
Chapter 29
Hyperparameter Selection

Franck Dernoncourt, Shamim Nemati, Elias Baedorf Kassis
and Mohammad Mahdi Ghassemi

Learning Objectives

High Level:
Learn how to choose optimal hyperparameters in a machine learning pipeline for

medical prediction.

Low Level:

1. Learn the intuition behind Bayesian optimization.
2. Understand the genetic algorithm and the multistart scatter search algorithm.
3. Learn the multiscale entropy feature.

29.1 Introduction

Using algorithms and features to analyze medical data to predict a condition or an
outcome commonly involves choosing hyperparameters. A hyperparameter can be
loosely defined as a parameter that is not tuned during the learning phase that
optimizes the main objective function on the training set. While a simple grid search
would yield the optimal hyperparameters by trying all possible combinations of
hyper parameters, it does not scale as the number of hyperparameters and the data
set size increase. As a result, investigators typically choose hyperparameters arbi-
trarily, after a series of manual trials, which can sometimes cast doubts on the
results as investigators might have been tempted to tune the parameters specifically
for the test set. In this chapter, we present three mathematically grounded tech-
niques to automatically optimize hyperparameters: Bayesian optimization, genetic
algorithms, and multistart scatter search.

To demonstrate the use of these hyperparameter selection methods, we focus on
the prediction of hospital mortality for patients in the ICU with severe sepsis. The
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outcome we consider is binary: either the patient died in hospital, or survived. Sepsis
patients are at high risk for mortality (roughly 30 % [1]), and the ability to predict
outcomes is of great clinical interest. The APACHE score [2] is often used for
mortality prediction, but has significant limitations in terms of clinical use as it often
fails to accurately predict individual patient outcomes, and does not take into account
dynamic physiological measurements. To remediate this issue, we investigate the use
of multiscale entropy (MSE) [3, 4] applied to heart rate (HR) signals as an outcome
predictor: MSE measures the complexity of finite length time series. To compute
MSE, one needs to specify a set of parameters, namely the maximum scale factor, the
difference between consecutive scale factors, the length of sequences to be compared
and a similarity threshold. We show that using hyperparameter selection methods,
the MSE can predict the patient outcome more accurately than the APACHE score.

29.2 Study Dataset

We used the Medical Information Mart for Intensive Care II (MIMIC II) database,
which is available online for free and was introduced by [5, 6]. MIMIC II is divided
into two different data sets:

• the Clinical Database, which is a relational database that contains structured
information such as patient demographics, hospital admissions and discharge
dates, room tracking, death dates, medications, lab tests, and notes by the
medical personnel.

• the Waveform Database, which is a set of flat files containing up to 22 different
kinds of signals for each patient, including the ECG signals.

We selected patients who suffered from severe sepsis, defined as patients with an
identified infection with evidence of organ dysfunction and hypotension requiring
vasopressors and/or fluid resuscitation [7]. We further refined the patient cohort by
choosing patients who had complete ECG waveforms for their first 24 h in the ICU.
For each patient, we extracted the binary outcome (i.e. whether they died in hos-
pital) from the clinical database. The HR signals were extracted from the ECG
signals, and patients with low quality HR were removed.

29.3 Study Methods

We compared the predictive power of the following three sets of features to predict
patient outcomes: basic descriptive statistics on the time series (mean and standard
deviation), APACHE IV score and MSE. Since these features are computed on time
series, for each feature set we obtained a vector of time series features. Once these
features were computed, we clustered patients based on these vectors using spectral
clustering. The number of clusters was determined using the silhouette values [8].
This allowed us to address the high heterogeneity of the data resulting from the fact
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that MIMIC patients came from different care units. Lastly, for each cluster, we
trained a support vector machine (SVM) classifier. To classify a new patient, we
computed the distance from each cluster center, and computed the output of each
SVM classifier: to make the final decision on the predicted outcome, we computed a
weighted average of the output of each SVM classifier, where the weights were the
distance from each cluster center. This method of combining clustering with SVM
is called transductive SVM. We used the area under the receiver operating char-
acteristic (ROC) curve (AUROC, often named more simply and ambiguously
AUC) as the performance metric for the classification. Figure 29.1 illustrates the
functioning of transductive SVMs.

MSE may be understood as the set of sample entropy values for a signal which is
averaged over various increasing segment lengths. The MSE, y, was computed as
follows:

ysj ¼
1
s

Xjs

i¼ðj�1Þsþ 1

xi

where:

• xi is the signal value at sample I,
• j is the index of the window to be computed,
• s is the scale factor,
• Y is the length of sequences to be compared,
• Z is the similarity threshold.

Additionally, we have the following parameters:

• the maximum scale factor,
• the scale increase, which is the difference between consecutive scale factors,
• the similarity criterion or threshold, denoted r.

