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Abstract Hopf algebra methods are applied to study Drin-
feld twists of (3 + 1)-diffeomorphisms and deformed gen-
eral relativity on commutative manifolds. A classical nonlo-
cality length scale is produced above which microcausality
emerges. Matter fields are utilized to generate self-consistent
Abelian Drinfeld twists in a background independent man-
ner and their continuous and discrete symmetries are exam-
ined. There is negligible experimental effect on the standard
model of particles. While baryonic twist producing matter
would begin to behave acausally for rest masses above ∼1–
10 TeV, other possibilities are viable dark matter candidates
or a right-handed neutrino. First order deformed Maxwell
equations are derived and yield immeasurably small cosmo-
logical dispersion and produce a propagation horizon only for
photons at or above Planck energies. This model incorporates
dark matter without any appeal to extra dimensions, super-
symmetry, strings, grand unified theories, mirror worlds, or
modifications of Newtonian dynamics.

1 Introduction and motivation

For several decades noncommutative manifolds have been
an active area of mathematics research and many of these
methods have been adopted by theoretical physicists to study
the quantum properties of spacetime at the Planck scale [1–
4]. Ideas from Hopf algebras, deformed diffeomorphisms,
and quantum Lie algebras have been utilized to investigate
models of quantum spacetime and field theory where the
coordinates xμ are promoted to noncommuting operators
obeying [x̂μ, x̂ν] = i θ̂μν . There have also been studies
of noncommutatively deformed classical spacetimes [5,6],
which introduce a nonlocal star product of objects living on
a still classical manifold, meaning f � g �= g � f . Here
we apply Hopf algebras to commutatively deformed curved
classical manifolds, where f � g = g � f . The commu-
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tative deformation approach to classical manifolds has just
recently begun to be explored by researchers [7–9] who stud-
ied flat spacetime. In this work the Hopf algebra approach is
physically motivated by recent studies [10] about how back-
ground independent theories of canonical quantum gravity
can display microcausality in some suitable classical limit;
that is, explaining how gauge invariant operators (Dirac
observables) at spacelike distances can commute in gener-
ically curved spacetimes. There it was demonstrated that a
discretized relational framework approach to on shell back-
ground independent gauge theories of gravity can possess an
emergent light cone structure and microcausality provided
there exist finite range nonlocal interactions, which do not
have to be of Planck scale. This allows classical spacetime to
acquire microcausality naturally even if the underlying quan-
tum geometry does not possess that property. However, those
results were based on Lieb–Robinson methods adopted from
solid-state physics [11] and did not provide a microscopic ori-
gin for the classical spacetime nonlocalities. Here that gap is
filled by examining commutatively deformed 4-dimensional
curved Lorentzian manifolds where the nonlocal action of
the (3+1)-diffeomorphism symmetries is described by Hopf
algebras possessing a suitable Drinfeld twist. The deformed
diffeomorphisms’ nonlocal action on the physical fields dif-
fers from the point-wise action in undeformed classical gen-
eral relativity, and those deformed symmetries obey a dis-
tinct Lie algebra, implying different physics. Aside from the
commutative �-product, it is sufficient to consider Hopf alge-
bras with twists satisfying an Abelian constraint on their
vector field generators [6,12]. Imposing background inde-
pendence requires those generators to be self-consistently
related to matter fields. As a result it is found that the sub-
tly deformed, but still classical, theory of spacetime natu-
rally produces a nonlocality length ξc which can be larger
than the Planck length LP , and so spacetime acquires micro-
causality at longer lengths via the Lieb–Robinson route [10].
Spacetime remains classical in the sense that its gravitational
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degrees of freedom are not promoted to operators and their
quantum fluctuations are ignored, while the matter fields on
spacetime are quantum. Unexpectedly, the requisite matter
fields (particle zoo) may be dark matter candidates. In some
cases they have global continuous and discrete symmetries,
and may even display symmetry breaking condensate ground
states. In a sense using a Drinfeld twist to produce an on
shell nonlocality length ξc is complementary to the asymp-
totic safety point of view [13,14], where ξc emerges as a
correlation length associated with a renormalization group
fixed point. It is also noteworthy that theories of gravitation
based on nonlocal vector bosons and second rank tensors
were explored starting in the early 1990s [15].

The outline of the remainder of the article is as follows:
Sect. 2 provides a hopefully self-contained introduction to the
basics of Hopf algebras and deformed differentiable man-
ifolds. This overview relies heavily on [6], and it is not
intended to be complete, but is rather directed toward the gen-
eral reader in order to equip them with some intuition regard-
ing Hopf algebras. Section 3 discusses the physically rele-
vant particular case of commutative 4-dimensional curved
Lorentzian manifolds and Abelian twists, and the technical
problems it overcomes. Section 4 imposes the requirement
of background independence on such twists by introducing
a new sector of matter fields, and their associated continuous
and discrete symmetries are then examined. It also presents
the idea of self-consistent twisting. Section 5 provides esti-
mates for the nonlocality length ξc implied by this physical
picture and leads the reader on a guided tour of the parti-
cle zoo. The theoretical and experimental relationship with
the standard model is discussed. Section 6 examines how
the new particles could be dark matter candidates. Section 7
turns to deformed classical electromagnetism: The first order
deformed Maxwell equations are derived, and the dispersion
and attenuation of plane waves traversing cosmological dis-
tances through a dilute homogeneous gas of the new particles
are discussed. Section 8 concludes the article with a self-
criticism of the approach, followed by possible directions
for future work, and a brief summary.

2 Introduction to Hopf algebra methods

Why Hopf algebras? General relativity (GR) is a diffeomor-
phism (diff) invariant theory. A diff may either be viewed as
active, that is as a transformation of all the fields by drag-
ging them to new coordinates keeping some arbitrary set of
coordinate frames fixed (an alibi); or it may equivalently be
viewed passively, as a field transformation under a coordi-
nate transformation (an alias). Diff symmetry distinguishes
GR from the other symmetries in the standard model on flat
(Minkowskian) spacetime. In this sense GR is a fully back-
ground independent theory: the coordinates have no physical

meaning and are merely calculational bookkeeping devices;
there are no special coordinate points. Instead one speaks of
events, e.g. this is the event where particles A and B inter-
act and transform into C and D. It is the fields at events
and their relationships that describe physical reality; distance
and geometry themselves arise from these fields [16]. In GR,
infinitesimal diffs act in an event-wise fashion. The word
“point” should really be interpreted as “event.” That is, the
infinitesimal diffs in GR depend only on what is going on at an
event (and its infinitesimal neighborhood), so they are ultralo-
cal and their action on objects occurs over a vanishing proper
distance. We are interested in deformed GR, where the action
of infinitesimal diffs becomes nonlocal over some proper dis-
tance ξc �= 0. Hopf algebraic methods describe this utilizing
a coordinate-free language, thereby maintaining the essential
background independence of GR. This requires a deformed
concept of tensors (which are defined by their transformation
rule under diffs), as well as deformed Levi-Civita connec-
tions and covariant derivatives. Then a deformed Riemann
curvature tensor can be defined, and one can finally write
down a deformed action for the geometric degrees of free-
dom (gravity). Moreover, it is found that a special class of
Hopf algebras encapsulates the key notions of monotonic-
ity and braiding, which are necessary to keep gauge theories
of canonical gravity from violating gauge invariance; i.e.,
they should be anomaly free. If deformed classical mani-
folds were merely a matter of replacing point-wise products
with a nonlocal ones, then there would be no need to use
the abstract technology of Hopf algebras. However, if one is
concerned about the role of symmetries, their Lie algebras,
and background independence, Hopf algebras are necessary
because they describe how those symmetries act on objects
living in spacetime while keeping the theory mathematically
consistent.

