′
0 → s ′

1 . . . → (p′
t ′ , σ

′)

then

(i) pt = m ⇔ p′
t ′ = m and

(ii) pt = p′
t ′ = m ⇒ σt (y) = σ ′

t ′ (y)

Proof: Straightforward by two inductions. �

Proofs of equivalence are split into these three steps. This schema of proof provides a
“top-level” approach to proving the correctness of optimizations. The questions still remain
however of how to determine the relation R and how to prove the conditions of Lemma 1.
In particular, it is the “step case” that is hardest to prove.

The relation R will clearly be derived from the CTL-FV side conditions of the trans-
formations. Imagine we are defining R as a relation that holds between two computation
prefixes C and C ′ where:

C = π, v � s0 → s1 → . . . → st ,

C ′ = π ′, v � s ′
0 → s ′

1 → . . . → s ′
r

for some programs π ,π ′ and initial value v. Let si = (pi , σi ) and s ′
i = (p′

i , σ
′
i ) for all i ≥ 0.
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Consider the case where we have a side condition p |= A(φ1 U φ2) or p |= A(φ1 W φ2).
A complete (terminating) trace that contains p = pi will have the following form:

φ2 holds
prior to until ↓ after until

︷ ︸︸ ︷

s0 → . . . → si−1 → si → . . . → st−1
︸ ︷︷ ︸

→ st → ︷ ︸︸ ︷

st+1 → . . . → sw

until section: φ1 holds

The computation is split into an “until section” and sections that are outside the until. For
non-terminating computational prefixes, the last state of the prefix may also be in the until
section. In the case of p |= A(φ1 W φ2), the until section may continue to the end of a
terminating computation prefix with φ2 never holding. The relation R will depend on this;
either the last state of a computation prefix is within an until section and one condition, say
A, holds or it is outside this section and a different condition, say B, holds. The relation R
for transformations with AU or AW side conditions will naturally have the form where one
of the following two cases hold:

– A
– ∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j |= ¬φ2) and B

Here A and B are conditions chosen depending on the transformation and the formulae φ1

and φ2 in the temporal side condition (see the examples in the next section).
What about backwards until and waits-for formulae? In this case, where p |= ←−

A (φ1 U φ2)
or p |= ←−

A (φ1 W φ2) is a side condition, we need to show as part of the relation R that
being inside an until section preserves some property that can be used when leaving this
section. So (in addition to some other conditions) the following will hold:

– (∃i : i < t ∧ pi |= φ2 ∧ (∀ j : i < j ≤ t ⇒ p j |= φ1)) ⇒ A

A complete trace that contains p = pt will have the following form:

φ2 holds
prior to until ↓ after until

︷ ︸︸ ︷

s0 → . . . → si−1 → si →. . . → st−1 → st
︸ ︷︷ ︸

→ ︷ ︸︸ ︷

st+1 → . . . → sw

until section: φ1 holds

Here A will again depend on the transformation and the formula φ1 and φ2. As before, in
the case of the waits-for side condition, φ1 may hold all the way to the beginning of the
computation prefix with φ2 never holding.

If the relation R follows these schemata then in conjunction with the side conditions of
the transformation it will provide information about the last state of the computation prefix
during the step case of the proof. This information will allow us to prove that the relation
holds of the prefixes extended by one state.
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The following two lemmas show how until formulae together with other conditions
on a computation will indicate that a particular condition holds of the current state in a
computation. The first says that p |= A(φ1 W φ2) implies that if φ2 has never been true
since p, then φ1 has always been true since p. The second is its reverse-time analog of this
result.

Lemma 2. Suppose π, v � (p0, σ0) → . . . → (pt , σt ) is a computation prefix and we
know that

p |= A(φ1 W φ2)
and
∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j |= ¬φ2)
and
pt |= ¬φ2.

Then pt |= φ1.

Proof: Straightforward from the definition of CTL-FV. �

Lemma 3. Suppose π, v � (p0, σ0) → . . . → (pt , σt ) is a computation prefix and we
know that

p |= ←−
A (φ1 W φ2)

and
(∃i : i < t ∧ pi |= φ2 ∧ (∀ j : i ≤ j < t ⇒ p j |= φ1)) ⇒ A
and
∃i < t : pi |= ¬φ1

and
pt = p.

Then A will hold.