Fig. 29.1 Transductive
SVM: clustering is performed
first, then a convex
combination of the SVM
outputs is used to obtain the
final prediction probability
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Figure 29.2 shows how y is computed for different scales.
To select the best hyperparameters for the MSE, we compared three hyperpa-

rameter optimization techniques: Bayesian optimization, genetic algorithms, and
multistart scatter search.

Bayesian optimization builds the distribution P(ytest|ytrain, xtrain, xtest), where xtrain
is the set of MSE parameters that were used to obtain the ytrain AUROCs, xtest is a
new set of MSE parameters, and ytest is the AUROC that would be obtained using
the new MSE parameters. To put it otherwise, based on the previous observations
on MSE parameters and achieved AUROCs, the Bayesian optimization predicts
what AUROC a new set of MSE parameters will yield. Each time a new AUROC is
computed, the set of MSE parameters as well as the AUROC is added to xtest and
ytest. At each iteration, we can either explore, i.e. compute ytest for which the
distribution P has a high variance, or exploit, i.e. compute ytest for which the
distribution P has a low variance and high expectation. An implementation can be
found in [9].

A genetic algorithm is an optimization algorithm based on the principle of
Darwinian natural selection. A population is comprised of sets of MSE parameters.
Each set of MSE parameters is evaluated based on the AUROC it achieved. The
sets of MSE parameters with low AUROCs are eliminated. The surviving sets of
MSE parameters are mutated, i.e. each parameter is slightly modified, to create new
sets of MSE parameters, which form a new population. By iterating through this
process, the new sets of MSE parameters yield increasingly high AUROCs. We set
the population size of 100, and ran the optimization for 30 min. The first population
was drawn randomly.

The multistart scatter search is similar to the genetic algorithm, the only dif-
ference residing in the use of a deterministic process to identify the individuals of
the next population such as gradient descent.

Figure 29.3 summarizes the machine learning pipeline presented in this section.
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x1 x2 x3 x4 x5 x6 xi xixi-1

Scale 2

Scale 3

yj = (xi + xi+1)/2

yj = (xi-1 + xi + xi+1)/3

Fig. 29.2 Illustration of various scales from Costa et al. Only scales 2 and 3 are displayed. xi is
the signal value at sample i

422 29 Hyperparameter Selection



The data set was split into testing (20 %), validation (20 %) and training (60 %)
sets. In order to ensure robustness of the result, we used 10-fold cross-validation,
and the average AUROC over the 10 folds. To make the comparison fair, each
hyperparameter optimization technique was run the same amount of time, viz.
30 min.

29.4 Study Analysis

Table 29.1 contains the results for all three sets of features we considered. For the
MSE features, Table 29.1 presents the results achieved by keeping the default
hyperparameters, or by optimizing them using one of the three hyperparameter
optimization techniques we presented in the previous section.

The first set of features, namely the basic descriptive statistics (mean and stan-
dard deviation), yields an AUROC of 0.54 on the testing set, which is very low
since a random classifier yields an AUROC of 0.50. The second set of features,
APACHE IV, achieves a much higher AUROC, 0.68, which is not surprising as the
APACHE IV was designed to be a hospital mortality assessment for critically ill
patients. The third set of features based on MSE performs surprisingly well with the
default values (AUROC of 0.66), and even better when optimized with any of the
three hyperparameter optimization techniques. The Bayesian optimization yields
the highest AUROC, 0.72.

Fig. 29.3 The entire machine learning pipeline. The MSE features are computed from the input
x using the parameters r, m, max scale and scale increase. 10 folds are created
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29.5 Study Visualizations

Figure 29.4 provides an insight into the MSE parameters selected by the three
hyperparameter selection techniques over the 10-fold cross-validation. Each point
represents a parameter value optimized by a given hyperparameter selection tech-
nique for a unique data fold. For all 4 MSE parameters, we observe a great variance:
this indicates that there is no clear global optimum, but instead there exist many
MSE parameter sets that yield a high AUROC.

Interestingly, in this experiment the Bayesian optimization is more robust to the
parameter variance, as shown by the confidence intervals around the AUROCs:
most AUROCs reached by Bayesian optimization are high, unlike genetic algo-
rithms and multistart scatter search. The two latter techniques are susceptible to
premature convergence, while Bayesian optimization has a better
exploration-exploitation tradeoff.

We also notice that the max scale and the r values reached by Bayesian opti-
mization have a lower variance than genetic algorithms and multistart scatter
search. One might hypothesize that heterogeneity across patients might be reflected
more in the scale increase and m MSE parameters than in the max scale and
r parameters.

