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Abstract

Background: In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by
shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum
likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance
of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify
optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in
the presence of multiply imputed data.

Method: The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed
models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was
investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the
study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple
imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed
MI.

Results: The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to
over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap
resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap
step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields
estimates of optimism that are closer to the true value, albeit slightly too larger.

Conclusion: Performance of prognostic models constructed using the lasso technique can be optimistic as well.
Results of the internal validation are sensitive to how bootstrap resampling is performed.
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Background
The least absolute shrinkage and selection operator (lasso)
[1] is a popular technique for model selection and esti-
mation in linear regression models. For a traditional gen-
eralized linear regression model, the coefficients β0 and
β = (β1,β2, . . . ,βP) are estimated by

(
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where Y and X are the outcome and predictors respec-
tively. λ is a non-negative tuning parameter that con-
trols the amount of shrinkage, with increased shrinkage
for higher λ values. The optimal λ based on some cri-
terion, for instance mean-squared error (MSE), can be
estimated in a generalized cross-validation procedure [2]
or via bootstrapping [3]. In prognostic studies, the lasso
is particularly appealing for its ability to shrink regression
coefficients and automatically perform variable selection
by setting some coefficients to zero. This improves pre-
dictive performance and introduces parsimony. Models
with fewer predictor variables are usually easier to imple-
ment in practice and therefore we are sometimes willing to
sacrifice some predictive performance. For instance most
clinicians and primary care physicians in particular will be
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unwilling to use large modes that require the collection of
toomuch information.Whether or not the amount of par-
simony is satisfactory depends on the model performance
as well as its interpretability and practical usefulness. It
could be argued that because of the inherent shrinkage,
the lasso is free of optimism. However it is unclear if such
is the case. Thus, our first aim was to check optimism in
the predictive value of a lasso model through some form
of model validation.
Validation of prognostic models is paramount in ensur-

ing generalizability to new data [4]. A traditional approach
is to split data and perform model development (training)
on a sample, and model validation (test) on the remainder.
Any discrepancy between the training (apparent perfor-
mance) and the test performance is considered as evi-
dence of optimism. However, there is a substantial loss of
estimation precision from models developed on a subset
of the data [5,6]. Alternatively, bootstrapping procedures
that make full use of the data and give nearly unbiased
estimates of future model performance have been advo-
cated [5,7-9]. These procedures internally validate the
original model fitting process and provide an estimate of
the expected value of the optimism. In the same proce-
dure, a shrinkage factor that adapts parameters to improve
predictive performance [10,11] can be estimated.
Missing data are common in prognostic studies. Mul-

tiple imputation (MI) has been recommended to account
for the uncertainty caused by the missing data. Assuming
that the incomplete data is missing at random (MAR) and
correct imputation models are used, usually 5 to 10 impu-
tations are enough to yield correct statistical inference
[12,13]. Current guidance recommends that one imputa-
tion should be done per percent of incomplete observa-
tions [14]. Nevertheless, handling the multiply imputed
data sets in the model development and validation process
poses an extra challenge, and some strategies to go about
this have been discussed in the literature [12,15,16].
Vergouw et al. [16] and Heymans et al. [12] combined

MI with backward elimination (BE) and bootstrapping to
obtain a parsimonious prediction model. However, the
authors did not describe how the multiply imputed data
sets were handled in the validation procedure. Our sec-
ond goal was to investigate how internal validation should
be applied in the presence of multiply imputed data sets.
Two scenarios were considered; (i) the data sets that had
been completed via MI were resampled, and a pertinent
question was: for every bootstrap draw, how should sub-
jects be sampled across the imputed data sets? Should they
be the same across the imputed data sets or should sepa-
rate bootstrap samples be drawn from every imputed data
set? (ii) the incomplete data was resampled and then MI
was performed, thus incorporating the MI procedure in
the validation. Although the latter approach is expected
to perform better, it is more time consuming and we

also wanted to investigate methods that prevent extra
imputations.
In this paper, we constructed models to predict Chronic

Respiratory Questionnaire (CRQ) dyspnea 6 months
ahead using data from a cohort study onChronic Obstruc-
tive Pulmonary Disease (COPD) patients. We investigated
optimism of the lassomodel via bootstrap resampling, and
evaluated four approaches of handling multiply imputed
data in the resampling procedure on both the study data
and simulated data sets.
The rest of this paper is organized as follows. First we

describe the study data, and then enumerate the various
steps to construct and validate our models in the presence
of multiply imputed data. Second, we show results from
comparing four approaches in handling multiply imputed
data when quantifying optimism via bootstrapping. Third,
a simulation study that further investigated the differences
between the four approaches is presented. We end with a
discussion.