Proof: Straightforward from the definition of CTL-FV. �

These two lemmas along with the side conditions of the transformation and the relation R
will provide information about the current state of the computation. Given this information
the table in Figure 4 shows how this will affect the next state of the computation. This will
enable us to complete the step case of the proof. The following lemma shows how Figure 4
can be used.

Lemma 4. Suppose (σt , pt ) is a state of π, (σ ′
t , p′

t ) is a state of π ′ and Ipt = I ′
p′

t
. If

(σt , pt ) → (σt+1, pt+1) and (σ ′
t , p′

t ) → (σ ′
t+1, p′

t+1) then the contents of a table entry in
Figure 4 will be true if pt satisfies the condition in the row header of the table and the states
satisfy the condition in the column header (note that a “?” signifies that nothing significant
holds of the next states).
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σt = σ ′
t σt \ x = σ ′

t \ x σt (x) = σ ′
t (x)

¬def (x)

σt+1 = σ ′
t+1

pt+1 = p′
t+1

σt+1(x) = σt (x)
σ ′

t+1(x) = σ ′
t (x)

σt+1(x) = σ ′
t+1(x)

σt+1(x) = σt (x)
σ ′

t+1(x) = σ ′
t (x)

σt (x) =
σt+1(x) =
σ ′

t+1(x) =
σ ′

t (x)

trans(e)

σt+1 = σ ′
t+1

pt+1 = p′
t+1

[[e]]expσt =
[[e]]expσt+1 =
[[e]]expσ

′
t+1 =

[[e]]expσ
′
t

[[e]]expσt+1 = [[e]]expσt

[[e]]expσ
′
t+1 = [[e]]expσ

′
t

?

def (x)∧
¬use(x)

σt+1 = σ ′
t+1

pt+1 = p′
t+1

σt+1 = σ ′
t+1

pt+1 = p′
t+1

?

¬use(x)
σt+1 = σ ′

t+1
[−.7pt]pt+1 = p′

t+1

σt+1 \ x = σ ′
t+1 \ x

pt+1 = p′
t+1

?

True
σt+1 = σ ′

t+1
pt+1 = p′

t+1
? ?

Figure 4. Local pre/post conditions.

Proof: Tedious but straightforward from CTL-FV and Definition 4. �

Now we have a uniform method for proving that a transformation is correct. The following
seven steps are to be followed:

1. Choose a relation R based on the side conditions of the transformation.
2. Use Lemma 1 to reduce the proof into 3 steps: the base case, the step case and the final

equivalence step.
3. The base case is usually trivial.
4. For the step case: split into different cases depending on whether we are at the point of

transformation and whether we are entering or leaving an until section.
5. If appropriate use Lemmas 2 and 3 to determine the conditions true in the current state.
6. Use the pattern of the rewrite or Lemma 4 to complete the step case of induction.
7. Finish by proving the third part of Lemma 1.

The next section provides three example proofs using this method.

5. The three examples

5.1. Dead code elimination

The dead code elimination rewrite rule described earlier was:

x := e ⇒ skip

if

AX A(¬use(x) W (def (x) ∧ ¬use(x)).
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Following Definition 11 of rewriting, for this rewrite to apply the model checker must find a
particular program point p and a substitution that maps x to a particular program variable X
and e to a particular expressionE. In this case we need to prove that an original program π and
transformed program π ′ are equivalent. Below, we assume that Rewrite(π, π ′, p, x :=e ⇒
skip if AX A(¬use(x) W def (x) ∧ ¬use(x))).

To prove that these two programs are equivalent we will use the method described
in Lemma 1. However, to do this we need to come up with a relation R which holds
between the two programs and ensures that the return value of the programs will be
the same. To arrive at this relation we can examine the side condition of the
transformation2:

AX A(¬use(X) W def (X) ∧ ¬use(X))

A key sub-formula in this condition is def(X)∧¬use(X) which, for brevity, shall be abbrevi-
ated in this proof to φ2 (following the schema in the previous section). We can see from this
condition that any label immediately following p will satisfy the formula A(¬use(x) W φ2)
and this gives us a schema for the relation R (as described in the previous section) where
one of the following two conditions holds:

– A
– ∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j |= ¬φ2) and B

The question remains of what the conditions A and B should be. Outside of the until section
we will know nothing about the program, so to ensure the return values are the same we
need to stipulate that the store of the original program and its transformed version are the
same i.e. A ≡ σt = σ ′

t . Within the until section we can see that ¬use(X) will hold, this
suggests (see Figure 4) that B ≡ σt \ X = σ ′

t \ X.