The story starts out with an D-dimensional differentiable
manifold M, and the vector space of smooth real or com-
plex vector fields � on M. This vector space is equipped
with the C-bilinear antisymmetric Lie bracket [u, v] for
u, v ∈ �, which obeys the Jacobi identity. The Lie alge-
bra L = (�, [·, ·]) may be interpreted as infinitesimal diffs
of M, which drag fields an infinitesimal distance along the
local value of the vector field. The action of L on objects
such as functions, vectors, differential forms, or tensors resid-
ing on M is given via the Lie derivative Lv satisfying
Lv◦Lw−Lw◦Lv = L[v,w]. Here ◦ denotes composition of
operations. Notice that a Lie derivative along a vector field
is a background independent operation: acting on a tensor
(density) it produces a tensor of the same type (and weight).
Not all derivations do this, for example the coordinate deriva-
tive acting on a tensor generally does not yield a tensor. Also
associated with the infinitesimal diff v is its inverse−v. One
can also define a unit 1 of L by setting L1

.= id. Moreover,
Lv acts on tensor products of tensors or fields τ, τ ′ according
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to the Leibniz rule: Lv(τ ⊗ τ ′) = Lv(τ )⊗ τ ′ + τ ⊗Lv(τ
′).

One may also introduce a normalization map ε : � → R

called the co-unit such that ε(v) = 0,∀v ∈ � and ε(1) = 1.
From L one constructs its universal enveloping algebra U�

as follows: First let Afree, the free associative and unital
algebra, be the set of all finite sums of finite products of
vector fields and 1. The Lie bracket information is encap-
sulated in the ideal I freely generated by the elements
uv − vu − [u, v],∀u, v ∈ �, where product is denoted
by juxtaposition. U� is then defined as the factor algebra
Afree/I. The elements of U� act on objects inhabiting M
from the left via the representation Lξη = Lξ ◦ Lη and
L1 = id. The product on U�: μ : U� ⊗ U� → U� is
also sometimes denoted by juxtaposition: μ(ξ ⊗ η) = ξη.
When dealing with these objects and operations it is vital to
clearly distinguish the tensor product ⊗ from the juxtaposi-
tion products (composition of Lie derivatives). Why intro-
duce U� at all? The reason is that it describes the action
of an arbitrarily large number of Lie derivatives, which is
what distinguishes nonlocality from ultralocality. The Leib-
niz rule tells one how the algebra (of such arbitrarily large
number of Lie derivatives) acts on tensor products of objects
on M. This is formally represented in the co-product map

 : U� → U�⊗U�, which acts on the generators v ∈ �

of U� as 
(v) = v ⊗ 1+ 1⊗ v and 
(1) = 1⊗ 1. This is
then extended to all ξ ∈ U� by C-linearity and multiplica-
tivity, i.e. 
(aξ + bη) = a
(ξ)+ b
(η) for a, b ∈ C, and

(ξη) = 
(ξ)
(η). It is common to introduce the sum-
less Sweedler notation: 
(ξ) = ξ1 ⊗ ξ2 with an implied
summation. If m ∈ M and n ∈ N where M, N are vector
spaces acted on byU�, one has ξ(m⊗n)

.= 
(ξ)(m⊗n) =
(ξ1⊗ξ2)(m⊗n) = (ξ1m)⊗(ξ2n). These definitions preserve
the Lie bracket structure: 
(uv−vu) = 
([u, v]). The inver-
sion map v →−v is extended from � to U� by introducing
the antipode S (analogous to group element inversion) so that
S(v) = −v and S(1) = 1. Then S is defined on all of U�

by C-linearity and anti-multiplicativity: S(ξη) = S(η)S(ξ),
consistent with one’s intuition from inverses of successive
mappings. The co-unit is likewise extended to all of U� by
linearity and multiplicativity: ε(ξη) = ε(ξ)ε(η).

For the quintuple H
.= (U�,μ,
, ε, S) to be promoted

to become a Hopf algebra, three further conditions must be
imposed. Using sumless Sweedler notation to write 
(ξ) =
ξ1 ⊗ ξ2, one requires

(ξ11 ⊗ ξ12)⊗ ξ2 = ξ1 ⊗ (ξ21 ⊗ ξ22), (1)

ε(ξ1)ξ2 = ξ = ξ1ε(ξ2), (2)

S(ξ1)ξ2 = ε(ξ)1 = ξ1S(ξ2),∀ξ ∈ U�. (3)

Equations (1) and (2) taken together mean H is a co-algebra
over C. Equations (1) and (2) make the quintuple H into
both an associative unital algebra as well as a co-associative
algebra with a co-unit that are compatible in the following

sense: Co-multiplication 
 and co-unit ε are both algebra
homomorphisms, or equivalently, the multiplication μ and
unit 1 are both co-algebra homomorphisms.

Given a Hopf algebra H one may ask if the co-product

(ξ) = ξ1 ⊗ ξ2 is co-commutative. This idea is analogous
to commutativity of an algebra, where μ(ξ ⊗ η) = ξη =
ηξ = μ(η ⊗ ξ). Co-commutativity means the co-opposite
co-product 
co(ξ)

.= ξ2 ⊗ ξ1, with tensor product factors in
inverted order, obeys 
(ξ) = 
co(ξ). If so, H is called a
co-commutative Hopf algebra. Generally Hopf algebras are
neither commutative nor co-commutative. Even if H is non-
co-commutative, 
co(ξ) equals 
(ξ) up to conjugation by
an element R ∈ H⊗H independent of ξ , called the universal
R-matrix.

We will be interested in deformations of Hopf algebras.
Physically this means we wish the non-infinitesimal diffs
ξ ∈ U� to act on objects inhabiting the manifoldM in a way
that is different, or deformed, from the standard (ultra)local
way. This is accomplished by introducing the Drinfeld twist,
which is an invertible element F ∈ H ⊗ H . F must satisfy
two conditions:

F12 ◦ (
⊗ id) ◦ F = F23 ◦ (id ⊗
) ◦ F and (4)

(ε ⊗ id) ◦ F = 1 = (id ⊗ ε) ◦ F , (5)

withF12
.= F⊗1,F23

.= 1⊗F . One hasF = 1⊗1+O(λ),
where λ is a complex variable parametrizing the deformation,
and the nonvanishing 0th order part ofF is necessary and suf-
ficient to ensure its invertibility. Equation (4) guarantees that
deformed products (�-products) of scalar valued functions is
associative: f � (g � h) = ( f � g) � h. The second condition
ensures that f � 1 = f = 1 � f . It is common to decompose
F in Sweedler notation as F = f α ⊗ fα , and its inverse
as F−1 = f̄ α ⊗ f̄α , where the f and f̄ are all elements of
H , i.e. elements of U�. The twist F transforms H into a
new (deformed) Hopf algebra HF = (U�,μ,
F , ε, SF )

with 
F (ξ) = F
(ξ)F−1, SF = χ S(ξ)χ−1, with χ
.=

f αS( fα) and χ−1 = S( f̄ α) f̄α . It is straightforward to show
that (
F )co(ξ) = R
F (ξ)R−1 where R = F21F ∈ H⊗H
and F21

.= fα ⊗ f α is F with interchanged tensor product
“blocks” or “legs,” and F−1

21 = f̄α⊗ f̄ α is the corresponding
quantity for F−1. R = Rα ⊗ Rα is the universal R-matrix,
with inverse R−1 = R̄α ⊗ R̄α . A nontrivial R-matrix is the
signature of a non-co-commutative Hopf algebra.