Methods
The study data
The data were based on an international prospective
cohort study on COPD patients. A total of 409 pri-
mary care COPD patients from Switzerland and the
Netherlands were recruited. At entry all patients had
GOLD stage II-IV (66%, 25% and 9% respectively), were
aged ≥ 40, had GOLD stage A-D (41%, 21%, 15% and 23%
respectively), and had been free of exacerbations for at
least four weeks. Themean age was 67 years. Patients were
contacted by telephone every 6 months within a 5 years
follow-up period. The study has been approved by all
local medical ethics committees (Academic Medical Cen-
ter, University of Amsterdam, The Netherlands; Kanton of
Zurich, Switzerland and Kanton of St Gallen, Switzerland)
and all patients provided written informed consent. For an
elaborated description of the study design and the baseline
characteristics of the patients see [17,18].

Outcomemeasures
The outcome was quality of life (QoL) dyspnea as mea-
sured by the CRQ at 12 months after entry. Question-
naires were self-administered [19,20] and consisted of 20
questions. The summary score was on a 7-point scale,
where 1 indicates the worst and 7 the best possible score.
We applied a penalized linear regression since the out-
come did not have a very skewed distribution. Alterna-
tively, an ordinal regression can be considered as well
since the outcome measure is ordinal, but with many
levels.

Candidate predictors
All predictors were selected on the basis of their prac-
ticality and suspected prognostic value in primary care.
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Some predictors were updated at subsequent visits. Forty
five predictors were initially considered. This included
previous CRQ dyspnea, fatigue, emotional function and
mastery along with their change scores (change between
baseline and 6 months data). A detailed description of all
candidate predictors and the data at baseline was pub-
lished previously [17,18]. There was more missing data at
6 months (for those covariates that changed over time)
compared to baseline. Thus, in order to investigate the
effect of missing data, we used covariates collected at
6 months to predict the outcome at 12 months. Only
patients who were still alive after 12 months (n = 387)
were included.

Missing data
Among the predictors and the outcome variable, data
were missing in the range of 0 to 19%. All missing data
were multiply imputed via the Multivariate Imputation by
Chained Equations (MICE) procedure [21]. The imputa-
tion model was adapted to the type of outcome. Incom-
plete dichotomous variables were imputed using a logistic
regression model, while predictive mean matching was
used to impute incomplete continuous variables. A linear
multilevel model was applied for incomplete continuous
variables that changed over time (though in the analysis
only information collected at 6 months was used to pre-
dict CRQ dyspnea 6 months ahead). All available data,
including the outcome variable, were used in the impu-
tation models [22]. We generated 10 imputed data sets.
Assuming MAR, using imputed outcome values in the
analysis can add needless noise to estimates. This is true
for estimating parameters that govern the conditional dis-
tribution of the outcome given the covariates [23]. Hence,
except for the null model, all imputed outcome values
(14%) were excluded from the rest of the analysis.

Variable selection, model fitting, performance and
validation
Variable selection andmodel fitting via the lasso
The optimal penalty tuning parameter of the lasso λ was
chosen, separately for each imputed data set, from a grid
of 40 penalty values. For each penalty value a bootstrap
corrected MSE was computed as follows. A model was
constructed on a bootstrap sample (drawn randomly with
replacement from the original data set, and of the same
size as the original data set), followed by a comparison of
the observed and predicted values in the original imputed
data set using the constructed model. This was repeated
100 times for each penalty value and the average MSE
was computed. The optimal penalty was chosen as the
one that generated the smallest average MSE. The model
per imputed data set that corresponded to the optimal
penalty was referred to as “best”. Also a “tolerance” model
was considered by applying a stronger penalty that had

an MSE within 3% of the optimum, yielding more par-
simony. The final best and tolerance models comprised
regression coefficients which were averaged over the ten
imputed data sets. Therefore, if a covariate was chosen, for
instance, in only one of the imputed data sets, its non-zero
value was divided by 10, resulting in a smaller regression
coefficient. Furthermore, since only the averaged model
will be presented in practice, instead of 10 different mod-
els, we assessed the predictive value of the averaged best
and tolerance models. This was done by checking their
discriminative and calibrative performances.