Definition 15. Consider C ∈ Tpfx(π, v) and C ′ ∈ Tpfx(π ′, v) such that:

C = π, v � s0 → s1 → . . . → st ,

C ′ = π ′, v � s ′
0 → s ′

1 → . . . → s ′
r

in which ∀i : [0 ≤ i ≤ t ⇒ si = (pi , σi )] and ∀i : [0 ≤ i ≤ r ⇒ s ′
i = (pi , σ

′
i )].

Then CRC ′ if and only if t = r , pt = p′
t and one of the following two cases holds:

1. σt = σ ′
t .

2. ∃ j : j < t ∧ p = p j ∧ ∀k : j < k < t ⇒ pk |= ¬φ2

and σt \ X = σ ′
t \ X.3

Having defined a suitable R we can then proceed to prove the correctness of dead code
elimination using the method laid out in the previous section.
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Proof: (Dead code elimination satisfies the conditions of Lemma 1.)

Base case. For any initial prefixes: σt = σ ′
t , so CRC .

Step case. Suppose C1RC ′
1 and neither is terminated. The language is deterministic so

C1 → C2 and C ′
1 → C ′

2 for exactly one C2 and C ′
2. We need to show that C2RC ′

2. By
Definition 15:

C1 = π, v � (p0, σ0) → . . . → (pt , σt )

C ′
1 = π ′, v � (p0, σ

′
0) → . . . → (pt , σ

′
t )

Let Ip be the instruction in program π at p and I ′
p be the instruction in program π ′ at p.

To prove that C2RC ′
2 we need to split the situation into several different cases based on

whether we are at the point of transformation (pt = p) or if we are potentially leaving the
until section of the computation (pt |= φ2). There follows the proofs for every part of the
case split:

– Case 1: pt = p

C1RC ′
1 ∧ pt = p

⇒ {Definition of R}
σt \ X = σ ′

t \ X ∧ pt = p

⇒ {Ip = x := e, I ′
p = skip}

σt \ X = σ ′
t \ X ∧ pt = p ∧ σt+1 = σt [X �→ [[E]]expσt ]

∧ σ ′
t+1 = σ ′

t ∧ pt+1 = p′
t+1 = pt + 1

⇒ {Predicate calculus, properties of stores}
pt+1 = p′

t+1

∧ ∃ j : j < (t + 1) ∧ p = p j ∧ ∀k : j < k < (t + 1) ⇒ pk |= ¬φ2

∧ σt+1 \ X = σ ′
t+1 \ X

⇒ {Definition or R (Case 2)}
C2RC ′

2

– Case 2: pt 
= p ∧ pt |= φ2

pt 
= p ∧ C1RC ′
1 ∧ pt |= φ2

⇒ {Definition of R}
pt 
= p ∧ σt \ X = σ ′

t \ X ∧ pt |= def (X) ∧ ¬use(X)

⇒ {Lemma 4}
pt+1 = p′

t+1 ∧ σt+1 = σ ′
t+1

⇒ {Definition of R (Case 1)}
C2RC ′

2



194 LACEY ET AL.

– Case 3: pt 
= p ∧ pt |= ¬φ2 ∧ C1RC ′
1 (by Case 1 of definition of R)

pt 
= p ∧ pt |= ¬φ2 ∧ C1RC ′
1

⇒ {Definition of R (Case 1)}
pt 
= p ∧ pt = p′

t ∧ σt = σ ′
t

⇒ {Lemma 4}
σt+1 = σ ′

t+1 ∧ pt+1 = p′
t+1

⇒ {Definition of R (Case 1)}
C2RC ′

2

– Case 4: pt 
= p ∧ pt |= ¬φ2 ∧ C1RC ′
1 (by Case 2 of definition of R)

pt 
= p ∧ pt |= ¬φ2 ∧ C1RC ′
1

⇒ {Definition of R (Case 2)}
∃ j : j < t ∧ p = p j ∧ ∀k : j < k < t ⇒ pk |= ¬φ2

∧ σt \ X = σ ′
t \ X

∧ pt 
= p ∧ pt |= ¬φ2

≡ {Linear algebra}
∃ j : j < (t + 1) ∧ p = p j ∧ ∀k : j < k < (t + 1) ⇒ pk |= ¬φ2

