
Computational Visual Media
DOI 10.1007/s41095-015-0030-4 Vol. 1, No. 4, December 2015, 291–307

Research Article

Inexact graph matching using a hierarchy of matching
processes

Paul Morrison1, Ju Jia Zou1 (�)

c© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Inexact graph matching algorithms have
proved to be useful in many applications, such as
character recognition, shape analysis, and image
analysis. Inexact graph matching is, however,
inherently an NP-hard problem with exponential
computational complexity. Much of the previous
research has focused on solving this problem using
heuristics or estimations. Unfortunately, many of these
techniques do not guarantee that an optimal solution
will be found. It is the aim of the proposed algorithm
to reduce the complexity of the inexact graph matching
process, while still producing an optimal solution for
a known application. This is achieved by greatly
simplifying each individual matching process, and
compensating for lost robustness by producing a
hierarchy of matching processes. The creation of
each matching process in the hierarchy is driven by
an application-specific criterion that operates at the
subgraph scale. To our knowledge, this problem has
never before been approached in this manner. Results
show that the proposed algorithm is faster than two
existing methods based on graph edit operations.
The proposed algorithm produces accurate results
in terms of matching graphs, and shows promise for
the application of shape matching. The proposed
algorithm can easily be extended to produce a
sub-optimal solution if required.

Keywords graph matching; inexact graph matching;
graph edit distance; graph edit operations;
shape matching

1 School of Computing, Engineering and Mathematics,
Western Sydney University, Locked Bag 1797,
Penrith, NSW 2751, Australia. E-mail: P. Morrison,
pwmorrison@gmail.com; J. J. Zou, J.Zou@
westernsydney.edu.au (�).

Manuscript received: 2015-10-26; accepted: 2015-11-24

1 Introduction

Graphs have proved to be extremely useful and
versatile tools in the areas of image processing,
computer vision, and pattern recognition. The
versatility of graphs stems from their ability to
represent virtually any kind of information in a way
that is amenable to various forms of interpretation
and manipulation.

Graph matching is the process of forming
correspondences between parts of one graph and
parts of another graph. Graph matching has been
used in many applications, particularly in the field
of visual media processing. They include 2D and 3D
image analysis (e.g., shape recognition), interactive
image editing (e.g., patch-based image synthesis),
document processing (e.g., handwritten character
recognition), biometric identification (e.g., human
face recognition), image databases (e.g., image
retrieval), video analysis (e.g., object tracking),
and biomedical applications (e.g., identification of
coronary arteries from medical images) [1–4]. A
typical problem in shape recognition can be tackled
in three steps, namely, the decomposition of a
shape into parts, the representation of the parts
and their relations using a graph, and the search
for correspondence between this graph and that of a
known object. In this case, the skeleton of the shape
is often used as the graph for shape representation
and matching [5]. For a typical problem in patch-
based image synthesis, an image is divided into
regions and then described by a graph where nodes
represent the regions and edges represent spatial
relations between the regions. The image can then
be modified by replacing some of its regions by
suitable regions obtained from an image database
using contextual graph matching [2]. The image can

291

292 Paul Morrison, Ju Jia Zou

also be augmented by adding extra regions based on
graph matching [4]. Interested readers are referred
to relevant review papers, e.g., Refs. [1, 3], for other
problems in visual media processing which can be
posed as graph matching problems.

A graph matching algorithm can generally be
placed into one of three broad categories: graph
isomorphism, subgraph isomorphism, and inexact
graph matching. If the two graphs being matched
are not identical, correspondences cannot be formed
by a graph isomorphism algorithm. Subgraph
isomorphism relaxes this constraint somewhat, and
allows matching of one graph with a subgraph
of another graph. However, the subgraph must
represent the other graph exactly for a match
to be made. Occlusion, articulation, and other
forms of noise are often present in real-world
applications, which only the third form of graph
matching, inexact graph matching, is robust enough
to resolve. Rather than indicating whether a match
exists or not, inexact graph matching outputs some
kind of similarity measure in addition to forming
correspondences between graph nodes and/or edges.
Inexact graph matching is the most useful and
commonly-used form of graph matching. Inexact
graph matching is the topic of this paper.

Tree search algorithms are commonly used to
perform inexact graph matching. In these methods,
a tree (state space) is constructed, where each
state represents a partial mapping between nodes
and/or edges in the two graphs being matched. The
goal is to find the state that has the lowest cost,
which represents the optimal match between the two
graphs.

The first method using tree search techniques
was developed by Tsai and Fu [6, 7]. Here, the
concepts of graph edit cost and graph deformation
are introduced. To guarantee that an optimal match
is always found, a large number of states will often
need to be searched. To reduce the number of states
searched, Tsai and Fu utilise any available heuristic
information to guide the search. For every child state
of a given state, they estimate a lower bound on
the cost from that child state to a goal state. This
information is then used to prioritise the searching
of different branches in the tree.

Various modifications to this idea were
subsequently proposed, in both branch-and-

bound algorithms and look-ahead algorithms such
as A* [6, 8]. Such algorithms have previously
been used in artificial intelligence [9]. While such
estimates using heuristics can drastically reduce
the time taken to search the state space, they
often do not guarantee that the optimal solution
will be found. Other techniques have also been
applied to the inexact graph matching problem,
such as relaxation labeling [10] and graduated
assignment [11]. While many of these algorithms
do not guarantee that an optimal solution will be
found, they are often very fast (they typically run in
polynomial-time). We refer readers to Refs. [12–14]
for more comprehensive reviews of inexact graph
matching algorithms.

Optimal inexact graph matching is an NP-
hard problem, with expected exponential-time
computational complexity. As in many graph-related
tasks of high computational complexity, inexact
graph matching algorithms often trade optimality
for faster time, and vice versa. Finding an optimal
solution may not be critical in many applications.
In other applications, however, an optimal solution
will be desirable [15]. Where optimality is required,
many inexact graph matching algorithms will only
be of practical use when matching graphs with a
few nodes and/or edges. The high computational
complexity of current optimal methods poses a
significant problem, which we attempt to address
in this paper. Indeed, there has been some recent
interest in reducing the computational complexity
of inherently NP-hard problems, particularly in the
field of graph theory [16–20].

We presume that the optimal solution not only
depends on the properties of the graphs being
matched, but also depends on the application
of the graph matching algorithm. This is often
implemented by embedding application-specific
attributes in the nodes and edges of the graphs, but
this is on a local scale only. A hierarchical matching
scheme is proposed, that includes an application-
specific criterion that operates on the subgraph
scale. This scheme allows an optimal match to
be found for the given application. The proposed
algorithm is based on graph edit operations, but
is less computationally intensive than the typical
method based on graph edit operations. The
proposed algorithm does not require heuristics or

292

Inexact graph matching using a hierarchy of matching processes 293

estimations, but rather allows optimizations through
the use of more application-specific information. To
our knowledge, the problem of high computational
complexity in inexact graph matching has never
before been approached in this way.

This paper is organised in the following manner.
In Section 2, the proposed algorithm is described
by building on the existing graph matching theory.
Section 3 presents a comparison between the
computational complexities of the proposed method
and an existing method that is typical of many
previous inexact graph matching algorithms. Results
are given in Section 4, and finally, conclusions and
opportunities for further research are discussed in
Section 5.

2 Hierarchical graph matching

2.1 Graphs

A graph is defined by a tuple g = (V,E, α, β) where
• V is the finite set of vertices (nodes),
• E is the finite set of edges,
• α : V → L is the node labeling function, and
• β : E → L is the edge labeling function.