Model performance: discrimination and calibration
The discriminative performance of the best and tolerance
models was quantified with the MSE. Enumerated below
(shown schematically in Figure 1) are steps to acquire an
averaged apparent MSE over the multiply imputed data.

Step 1: Construct a model in all 10 imputed data sets
(original samples: Impi, i = 1, 2, .., 10) as
described in the previous section, and average
the regression coefficients over all data sets to
obtain one final model,Modelfin..

Step 2: UsingModelfin., determine the apparent
performance on Impi. This results in 10
apparent performances (Apparenti).

Step 3: The final Apparent performance is the average
over the 10 Apparenti performances.

To assess calibration, the predicted CRQ dyspnea out-
come scores were plotted against the observed values,
along with their averages by deciles of predicted values.
The corresponding calibration line was described using a
linear regression with the observed outcome regressed on
the linear predictor (LP): CRQ dyspnea = αLP + βLP×

Figure 1 A summary of the model construction steps and
evaluation of performance via the lasso.
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LP. The parameter βLP is termed calibration slope [24],
which can be seen as a uniform shrinkage factor [10,11].
A perfect calibration would yield a line with αLP = 0 and
βLP = 1. For a clinically good calibration, the averages per
decile should be within a +/ − 0.5 limit of the minimal
clinically important difference [25].

Validation
Bootstrap resampling for internal validation and estima-
tion of the expected optimism was performed based on
Harrell [6]. This was performed to validate our averaged
final model from the previous section. First, we consid-
ered validating the discrimination index, and below is
a description of four approaches to handle the multiply
imputed data sets in the validation procedure.
Approach 1: It is ensured that a bootstrap run selects

the same subjects across the imputed data sets. Hence,
bootstrap samples differ solely by the imputed values.

1. In a bootstrap draw select the same subjects over all
Impi to get Imp∗

i .
2. Redo every model building step from step 1 in the

original model construction (previous section). The
performance ofModel∗fin. on each Imp∗

i is evaluated
and averaged to obtain Apparent∗.

3. ApplyModel∗fin. to the original samples, Impi to
determine the averaged test performance, Test∗

4. Calculate the optimism, Optimism∗ as
Apparent∗ − Test∗

5. Repeat 1 to 4 at least 100 times to obtain a stable
estimate of the optimism.

6. The optimism-corrected performance, true
performance, is the difference of the Apparent (Step
3 in the Model performance section) and mean of the
100 Optimism∗’s (estimated in 4).

A schematic summary of approach 1 is shown in
Figure 2. If there are no missing data, the same data are
used in all 10 “subsamples”.
Approach 2: Records selected in a bootstrap run can

differ over the imputed data sets. Thus as opposed to
approach 1, subjects were not forced to be the same over
the Imp∗

i ’s.
Approach 3: Select just one of the imputed data sets and

perform the resampling procedure as in the case where
there is no missing data.
Approach 4: This approach differs from the previous

approaches in that it incorporates theMI procedure in the
validation. Here, for step 1, a bootstrap sample was taken
from the incomplete data set and then MI was performed
10 times. The procedure then proceeded as described in
step 2 to step 6 of approach 1.
The amount of miscalibration was quantified via the

calibration slope βLP. Correction was achieved by re-
estimating the intercept and multiplying each estimated
effect with a shrinkage factor s [10,11] that was deter-
mined as follows. In every bootstrap run, model construc-
tion per imputed data Imp∗

i was carried out as with the
original sample Impi and values of the linear predictors
LP∗ were calculated on the original samples. The intercept
(αLP∗) and slope (βLP∗) of LP∗ was estimated by regress-
ing the outcome in the original sample on the LP∗. This