∧ σt \ X = σ ′
t \ X

∧ pt 
= p

⇒ {Lemma 2}
∃ j : j < (t + 1) ∧ p = p j ∧ ∀k : j < k < (t + 1) ⇒ pk |= ¬φ2

∧ σt \ X = σ ′
t \ X

∧ pt 
= p ∧ pt |= ¬use(X)

⇒ {Lemma 4}
∃ j : j < (t + 1) ∧ p = p j ∧ ∀k : j < k < (t + 1) ⇒ pk |= ¬φ2

∧ σt+1 \ X = σ ′
t+1 \ X

∧ pt+1 = p′
t+1

⇒ {Definition of R (Case 2)}
C2RC ′

2

So in every case C2RC ′
2 and we have proven the step case of Lemma 1.

Equivalence. From the definition of R, either σt = σ ′
t (in which case clearly σt (y) = σ ′

t (y)
or the following will hold:

∃ j : j ≤ t ∧ p = p j ∧ ∀k : j < k < t ⇒ pk |= ¬φ2

In this case either pt |= φ2 and it will not use X or pt |= ¬φ2 and by Lemma 2 it will not
use X, in either case the instruction at pt does not use X i.e., y 
= X. In this case we also
know that σt (y) = σ ′

t (y) since σt \ X = σ ′
t \ X.
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Therefore, by Lemma 1, we can conclude that [[π ]] = [[π ′]]. �

5.2. Constant folding

The constant folding rule is:

x := v ⇒ x := c

if

←−
A (¬def(v) ∧ ¬stmt(read x) W stmt(v := c) ∧ conlit(c))

Following Definition 11, for this rewrite to apply, the model checker must find a par-
ticular program point p and a substitution that maps x to a particular program variable
X, v to a particular program variable V and c to a particular constant C. In this case we
need to prove that an original program π and transformed program π ′ are equivalent. We
will assume in the following that Rewrite(π, π ′, p, x := v ⇒ x := c if

←−
A (¬def(v) ∧

¬stmt(read x) W stmt(v := c) ∧ conlit(c))).
Again we shall use Lemma 1 in our proof. In this case we have one condition which is a

backwards (weak) until. Following the method in the previous section we can see that part
of the induction relation R should be of the form:

(∃i : i < t ∧ pi |= stmt(V := C) ∧ ∀ j : i < j < t ⇒ p j |= ¬def (V))

⇒
A

It remains to decide what else must hold and what the condition A is. Since there is no other
information available apart from the backwards until condition we need the final states of
the computation prefix to be the same to ensure the final written values of the program are
the same. For the condition A to maintain this at the point of transformation we require
A ≡ σt (V) = [[C]]op.

Definition 16. Consider C ∈ Tpfx(π, v) and C ′ ∈ Tpfx(π ′, v) such that:

C = π, v � s0 → s1 → . . . → st ,

C ′ = π ′, v � s ′
0 → s ′

1 → . . . → s ′
r

in which ∀i : [0 ≤ i ≤ t ⇒ si = (pi , σi )] and ∀i : [0 ≤ i ≤ r ⇒ s ′
i = (pi , σ

′
i )].

Then CRC ′ if and only if t = r , pt = p′
t , σt = σ ′

t and

(∃i : i < t ∧ pi |= stmt(V := C) ∧ ∀ j : i < j < t ⇒ p j |= ¬def (V))

⇒
σt (V) = [[C]]op
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Again, once we have defined the relation R, we can proceed according to the method
laid out in Lemma 1:

Proof: (Constant folding satisfies the conditions of Lemma 1.)

Base case. This holds trivially since traces of length one have the same initial (and final)
state and the implication part of the relation will hold since its antecedent is false.

Step case. Suppose R holds between relations C1 and C ′
1 where:

C1 = C ′
1 = π, v � (p0, σ0) → . . . → (pt , σt )

Also suppose that C1 → C2 (by the semantics of π ) and C ′
1 → C ′

2 (by the semantics of π ′).
We wish to prove that C2RC ′

2. There are two parts to this proof corresponding to different
parts of the definition of R. The first part is split depending on whether p = pt .