If the R-matrix further satisfies

(
F ⊗ id)R = R13R23 and (6)

(id ⊗
F )R = R13R12, (7)

where R12 = R⊗ 1, R23 = 1⊗ R, R13 = Rα ⊗ 1⊗ Rα and
R21 = Rα ⊗ Rα , then it is referred to as a quasi-triangular
Hopf algebra. If in addition to (6) and (7), R21 = R−1 it
is called triangular. These conditions have important physi-
cal meanings. A quasi-triangular Hopf algebra satisfies the
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Yang–Baxter equation R12R13R23 = R23R13R12, and quasi-
triangularity is preserved by the deformation H → HF
when F satisfies the twist conditions (4) and (5) above. It
turns out that if the Yang–Baxter equation is fulfilled, and V
is a module over H , then V can be used to construct a repre-
sentation of the braid group Bn , withV⊗n as the carrier space.
This means that a quasi-triangular Hopf algebra encodes the
physical braid-like qualities of monotonicity and absence of
self-intersections. It is noteworthy that unitary gauge flow
in the relational formalism of gauge theories of gravity was
previously found to possess precisely these same features
[10]. In that work, the presence of a synchronizing exter-
nal “time” together with monotonicity and “non-collisional
channels” were necessary conditions for the formalism to
remain anomaly free. We will not recapitulate those details
here, but instead we can say the requirement that a Hopf
algebra be quasi-triangular may be interpreted as a neces-
sary condition to ensure that the deformed (3+ 1)-diffs will
keep the gauge theory mathematically self-consistent. All the
twists used in this article will be quasi-triangular.

To make matters more concrete, suppose M is an D-
dimensional manifold with local coordinates xμ. If the
derivatives ∂μ provide a global basis for the tangent bundle of
M, any v ∈ � may be expressed as v = vμ∂μ. The so-called
Moyal–Weyl (MW) twist on Minkowski (flat) spacetime is
given for λ ∈ C by

FMW = exp

(
−i λ

2
θμν ∂μ ⊗ ∂ν

)
. (8)

For real valued θμν constant over M and antisymmetric in
its indices FMW satisfies the twist conditions (4) and (5),
and it is also quasi-triangular. Its nontrivial R-matrix is R =
exp[iλ θμν ∂μ⊗ ∂ν]. Because of its relative simplicity FMW

is often used in quantum field theories on noncommutative
flat RD . It can be slightly generalized to curved spacetimes
by the so-called Abelian twist

FAbel = exp

(
−i λ

2
θabXa ⊗ Xb

)
, (9)

where Xa ∈ � for a ∈ [1, N ] are a set of N ≤ D point-wise
linearly independent, mutually Lie commuting vector fields:

[Xa, Xb] = 0. (10)

θab is a constant real (numerical) antisymmetric N × N
matrix. Such an Abelian twist generally also possesses a
nontrivial R-matrix, and so is noncommutative. The Abelian
condition ensures that the �-product will be associative. It
is essential to note that, for this to be a background inde-
pendent twist, the vector fields Xa must be interpreted as
Lie derivatives, a garden variety derivation such as ∂μ is not
guaranteed to accomplish this. In this way the Abelian condi-
tion (10) is also generally covariant, since the Lie bracket of
two vectors is a vector, and the vanishing of a vector (or any

tensor) is a generally covariant statement. Hence if the unde-
formed theory was background independent, as GR is, so is
the deformed one. There is a useful result due to Aschieri
and Castellani [12] that states the following: Define the reg-
ular manifold Mreg to be the set of all regular points of M.
A point p ∈ M is regular if there is an open neighbor-
hood of p over which dim(span{Xa}) is constant. Mreg is
dense in M. Aschieri and Castellani demonstrated that if
for each p ∈ Mreg there is open region U ⊆ Mreg where
the Xa are point-wise linearly independent, then for each
p ∈ Mreg (i.e. almost everywhere in M) there is an open
region Up � p where there is a local basis called a “nice
basis” {ea ∈ � : a = 1, . . . , D} such that the vector fields
Xa generating the twist commute with all the ea , and the ea
all mutually commute: [ea, eb] = 0. If an Abelian twist is
generated by point-wise linearly independent vector fields,
then it reduces locally to the MW twist. This is similar to
non-twisted curved spacetimes, which are locally diffeomor-
phic to flat spacetime. Not all Abelian twists reduce locally
to an MW twist, and these are called exotic twists. In this
article we assume the twists are all non-exotic Abelian, i.e.
the Xa are event-wise linearly independent and mutually Lie
commuting. Non-exotic Abelian twists are mathematically
decorous: one can define deformed tensor fields, deformed
Levi-Civita connections and covariant derivatives locally on
Mreg, which are then extended to all of M by smoothness.

Given a twist F , we wish to use it to construct deformed
scalars (functions), vectors, differential forms, and tensors
on M. Suppose we are given h, k ∈ C∞(M). Their algebra
arises from point-wise multiplication ·, which is covariant
under the (undeformed) Hopf algebra H , namely ξ(h · k) .=

(ξ)(h · k) = ξ1(h) · ξ2(k), where we have abbreviated the
Lie derivative action Lξ as simply ξ . Once deformed by
F , however, the standard point-wise product · is no longer
covariant under HF , but functions from C∞(M) can be
made into an algebra covariant under HF by deforming the
point-wise · into a nonlocal product of functions as

h � k
.= f̄ α(h) · f̄α(k), (11)

that is

(h � k)(x) = F−1(h(x), k(x)), (12)

which satisfies associativity h � (k � l) = (h � k) � l and is
unital h � 1 = h = 1 � h, but is generally noncommutative.
In fact,

h � k = R̄α(k) � R̄α(h). (13)

Hopf algebras with trivial R-matrices will then have com-
mutative �-products. Note carefully the distinction between
commutative �-products and Abelian twists (made of Lie
commuting vector field generators Xa). By using the MW
(8) or Abelian (9) twists above, and expanding the expo-
nential in a power series, its easy to see that (h � k)(x)
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contains Lie derivatives of arbitrarily high orders, and so is
non(ultra)local. By covariance under HF is meant

ξ(h � k) = 
F (ξ)( f̄ α(h)) · ( f̄α(k))

= [ξ1( f̄
α(h))] · [ξ2( f̄α(k))]

= ( f̄ β f γ ξ1 f̄
α)(h) · ( f̄β fγ ξ2 f̄α)(k)

= ξ1F (h) � ξ2F (k), (14)

where we have inserted a factor 1⊗ 1 = F−1 ◦F = ( f̄ β ⊗
f̄β) ◦ ( f γ ⊗ fγ ) = ( f̄ β f γ ) ⊗ ( f̄β fγ ). Hence we have the
following intuition: while H describes the action of diffs of
M on functions from the algebra C∞(M, · ) that uses the
point-wise product ·, HF describes the actions of deformed
diffs of M on functions from the algebra C∞(M, � ), which
utilizes the nonlocal product �.

This Hopf covariant deformation procedure can be
extended to the exterior (differential) calculus of n-forms
(�

.= ⊕
n=0 �(n),∧, d) with undeformed wedge product

∧ and exterior derivative d. A similar method can be used
to produce deformed contractions of vectors and forms, and
products of functions and vectors, which all become nonlo-
cal operations, unlike their undeformed counterparts. As we
will not be using these, the details are omitted. However, since
tensors are important in deformed GR, we briefly describe
how those operate. Let (T ,⊗A) be the tensor algebra gen-
erated by �1 and � with ⊗A being the tensor product over
the algebra A = (C∞(M), · ). The deformed tensor product
reads

τ ⊗A� τ ′ .= f̄ α(τ )⊗A f̄α(τ ′), (15)

for all τ, τ ′ ∈ T .
We will be interested in commutative deformations where

f � g = g � f . In what way, if any, is the deformed the-
ory different from the undeformed theory? This concern
arises from the Gel’fand–Naimark theorem, which states
there is a (Gel’fand) isomorphism between any commuta-
tive C∗-algebra A (fields) with unit which is an isometric
∗-isomorphism from A to the commutative algebra of con-
tinuous C-valued functions with point-wise multiplication.
That is, might a commutative deformation be simply undone
by such a field deformation (isomorphism)? Here it is shown
that, for the nontrivial F �= 1 ⊗ 1 commutative non-exotic
Abelian twists of interest here, the answer is no.