L is a finite alphabet of labels for nodes and edges.
Labels, or attributes, are values derived from the
application-specific information on which the graph
is based. Assigning labels to nodes and edges, using
α and β, respectively, adds semantic information
to the graph representation. Edges are directed;
the edge e = (x, y) originates at node x ∈ V and
terminates at node y ∈ V . In this paper, the
notation exy is used to denote an edge originating
at node x and terminating at node y. Given an
edge e, orig(e) determines the node from which
e originates, and term(e) determines the node at
which e terminates. Let g1 = (V1, E1, α1, β1) and
g2 = (V2, E2, α2, β2) be two graphs to be matched.
Example 1

A graphical representation of two graphs being
matched is shown in Fig. 1(b). These graphs have
been derived from shape silhouettes, which are
shown in Fig. 1(a). Such a process might be applied,
for example, to the recognition of mechanical parts
in a manufacturing line. The appearance of noise in
any part of the image capture process may mean that
the derived graphs, such as the ones shown in Fig. 1,
do not match exactly. An inexact graph matching

Fig. 1 An example of two graphs to be matched. (a) Shape
silhouettes on which the graphs are based. (b) Derived graphs and
node numbering. (c) Node labels.

process is therefore required.
Because the nodes in this example represent

locations in 2D space, they have been labeled with
2D Cartesian coordinates (shown in Fig. 1(c)).
Edges are not labeled in this example; they capture
only the structural information of the graphs.

The graphs shown in Fig. 1 are used throughout
this paper to illustrate various concepts of the
proposed algorithm. In particular, forming sequences
of correspondences and calculating the associated
costs are described in Section 2.2. Transforming
one graph into the other using graph edit operations
is described in Section 2.3. Finding the minimum
cost match by tree search is presented in Section 2.4.
Identifying collapsible partial matches is presented in
Section 2.5. Grouping collapsible partial matches is
presented in Section 2.6. Collapsing for new graphs
is presented in Section 2.7. The overall hierarchy of
matching processes is described in Section 2.8. �

2.2 Inexact graph matching

Let a correspondence be an association between a
node v1 ∈ V1 in g1, and a node v2 ∈ V2 in g2,
(v1, v2) = V1 × V2. Let C be the set of all possible
correspondences between nodes in g1 and nodes in
g2. One node in a correspondence c may be the
null node, Λ, which represents a node that is part of
neither g1 nor g2. A match, m, represents a sequence
of correspondences Cm = (c1, c2, · · ·), and a cost of
forming its correspondences, mcost:

m = (Cm,mcost)
In other words, a match is a binary relation

from a subset of V1, V̂1 ⊆ V1, to a subset of
V2, V̂2 ⊆ V2, along with the cost of performing

294 Paul Morrison, Ju Jia Zou

such a mapping. A match’s cost is aligned with the
degree of similarity of the nodes that appear in the
correspondences (differences between the labels of
corresponding nodes), and the subgraphs implied by
the nodes that appear in the correspondences.

Note that the correspondences that appear in a
match are dependent on the edges in both graphs,
and the allowed graph edit operations (described
in Section 2.3). While this research focuses on
correspondences between graph nodes, it can easily
be extended to include correspondences between
graph edges.

The method of forming sequences of
correspondences and calculating the associated
costs is specific to the matching algorithm used.
The method used in this research is discussed in
the following sections. An optimal inexact graph
matching algorithm is required to find the match
that represents the optimal set of correspondences,
where the optimal match is the match with the
minimum global cost. A sub-optimal inexact graph
matching algorithm, however, is in general only
required to find a local minimum-cost set of
correspondences. The local minimum may or may
not be close to the global minimum.
Example 2

A sequence of correspondences for a match with a
possible global minimum cost, for the graphs shown
in Fig. 1(b), is {(1,1),(2,2),(3,3),(4,3),(5,4),(6,5)}. �

2.3 Graph edit operations

One of the oldest and most commonly used
measures of match optimality is the graph edit
distance. Graph edit distance defines the similarity
of two graphs in terms of the minimum set of
changes required to transform one graph onto the
other. Graph edit operations are used to obtain
the graph edit distance between two graphs. A
sequence of graph edit operations is applied to one
graph to transform it into the other graph. This
sequence is implied by a match and its sequence
of correspondences. Three types of graph edit
operations may be used to transform any graph into
another. These are node/edge substitution, deletion,
and insertion. We define a mapping function f of a
match m that places nodes of the two graphs into
correspondence, determining Cm:

f : {V1,Λ} → {V2 ,Λ}

A node x ∈ V1 is substituted for node y ∈ V2
if f(x) = y. A node x ∈ V1 is deleted from g1 if
f(x) = Λ, and a node y ∈ V2 is inserted into g1 if
f−1(y) = Λ.

2.4 Tree search algorithm

A tree (state space) search algorithm is often
used to find the minimum cost match. The state
space consists of a number of states, which
represent matches, arranged in a tree structure. The
match at the root of the state space contains no
correspondences. The first layer of states represents
matches with one correspondence, the second layer
with two correspondences, and so on. Throughout
this paper, the concepts of states and matches are
used interchangeably in the context of the tree search
algorithm. The tree search algorithm determines a
cost of placing any two nodes into correspondence,
ccost. The cost associated with any given match
is equal to the sum of the costs of the match’s
correspondences.

A state (other than the root state) is produced
by embedding a new correspondence in the state’s
parent state. We define a function ϕ that determines,
for a given state and its associated match, the
possible new correspondences that can be embedded
in the match to form new child states. The form
that ϕ takes is dependent on the specific tree search
matching algorithm used.
Example 3

Various definitions of ϕ have been proposed in the
literature. The following is an example that is similar
to that used in Ref. [21]. Let Vm,i denote the set of
nodes in match m that belong to the graph gi, i ∈
{1, 2}. Given m, ϕ returns correspondences between
nodes in g1 and nodes in g2 that are currently
not matched (i.e., not in any correspondences of
match m), and are connected by edges to nodes that
are matched. In addition, correspondences between
these nodes and Λ can be made:
ϕ(m) = {V̌m,1 × V̌m,2} ∪ {(x,Λ) : x ∈ V̌m,1} ∪

{(Λ, y) : y ∈ V̌m,2} (1)
where V̌m,i = {v : v ∈ (Vi−Vm,i), v ∈ {term(e) : e ∈
Ei, orig(e) ∈ Vm,i}} defines those nodes that are not
currently matched, but are connected to nodes that
are matched. V̌m,i defines the nodes that can appear
in any sub-match of match m. A sub-match of a
match m is a match that is produced by embedding

294

Inexact graph matching using a hierarchy of matching processes 295

a new correspondence in m. �
There are two considerations to take into account

when defining this function: (1) it affects whether
the optimal match can be found, and (2) it affects
the number of matches produced in the state space.
In many cases, these considerations are traded off
against each other. For example, a large number
of matches must often be produced in order to
find the optimal match. It is highly desirable that
the number of matches produced (searched) should
be minimised, whilst guaranteeing that the optimal
match will be found.

The first of the proposed changes in this
research is to vastly restrict the number of
correspondences returned by ϕ for any given
match. The implementation of ϕ used in this research
is based on that used by Eshera and Fu, given
in Eq. (1). We simplify this definition of ϕ by
preventing it from forming correspondences with
Λ. This function therefore becomes:

ϕ(m) = {V̌m,1 × V̌m,2} (2)
Modifying ϕ in this way has both the positive

effect of reducing the number of matches in the
state space, and the negative effect of reducing the
algorithm’s ability to find the optimal match. In the
following sections, we describe the methods that we
use to ensure that the optimal match is found after
simplifying ϕ in this way.