– Case pt = p: At the point of transformation Ipt = (X := V) and Ip′
t
= (X := C). So

pt+1 = p′
t+1 = pt +1, σt+1 = σt [X �→ σt (V)], and σ ′

t+1 = σ ′
t [X �→ [[C]]op]. By Lemma 3,

we also know that σt (V) = [[C]]op, so σt+1 = σt+1.
– Case pt 
= p: ByRwe know that σt = σ ′

t . So by Lemma 4: σt+1 = σ ′
t+1 and pt+1 = p′

t+1.

It remains to prove the second part of C2RC ′
2 i.e.,

(∃i : i < (t + 1) ∧ pi |= stmt(V := C)

∧∀ j : i < j < (t + 1) ⇒ p j |= ¬def (V))

implies

σt (V) = [[C]]op

This part of the proof is split into two cases depending on whether pt |= stmt(V := C)

– Case pt |= stmt(V := C): In this case, we know that σt+1(V) = (σt [V �→ [[C]]op])(V) =
[[C]]op.

– Case pt |= ¬stmt(V := C) ∧ ¬def (V ): We can reason:

(∃i : i < (t + 1) ∧ pi |= stmt(V := C)

∧ ∀ j : i < j < (t + 1) ⇒ p j |= ¬def (V))

⇒ {pt |= ¬stmt(V := C) implies i < t}
(∃i : i < t) ∧ pi |= stmt(V := C)

∧ ∀ j : i < j < t ⇒ p j |= ¬def (V))

⇒ {Since C1RC ′
1}

σt (V) = [[C]]op

⇒ {Since pt |= ¬def (V), by Lemma 4}
σt+1(V) = [[C]]op
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– Case pt |= ¬stmt(V := C) ∧ def (V ): We can reason:

(∃i : i < (t + 1) ∧ pi |= stmt(V := C)

∧ ∀ j : i < j < (t + 1) ⇒ p j |= ¬def (V))

⇒ {pt |= ¬stmt(V := C) implies i < t}
pt |= ¬def (V))

⇒ {But pt |= def (V)}
False

⇒ {Propositional calculus}
σt+1(V) = [[C]]op

So both parts of R hold i.e., C2RC ′
2.

Equivalence. Since R implies that pt = p′
t and σt = σ ′

t , the program points of computation
prefixes of π and π ′ are the same, and thus π terminates if and only if π ′ terminates. Clearly
if two terminating prefixes are equal they will have the same value in their final stores. So
[[π ]] = [[π ′]] by Lemma 1. �

5.3. Code motion/loop invariant hoisting

The code motion/loop invariant hoisting rule is:

p : skip ⇒ x := e

q : x := e ⇒ skip

if

p |= A(¬use(x) W node(q))

q |= ¬use(x) ∧
←−
A ((¬def (x) ∨ node(q)) ∧ trans(e) ∧ ¬stmt(read x ) W node(p))

Following Definition 11, for this rewrite to apply, the model checker must find particular
program points p and q and a substitution that maps x to a particular program variable X
and e to a particular program expression E. In this case we need to prove that an original
program π and transformed program π ′ are equivalent.

For this transformation we have both a forward until and a backward until so the relation
R (and associated proof) will be a combination of the two patterns we have already seen.
Note that we shall abbreviate the formula (¬def (x)∨node(q))∧ trans(e)∧¬stmt(read x)
to φ1.

Definition 17. Suppose C ∈ Tpfx(π, v) and C ′ ∈ Tpfx(π ′, v) for some v such that

C = π, v � (p0, σ1) → . . . → (pt , σt )

C ′ = π ′, v � (p′
0, σ

′
1) → . . . → (p′

t ′ , σ
′
t ′ )
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We then define the R relation on computation prefixes as: CRC ′ if and only if t = t ′ and
both CR1C ′ and CR2C ′ where R1 and R2 are defined by:

– CR1C ′ if pt = p′
t and one of the following holds:

1. σt = σ ′
t

2. ∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j 
= q) ∧ σt \ X = σ ′
t \ X

– CR2C ′ if the following holds:

(∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j |= φ1))

⇒
σ ′

t (X) = [[E]]expσt

The proof of correctness will again be a combination of the two proofs similar to the
ones we have already seen.

Proof: (Invariant hoisting satisfies the conditions of Lemma 1.)

Base case. This holds trivially.