To this end, let us construct a Hopf algebra H� isomorphic
(denoted �) to HF . First, the undeformed Hopf algebra H
acts on itself via the adjoint action Adξ (η)

.= ξ1ηS(ξ2). One
deforms this by defining a �-product on H as

ξ � η
.= Ad f̄ α (ξ)Ad f̄α (η), ξ, η ∈ U�. (16)

(U�,μ�) and (U�,μ) turn out to be isomorphic as alge-
bras under the mapping D(ξ) = Ad f̄ α (ξ) f̄α . Notice D(ξ) is
linear in ξ . Using the algebra isomorphism D, one pulls the

Hopf algebra structure on HF back to a Hopf algebra struc-
ture on (U�,μ�) called H� = (U�,μ�,
�, ε�, S�) having
D(1) = 1, with the Hopf structures related by


� = (D−1 ⊗ D−1) ◦
F ◦ D,

ε� = ε ◦ D,

S� = D−1 ◦ SF ◦ D,

and R-matrix R� = (D−1 ⊗ D−1)(R), which is also quasi-
triangular. H� acts on objects living onMby the �-Lie deriva-
tive

L �
ξ

.= LD(ξ). (17)

One has for v ∈ �, 
�(v) = v⊗ 1+ D−1(R̄α)⊗ R̄α(v) and
L � obeys the deformed Leibniz rule:

L �
v (τ ⊗A� τ ′) = L �

v (τ )⊗A� τ ′ + R̄α(τ )⊗A� LR̄α(v)(τ
′).

(18)

The vector fields v,w, z ∈ � then may be assigned the
deformed Lie bracket

[v,w]� .= [ f̄ α(v), f̄α(w)]. (19)

This obeys the deformed antisymmetry and Jacobi relations

[v,w]� = −[R̄α(w), R̄α(v)]�, (20)

[v, [w, z]�]� = [[v,w]�, z]� + [R̄α(w), [R̄α(v), z]�]�. (21)

This structure defines a so-called Woronowicz quantum Lie
algebra and describes the infinitesimal deformed diffs, analo-
gous to how the original Lie algebra L = (�, [·, ·]) described
the undeformed diffs. That is, this quantum Lie algebra of
HF as a vector space is D(�) ⊂ U�; it contains arbitrarily
higher order products of the vector fields and so encodes the
notion of non(ultra)locality.

Now specialize to the case where there is a commuta-
tive twist. Then the Woronowicz quantum Lie algebra of
infinitesimal deformed diffs is a genuine Lie algebra, as the
R-matrices are all trivial (unity). So we have the Lie algebra
of deformed diffs [v,w]� = [ f̄ αv, f̄αw]. Using the defini-
tion of the Abelian twist (9), one finds

[v,w]� − [v,w] =
∞∑
n=1

(−iλ/2)n
1

n! (θa1b1 · · · θanbn )

×[Xa1 · · · Xan · v, Xb1 · · · Xbn · w].
(22)

In a “nice” basis {eb}, [Xa, eb] = 0 for all a, b, and
X · v = (X · vμ)eμ = (LX · vμ)eμ �= 0, for non-constant
v. So the right hand side of (22) is in general nonvanish-
ing. Moreover, since Eq. (22) involves arbitrary powers of
Lie derivatives (nonlocal action) with respect to the varying
nonzero vector fields X , these deformations are not merely a
globally constant multiplicative rescaling (isomorphism) of
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the undeformed diffs’ Lie bracket. At the same time, (22)
also shows [v,w]� cannot be expressed in the background
independent, locally rescaled form f (v,w)[v,w], where f
is some local scalar function depending only on v,w and pos-
sibly their finite order Lie derivatives. Hence, in spite of the
existence of a function algebra isomorphism, the deformed
λ �= 0 infinitesimal diffs (vector fields) possess a Lie alge-
bra non-isomorphic to the undeformed λ = 0 ones, provided
the X are nonvanishing over some set of nonzero measure.
In Sect. 4 below the Xa will be given as constant multiples
of currents carried by the fields. Those currents are gauge
invariant, conserved, and/or are associated with stable parti-
cles, so it will not be physically possible to set them to zero
almost everywhere merely by a field redefinition. The sym-
metries of the deformed and undeformed theories are then
indeed distinct, and thus so is the physics. Hence such defor-
mations are not merely field redefinitions of the point-wise
product limit, they transform the symmetries as well. In fact,
this is precisely a Wigner–Inönü contraction [17], [18, p. 62]
in the λ → 0 limit, the local diffs being the contraction of the
nonlocal diffs. Similar contractions reduce the Poincaré Lie
algebra to the Galilei one in the low velocity non-relativistic
limit and the Moyal bracket Lie algebra (equivalent to quan-
tum commutators) to the Poisson Lie algebra in the classical
limit h̄ → 0.

To make this point more rigorously, we now explicitly
prove that even though there is an isomorphism m of the
algebra of functions (scalar fields) between H and H ′ .=
HF � H� by the Gel’fand–Naimark theorem, there is no
mapping of vectors v ∈ � → m(v) ∈ �′ .= �F such that

[v,w]� = [m(v),m(w)], ∀v,w ∈ �. (23)

First we note that according to [5], � = �F as vector spaces.
Suppose there were such a mapping m of vectors satisfying
(23), then one must have for α, β ∈ C

[αu + βv,w]� = [m(αu + βv),m(w)]. (24)

But the LHS of this is α[u, w]�+β[v,w]� = α[m(u),m(w)]
+β[m(v),m(w)]= [αm(u)+βm(v),m(w)]. Therefore (24)
implies

[m(αu + βv)− αm(u)− βm(v),m(w)] = 0, (25)

for all α, β ∈ C and u, v, w ∈ �. Consequently

m(αu + βv) = αm(u)+ βm(v), (26)

and thus m is a linear mapping on vectors from � to
�′ = �. From this it also follows that m(�0) = �0 and
m(−v) = −m(v). It is easy to show that if two Hopf alge-
bras are isomorphic under such a linear mapping of vectors
m as Hopf algebras m : H → H ′ (meaning that m also
preserves all of the co-product 
, antipode S, and co-unit ε

structures), then m also preserves the Lie algebra structure:
m([v,w]) = [m(v),m(w)]. To see this, the Lie algebra of

a Hopf algebra may be extracted by defining vectors v as
those elements v of H satisfying 
(v) = v ⊗ 1 + 1 ⊗ v

and [v,w] .= vw − wv using the juxtaposition product. So
if 
(ξ) = ξ1 ⊗ ξ2, then the linear Hopf algebra isomor-
phism m implies m(
(ξ)) = m(ξ1 ⊗ ξ2) = 
′(m(ξ)) =
(m(ξ))1′ ⊗ (m(ξ))2′ , and m(
(v)) = m(v ⊗ 1 + 1⊗ v) =
m(v) ⊗ 1′ + 1′ ⊗ m(v), where the Hopf algebra units
1, 1′ obey 1′ = m(1). By the Hopf algebra isomorphism
m(
(v)) = 
′(m(v)), so vectors of H are mapped to vec-
tors of H ′, and vice versa. Also by linearity ofm,m([v,w]) =
m(vw − wv) = m(v)m(w) − m(w)m(v) = [m(v),m(w)].
So if a linear vector mappingm of Hopf algebras does not pre-
serve the Lie algebra structure of the vector space(s) �,�′,
then m is not a Hopf isomorphism, and at least one of the co-
product, antipode, and/or co-unit is not preserved by m. Now
notice the (bijective) mapping D used to define the deformed
H� � HF from the undeformed H does not preserve the
Lie algebra structure on �. Specifically, the definitions show
that D([v,w]) �= [D(v), D(w)], where, as noted previously,
D(v) is linear in v. Hence HF and H have non-isomorphic
Lie algebras, and so if there is an m satisfying (23), they can-
not be isomorphic as Hopf algebras. Therefore at least one
of the following three cases must hold:

(a) The co-product is not preserved by linear m: (m ⊗
m)
(v) �= 
′(m(v)). The LHS equals (m ⊗ m)(v ⊗
1 + 1 ⊗ v) = m(v) ⊗ 1′ + 1′ ⊗ m(v). The RHS is
m(v)⊗1′+1′⊗m(v). So (a) is contradiction ifm(v) ∈ �′.

(b) The antipode is not preserved by linear m: m(S(v)) �=
S′(m(v)). Note the definition (3) applied to H implies
S(v) + v = �0. Applying the linear mapping m to this
gives m(S(v))+ m(v) = �0 or m(S(v)) = −m(v). Then
the condition (b) yields S′(m(v)) �= m(S(v)) = −m(v),
and m(v) ∈ �′ = � does not satisfy (3) for H ′, also a
contradiction for m(v) ∈ �′.

(c) The co-unit is not preserved by linear m: m(ε(v)) �=
ε′(m(v)). Applying m to ε(v) = 0, one finds m(ε(v)) =
m(0) = 0. But (c) then implies ε′(m(v)) �= m(ε(v)) = 0,
once again a contradiction for m(v) ∈ �′.

Hence the original assumption that there is a vector map-
pingm satisfying (23) must be incorrect. This further implies
that the action of commutatively deformed infinitesimal diffs
v ∈ � considered here is not merely the undeformed action
of “morphed” diffs v′(xμ) = v(xμ+
μ(x)) ∈ �, for some
smooth vector “displacement” fields 
μ. This is a more intu-
itive way of perceiving that the deformed HF and unde-
formed H are non-isomorphic Hopf algebras; even though
they possess the same infinitesimal diffs v ∈ � and there is a
Gel’fand–Naimark isomorphism of their function algebras,
the action of the deformed and undeformed diffs and their
symmetries are indeed distinct.
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A similar result was obtained by [7] for commutative
deformations on flat (translationally invariant) spacetime,
where it was demonstrated that, although there is a field
redefinition (function algebra isomorphism) relating to the
undeformed case, there is no corresponding Hopf algebra or
co-algebra homomorphism preserving the co-product and
antipode structures.

3 Technical issues and commutative deformed products

Attempts to construct noncommutative field theories and
noncommutative classical gravitation have foundered on
several obstacles. We discuss those here and explain how
commutative and co-commutative Hopf algebras circumvent
those issues. We now work in D = 3+ 1 dimensions.

One well-known difficulty with the MW twist FMW =
exp[−i(λ/2)θμνLμ ⊗Lν] for antisymmetric and constant
matrix θ is the lack of causality [19,20]. This problem arises
generically when θ is invertible. The invertibility permits
some Gaussian integrations. This allows two scalar fields
with overlapping supports of size δ � ‖θ‖1/2 .= ξ to have
a �-product with support having size ‖θ‖/δ � ‖θ‖1/2 = ξ .
This may be circumvented by requiring θμν to have at least
one vanishing eigenvalue. This will obstruct the requisite
Gaussian integrations.

Another technical issue in using the MW twist or its gen-
eralized Abelian cousin (9) is that the important gravitational
deformed Einstein and Riemann tensors are no longer real
valued in a generic spacetime [6]. Replacing the imaginary
antisymmetric iθμν by a general Hermitian matrix suffers
from the same problem. However, utilizing a real MW twist
of the form

FRMW
.= exp

(
−λ

2
θ

μν
S Lμ ⊗Lν

)
(27)

where λ ∈ R, θS is a real (numerical) symmetric matrix, and
Lμ denotes the Lie derivative with respect to the μth basis
vector êμ, has no such reality difficulties. Specifically, twists
of the MW or RMW type obey the complex conjugation
relations

F∗⊗∗MW = (S ⊗ S)FMW 21, whereas (28)

F∗⊗∗RMW = (S ⊗ S)FRMW 21 = FRMW . (29)

If one generalizes the real MW twist (27) to a real Abelian
twist of the form

FC
.= exp

(
−λ

2
θabS Xa ⊗ Xb

)
, (30)

with [Xa, Xb] = 0 and point-wise linearly independent Xa ,
then it also obeys (29), and then one can construct generally
real valued deformed Riemann and Einstein tensors neces-
sary for a classical theory of gravity with deformed diffs. The

proof that FC generates an associative �-product is the same
as original MW case. Henceforth we will omit the subscript
S on θab when we use FC .

The reader may be wondering about the reason for the sub-
script C on FC . This is because for bosonic vector fields Xa

and bosonic functions f, g, the twist FC generates a commu-
tative �-product, f � g = g � f . For f and g both fermionic
f � g = −g � f ; and if one of f, g is bosonic and the other
fermonic, f � g = g � f . It might be thought possible to take
each Xa as fermionic (real Grassmann 4-vector fields), which
would require real antisymmetric θab to make f � g = g � f
for bosonic f, g, but the Abelian constraint on Xa would lead
to XaXb = −XaXb = 0. It also would lead to a violation of
the requirement that f � g = g � f if one of f, g is bosonic
and the other fermionic. Hence Grassmann vector fields can-
not enter the commutative twist. To distinguish the �-product
generated by FC from its generally noncommutative cousin,
the �-product, we designate the former commutative product
by the symbol � instead of �.

Another issue plaguing noncommutative classical general
relativity is that, while one can construct a �-covariant deriva-
tive compatible with the �-metric tensor, that derivative is
not generally compatible with the �-inverse metric [6]. Here
inverse is defined using �-matrix multiplication. However,
for the commutative �-product, this obstacle vanishes, and
all the standard derivations of textbook tensor analysis then
carry through.

There are also some technical issues with gauge symme-
tries in noncommutative field theory. Namely, they are based
on a fiber bundle construction that places conditions on the
transition functions (trivializations) on overlapping patches
that involve �-products of group-valued functions [21]. For
matrix gauge (structure) groups this means matrix multipli-
cation, inversion, and determinants are likewise computed by
the �-product. So while one can define closed �U (N ) gauge
groups, �SU (N ) are no longer generally closed [20]. This
conundrum also disappears for the �-product. At the same
time, the Seiberg–Witten (field redefinition) map [22,23],
utilized extensively in noncommutative field theory, has a
straightforward generalization to the �-product, which will
be put to good use in a later section.

A vital symmetry for classical gravitation is local Lorentz
invariance. A general Abelian twist will violate global
Lorentz and rotational invariance under “particle” transforms
since there the ingredients of the twist (θμν or the Xa) are
not transformed while the matter fields are [24]. This leads to
predicted anisotropy effects in the cosmic microwave back-
ground for noncommutative field theories [25]. To restore
Lorentz (and rotational) invariance one must relate the twist
to the matter contents of the theory, so that the theory becomes
background independent. That is, if θμν or the Xa are arbi-
trarily given or chosen properties of the manifold, then one is
violating background independence. To regain it, θμν and the
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Xa must come from somewhere physically. This is analogous
to general relativity where spacetime curvature is related to
the matter determined stress-energy tensor; at a spacetime
event the curvature (a manifold property) must physically
arise from some source. This is carried through for the com-
mutative twist in a subsequent section.