Figure 2 An algorithm to calculate optimism in the presence of multiply imputed data based on Harrell [6]. The true performance= Apparent
(Step 3 in the Model performance section) - mean (B Optimism∗ ’s). B is the number of bootstrap samples and ∗ is used to denote bootstrap objects.
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process was repeated 100 times and s was calculated as
the mean of the 100 estimates of βLP∗ (β̄LP∗ ) [5,6,8]. The
re-calibrated model was ᾱLP∗ + β̄LP∗(α + βTX). Usually,
β̄LP∗ < 1, meaning that in the original model low predic-
tions of the outcome will be too low and high predictions
too high. In a case with over-shrinkage, β̄LP∗ > 1, imply-
ing that low predictions of the outcome will be too high
and high predictions too low. Multiplying each coefficient
by β̄LP∗ leads to shrinking (if β̄LP∗ < 1) or unshrinking (if
β̄LP∗ > 1), which usually improves both calibration and
MSE.

Software
All analyses were implemented using the R statistical soft-
ware, version 2.15.2 [26]. The mice package [21] was used
to perform MI. Variable selection and model fitting was
performed using the glmnet [27] and caret [28], packages.
Additional routines were developed to perform the boot-
strap resampling procedure in the presence of multiply
imputed data (See Additional file 1).

Results
In Figure 3, a summary of the parameter tuning proce-
dure, showing the bootstrap performance of all 40 penalty
values (on one imputed data set) is given. This illustrates
that an optimal λ value was identifiable. The optimal
lambda varied between 0.063 and 0.082 over the imputed
data sets for the best model, and between 0.064 and 0.166
for the tolerance model. In Table 1 we report averaged
coefficients of the best and tolerance models, and the
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Figure 3 Performance profile to determine the optimal lasso
penalty tuning parameter (on one imputed data set) for a grid of
40 penalty values based on 100 bootstrap samples. The optimal
penalty value corresponding to the best model is that which
generated the smallest average MSE over the bootstrap samples. A
tolerance model can be estimated as that with MSE within 3% of the
optimum in the direction of the stronger penalties.

number of times each variable was retained across the
imputed data sets. In total, 19 and 10 covariates were
retained at least once across the imputed data sets for
the best and tolerance model respectively. The estimated
optimism, calculated according to the four approaches
described above, along with the apparent and optimism-
corrected MSE’s are presented in Table 2. The estimate
of optimism was sensitive to the choice of handling
imputed data in the bootstrap procedure. Estimates from
approach 1, 3 and 4 suggested that there was substantial
optimism in the apparent performance. Larger values of
optimism were observed with approach 4. On the other
hand, approach 2 suggested there was very little or no
optimism.
The calibration plots in Figure 4 show that there was

over-shrinkage of the coefficients. This was more obvious
with the tolerance model, which is to be expected since a
stronger penalty was applied. The βLP ’s were greater than
1 (as shown by the solid black lines in Figure 4). Similar
estimates of β∗

LP were obtained over the four approaches
(2). The calibration was improved after re-calibrating the
coefficients. This is shown (for the case where β∗

LP was
estimated via approach 1) by the dashed red lines in
Figure 4. The re-calibrated coefficients are also provided
in Table 1.

Simulation study
Study setup
We simulated 20 covariates Xj from a multivariate normal
distribution with μj = 0 and σj = 1, for j = 1,2. . . , 20.
Most of the correlations were zero except for R1,5 =
0.72,R1,6 = −0.52,R2,8 = 0.74,R4,12 = −0.82,R6,16 = −
0.34,R10,20 = −0.38,R11,19 = 0.37,R19,20 = 0.65. X1 to
X10 were categorized as binary covariates. Dichotomiza-
tion of X1,X2,X6 and X7 was at their respective 50th per-
centile values. The categories for X3,X4,X8 and X9, and
for X5 and X10, was at their 30th and 20th percentile val-
ues respectively. The regression coefficients were taken to
be β0 (intercept) = 1.14,β1 to β5 = 0, β6 = −0.839,β7 =
1.131,β8 = −1.540,β9 = 1.426,β10 = 0.854,β11 to
β15 = 0,β16 = 0.457,β17 = −0.494,β18 = −0.738,β19 =
1.589,β20 = 0.845. The outcome was Y = β0 + XTβ + ε,
where ε ∼ N(0, sd = 1.74). Nine out of the 20 covari-
ates always contain missing values which were missing
completely at random, with percentage of missing values
based on draws from a binomial distribution; X2,X7,X12
and X17 with a 20% chance of missing, and X3,X8,X13 and
X18 with a 50% chance of missing. There were no missing
outcome data. For every simulated data set the following
procedures were performed.