Step case. Suppose R holds between relations C1 and C ′
1 where:

C1 = C ′
1 = π, v � (p0, σ0) → . . . → (pt , σt )

Also suppose that C1 → C2 (by the semantics of π ) and C ′
1 → C ′

2 (by the semantics of
π ′). We wish to prove that C2RC ′

2. First, we will prove that C2R1C ′
2. The proof is split

depending on whether pt is p or q or neither.

– Case pt = p: In this case we know that Ipt = skip and I ′
p′

t
= (X := E). So:

C1RC1 ∧ Ipt = skip ∧ I ′
p′

t
= (X := E)

⇒ {Definition of R1}
σt \ X = σ ′

t \ X ∧ Ipt = skip ∧ I ′
p′

t
= X := E

⇒ {Semantics}
σt+1 \ X = σ ′

t+1 \ X ∧ pt+1 = p′
t+1 = pt + 1

⇒ {Linear algebra, pt = p, p 
= q}
∃i : i < (t + 1) ∧ pi = p ∧ (∀ j : i ≤ j < (t + 1) ⇒ p j 
= q)

∧ σt+1 \ X = σ ′
t+1 \ X ∧ pt+1 = p′

t+1 = pt + 1

⇒ {Definition of R1 (Case 2)}
C2R1C ′

2



COMPILER OPTIMIZATION CORRECTNESS BY TEMPORAL LOGIC 199

– Case pt = q: Here, Ipt = (X := E) and I ′
p′

t
= skip.

C1RC ′
1

⇒ {Definition of R, Lemma 3 since in C1 every q is preceded by a p}
σt \ X = σ ′

t \ X ∧ σ ′
t (X) = [[E]]expσt ∧ Ipt = (X := E) ∧ I ′

p′
t
= skip

⇒ {Semantics}
σt \ X = σ ′

t \ X ∧ σ ′
t (X) = [[E]]expσt

∧ σt+1 = σt [X �→ [[E]]expσt ] ∧ σ ′
t = σ ′

t+1 ∧ pt+1 = p′
t+1 = pt + 1

⇒ {Properties of stores}
σt+1 = σ ′

t+1 ∧ pt+1 = p′
t+1

⇒ {Definition of R1 (Case 1)}
C2R1C2

– Case pt /∈ {p, q} ∧ σt = σ ′
t :

pt /∈ {p, q} ∧ σt = σ ′
t

⇒ {Lemma 4}
pt+1 = p′

t+1 ∧ σt+1 = σ ′
t+1

⇒ {Definition of R1 (Case 1)}
C2R1C2

– Case pt /∈ {p, q} ∧ σt 
= σ ′
t :

σt 
= σ ′
t ∧ C1RC1

⇒ {Definition of R}
σt \ X = σ ′

t \ X
∧ ∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j 
= q)

⇒ {pt 
= q , Lemma 2}
σt \ X = σ ′

t \ X ∧ pt |= ¬use(X)

∧ ∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j ≤ t ⇒ p j 
= q)

⇒ {Lemma 4, Linear Algebra}
σt+1 \ X = σ ′

t+1 \ X
∧ ∃i : i < (t + 1) ∧ pi = p ∧ (∀ j : i ≤ j < (t + 1) ⇒ p j 
= q)

⇒ {Definition of R1 (Case 2)}
C2R1C2

So C2R1C ′
2 in every case and it remains to prove that C2R2C ′

2 i.e.,

(∃i : i < (t + 1) ∧ pi = p ∧ (∀ j : i ≤ j < (t + 1) ⇒ p j |= φ1))

⇒
σt+1(X) = [[E]]expσt+1
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This proof is split into four cases depending on whether pt = p, whether pt = q and
whether pt |= φ1. Note that FV (E) is the set of program variables in E.

– Case pt = p: In this case, we know that I ′
p = (X := E) and Ip = skip, So:

σ ′
t+1(X)

≡ {Semantics}
(σ ′

t [X �→ [[E]]expσ
′
t )(X)

≡ {Property of stores}
[[E]]expσ

′
t

≡ {X /∈ FV (E), σt \ X = σ ′
t \ X (since C1RC2)}

[[E]]expσt

≡ {Ip = skip}
[[E]]expσt+1

– Case pt 
= p ∧ pt |= ¬φ1: We can reason:

(∃i : i < (t + 1) ∧ pi = p ∧ (∀ j : i ≤ j < (t + 1) ⇒ p j |= φ1))