The commutative twist FC = f α ⊗ fα possesses sev-
eral further delightful simplifications that we now mention.
By expanding the exponential in (30) it is straightforward to
demonstrate that f α = fα and f̄ α = f̄α , that is, the “blocks”
of the twist’s tensor product are balanced and real valued to
all orders. From R = Rα ⊗ Rα = F21F−1 for the R-matrix,
one readily derives Rα = Rα = R̄α = R̄α = 1, as expected
for a commutative (and co-commutative) twist, and was also
used at the end of the previous section to show that a commu-
tative twist cannot be undone by a field definition. Another
complication for noncommutative field theory, fortunately
absent for FC , is that spinor and γ -matrix calculus becomes
more elaborate [26]. This is transparent from examining the
identity

[A(x)γA, B(x)γB]� = (1/2) [A(x), B(x)]�{γA, γB}
+ (1/2) {A(x), B(x)}�[γA, γB].

(31)

The �-product of objects on M induces a correspond-
ing deformation (nonlocality) in the phase space underlying
the relational framework [10,27,28]. In that approach, the
canonical variables are functions on a 3-dimensional slice
� ⊂ M (a gauge fixing), namely qi (y) and pi (y), where
y coordinatizes � and i is a discrete index labeling the dif-
ferent gauge constraints. The scalar functions f, g above are
replaced byqi (y) and pi (y) on � so only the parts of the twist
generating vectors Xa tangential to � act on the canonical
variables or other objects made from them. Specifically, the
Poisson bracket of phase-space functions f, g is deformed to

{ f, g}PB� =
∑
i

∫
�

d3y

(
δ f

δqi (y)
� δg

δpi (y)

− δ f

δpi (y)
� δg

δqi (y)

)
. (32)

This expression satisfies the requirements that a Poisson
bracket must anti-commute, distribute over addition, fol-
low the Leibniz product rule, and obey the Jacobi identity.
These in turn follow from using a trivial R-matrix in Eqs.
(18) through (21) describing the deformed (Woronowicz)
Lie algebra for the� product. This way gauge flow in phase
space will be deformed, which can equivalently be viewed
as a deformation of the associated symplectic 2-form. There
are also deformations of the symplectic vector space used
to describe the quantum scalar fields among other objects
living on M [6]. We will examine the length scales of the
deformations below.

To summarize: The commutative and co-commutative
twists considered here may be perceived as less mathemati-
cally interesting than their more sophisticated noncommuta-
tive relatives from the Big City, however, by circumventing
several obstacles they do allow one to extend general relativ-
ity and field theory to deformed manifolds where nonlocality
can play a role. That is precisely what is needed physically.

4 Actions, twist-matter coupling, symmetries,
and deformation self-consistency

We are now ready to write down an action for deformed grav-
itation. We seek to describe classical spacetime as invari-
ant under deformed diffs, in distinction to GR which is
invariant with respect to undeformed diffs. Since the �-
product is covariant under deformed diffs, we may replace
the point-wise product in the undeformed Einstein–Hilbert
action throughout with the � product. The deformed Rie-
mann tensor and its various contractions are then similarly
computed from deformed Levi-Civita connections and the
�-product. There are actually two forms of the Einstein–
Hilbert action, one (Palatini or first order) taking the tetrad
e and spin connection ω to be independent variables, and
the second order one where ω = ω[e] [16]. Since it has
not been experimentally resolved which best corresponds to
reality, we will use the simpler second order form. Similar
procedures apply to the first order formulation of GR. For
instance the deformed (torsion-free) Einstein–Hilbert action
with cosmological constant � reads

S�EH =
1

2κ

∫
M

d4x |g�|1/2 � (R� − 2�), with (33)

κ = 8πG/c4. (34)

There are no Gibbons–Hawking–York terms since we are
taking ∂M = ∅ for simplicity. The classical deformed grav-
itational field equations then become

R�μν −
1

2
R� � g�μν +�g�μν +
μν(λ) = κ T�μν with

(35)

T�μν = −2
δL�M
δgμν
�
+ g�μν � L�M . (36)

The last term on the left hand side of Eq. (35) arises from the
dependence of� on the inverse metric tensor, and is has lead-
ing order O(λ1). In Eq. (36) L�M is the deformed Lagrangian
density for all matter (non-metric tensor) fields, including
the twist producing matter fields. Tμν still obeys a deformed
version of energy momentum conservation. Regarding the
matter and Yang–Mills actions, those may also be rendered
invariant under deformed diffs by replacing the point-wise
multiplication by� throughout. Hence the classical electro-
magnetic (Maxwell) action is
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S�EM = −(1/4)

∫
M

d4x |g�|1/2 � F�μν � Fμν
� , (37)

F�μν = ∇�ν A�μ − ∇�μ A�ν = A�μ,ν − A�ν,μ, (38)

where∇�μ denotes the deformed spacetime covariant deriva-
tive. The general Yang–Mills action is also easy to write
down, but since we will not be requiring it, nor the deformed
QCD or electroweak actions, we will not display them here.
Also we will henceforth drop the� designation for deformed
quantities when that meaning is clear from the context, and
similarly for the C on FC .

We now turn to F and discuss how it is constructed from
matter fields, and investigate the properties of the point-
wise linearly independent and Abelian generating vectors
Xa, a = 1, . . . , N . We may think of the Xa as spanning an
N -dimensional, a, b-indexed internal space, which we will
refer to as GM space, after Groenewold and Moyal who pio-
neered the �-product. As discussed in the previous section,
to ensure causality on a D = 3+ 1 Lorentzian manifold, the
eigenvectors of θμν = θabXμ

a Xν
b with nonzero eigenvalues

must span a space of dimension no greater than 3. Hence
1 ≤ N ≤ 3. Similarly there are DN (N − 1)/2 indepen-
dent real differential constraints of the form [Xa, Xb] = 0
with DN degrees of freedom in the set of Xa . This implies
(N − 1)/2 ≤ 1 or 1 ≤ N ≤ 3, the same as the causal-
ity constraint. Since the Lie bracket of two vector fields is a
vector field, the Abelian constraint is automatically a covari-
ant statement. One might wonder whether the vanishing of
the deformed Lie bracket might be more appropriate. How-
ever, from the definition (19) of the deformed Lie bracket
and Eq. (22), it is easy to work out that the two conditions
are equivalent. To enforce the Abelian constraint one could
include a suitable Lagrange multiplier term in the total action,
however, it turns out to be simpler to construct Abelian Xa

directly, as will be shown shortly. Also, the Abelian constraint
should not be viewed as a gauge constraint, but rather as a
technical condition necessary for the theory to maintain strict
mathematical propriety, like possessing an associative prod-
uct. Finally, we note the Latin indices a, b on θab (labeling
which vector) may be raised or lowered with impunity, since
those indices live in a space whose metric is the Kronecker
delta. This is distinct from the Greek coordinate indices μ, ν

labeling the coordinate components of a given vector, which
are lowered (raised) by the (inverse of) the deformed space-
time metric tensor gμν . For example, Lorentz transforms mix
the Greek indices but not the Latin ones.

The Xa may be composed from either familiar Standard
Model (SM) fields or non-SM matter fields. We will refer to
the latter as GM fields or GM matter. The procedure is: First
construct one X vector field from matter. Next, classicize it.
Finally, construct any necessary additional classical Xa from
the first one. We now perform this step by step.