1. A lasso linear regression model with all covariates
was fitted to the data in the setting without missing
values (NM).
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Table 1 Models with the best penalty value and the penalty within 3% of the optimum

Covariates Best model parameters 3% tolerance model parameters

Number Uncalibrated β Re-calibrated β Number Uncalibrated β Re-calibrated β

Intercept 10 1.038638 0.880085 10 1.30578 0.862149

Anxiety medication 10 -0.04399 -0.04534 1 -0.00066 -0.00075

Cardiovascular medication 10 -0.01752 -0.01774 0

Pulmonary medication 10 -0.01454 -0.01486 0

Use of long acting beta agonists 3 -0.00143 -0.00129 0

Influenza vaccination 10 -0.04283 -0.04365 0

Renal:chronic kidney disease 10 -0.06797 -0.06939 0

Lung function 6 0.000162 0.00018 0

HADS depression score 8 -0.00372 -0.00403 7 -0.00274 -0.00311

Physical activity score 10 0.02788 0.028764 6 0.005337 0.006068

Self-efficacy 2 3 0.01409 0.014715 3 0.006139 0.006978

Self-efficacy 3 1 0.000367 0.000384 0

Sit to stand test 10 0.001774 0.001901 10 0.001518 0.001632

crqdyspnea 10 0.654104 0.682812 10 0.60923 0.690902

crqfatigue 10 0.109821 0.114304 10 0.089453 0.100929

crqmastery 6 0.010376 0.010272 1 0.001909 0.002171

crqemotional 3 0.00078 0.00089 2 0.00134 0.001523

Feeling thermometer change score 10 -0.04587 -0.04658 0

HADS depression change score 10 0.039783 0.040061 0

crqdyspnea change score 10 -0.1582 -0.16403 10 -0.04866 -0.05207

The column “number” gives the number of times each variable was selected across the imputed data sets.

2. In the setting with missing data (WM), missing
values were imputed 10 times using MICE and a lasso
linear regression model was fitted to each imputed
data set. Similar to the study data, the final model
was an average of coefficients over the imputed data
sets. Hence covariates that were estimated to be zero
several times had small coefficients.

3. The expected optimism, referred to as
Optimisminternal, was estimated in the NM and WM
settings respectively via bootstrap resampling as
described by Harrell [6] and the four approaches
described above. For both settings, the final models

were evaluated on the original sample and on a new
independent data set (with no missing values) to
obtainMSEapparent andMSEexternal respectively. The
observed optimism (Optimismexternal) was the
difference betweenMSEapparent andMSEexternal . We
would expect Optimisminternal and Optimismexternal
to be close if the resampling procedure gives
unbiased estimates of optimism.

Simulation study results
We used sample sizes of n = 250 and 1000, and per-
formed 1000 simulations. The results are summarized in

Table 2 Apparent and optimism-correctedMSE values based on the four approaches (“Appr 1”, “Appr 2”, “Appr 3” and
“Appr 4”) of handlingmultiply imputed data sets, and the shrinkage factor (β̄LP∗ )

MSE0=2.4183 Averaged best model 0.9047 Averaged 3% tolerance 0.9672

Apparent MSEX Appr 1 Appr 2 Appr 3 Appr 4 Appr 1 Appr 2 Appr 3 App 4

Optimism -0.1162 -0.0127 -0.0988 -0.1452 -0.0656 -0.0081 -0.0537 -0.0781

Optimism corrected MSEX 1.0209 0.9174 1.0035 1.0499 1.0328 0.9753 1.0209 1.0453

β̄LP∗ 1.0443 1.0552 1.0361 1.0498 1.1368 1.1257 1.1136 1.1297
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Figure 4 Plots of the observed against the predicted CRQ dyspnea (range from 1 (worst) to 7 (best)) at 12 months. The gray diagonal line
represents perfect calibration. The black solid line and red dashed lines are the regression lines for uncalibrated and re-calibrated models. Black
open triangular points and red filled square points are based on deciles of predicted CRQ dyspnea from the uncalibrated and re-calibrated models
respectively. The dotted gray lines represent the +/ − 0.5 minimal clinically important difference. The raw data is represented by the gray points.
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Figures 5, 6, 7, 8 and 9, and in Additional file 2: Table
S1 which shows the means and corresponding 2.5th and
97.5th percentile values within parentheses.
Figures 5 and 6 give an impression of how frequent the