⇒ {pt 
= p implies i < t}
pt |= φ1

⇒ {But pt |= ¬φ1}
False

⇒ {Propositional calculus}
σt+1(X) = [[E]]expσt+1

– Case pt 
= p ∧ pt |= φ1 ∧ pt 
= q: We can reason:

(∃i : i < (t + 1) ∧ pi = p ∧ (∀ j : i ≤ j < (t + 1) ⇒ p j |= φ1))

⇒ {pt 
= p implies i < t}
(∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j |= φ1))

⇒ {Since C1RC ′
1}

σ ′
t (X) = [[E]]expσt

⇒ {pt |= φ1 ⇒ pt |= trans(E), Lemma 4}
σ ′

t (X) = [[E]]expσt+1

⇒ {Since pt 
= q: pt |= φ1 ⇒ pt |= ¬def (X), Lemma 4}
σ ′

t+1(X) = [[E]]expσt+1

– Case pt 
= p ∧ pt |= φ1 ∧ pt = q: We can reason:

(∃i : i < (t + 1) ∧ pi = p ∧ (∀ j : i ≤ j < (t + 1) ⇒ p j |= φ1))

⇒ {pt 
= p implies i < t}
(∃i : i < t ∧ pi = p ∧ (∀ j : i ≤ j < t ⇒ p j |= φ1))
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⇒ {Since C1RC ′
1}

σ ′
t (X) = [[E]]expσt

⇒ {Ipt = (X := E), X /∈ FV (E)}
σ ′

t (X) = [[E]]expσt+1

⇒ {I ′
p′

t
= skip}

σ ′
t+1(X) = [[E]]expσt+1

Therefore, in every case, both C2R1C ′
2 and C2R2C ′

2 and we can conclude that C2RC ′
2

holds.

Equivalence. From the definition of R, either σt = σ ′
t (in which case clearly σt (y) = σ ′

t (y)
or the following will hold:

∃ j : j ≤ t ∧ p = p j ∧ ∀k : j < k < t ⇒ pi 
= q

In this case (since pt will not be q), we know by Lemma 2 that the instruction at pt does
not use X i.e., y 
= X. In this case we also know that σt (y) = σ ′

t (y) since σt \ X = σ ′
t \ X.

Therefore, by Lemma 1, we can conclude that [[π ]] = [[π ′]]. �

6. Discussion and future work

In this paper we have described a framework in which temporal logic plays a crucial role in
the proofs of correctness of classical optimizing transformations performed by a compiler.
In this framework transformations are specified as rewrite rules with side conditions that
are written as temporal logic formulae.

To prove the correctness of the transformations we had to show that if a transformation
is applied it does not change the semantics of the program—that is, [[π ]] = [[π ′]]. The
only creative part of the proof is finding the relation R, but this relation is often closely
related to the temporal logic side conditions of the transformation. The remainder of the
proof is straightforward. It is either routine, as when showing that the program states of
computation prefixes of π and π ′ are identical before encountering the transformed program
point. Otherwise it deals directly with the program transformation point. The proof of these
cases is dramatically simplified since we can assume that the temporal logic side condition
holds (otherwise the transformation would not have happened), and this assumption leads
almost immediately to the proof of the case.

This work is part of a larger project to study declarative methods of specifying op-
timizations and means of automatically generating optimizers from these specifications.
Here, the specifications of optimizing transformations are rewrite rules with temporal logic
side conditions that are atomically implemented by a graph rewriting system and model
checker [23].

The following sections discuss some issues on how the approach can be used in a real-
world compiler and also how the specification language could be extended in small ways
to allow specification of quite complex transformations.
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6.1. Real world application

The programming language on which these transformations have been applied is admit-
tedly very simple. There are very few types of statements and it does not include necessary
language features like exceptions and procedures. Limiting the number of types of state-
ments reduces the number of cases in the proofs and this simplifies their presentation, but
adding additional statements does not affect the applicability of our method. Exceptions
and procedures would however, require changes to the control flow model and the tran-
sition systems used in the proof. However, the specification of the transformations does
not change, only their interpretation changes. This (perhaps) surprising fact shows how the
logical formulae capture the essence of the transformation under which the details can be
automatically derived. For more information see [22]. A follow-up paper describing the
required adjustments is in preparation.