Table 29.1 Comparison of APACHE feature, time-series mean and standard deviation features,
and MSE feature with default parameters or optimized with Bayesian optimization, genetic
algorithms, and multistart scatter search, for the prediction of patient outcome

Max
scale

Scale
increase

r m AUROC
(training)

AUROC
(testing)

Time series: mean and
standard deviation

0.56
(0.52–0.56)

0.54
(0.45–0.60)

APACHE IV 0.77
(0.75–0.79)

0.68
(0.55–0.77)

MSE (defaults) 20 1 0.15 2 0.77
(0.73–0.78)

0.66
(0.60–0.72)

MSE (Bayesian) 17.62
(8.68)

2.59
(0.93)

0.11
(0.07)

2.58
(0.85)

0.77
(0.69–0.79)

0.72
(0.63–0.78)

MSE (genetic) 23.54
(14.34)

2.56
(1.12)

0.18
(0.15)

2.07
(0.70)

0.77
(0.67–0.84)

0.67
(0.44–0.78)

MSE (multi-start) 19.03
(12.57)

2.35
(0.87)

0.18
(0.128)

2.53
(0.87)

0.73
(0.69–0.76)

0.69
(0.53–0.72)

For each MSE parameter we report their cross-fold mean and standard deviation (with standard
deviation in parenthesis). For the reported AUROC, we report the 50th percentile in the top half of
the cell and the 25th and 75th percentiles in the lower half of the cell

424 29 Hyperparameter Selection



29.6 Study Conclusions

The results of this case study demonstrate two main points. First, from a medical
standpoint, they underline the possible benefit of utilizing dynamic physiologic
measurements in outcome prediction for ICU patients with severe sepsis: the data
from this study indeed suggest that utilizing these physiological dynamics through
MSE with optimized hyperparameters yields improved mortality prediction com-
pared with the APACHE IV score. Physiological signals sampled at high-frequency
are required for the MSE features to be meaningful, highlighting the need for
high-resolution data collection, as opposed to some existing methods of data col-
lection where signal samples are aggregated at the second or minute level, if not
more, before being recorded.

Second, from a methodological standpoint, the results make a strong case for the
use of hyperparameter selection techniques. Unsurprisingly, the results obtained
with the MSE features are highly dependent on the MSE hyperparameters. Had we
not used a hyperparameter selection technique and instead kept the default value,
we would have concluded that APACHE IV provides a better predictive insight
than MSE, and therefore missed the importance of physiological dynamics for
prediction of patient outcome. Bayesian optimization seems to yield better results
than genetic algorithms and multistart scatter search.

29.7 Discussion

There is still much room for further investigation. We focused on ICU patients with
severe sepsis, but many other critically ill patient cohorts would be worth inves-
tigating as well. Although we restricted our study to the use of MSE and HR alone,
it would be interesting to integrate and combine other disease characteristics and
physiological signals. For example, [10] used Bayesian optimization to find the

Fig. 29.4 The impact of the
MSE parameters on the
outcome prediction AUROC
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most optimal wavelet parameters to predict acute hypotensive episodes. Perhaps
combining dynamic blood pressure wavelets with HR MSE, and even other
dynamic data as well such as pulse pressure variation, would further optimize and
tune the mortality prediction model. In addition there exist other scores to predict
group mortality such as SOFA and SAPS II, which would provide useful baselines
in addition to APACHE [11].

The scale of our experiments was satisfying for the case study’s goals, but some
other investigations might require a data set that is an order of magnitude larger.
This might lead one to adopt a distributed design to deploy the hyperparameter
selection techniques. For example, [12] used a distributed approach to hyperpa-
rameter optimization on 5000 patients and over one billion blood pressure beats.
[13, 14] present another large-scale system to use genetic algorithms for blood
pressure prediction.

Lastly, a more thorough comparison between hyperparameter selection tech-
niques would help comprehend why a given hyperparameter selection technique
performs better than others for a particular prediction problem. Especially, the
hyperparameter selection techniques also have parameters, and a better under-
standing of the impact of these parameters on the results warrant further
investigation.

29.8 Conclusions

In this chapter, we have presented three principled hyperparameter selection
methods. We applied them to MSE, which we computed on physiological signals to
illustrate their use. More generally, these methods can be used for any algorithm
and feature where hyperparameters need to be tuned.

ICU data provide a unique opportunity for this type of research with routinely
collected continuously measured variables including ECG waveforms, blood
pressure waveforms from arterial lines, pulse pressure variation, pulse oximetry as
well as extensive ventilator data. These dynamic physiologic measurements could
potentially help unlock better outcome metrics and improve management decisions
in patients with acute respiratory distress syndrome (ARDS), septic shock, liver
failure or cardiac arrest, and other extremely ill ICU patients. Outside of the ICU,
dynamic physiological data is routinely collected during surgery by the anesthesia
team, in cardiac units with continuous telemetry and on Neurological care units
with routine EEG measurements for patients with or at risk for seizures. As such the
potential applications of MSE with hyperparameter optimization are extensive.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.
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The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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