relevant (βj �= 0) and the irrelevant (βj = 0) covariates
were selected across the simulated data sets, with n = 250.
As earlier observed [29], the best model retained a large

number of irrelevant covariates (X1 to X5 and X11 to X15),
with the selection frequency ranging from about 45% to
55% for the NM setting. This was higher for the WM set-
ting (66% to 75%) because covariates were counted if they
were included in at least one of the imputed date sets. A
more desirable selection was achieved with the tolerance
models; selection frequency of the irrelevant covariates in
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Figure 5 Frequency of selection per covariate from the data without missing values (NM). “best” and “tolerance” correspond respectively to
models with the optimal penalty (smallest MSE) and a penalty that has MSE within 3% of the optimum.
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Figure 6 Frequency of selection per covariate (retained at least once across the 10 imputed data sets) from the data with missing values
(WM). “best” and “tolerance” correspond respectively to models with the optimal penalty (smallest MSE) and a penalty that has MSE within 3% of
the optimum.

the range 11% to 20% and 25% to 47% for the NM and
WM settings respectively. Similar findings were observed
with n = 1000, where much lower selection frequencies of
the irrelevant covariates were observed for the tolerance
model; ranging from 0% to 8% and 3% to 25% for the NM
and WM settings respectively. Notice that the relevant
covariates were selected much more frequently (selection
frequency generally ranging from about 79% to 100%)
than the irrelevant ones. In the NM setting, the lasso was
able to find the correct model (that is with respect to
selecting all the relevant predictors simultaneously) 97.1%
and 76.8% of the time for the best and tolerance mod-
els respectively. It was only one relevant variable off in
about 2.9% and 22.2% of the time for the best and toler-
ance models respectively. In the WM setting, considering
the case where variables were retained in at least 50%
of the imputed data sets, the correct model was selected
about 97.6% and 75.7% of the time for the best and toler-
ance models respectively. It was only one relevant variable
off in about 2.3% and 21.5% of the time for the best and
tolerance models respectively.
For both the NM and WM settings, the apparent MSE’s

were optimistic. Estimates of optimism along with 2.5th
and 97.5th percentiles are shown in Figure 7 for both NM
andWM settings. In the NM setting and with n = 250, the
mean Optimisminternal −0.421 (best model) and −0.344
(tolerance model) were close to but significantly differ-
ent from the mean Optimismexternal −0.410 and −0.324

for best and tolerance models respectively. With a larger
sample size, n = 1000, the mean Optimisminternal and
Optimismexternal were more similar and had smaller 2.5th
and 97.5th percentile values (see Additional file 2: Table
S1). In the WM setting, the mean Optimisminternal dif-
fered significantly between the four approaches of han-
dling imputed data in the validation procedure for both
n = 250 and 1000. Histograms of Optimisminternal from
these approaches are shown in Additional file 3: Figure S1
(n = 250). While the estimates from applying approach
1, 3 and 4 suggested that there was optimism in the
apparent performance, findings from approach 2 on the
other hand suggested little or no optimism. Similar to
the real data example, larger values of optimism were
obtained via approach 4. ThemeanOptimisminternal based
on approach 3 (best = −0.421, tolerance = −0.354)
was very similar to that obtained from the NM setting
(best = −0.421, tolerance = −0.344), because both used
just a single data set. Also, the meanOptimisminternal from
approach 1 (best = −0.343, tolerance = −0.301) and
approach 3 were smaller than the mean Optimismexternal
(best = −0.668, tolerance = −0.467), while that from
approach 4 (best = −0.708, tolerance = −0.474) was
slightly larger. However with a larger sample n = 1000,
apart from approach 2 which still suggested negligible
optimism, themeanOptimisminternal andOptimismexternal
were much more similar for both the NM and WM set-
tings (see Additional file 2: Table S1). Figure 8 summarizes
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Figure 7 Estimates of optimism from the simulation study. Optimism “Internal” was the difference between the bootstrap performance (on
bootstrap data) and the test performance (on original data). Optimism “Appr 1”, “Appr 2”, “Appr 3” and “Appr 4” were based on the four approaches
of handling missing data.