It should be noted that other definitions of ϕ may
be used to implement the proposed algorithm. The
goal is to simplify ϕ in such a way as to reduce the
computational complexity of the matching process.
The other requirement of ϕ is that “good” partial
matches should still be found by the tree search
algorithm. The importance of this requirement will
become apparent later.

2.5 Collapsibility criterion

During the tree search, partial matches will be
produced that have a low cost. Such matches
identify correspondences between nodes that have
similar attributes, and similar relationships between
corresponding nodes, but are incomplete. These
matches are likely to appear in a complete match
that has a low overall cost. The intention of the
collapsibility criterion of the proposed method is to
identify such partial matches, which we loosely term
“good” partial matches.

The proposed simplification of ϕ has the effect
of preventing structural alterations during the
matching process. Structural alterations are required
to compensate for noise such as articulation and
occlusion. The introduced collapsibility criterion
reinstates the possibility of structural alterations,
but only at certain points in the process. The
collapsibility criterion allows structural alterations
to occur where “good” low cost partial matches
have been identified. Allowing structural alterations
to occur at these points may be required to find
the lowest cost complete match. It is impossible
to provide an exact general definition of a “good”
partial match, as it is application-specific. However,
a “good” partial match should adhere to two
properties:

1. Low cost. If the partial match has a low cost,
then its correspondences are likely to appear in
a complete match that has a low overall cost,
which may be the global optimal match.

2. Minimum number of correspondences. To
determine in a meaningful way that a partial
match is likely to appear in a low cost
complete match, it should contain a number
of correspondences whose number is greater
than or equal to a defined minimum number of
correspondences. This also serves to improve
the efficiency of the proposed method.

A mathematical example of the collapsibility
criterion is given in Eq. (3). This example reflects
the above properties of a “good” partial match, and
gives an indication of the form that the collapsibility
criterion may take. Results presented in Section
4 demonstrate the practicality of this form of
collapsibility criterion.
Example 4

A “good” partial match for the graphs shown
in Fig. 1(b) may contain the sequence of
correspondences {(1, 1), (2, 2), (3, 3)}. The cost of
forming these correspondences would be low, yet
the match contains some minimum number of
correspondences (three). �

Identifying “good” partial matches is an important
aspect of the proposed algorithm. For reasons
that will become apparent, we label such matches
collapsible during the creation of the state space.
The condition that a match must satisfy in order
to be labeled collapsible is called the collapsibility
criterion: collapsible = f(m, g1, g2).

296 Paul Morrison, Ju Jia Zou

A partial match represents a match between
subgraphs of the two graphs being matched. The
collapsibility criterion therefore allows application-
specific information at the subgraph scale to be
applied to the matching process.
Example 5

The definition of the collapsibility criterion is
largely application-specific. In this example, we
define a “good” partial match as one that has a
cost that is substantially lower than the cost of any
of the match’s sub-matches, and has a number of
correspondences that is greater than some threshold:
collapsible = (min(CSm)− cm > cthresh) and

(nm > nthresh) (3)
where m is the match being tested for collapsibility,
CSm is the set of costs of the sub-matches
of match m, cm is the cost of match m,
nm is the number of correspondences in match
m, and cthresh and nthresh are the minimum
thresholds for cost and number of correspondences,
respectively. Using this collapsibility criterion,
the match with correspondences {(1, 1), (2, 2), (3, 3)}
between the two graphs shown in Fig. 1(b)
will be considered collapsible, as it has a small
cost in comparison to the cost of its sub-
matches (e.g., the match with correspondences
{(1, 1), (2, 2), (3, 3), (4, 4)}), and it has the required
number of correspondences, assuming suitable values
for cthresh and nthresh. While the collapsibility
criterion is application-specific, the example given
in Eq. (3) is general enough to apply to many
applications. �

In Example 5, two thresholds are used. While
the collapsibility criterion is application-specific,
it is likely that one or more thresholds will be
needed. It is unfortunate that thresholds and
application-specific heuristics are often introduced
when a graph matching algorithm is used in a
specific application. It will be interesting to see
if future inexact graph matchings can remove such
dependencies on thresholds.

2.6 Combining collapsible partial matches

After collapsible matches are identified, they are
combined to form groups of collapsible matches.
This is done to realise “good” matches between
groups of subgraphs. We define a grouping function,
δ(Mc, g1, g2), which determines the possible groups

of matches given a set of collapsible matches, Mc.
The simple grouping function that we use in this
research determines all possible combinations of
collapsible matches such that no two matches in a
combination have any common nodes:
δ(Mc, g1, g2) = {comb(Mc, 2) ∪ comb(Mc, 3) ∪ · · ·

∪ comb(Mc, |Mc|) : Vm ∩ Vn = ∅,
m 6= n, m, n ∈ comb(Mc, k),
k = 2, 3, · · · , |Mc|}

where comb(Mc, i) denotes the set of all i-
combinations of set Mc, and Vj denotes the set of
nodes in match j.

Note that this step may not be strictly necessary;
the optimal match will be found without applying
a grouping function. However, this step allows
the representation of application-specific information
across matched subgraphs, which may be useful in
some applications, and may serve to reduce the
running time of the proposed algorithm.

2.7 Collapsing for new graphs

For each group of collapsible matches, a collapse
operation is performed on g1 and g2, in order to form
new graphs, g′1 and g′2. The purpose of the collapse
operation is to preserve the fact that matches are
“good”, so that the remainder of the nodes in the
two graphs can be matched with this knowledge.
As discussed earlier, collapsing also allows matching
to continue from different parts of the two graphs,
allowing for structural alterations.

A collapse operation is performed for both graphs
being matched, given a group of collapsible matches.
In summary, for each graph, a new graph is produced
that is identical to the original graph with exceptions
regarding those nodes that appear in the group of
collapsible matches. For each collapsible match in
the group, the matched nodes are replaced by a
single node in the new graph with a label that
is derived from the labels of the original nodes in
the match. Edges in the original graph are either
deleted, modified, or copied directly to the new
graph, depending on the originating and terminating
nodes of each edge. This process is defined formally
in the remainder of this section.

Let a new graph created by a collapse operation
be g′i = (V ′i , E′i, α′i, β′i), where i ∈ {1, 2} identifies
the graph undergoing the collapse operation. Let M̂
denote a group of collapsible matches, and V̂i the

296

Inexact graph matching using a hierarchy of matching processes 297

set of nodes in M̂ that belong to the graph gi. V̂i,j

denotes the set of nodes in graph gi, that belong to
a particular collapsible match j. The set of nodes in
the new graph V ′i is defined as

V ′i = (Vi − V̂i) ∪ {vj : 1 6 j 6 |M̂ |}
where vj are new nodes, each of which replaces a set
of nodes of a collapsible match. Let V ′i,new = {vj :
1 6 j 6 |M̂ |} denote the new nodes in graph g′i. The
set of edges in the new graph is defined as follows:

E′i = (Ei − {exy : exy ∈ Ei, x, y ∈ V̂i})
∪{exy : x ∈ V ′i , y ∈ V̂i → V ′i,new}
∪{exy : x ∈ V̂i → V ′i,new, y ∈ V ′i }
∪{exy : x ∈ V̂i,j , y ∈ V̂i,k, j 6= k}

In essence, the edges in the new graph consist of
those in the original graph with the exception of
those between collapsed nodes, and with the addition
of those that are from existing nodes to new nodes,
from new nodes to existing nodes, and from new
nodes to new nodes. Note that an edge exy from
the original graph does not appear in the new graph
if both its originating node, x, and its terminating
node, y, are part of the same match being collapsed
(x ∈ V̂i,j and y ∈ V̂i,k, where j = k).