The twist will insert arbitrarily many factors of the form


L = −(λ/2)θabXσ
a X

ρ
b (Lσ ⊗Lρ). (39)

into the undeformed action. By well-known arguments [29,
pp. 2–7; p. 7, eqn. 15.2.2], maintaining the overall gauge
invariance of the deformed Lagrangian density under any
gauge symmetries of the undeformed theory (such as SM
gauges) requires that the standard Lie derivative Lμ must
then be replaced by the gauge covariant Lie derivative

L̂μ�l = Lμ�l − i Aα
μ(tα)ml ��m (40)

when acting from (39) on any set of fields �l appearing in the
undeformed Lagrangian density that transform under some
non-singlet representation of a gauge group with Lie alge-
bra generators tα in the presence of the gauge potential Aα

μ.
Gauge coupling constants (charges) are absorbed into the tα .
This occurs separately from constructing the Xa from matter
fields. When acting on gauge invariant objects likeU (1) field
strengths Fμν , the second term on the RHS is absent from
that L̂μ within �, but other cases generally require it.

Since we wish the overall deformed action to have the
same symmetries under charge conjugation (now including
any possible GM charges) as well as spatial parity, which
means that the factor (39) must be even under both those
symmetries separately. In particular, it implies that X must
be either even or odd under charge conjugation, and similarly
for parity. This places strong restrictions on the admissible
forms for X . For example, let us naïvely try to construct one
of the X from some matter Dirac spinor field ψ as

Xμ
?= ψ̄ �Dμψ

.= ψ̄ � ∂μψ + ψ̄ � (−iq Aμ)� ψ

+ ψ̄ � ωI J
μ ��I J ψ, (41)

where ω is the spin connection field, I, J are (tangent space)
Lorentz indices, and � I J = (−i/4)[γ I , γ J ]. In the second
order formalism ωI J

μ = eIν � ∇μ eJν , where (eIμ) eμ
I is the

(co-) tetrad, and ∇μ is the (deformed) spacetime covariant
derivative. The first two terms come from the gauge covari-
ant derivative, which for simplicity has been chosen to be
a U (1) gauge field with coupling constant q. The last term
is the gravitational coupling, as the tetrad field reduces to a
Kronecker delta in flat spacetime. While all three terms are
of even spatial parity, the first two are C-conjugation even,
but the gravitational term is C-conjugation odd (because of
�). Consequently, this choice of X has an ill-defined overall
sign under C-conjugation, and therefore is inadmissible. The
easiest way to avoid such problems is to start from the mat-
ter Lagrangian density LM(ψ). Then there are four general
ways to construct the Xa from matter, up to an overall con-
stant of proportionality that may be absorbed into the scale
of the twist λ; see Eq. (30). It turns out to be easiest to under-
stand them by first assuming the matter that produces the
Xa interacts by some set of gauge potentials Aα

μ. We assume
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the matter gauge Lie groups are all compact and have finite
dimensional representations, and consequently the Lie gen-
erators may be taken to be Hermitian matrices. We keep our
mind open to the possibility that the matter fields comprising
the Xa could couple to either some SM gauge fields Aμ or to
gauge fields inhabiting only the GM sector. We will examine
alternative ways to construct the Xa later on. Then one may
easily calculate the gauge derived current from those gauges
by

Jμ
α

.= δS[ψ]
δAα

μ

(42)

= (−i) ∂LM

∂(Dμψ)l
� (tα)ml ψm (43)

= i
∑
l,m

ψ̄m � γ I eμ
I (tα) lm � ψl , (44)

where l,m are particle species indices, and the matter
Lagrangian density for fermions is

LM(ψ) = −
∑
l

ψ̄l � (γ I eμ
I � (Dμψ)l + ml ψl), with

(45)

(Dμψ)l
.= ∇μψl − i Aα

μ(tα)ml � ψm, and (46)

∇μψ
.= ∂μψ + ωI J

μ ��I J ψ, (47)

where∇μψ is the spacetime covariant derivative of the Dirac
spinor ψ . One way to compute one of the real valued Xa is
to equate it to some gauge current (now dropping the GM
subscript a for clarity)

Xμ
α

.=
(

Re

Im

)
Jμ
α , with (48)

Jμ
α = i

∑
l,m

ψ̄m � γ I eμ
I � (tα) lmψ l . (49)

This current is C-conjugation odd. In the case of nonrela-
tivistic fermions, the imaginary part is preferred as it gives
a vanishing time-component to the current when using the
Dirac basis for γ I . To ensure the insertions of the form (39)
in the deformed action effected by the twist produce an over-
all gauge invariant deformed action starting from a gauge
invariant undeformed action means those insertions must be
gauge invariant, hence the Xa must also be gauge invariant.
Under an infinitesimal gauge transformation parametrized by
the real valued εα(x) the matter fields transform as

δψl = iεα(x)(tα)ml � ψm(x), (50)

δ(Dμψ)l = iεα(x)(tα)ml � (Dμψ)m(x), (51)

and one finds

δXμ
β =

(
Re

Im

) ∑
l,m,α

εα � (ψ̄l � γ I eμ
I � ψm)[tβ, tα]ml , (52)

where the Hermiticity of the tα has been utilized. We take
the overall gauge Lie algebra to be a direct sum of commut-
ing compact simple andU (1) subalgebras. This is equivalent
to requiring positive definiteness for the quantum mechani-
cal inner product; that is, it ensures the absence of negatively
normed states [29, footnote p. 9]. Since direct sums of simple
Lie algebras are semi-simple, they have no invariant subal-
gebras whose generators all commute with each other. So for
some fixed non-U (1) generator tβ , there will be at least one
other generator tα from β’s algebra with which tβ does not
commute. Consequently the RHS of Eq. (52) vanishes only
if tβ comes from a U (1) subalgebra (so proportional to the
identity matrix). Hence X computed from Eq. (48) will be
gauge invariant, δXβ = 0, only if β is a U (1) gauge, and
then (tβ) lm = ql δlm , ql being the dimensionless U (1) charge.
Hence the U (1) current

Xμ =
(

Re

Im

) (∑
l

iql ψ̄
l � γ I eμ

I � ψ l

)
(53)

is the only gauge invariant 4-vector one can construct
from gauges. By construction it is a conserved current: its
deformed covariant divergence vanishes. This way of con-
structing the first X will be referred to as the Xγψ model. The
presence of� in X maintains the deformed diff invariance of
the deformed action, and the implied self-consistency will be
examined below. Even though there may be non-Abelian Aα

with corresponding nonvanishing gauge coupling constants,
they cannot comprise a gauge invariant vector twist gener-
ator. If one turns off the U (1) gauge by taking ql → 0 for
all l, there is no more gauge-based twist. But there could be
non-gauge based X constructed in a similar way: Suppose ql
were replaced by a (possibly species l dependent) quantity
Ql , which is also a ψl -field independent and gauge invari-
ant coordinate scalar, with well defined signs under each of
C, P, T , then the corresponding X comprised as in Eq. (53)
also inherits those desiderata. One very simple possibility
would be to set Ql = 1, democratically independent of
(fermion) species l. This will be referred to as the gaugeless
or numerical model. A species dependent alternative would
be to set Ql = ml , called a mass model. Finally, Ql could
be set to some species dependent quantum number, such as
baryon number B or electronic lepton number Le, a quantum
number model.