the estimated MSE values. Compared to the NM setting,
the MSEexternal was larger for the WM setting (probably
because more irrelevant covariates were retained).
There was suboptimal calibration due to over-

shrinkage, apparent from the mean βLP ’s which were > 1
in both the NM and WM settings with both n = 250 and
1000. As expected there was more shrinkage with the tol-
erance (tol) model since it applied a stronger penalty. The
means of β̄LP∗ also differed between the four approaches
of handling imputed data in the resampling procedure.
Estimates from all 4 approaches were more similar to each
other for the larger sample size n = 1000 (see Figure 9
and Additional file 2: Table S1).

Discussion
We constructedmodels to predict CRQ dyspnea 6months
ahead for a cohort of COPD patients by using the lasso
technique. This approach combines shrinkage and vari-
able selection, and is promising when prediction and
parsimony are goals of predictive modelling. It can also be

applied to generalized linear models such as the logistic
or Cox model [1,2]. Multiple imputation (MI) was imple-
mented to cater for incomplete data, and the optimal lasso
penalty for each imputed data set was determined via
bootstrapping.
Nineteen predictors were retained by the best model

(with the optimal penalty), which may be an unreasonable
large number of predictors to use in practice. A stronger
penalty can be applied to pick a smaller subset of covari-
ates without sacrificing too much performance. Here for
instance we chose a stronger penalty that had the MSE
within 3% of the optimum, resulting to a reduced sub-
set of 10 covariates. Another approach would be to apply
a “majority method” that selects only variables that were
retained in all imputed data sets. However, though par-
simony is desired for practice, it is often at the expense
of a lower predictive performance. On the other hand
the lasso prevents overfitting. But the large variability
in the set of selected predictors as demonstrated in our
simulation study and earlier by Van Houwelingen [29]
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Figure 8Means of estimated MSE values from the simulation study.MSE “Apparent” was the performance on the original data. MSE
“Corrected” = MSEapparent −Optimisminternal MSE “External” was the performance on an independent new data with no missing values MSE “Appr 1”,
“Appr 2”, “Appr 3” and “Appr 4” were based on subtracting the value of optimism estimated via the four approaches of handling missing data from
MSEapparent (with missing data).

is unappealing. It was observed in our simulation study
that the final best models often retained all the rele-
vant covariates but were also commonly contaminated
with irrelevant covariates, especially in the WM set-
tings. There was less contamination with the tolerance
models.
The calibration plots showed that there was over-

shrinkage of coefficients. Also, applying the lasso resulted
in optimistic estimates of model performance. This
implies that the lasso penalty chosen via bootstrapping
was optimal only for the data at hand. The same was
observed in the simulation study for both the setting with
(NM) and without (WM) missing data. Thus, as most
model building procedures, the model constructed via the
lasso still requires validation. Moreover, it has the ten-
dency of retaining redundant covariates. This was more
frequent for WM settings since different variables could
be selected for different imputed data sets. Some ways
to handle variable selection over multiply imputed data

sets have been addressed in the literature [30-33]. The
multiple imputation lasso (MI-LASSO), which applies a
group lasso penalty, has been proposed to select the same
variables across multiply-imputed data sets [31]. A com-
parable level of parsimony and model performance was
observed between the MI-LASSO model and our toler-
ance model with both the real data and the simulated
data sets. In the simulation study, we observed that the
frequency of selection of the relevant (X6 to X10 and
X16 to X20) and irrelevant (X1 to X5 and X11 to X15)
covariates using the MI-LASSO technique was very sim-
ilar to that obtained using our tolerance model. The
selection frequency of the irrelevant covariates was in
the range of 25% to 47% for our tolerance model and
25% to 65% for the MI-LASSO. The mean MSEcorrected
(MSEexternal within parentheses) over the 1000 simulated
data set (n = 250, approach = 4) was 3.559 (3.440) and
3.626 (3.508) for the MI-LASSO and our tolerance model
respectively.
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Figure 9Means of estimated of calibration slope parameters from the simulation study. βLP was the slope of the the linear predictor (LP)
estimated from regressing the observed outcome on LP from the original data. β̄LP∗ (shrinkage factor) was the slope of LP∗ estimated by regressing
the outcome in the original sample on the LP∗ from the bootstrap sample.