The node labeling function for g′i is the same as
for gi, except where nodes are being collapsed and
are replaced by new nodes. Where new nodes are
being labeled, α′ will be application-specific, and
will typically assign labels that are derived from
the labels of the nodes in the original graph that
is undergoing the collapse operation. The node
labeling function for the new graph is defined as
follows:

α′i =
{
αi : Vi → L, if v /∈ V̂i, v ∈ Vi

αnew : V ′i,new → Lnew, otherwise
where Lnew is an alphabet of labels for new nodes
and edges. αnew is essentially used to coalesce the
labels of the nodes being collapsed, and perhaps the
labels of the edges between those nodes, into a single
label for the new node.

The edge labeling function for g′i is the same
as for gi, except where one or both of an edge’s
originating and terminating nodes are new nodes
formed through the application of the collapse
operation. When either of these nodes are new
nodes, β′ will be application-specific, and will
typically assign labels that are derived from the
labels of the nodes that the edge connects or, if

applicable, the label(s) of the edge(s) that the new
edge replaces. The edge labeling function for the new
graph is defined as follows:

β′i =
{
βi : Ei → L, if x, y /∈ V̂i, exy ∈ Ei

βnew : E′i,new → Lnew, otherwise
where E′i,new denotes the new edges in graph g′i.
βnew is used to label those edges whose originating
node, terminating node, or both originating and
terminating nodes, are new nodes. Note that if
both nodes x and y connected to edge exy are being
collapsed and are from the same collapsible match
(x ∈ V̂i,j and y ∈ V̂i,k, where j = k), β′i is not
defined (see E′i, above).
Example 6

As mentioned previously, α′i and β′i are
application-specific. In this example, we describe
a simple definition of α′ that might be used in
matching graphs with node labels derived from
points in 2D space, such as those shown in Fig. 1.
We wish to define αnew, the function that assigns
labels to new nodes formed through applying
the collapse operation. If we apply the collapse
operation to a set of nodes V̂i,j in collapsible match
j, belonging to graph gi, we produce a new node v′j
in the new graph g′i. The label of node v′j is equal
to the average of the labels of the nodes in V̂i,j :

αnew(j) = 1
|V̂i,j |

|V̂i,j|∑
k=1

α(vk)

where vk ∈ V̂i,j . Here, the node labels are treated
as 2D vectors that, in the above equation, undergo
vector addition and scalar multiplication. As an
example, if nodes 1, 2, and 3 of graph g1 in Fig. 1(b)
were to be collapsed, the label of the resulting node
in the new graph would be

(
2, 16

3

)
. �

2.8 Hierarchy of matching processes

The overall algorithm, which uses the previously
defined steps, will now be described with reference
to Fig. 2. The two graphs are first matched using
a matching process that has been simplified in the
manner described in Section 2.4 (1 in Fig. 2). This
matching process is referred to as Matching Process
0 in Fig. 2. A portion of this matching process is
shown in the figure, with the correspondences of
some of the states that are produced, and the costs
associated with these states. During the matching

298 Paul Morrison, Ju Jia Zou

Fig. 2 The proposed hierarchy of matching processes, applied to the example graphs of Fig. 1. n0 and n1 identify new nodes that are created
by applying the collapse operation.

process, matches are marked as collapsible if they
satisfy the collapsibility criterion. The state of one
such collapsible match is State 3 of Matching Process
0. A number of combinations of collapsible matches
are then formed. Each match in a combination
represents a subgraph of g1, and a subgraph of g2.
Collapsing a combination is the process of deriving
two new graphs from g1 and g2, denoted by g′1 and
g′2. The process of collapsing State 3 of Matching
Process 0 is shown as 2 in Fig. 2.

Each pair of new graphs, g′1 and g′2, produced
by performing the collapse operation, is input to
a new matching process (3 in Fig. 2). This
matching process is referred to as Matching Process

1 for one of the possible pairs and Matching
Process 2 for another possible pair in Fig. 2.
Correspondences between new nodes resulting from
the collapse operation are forced to appear in all
matches produced by the new matching process. The
new matching process may produce new collapsible
matches based on the new graphs g′1 and g′2,
such as the match associated with State 3 of
Matching Process 1, which are treated the same
way as in the initial matching process. That is,
the matches are grouped, each group is collapsed,
and each new pair of graphs is input to a new
matching process. This new matching process is
referred to as Matching Process 3 in Fig. 2. The

298

Inexact graph matching using a hierarchy of matching processes 299

result of this recursive procedure is a hierarchy
of matching processes. The overall hierarchical
matching algorithm is summarised in Algorithm 1.
Example 7

In Fig. 2, nodes are labeled with 2D Cartesian
coordinates. These labels are used to calculate the
cost of forming each correspondence, in each match
in the state space. The initial correspondences
formed for the states in the first level of the state
space incur no cost. The cost of forming a new
correspondence is determined by first measuring
the average direction from nodes previously put
into correspondence to the nodes in the new
correspondence, for each graph. The cost is then
the absolute difference between these two directions.
Other cost functions can be defined in a similar way,
for other forms of node and/or edge labels. More
details can be found in Ref. [22]. �

With each collapse operation, the original graphs
are changed in some way, with the goal of
finding a match that represents a more optimal
set of correspondences. Just as each correspondence
formed by a matching process incurs a cost, a
collapse operation must also have an associated cost
or penalty. This cost is added to the cost of all

Algorithm 1 : Hierarchical graph matching procedure
1 11 11Input: two graphs to be matched: g1 and g2.
Output: the lowest cost match between g1 and g2.

1 return MATCH(g1, g2)
2 function MATCH(g1, g2)
3 perform matching process on g1 and g2
4 lcm← lowest cost match from the matching

process
5 identify collapsible matches from the matching

process (Section 2.5)
6 form groups of collapsible matches (Section 2.6)
7 foreach group of collapsible matches do
8 apply the collapse operation, to form g′

1 and
g′

2 (Section 2.7)
9 sub lcm← MATCH(g′

1, g′
2) (create a new

branch of the hierarchy using g′
1 and g′

2, and
obtain the lowest cost match from these
matching processes)

10 add cost of performing collapse to sub lcm

11 if sub lcm has a lower cost than lcm then
12 lcm← sub lcm

13 end
14 end
15 return lcm

matches formed by any matching process that is the
result of applying the collapse operation (line 10 of
Algorithm 1). For example, referring to Fig. 2, any
matches produced by Matching Process 1, or any of
its descendants in the hierarchy, will incur the cost
of performing the collapse operation at step 2 in the
diagram. In this research, and in the example shown
in Fig. 2, the cost of performing a collapse operation
is set to a fixed value (0.1 in the diagram). However,
it may easily be a function of the matches being
collapsed. Once the hierarchy of matching processes
has been constructed, the optimal match is simply
the match with the lowest overall cost.