While the proofs presented here have been done by hand, the nature of the proofs seems
well suited to (semi-) automated theorem proving. The creative step in the proof is to create
the relation we wish to prove inductively. The rest of the proofs tend to involve mechanically
performing case splits and applying a small set of lemmas. However, even the “creative”
step of providing the relation is closely related with the temporal logic side conditions.

An interesting direction of further work would be to discover if the relation could be
completely mechanically created from the side conditions. In an initial experiment we
transfered the proof of the correctness of dead code elimination into the theorem prover
PVS [38]. This was not, however, an easy process but with more investigation we believe
that more highly automated proofs could be performed.

The language we have treated is rather like a traditional compiler’s “intermediate lan-
guage”. The conference version of this paper [24] stated “We anticipate that our method
could be used to validate a great many traditional optimizing compiler transformations,
e.g., many found in Aho et al. [2] and Muchnick [28].” This anticipation has born fruit in
the form of two reports: Frederiksen [10] and Lerner et al. [25]. The first contains man-
ual proofs of a number of such optimizations. The second describes an implementation,
using a mechanised theorem-prover, that is clearly inspired by Lacey et al. [24]. Its rule
annotation language is less powerful than CTL, but it uses an execution model that is
closer to existing machine codes than the simplified version of this paper, and is more fully
automated.

6.2. Extensions to the specification language

The language for specifying transformations is quite simple and to aid exposition we have
described some simple transformations. However, more complicated transformations such
as lazy code motion [18] can be specified given some small extensions to the language. One
main extension is the ability to combine and alter rewrites using certain operators (similar to
strategies in Visser et al. [43]). This also allows us to rewrite at an arbitrary number of points
in the control flow graph. This is achieved by the APPLY ALL operator. The following:

APPLY ALL (n : s1 ⇒ s2 if φ),



COMPILER OPTIMIZATION CORRECTNESS BY TEMPORAL LOGIC 203

will replace the statement s1 with s2 at every program point at which the side condition holds.
How will this affect our proof method? The answer is quite simple, instead of rewriting one
point it will rewrite a set of points and the case splits will be based on membership of this
set (of course within the set we know that the condition φ will hold). The rest of the proof
method is the same as when rewriting a fixed set of points.

Using extensions such as this, a large number of compiler optimizations can be expressed,
for more examples see [22].

6.3. Programs with exceptions

In our correctness proofs above, we defined semantic equivalence, [[π ]] = [[π ′]], to mean
that both programs terminate on the same input with the same output. In Definition 2 we
stated that the base language functions are all total; this prevents programs from terminating
exceptionally. Thus, in keeping with standard practice, rewriting x := 1/0 to skip is
allowed if the value of x is not used. In practice, however, the base language functions
are not total and the transformed program in this case will terminate normally whereas
the original one will terminate with an exception; so the programs are not semantically
equivalent using our above definition.

This is a semantic problem that is most often overlooked. In the proof schema and
optimization correctness proofs above we have also overlooked this problem for simplicity
and to be consistent with what is done in practice.

However, our formalism is general enough that there are several ways in which we can
address this problem. In one possible solution, we first alter our definition of semantic
equivalence so that only normally terminating traces of the original program π and the
transformed program π ′ are considered. These are the computation prefixes that reach
program point m, where Im = read y, i.e. those where [[π ]] is defined. That is, π and π ′

are semantically equivalent if

[[π ]] \ (Dom([[π ]]) ∩ Dom([[π ′]])) = [[π ′]] \ (Dom([[π ]]) ∩ Dom([[π ′]]))

where Dom([[π ]]) is the set of inputs leading to exception-free termination of π , that is, the
domain of the partial function [[π ]]. We can then remove clause (i) of the third condition of
Lemma 1 as follows:

3. (Equivalence) If

CRC ′ and

C = π, v � s0 → s1 . . . → (pt , σ ) and

C ′ = π ′, v � s ′
0 → s ′

1 . . . → (p′
t ′ , σ

′)

then

pt = p′
t ′ = m ⇒ σt (y) = σ ′

t ′ (y)
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This states that if both π and π ′ terminate normally then they output the same value, i.e.
σt (y) = σ ′

t (y). The proofs are modified as expected.
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Notes

1. The conlit is introduced so that the model checker will not match c with a non-constant expression.
2. Note here that we have “substituted in” the values of the meta-variables in the formula.
3. Note that this is stronger than the condition in the schema presented earlier in that we’ve replaced the first ≤

in the ∀ with a <.
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