The estimate of optimism was sensitive to the choice of
handling the imputed data sets in the bootstrap resam-
pling procedure. This was observed with both the study
and simulated data sets. The results based on approach 1,
3 and 4 suggested that the lasso models were optimistic.
Approach 1, 2 and 3 were performed by resampling data

sets that had been completed via MI, and an important
question was how to sample subjects over the imputed
data sets. Approach 1 ensured that for a bootstrap draw,
the samples from each imputed data set differed only by
the imputed values as in the original data sets. In approach
2, bootstrap samples over the imputed data could differ
by the imputed values as well as the selected subjects.
This led to an underestimation of optimism (discussed
in the next paragraph). Approach 3 performed the vali-
dation procedure using only one imputed data set. This
was easier to perform as it mimicked the procedure where
there was no missing data, and required less bookkeeping.
Approach 4 on the other hand resampled the incomplete
data set and then applied MI, thus incorporating the MI
procedure in the validation. In the simulation study, the
mean Optimisminternal from approach 1 was significantly

smaller than that from approach 3, and both were biased
downward with respect to the mean Optimismexternal. In
the case of approach 4, the mean Optimisminternal was
more similar to Optimismexternal, though slightly biased
upward. The same was observed with the NM setting. A
more upward bias was observed when approach 4 was
performed such that only one imputation was derived
from a bootstrap sample taken from the original data with
missing values. So we advise to use multiple imputations.
The biases from approach 1, 3 and 4 were smaller for
n = 1000, where a smaller number of irrelevant covariates
were retained compared to when n=250, and were much
smaller with the tolerance models.
Contrary to approach 1, 3 and 4, approach 2 clearly

underestimated optimism since MSEcorrected for both n =
250 and 1000 were lower than MSEexternal, and even
lower than the theoretical MSE (1.742 = 3.028). The
explanation is that a bootstrap draw across the imputed
data sets differed by both the imputed values as well
as the selected subjects, introducing more heterogene-
ity between the bootstrap imputed data sets than there
should be. Consequently a more robust final model (that
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averaged coefficients from all 10 data sets) was achieved.
The performance of this model was similar in both the
bootstrap and the original samples, leading to a negligi-
ble estimate of optimism as observed with both the real
data and in the simulation study. Approach 2 was repeated
using 10 copies of the same data with no missing val-
ues, mimicking a set-up with 10 multiply imputed data.
This still gave very small values of Optimisminternal, which
wrongly suggested negligible optimism.

Conclusions
We advise that prognostic models constructed via the
lasso technique should also be evaluated for optimism.
When data are missing and resampling techniques are
used to estimate optimism, it does matter how multi-
ply imputed data sets are handled. Improper handling of
the multiply imputed data sets might results in substan-
tially large underestimation of optimism as is the case
with approach 2. We recommend approach 4 since it fully
replays every step that was performed with the original
data with missing values, and yields estimates of optimism
that are close to the Optimismexternal.

Additional files

Additional file 1: R function to perform resampling with caret
package in the presence of multiply imputed data. The “validate.train”
function below estimates optimism in predictive value via the bootstrap
resampling procedures described in approach 1 and 4 in the manuscript.
In approach 1 the completed data sets (via MI) are resampled. The same
subjects are selected across the imputed data sets so that the bootstrap
imputed data sets always differ only by their imputed values. In approach
4, the incomplete data set is resampled and then MI is performed using the
mice package. The function can be used to estimate optimism in the
predictive value of a linear regression model constructed within caret
using the train() function, with method = “glmnet”. In order to be
consistent with the output from caret, we assumed that the response
variable is always in the last column of every data set.

Additional file 2: Table S1. Simulation study results. The table presents
means of all estimates along with their corresponding 2.5th and 97.5th
percentile values within parentheses. These are based on 1000 simulated
data sets for both n = 250 and 1000.

Additional file 3: Figure S1. Distribution of the estimated expected
optimism values from the simulation study. These are based on 1000
simulated data sets (n = 250) for both the setting without (NM) and with
(WM) missing data.
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