The proposed method differs from the traditional
inexact graph matching method in two main ways.
Firstly, the proposed method simplifies ϕ, which
drastically reduces the number of states that
are searched by a single matching process and
consequently removes the guarantee of optimality.
Optimality is restored using the second aspect of
the proposed method: the collapsibility criterion and
hierarchical matching processes. The collapsibility
criterion allows additional states to be searched
that will possibly lead to the optimal solution. The
guarantee that the optimal solution is found amongst
the additional states is dependent on the application-
specific collapsibility criterion; the criterion must
identify those states that can lead to the optimal
solution. If this condition is satisfied, the optimal
solution is guaranteed to be found.

In general, the collapsibility criterion is
application-specific. In designing the collapsibility
criterion, it is useful to consider the sources of
noise that are likely to appear in the chosen
application, that will cause differences between
graphs representing similar information. These
sources of noise include articulation, occlusion,
changes in viewpoint, and spurious noise that may
cause additional nodes and/or edges in one or both
graphs being matched.

It may seem that the proposed method depends
heavily on knowledge of the chosen application. It
is true that additional application-specific knowledge
is required to implement the proposed collapsibility
criterion, and that this may effect the optimality
of the proposed method. In practice, however,
the application will always be known. Many
known optimisations, such as A*, utilise additional

300 Paul Morrison, Ju Jia Zou

application-specific knowledge to achieve the same
goals (gains in efficiency). Relaxation-based methods
require additional information in order to determine
good initial assignments or probabilities. We have
found that a simple collapsibility criterion that has
the properties discussed in Section 2.5 is tolerant
toward noise, produces the optimal solution, and
reduces the time taken to find the match.

3 Computational complexity analysis

3.1 Standard tree search

In this section, we analyse the computational
complexity of a typical inexact graph matching
algorithm using tree search. We use the definition
of ϕ that is similar to Eshera and Fu’s, given
in Eq. (1). While this makes the following analysis
specific to one particular algorithm, this algorithm
is typical of many. We aim only to capture the
general complexity of a class of algorithms so
that the benefits of the proposed method can be
demonstrated.

As before, let g1 and g2 be two graphs being
matched. Let n1 and n2 be the number of nodes in g1
and g2, respectively. For the purpose of this analysis,
we assume that all edges are bi-directional, and that
both graphs are fully-connected. We also assume
that all states in the tree must be searched to find
the optimal solution, which allows us to analyse the
algorithm as a depth-first tree search algorithm. The
computational complexity of depth-first tree search
algorithm, as given by Ref. [23], is O(bm), where b
is the branching factor (the maximum number of
successors of any state in the tree), and m is the
maximum depth of any state in the tree.

The upper bound on b occurs when a single pair
of nodes has been put into correspondence (the first
level in the tree). A state with maximum depth m is
produced by applying a sequence of correspondences
between a node in g1 and Λ, followed by a sequence
of correspondences between Λ and a node in g2, or
vice versa. These correspond to the second and third
sets in the union of sets of ϕ, shown in Eq. (1).
We can apply n1 or n2 of these correspondences
followed by n2 or n1 of these correspondences.
The computational complexity of the standard tree
search algorithm, subject to the exact definition of ϕ

is therefore:
O
(
(n1n2 + 1)n1+n2

)
(4)

3.2 The proposed algorithm

The proposed algorithm uses a matching process
with a lower computational complexity, but involves
the use of multiple matching processes. As discussed
in Section 2.8, the matching processes are arranged
in a hierarchy (tree). The overall algorithm may
therefore also be analysed as a depth-first tree search
algorithm. The computational complexity of the
proposed algorithm is O(bmh

h b
mp
p), where bh and mh

are the branching factor and maximum depth for
the overall hierarchy, respectively, and bp and mp
are the branching factor and maximum depth for
an individual matching process within the hierarchy,
respectively.

The branching factor for the overall hierarchy, bh,
is the maximum number of sub-matching-processes
produced by a single matching process through
applying the collapse operation. This has a one-to-
one correspondence with the maximum number of
groups of collapsible states produced by a matching
process, and therefore depends on the number of
collapsible matches produced. The chosen definitions
of ϕ and δ (the grouping function) therefore play
a role. Since the number of nodes in each graph,
and therefore the number of states in each matching
process, reduce as the depth in the hierarchy
increases, the upper bound on the branching factor
applies to the first (root) matching process in
the hierarchy. bh can be derived by analysing the
number of collapsible matches produced by the root
matching process. The maximum depth of any
matching process in the hierarchy, mh, occurs when
a sequence of collapses of single-match groups of
collapsible matches is performed, and each match
being collapsed contains the minimum number of
nodes from each graph, nthresh.

We now turn our attention to the complexity
of a single matching process within the hierarchy
of matching processes. Recall that the proposed
algorithm aims to reduce the computational
complexity of a single matching process. If we
simplify ϕ as described in Section 2.4, that is,
we remove the algorithm’s ability to perform
correspondences of nodes in either graph with Λ, the
branching factor of a single matching process can
easily be found. The maximum depth of a state in a

300

Inexact graph matching using a hierarchy of matching processes 301

single matching process, mp, occurs when a sequence
of correspondences between a node in g1 and a node
in g2 are made, in the root matching process of the
hierarchy. The overall computational complexity of
the proposed algorithm, subject to choice of ϕ, is

O

((⌊min(n1, n2)
nthresh

⌋
!
)⌊min(n1,n2)−1

nthresh−1

⌋

× ((n1 − 1)(n2 − 1))min(n1,n2)
)

(5)

In our analysis of this complexity, a number of
simplifications have been made. Equation (5)
provides an absolute worst-case complexity. In a
real application, the branching factor and maximum
depth will typically be much smaller than the worst
case.

3.3 Computational complexity comparison

To more easily compare the computational
complexity of the two algorithms, we input various
values of n1 and n2 into Eq. (4) and Eq. (5) to give
upper bounds on the number of matches produced.
The value of nthresh for the proposed method is also
varied. These comparisons are shown in Table 1.

Observe that the worst-case computational
complexity of the proposed algorithm is much
smaller than the standard tree search algorithm. By
increasing nthresh, we can significantly reduce the
number of matches produced (as there will be fewer
collapsible matches in each state space). However,
depending on the application, increasing nthresh may
reduce the algorithm’s ability to find the optimal
match. In this research, a value of three has proved
to be the most useful.

4 Experimental results

This section presents some results of the proposed
algorithm, in comparison with two previous optimal
inexact graph matching algorithms that are based on

Table 1 Computational complexity comparison

Standard tree Proposed algorithm complexity
n1, n2 search complexity nthresh = 2 nthresh = 3 nthresh = 4

5 1.41e14 1.68e7 1.05e6 1.05e6
6 6.58e18 1.90e12 9.77e8 2.44e8
7 6.10e23 3.66e15 6.27e11 7.84e10
8 1.02e29 1.52e23 2.66e14 1.33e14
9 2.81e34 1.98e27 2.33e19 7.21e16
10 1.22e40 6.27e37 1.58e22 9.73e19

graph edit operations. The proposed method is then
extended to produce sub-optimal solutions, and is
compared with a recent sub-optimal shape matching
method. To distinguish the optimal and sub-optimal
variants of the proposed method, this section refers
to them as the “optimal proposed method” and the
“sub-optimal proposed method”, respectively.

The cost function used for the proposed method
and other optimal methods is described in Example
7. A fixed cost of 0.1 is used for correspondences
between one node from either graph, and the null
node. The collapsibility criterion used is described
in Example 5, with cthresh and nthresh set to 0.1 and
3, respectively. All collapse operations incur a fixed
cost of 0.1. All algorithms have been implemented
using the C++ programming language, and have
been tested with a 2.52 GHz Intel CPU with 3.5 GB
of RAM.
4.1 Optimal inexact graph matching

In this section, the optimal proposed method
is compared with other optimal inexact graph
matching methods. The purpose of this section is
to show the benefits of the proposed method when
searching for the optimal solution. The first of the
previous optimal algorithms chosen for comparisons
is due to Eshera and Fu [21]. This seminal algorithm
utilises a state-space search method such as the one
described in Section 2.4, and performs graph edit
operations of node insertion, node deletion, and node
substitution. This algorithm is typical of many
inexact graph matching algorithms in the literature.

The second previous optimal algorithm chosen
for comparison is that of Berretti et al. [24].
Berretti et al. use an additional “node merging”
operation, which essentially replaces a set of
connected nodes with a new node. Whereas
the proposed algorithm implements a merging-like
operation between matching processes, Berretti et
al. perform their node merging operation as part
of a single matching process. The addition of this
operation therefore increases the complexity of a
single matching process. The suboptimal heuristic
also proposed by Berretti et al. is explored in
Section 4.2.

These two previous algorithms have been chosen
for comparison to highlight the role that the
employed graph edit operations and the complexity
of ϕ, play in determining the time taken to perform a

302 Paul Morrison, Ju Jia Zou

match. We believe that, while the adverse influence
of the number of graph edit operations on match
time may be apparent to those in the field, this
influence has received rather little analysis. The
following results demonstrate this effect and the
proposed algorithm’s ability to reduce it. Since all
three methods compared in this section are optimal,
we compare match time only.
4.1.1 Shape matching
The three optimal methods are first tested using
shapes from the Kimia-216 shape database [25]. The
graphs input to the three methods are derived from
the skeletons of shape silhouettes. A sample of
the shape silhouettes from the Kimia-216 database
are shown in Fig. 3 with their derived graphs
overlaid. The shape skeletons were extracted using
the method described by Morrison and Zou [26]. The
nodes of the derived graphs correspond to skeleton
junction and end points, and the edges of the derived
graphs correspond to the skeleton branches between
junction and end points. The positions of the nodes
in the plane are used for node attributes, and are
therefore used to calculate the costs of forming
correspondences between nodes.

Figure 4 shows a histogram of the match time
using the three optimal methods for shapes from
the Kimia-216 database. The optimal proposed
method performs almost all matches in under 10

Fig. 3 A sample of shapes from the Kimia-216 database and their
derived graphs.

Fig. 4 Histograms of match time for matching shapes from the
Kimia-216 database, using the optimal proposed method, Eshera and
Fu’s, and Berretti et al.’s.

seconds. While this is mostly true for the other
methods, a significant number of their matches are
not made in reasonable time (taking longer than
60 seconds). We have also observed (though it
is not shown) that the proposed method always
takes a shorter time than these previous methods
to perform any given match. Also, the method
of Eshera and Fu matches most combinations of
graphs faster than that of Berretti et al., who
introduce an additional operation. This demostrates
the influence of the number of available graph edit
operations on the complexity of the function that
determines each state’s successors. The proposed
method’s simplification of a single matching process
more than offsets the additional time introduced by
performing multiple matching processes.
4.1.2 Random graphs
In order to more fully test the proposed algorithm,
“random” graphs were used to test the three
optimal algorithms. The number of nodes and
edges in each graph was controlled, while the node
labels and configuration of edges were randomised.
What resulted were graphs with known sizes, but
varying complexity. The purpose of these tests is to
demonstrate the limitations of the three algorithms
in a controlled setting.

Figure 5 shows a plot of the average match time
for each of the algorithms, as the number of nodes
in the graphs is increased. For a given number of
nodes and edges, five graphs were generated. The
node attributes, and the originating and terminating
nodes of each edge, were randomised. The node
attributes are, once again, 2D Cartesian coordinates,
selected in the range 0.0 to 5.0 in the x- and

Fig. 5 Match time vs. number of nodes for random graphs. Runs
taking longer than 60 seconds are aborted.

302

Inexact graph matching using a hierarchy of matching processes 303

y-directions. Each graph is matched only with
other graphs with the same number of nodes and
edges. Results of matching graphs with different
characteristics are presented in Section 4.1.1.

All three algorithms are able to complete matching
in a reasonable time when the number of nodes in the
graphs is small (four or fewer nodes). As the number
of nodes is increased, there is a point at which any
algorithm becomes unable to complete in under 60
seconds. The optimal proposed method is faster than
the two previous methods, but fails to perform the
match in a reasonable time with some number of
nodes (seven nodes). This is due to the inherent
complexity of the inexact graph matching process,
which is retained by the proposed algorithm.

Note that we have presented here match time for
three algorithms implemented without the use of
heuristics or estimations to guide the search; all three
algorithms perform an exhaustive search of the state
space. This has been done in order to more clearly
demonstrate the effect that available operations has
on match time, and the advantages of the proposed
method.

4.2 Sub-optimal inexact graph matching

In the previous section, the proposed method
was compared with two other optimal methods
that are based on tree search and graph edit
operations. While the proposed method shows a clear
advantage in terms of match time, it cannot escape
the underlying high computational complexity of
optimal matching. In this section, we compare the
optimal proposed method with two other matching
methods that are sub-optimal. The first sub-
optimal method is the (optimal) proposed method
augmented with a simple technique proposed by
Berretti et al. [24] for improving match speed while
producing only a sub-optimal solution. We name
this method the “sub-optimal proposed method”, as
opposed to the “optimal proposed method”. The
second sub-optimal method is the method of Bai and
Latecki [5]. Bai and Latecki also use shape skeletons
to match shapes, but their technique is somewhat
different. Their approach is to compare shape widths
sampled from the shortest “skeleton paths” between
pairs of end points, and they do not consider
skeleton junction points or the structure of the
skeleton explicitly. Despite the different approaches
of these methods, comparing their results allows us

to evaluate the proposed method in the context of
shape matching, and the state of the art in this
field. We set all parameters of Bai and Latecki
to those values given in Ref. [5]. All methods are
compared in terms of accuracy using the Kimia-216
shape database. The sub-optimal algorithms tested
always produce a match quickly (usually in less than
one second), so a comparison in terms of match time
is not given.

Out of 2376 matches (the 11 closest matches
for each of the 216 shapes), the optimal proposed
method matches 767 shapes from the same category
as the query shape. The retrieval rate of the optimal
proposed method for the Kimia-216 database is
therefore 32.3%. Using similar calculations, the sub-
optimal proposed method and the method of Bai
and Latecki have retrieval rates of 31.8% and 34.8%,
respectively. While these retrieval rates do not
appear promising, it should be noted that they apply
to the current use of the proposed method in the
shape matching application. The performance of the
three methods for the shape matching application
is explored in more detail in the remainder of this
section, and various improvements are proposed.

Figure 6 shows a selection of matches made
using the optimal proposed method. The optimal
proposed method performs reasonably well for most
shapes, considering it utilises skeleton information
only. Contour information, while used to produce
the skeleton, is not used by the proposed matching
algorithm directly. In addition, the implementation
of the proposed method uses the simple cost function
described in Example 7 that is based purely on
relative angle differences. The results shown in
Fig. 6 should therefore be evaluated in terms of
the underlying graphs only. For the shape matching

Fig. 6 Selected results of the proposed method on the Kimia-216
database.

304 Paul Morrison, Ju Jia Zou

application, the proposed method can potentially be
improved with a more sophisticated cost function
that utilises more information.

The proposed method can easily be modified to
produce a sub-optimal solution in much shorter
time, if required. Berretti et al. [24] have chosen to
explore only the best cost match of the possible next
matches at each iteration. This means that there
are many branches of the state space that are left
unsearched, one of which may contain the global
optimal match. To demonstrate that the proposed
method can be extended to provide a sub-optimal
solution if required, it is modified using the approach
taken in Ref. [24]. Sample results from this method
are shown in Fig. 7. The results from the sub-
optimal proposed method deviate slightly from those
of the optimal proposed method. Overall, the sub-
optimal proposed method is not as accurate as the
optimal proposed method, in terms of matching the
underlying graphs. However, in most cases, the
difference is not significant.

As mentioned previously, the implementation of
the proposed method does not consider shape
contour information explicitly during the matching
process. This clearly affects the results, from the
perspective of matching shape silhouettes. Bai and
Latecki have recently proposed a shape matching
method that uses shape skeletons combined with
shape widths at equidistant locations along skeleton
paths between endpoints. Some results from testing
this method using the same shapes from the Kimia-
216 database are shown in Fig. 8.

For the shape silhouette matching task, the
method of Bai and Latecki outperforms both the
optimal and sub-optimal proposed methods in most

Fig. 7 Selected results of the sub-optimal proposed method,
modified using a “best-only” state space search method, on the Kimia-
216 database.

Fig. 8 Selected results of the shape matching method of Bai and
Latecki [5] on the Kimia-216 database.

cases. The overall retrieval rate of Bai and Latecki
is also slightly higher than the proposed method.
We believe that this is because they make use of
important shape contour information directly in the
matching process. We note that we could not obtain
the outstanding results given by Bai and Latecki [5].
This is most likely due to the use of a different
skeletonization method. Shape matching accuracy is
heavily dependent on both the shape representation
(in this case, the skeleton) and the shape matching
method itself. To achieve high accuracy, the shape
representation and matching method must be closely
aligned.

There are some cases where the method of Bai and
Latecki clearly does not produce accurate results.
Bai and Latecki do not use structural information
contained in the skeleton. This appears to put their
method at a disadvantage for some shapes, such
as the second query shape of Fig. 8. Here, the
skeleton captures the structure of the underlying
shape but, because the shape does not consist
primarily of ribbon-like parts, shape widths along
skeleton branches may not be a good representation
of contour information. The skeleton representation
is known to be of most utility when representing
ribbon-like shapes. The fourth query shape in Fig. 8,
on the other hand, consists entirely of ribbon-like
parts and the method of Bai and Latecki performs
extremely well. This highlights that, while placing
more emphasis on shape structure definitely adds
complexity, it is required for robust shape matching.

Finally, we illustrate the applicability of the
proposed method to the text character recognition
problem. From a matching perspective, text
characters are somewhat different to the shapes
contained in the Kimia-216 database. Because text

304

Inexact graph matching using a hierarchy of matching processes 305

characters consist mainly of strokes of comparatively
uniform width, structural information must play a
key role in matching. Furthermore, text characters
often contain loops, which presents problems to
many matching methods. Figure 9 shows some
results of matching in a database of eight characters
(“a” to “h”) from six different fonts.

While the proposed inexact graph matching
algorithm can match graphs containing loops or
cycles, the current application of the algorithm to
the shape matching problem does not capture shape
loops effectively (observe results for the “b” character
in Fig. 9). The graphs derived from shape skeletons
contain nodes placed on skeleton junctions and end
points only. To capture loops, nodes must be placed
on skeleton branches (e.g., at locations of high
curvature), or graph edges must somehow represent
positions along branches. The proposed inexact
graph matching algorithm can easily accommodate
such additional information. Loops appear to play a
large role in differentiating text characters, and are
therefore a very important aspect of the character
recognition problem.

4.3 Discussion

While sub-optimal methods outperform the
proposed method and other optimal methods
in terms of match time, some sacrifice in quality is
made. The sub-optimal proposed method performs
well in most cases, and shape matching retrieval
rates are similar. However, when results are analysed
in terms of the graph information only, the sub-
optimal proposed method is not as accurate as the
optimal proposed method.

The proposed method matches nodes in a way
that corresponds with a human’s perception of

Fig. 9 Selected results of the proposed method on a text character
database.

the graph structures. However, in order to match
shape silhouettes in a more meaningful way, contour
information must be used directly in the matching
process. The simple cost function used in this
application of the proposed method does not consider
shape contour information. The absence of this
information is reflected in the results. In future
research, the cost function used here will be extended
to include contour information.

While contour information appears to be
important for matching shapes from the Kimia-
216 database, structural information is more
important for text character recognition. The
relative importance of contour and structural shape
information varies depending on the type of shapes
being matched. A balance between the two is clearly
required for generic shape matching. The proposed
method’s performance in text character matching
can further be improved by using additional
skeleton-based information (such as nodes in areas
of high curvature) to aid in differentiating characters
that contain loops.

The proposed method, being based on early
attributed relational graph (ARG) matching
methods, can easily be extended in these directions
without any change to the underlying algorithm.
These changes will improve the proposed method’s
performance in the application of shape matching.

Most recent work on inexact graph matching has
attempted to produce good sub-optimal solutions.
This paper takes a very different approach, and
attempts to reduce the complexity of finding the
optimal solution. Such an approach is, of course,
beneficial only if the optimal solution is required
or presents a significant improvement over the
expected sub-optimal solution. The results shown
in this section demonstrate both the advantages and
disadvantages of the proposed approach: there is a
limit to the size of the graphs that can be matched,
but it produces better results than a sub-optimal
method in many cases. We believe that optimal
solutions are of high interest to the community,
and that finding optimal solutions will become more
feasible in the near future.

It may be argued that the inexact graph matching
problem itself implies uncertainty, and therefore an
optimal solution is not necessary. However, we argue
that the uncertainty inherent in the problem itself

306 Paul Morrison, Ju Jia Zou

should be separated from the uncertainty incurred
by the matching algorithm. The ultimate goal of
a matching algorithm is to determine how similar
two graphs are. Erroneous or sub-optimal results
may have a detrimental effect on the decisions made
using such similarity measures. Many applications,
such as handwriting recognition or optical character
recognition (OCR), rely on accurate similarity
measures in order to match shapes correctly.

We have already mentioned that reducing
the complexity of computationally-intensive graph-
theoretic algorithms is gaining renewed interest.
Also, with the increasing use of parallel processing
techniques, computationally-intensive algorithms
designed for such parallelism will make many
previously-intractable methods useful. The proposed
method is amenable to such techniques, which will
be used to develop the proposed method in future
research.

5 Conclusions

In this paper, we have proposed a method of
reducing the computational complexity of the
inexact matching process. The proposed method
is able to produce the optimal solution, subject
to an application-specific criterion that operates at
the subgraph level. Experimental results and a
comparison of the computational complexity of the
proposed algorithm with a previous algorithm that
is based on tree search demonstrate that our aim has
been achieved.

We believe that this work contributes significantly
to the community, by proposing an approach to the
inexact graph matching problem that is substantially
different to the existing literature, demonstrating the
method’s application to a common use of inexact
graph matching, and demonstrating the method’s
potential use in other applications by including an
estimation that allows for sub-optimal matches. For
the application of shape matching, various potential
improvements to the implementation of the proposed
method are discussed.

While the implementation presented in this paper
is based on the tree search algorithm of a particular
previous study, we believe that the technique may
be expanded to other methods of performing inexact
graph matching. These ideas may even be extended
to inexact graph matching algorithms that are not

based on tree search and graph edit operations. This
is an area for future research. By breaking the overall
matching process down into a number of smaller
matching processes, the proposed method can easily
be implemented with parallel processing in mind.

Results show that the proposed method is able
to match graphs with more nodes in a reasonable
amount of time.

Acknowledgements

The authors wish to express their gratitude to
associate professor Weidong (Tom) Cai at the
University of Sydney in Australia for his advice and
help in relation to the publication of this article.

Open Access This article is distributed under the
terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are
credited.

References

[1] Conte, D.; Foggia, P.; Sansone, C.; Vento, M. How
and why pattern recognition and computer vision
applications use graphs. In: Studies in Computational
Intelligence, Vol. 52. Kandel, A.; Bunke, H.; Last, M.
Eds. Springer-Verlag Berlin Heidelberg, 85–135, 2007.

[2] Hu, S.-M.; Zhang, F.-L.; Wang, M.; Martin, R.
R.; Wang, J. PatchNet: A patch-based image
representation for interactive library-driven image
editing. ACM Transactions on Graphics Vol. 32, No.
6, Article No. 196, 2013.

[3] Vento, M.; Foggia, P. Graph matching techniques
for computer vision. In: Graph-Based Methods in
Computer Vision: Developments and Applications.
Bai, X.; Cheng, J.; Hancock, E. Eds. IGI Global, 1–41,
2012.

[4] Wang, M.; Lai, Y.-K.; Liang, Y.; Martin, R. R.; Hu,
S.-M. BiggerPicture: Data-driven image extrapolation
using graph matching. ACM Transactions on Graphics
Vol. 33, No. 6, Article No. 173, 2014.

[5] Bai, X.; Latecki, L. J. Path similarity skeleton graph
matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 30, No. 7, 1282–1292, 2008.

[6] Tsai, W.-H.; Fu, K.-S. Error-correcting isomorphisms
of attributed relational graphs for pattern analysis.
IEEE Transactions on Systems, Man and Cybernetics
Vol. 9, No. 12, 757–768, 1979.

[7] Tsai W.-H.; Fu, K.-S. Subgraph error-correcting
isomorphisms for syntactic pattern recognition. IEEE
Transactions on Systems, Man and Cybernetics Vol.
13, No. 1, 48–62, 1983.

306

Inexact graph matching using a hierarchy of matching processes 307

[8] Berretti, S.; Bimbo, A. D.; Vicario, E. Efficient
matching and indexing of graph models in content-
based retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 23, No. 10,
1089–1105, 2001.

[9] Nilsson, N. J. Problem-solving Methods in Artificial
Intelligence. McGraw-Hill Pub. Co., 1971.

[10] Christmas, W. J.; Kittler, J.; Petrou, M. Structural
matching in computer vision using probabilistic
relaxation. IEEE Transactions on Pattern Analysis
and Machine Intelligence Vol. 17, No. 8, 749–764,
1995.

[11] Gold, S.; Rangarajan, A. A graduated assignment
algorithm for graph matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 18, No.
4, 377–388, 1996.

[12] Conte, D.; Foggia, P.; Sansone, C.; Vento, M.
Thirty years of graph matching in pattern recognition.
International Journal of Pattern Recognition and
Artificial Intelligence Vol. 18, No. 3, 265–298, 2004.

[13] Foggia, P.; Percannella, G.; Vento, M. Graph matching
and learning in pattern recognition in the last 10
years. International Journal of Pattern Recognition
and Artificial Intelligence Vol. 28, No. 1, 1450001,
2014.

[14] Livi, L.; Rizzi, A. The graph matching problem.
Pattern Analysis and Applications Vol. 16, No. 3, 253–
283, 2013.

[15] Gregory, L.; Kittler, J. Using graph search techniques
for contextual colour retrieval. In: Lecture Notes in
Computer Science, Vol. 2396. Caelli, T.; Amin, A.;
Duin, R. P. W.; de Ridder, D.; Kamel, M. Eds.
Springer-Verlag Berlin Heidelberg, 186–194, 2002.

[16] Eppstein, D. Quasiconvex analysis of multivariate
recurrence equations for backtracking algorithms.
ACM Transactions on Algorithms Vol. 2, No. 4, 492–
509, 2006.

[17] Fomin, F. V.; Grandoni, F.; Kratsch, D. Measure and
conquer: Domination—A case study. In: Lecture Notes
in Computer Science, Vol. 3580. Caires, L.; Italiano,
G. F.; Monteiro, L.; Palamidessi, C.; Yung, M. Eds.
Springer-Verlag Berlin Heidelberg, 191–203, 2005.

[18] Fomin, F. V.; Grandoni, F.; Kratsch, D.; Lokshtanov,
D.; Saurabh, S. Computing optimal steiner trees in
polynomial space. Algorithmica Vol. 65, No. 3, 584–
604, 2013.

[19] Van Rooij, J. M. M.; Bodlaender, H. L. Exact
algorithms for edge domination. Algorithmica Vol. 64,
No. 4, 535–563, 2012.

[20] Woeginger, G. J. Exact algorithms for NP-hard
problems: A survey. In: Lecture Notes in Computer
Science, Vol. 2570. Jünger, M.; Reinelt, G.; Rinaldi,
G. Eds. Springer-Verlag Berlin Heidelberg, 185–208,
2003.

[21] Eshera, M. A.; Fu, K.-S. A graph distance measure for
image analysis. IEEE Transactions on Systems, Man
and Cybernetics Vol. 14, No. 3, 398–408, 1984.

[22] Morrison, P. Shape matching based on skeletonisation
and inexact graph matching. Ph.D. thesis. Western
Sydney University, 2011.

[23] Russell, S.; Norvig, P. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 1995.

[24] Berretti, S.; Bimbo, A. D.; Pala, P. A graph edit
distance based on node merging. In: Lecture Notes in
Computer Science, Vol. 3115. Enser, P.; Kompatsiaris,
Y.; O’Connor, N. E.; Smeaton, A. F.; Smeulders, A.
W. M. Eds. Springer-Verlag Berlin Heidelberg, 464–
472, 2004.

[25] Sebastian, T. B.; Klein, P. N.; Kimia, B. B.
Recognition of shapes by editing shock graphs. In:
Proceedings of the 8th IEEE International Conference
on Computer Vision, Vol. 1, 755–762, 2001.

[26] Morrison, P.; Zou, J. J. Triangle refinement in a
constrained Delaunay triangulation skeleton. Pattern
Recognition Vol. 40, No. 10, 2754–2765, 2007.

Paul Morrison completed his Ph.D.
degree in 2011 at the Western Sydney
University, Australia, whilst studying
topics in image processing and shape
recognition. He currently pursues
research and development at CiSRA
in Sydney, Australia, and is a member
of the Institute of Electrical and

Electronics Engineers (IEEE).

Ju Jia Zou received his B.S. and
M.S. degrees in radio-electronics
from Zhongshan University (also
known as Sun Yat-Sen University)
in Guangzhou, China, in 1985 and
1988, respectively, and Ph.D. degree
in electrical engineering from the
University of Sydney, Australia, in

2001. Currently, he is a senior lecturer with School of
Computing, Engineering and Mathematics at Western
Sydney University, Australia. He was a research associate
and then an Australian postdoctoral fellow at the University
of Sydney from 2000 to 2003. His research interests include
image processing, pattern recognition, computer vision,
and their applications. He has been a chief investigator for
a number of projects funded by the Australian Research
Council. He is a member of the Institute of Electrical and
Electronics Engineers (IEEE).

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