Turning now to building one X from scalar field(s), we
take the multiplet of (complex) scalars φl to be described
by the FC deformation of the well-known φ4 action in the
presence of gauge fields:

S[φ] =
∑
l

∫
M

d4x |g|1/2 � [−(Dμφ)l � (Dμφ)
†
l

−m2
l φl � φ

†
l − (g/2)(φl � φ

†
l )
�2]. (54)
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Here (Dμφ)l = ∂μφl − i Aα
μ(tα)ml � φm is the gauge (and

spacetime) covariant derivative. Then by construction, S[φ]
is gauge invariant, and so will be the entire action, provided
any SM–GM interactions are made of suitable factors of φl

together with the gauge covariant derivatives of the φl , and
all factors get spot welded together by �. Computing the
gauge currents and then using the same arguments as in the
fermionic case one finds the conserved current,

Jμ
β (φ) = −i(Dμ φ)

†
l � (tβ)ml φm, (55)

implying

Xμ =
(

Re

Im

)∑
l

iql φl � (Dμφ)
†
l , (56)

for U (1) charges ql , which may then be likewise extended
to the Ql . This X is also C-odd, as well as conserved and
gauge invariant for Hermitian Lie algebra generators. This
will be referred to as the XDφ model. Like the fermionic X
in Eq. (53), this is proportional to theql , but this scalar expres-
sion for X depends on all the gauge fields with which the φl

interact through Dμ. The corresponding fermionic twist gen-
erator in Eq. (53) has no such gauge field dependence. We
will study the implications of these models as well as alterna-
tives to scalars and Dirac fermions in the next section, where
numerical estimates together with symmetries will be used
to further constrain the possibilities.

This is good place to mention that the Xa cannot be
any gauge boson field(s). That would make F gauge non-
invariant, regardless of whether or not some Englert–Brout–
Higgs–Guralnik–Hagen–Kibble mechanism (hereafter,
Higgs mechanism) has endowed the gauge field with mass.
One might then be tempted to try θμν = Fμν , for some gauge
field strength tensor. However, that would be μ, ν antisym-
metric; commutative twists, however, require a symmetric
θμν . Hence photons, gluons, and the massive weak gauge
bosons do not produce a twist.

Next one classicizes the Xa . Since the vectors Xa gen-
erating the twist F are constructed from matter fields, it is
important to understand when these fields are to be consid-
ered as quantum fields and when they become classical, either
as expectation values with respect to some state or as sta-
tionary points of an action. Inside the non-F terms in the
Lagrangian density (outside �), the fields like φ and the
GM gauge potentials A have their standard meanings, i.e.
quantum or classical as one may freely choose, it is only
inside F that more care is necessary. Since we are building
a model of classical spacetime, which F partially describes,
the Xa fields there must be given a classical interpretation
so that there are no quantum fluctuations in the twist. One
way to do this is by taking the Xa inside F to be comprised
from fields such as φ or ψ at the stationary points of their
action. The factor containing the tensor product of (gauge

covariant) Lie derivatives acts to insert arbitrary powers of
that differential operator into the Lagrangian wherever �
occurs, prefixed by the same power of the classical factor
(λ/2)θabXa⊗ Xb. In this case the mass dimension of the Xa

inside the twist will be its classical (canonical) dimension,
as there is no quantum field renormalization of a classical
field. As an alternative, one could construct the classical Xa

from expectation values of the currents introduced earlier.
Aside from questions regarding which matter state to use to
evaluate the expectation value, one would then also have to
be cautious about anomalous dimensions potentially enter-
ing any dimensional analysis at the energy scales of the fields
and coupling constants entering the twist [18, p. 436], [29,
pp. 115–119, 123–125, 133]. In flat spacetime there is strong
lattice gauge evidence that the φ4 theory is asymptotically
free. That is, its matrix elements receive multiplicative cor-
rections proportional to 1+O(1/ ln E) at an energy scale E ;
and then the anomalous dimensions are zero since the cor-
rections are powers of ln E . Similarly for a SU (N ) gauge
theory with n f fermionic (quark-like) flavors, the 1-loop
beta function is β1 = (g4/16π3)[−(11/6)N + (1/3)n f ],
so a SO(3) � SU (2) gauged scalar theory is asymptotically
free β1 < 0 for n f < 11. Moreover, within the asymptotic
safety scenario the running coupling constants GE and �E

are responsible for the non-Gaussian (nontrivial) fixed points,
thereby at least allowing the scalars to be asymptotically free
in curved spacetime.

Finally, now that we have just one classical, matter depen-
dent twist vector generator X1 in hand, how do we generate
the N − 1 others so that they are Abelianized: [Xa, Xb] = 0
for all distinct pairs of a, b? We first specifically address the
N = 2 case. Notice if one has obtained an Abelianized pair
in one coordinate frame, the transformed pair of fields will
also be Abelian in any other frame because the vanishing of
a vector field is a covariant statement. Choosing some frame,
the Abelian condition is equivalent to the following system
of 4 first order linear partial differential equations for the
components of X2:

(Xμ
1 ∂μ)Xν

2 = Xμ
2 (∂μX

ν
1). (57)

Provided X1 �= 0, this can be transformed into

∂ρX
ν
2 =

∑
σ �=ρ

Aσ ∂σ X
ν
2 + Bν

ρμX
μ
2 , (58)

to which the Cauchy–Kovalevskaya theorem may be applied
in a neighborhood when the (non-tensors) Aσ and Bν

ρμ are
analytic functions of the coordinates through their depen-
dence on X1. Alternatively, one may use the fact that the Lie
derivative can be expressed in identical form either with coor-
dinate derivatives throughout or covariant derivatives in the
absence of torsion, so in a “nice” basis one obtains (57) with
∇μ replacing ∂μ everywhere. The theorem above states the
system (58) then has a unique analytic solution in that neigh-
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borhood, given boundary values for Xν
2 . So then if there is

some 3-slice of spacetime on which one has [X1, X2] = 0,
then one may integrate the solution off the slice. In partic-
ular since X1 is constructed from the currents carried by a
massive particle, it will be a timelike vector. Here timelike
and spacelike are defined with respect to the deformed met-
ric tensor (see self-consistent twisting below). Suppose one
specifies some analytic data for X1 on a spacelike hypersur-
face �. Choosing coordinates so that � is a constant x0, the
PDE (57) on � where Xk

1 = 0 reads

(∂0X
0
1)X0

2 + (∂ j X
0
1)X j

2 − X0
1(∂0X

0
2) = 0, and

(∂0X
k
1)X

0
2 − X0

1(∂0X
k
2) = 0. (59)

From these one sees that the X1 data together with the PDE
(57) and initial values for X2 on � determine the normal
derivatives of X2 there. That is, the spacelike surface � is
a non-characteristic surface for the PDE. Alternatively, the
PDE (57) has the standard first order form

(
Aν(X1)

)ρ

σ

∂uσ

∂xν
− Bρ(u, X1) = 0, (60)

with unknown uσ .= Xσ
2 and (Aν(X1))

ρ
σ = Xν

1 δ
ρ
σ . Suppose

the implicit form for � is ϕ = ϕ(x0, . . . , x3) = 0. The
characteristic form of the PDE (60) is defined as

Q(∂ϕ/∂x0, . . . , ∂ϕ/∂x0)
.= det

σ,ρ

[
3∑

ν=0

(Aν)
ρ
σ

∂ϕ

∂xν

]
, (61)

which reduces here to Q = [Xν
1(∂ϕ/∂xν)]4. A characteris-

tic surface is one for which Q vanishes. To test if the PDE is
hyperbolic, consider the solutions of Q(λξ + η) = 0 for the
unknown scalar λ with η a spacelike vector tangent to � at
some point, and ξ a timelike vector normal to � at the same
point. The solution is λ = −η · X1/ξ · X1, where the denom-
inator is strictly negative for metric signature (− + ++).
Hence λ is a 4-fold real root, the Abelian PDE system has
any spacelike hypersurface � as a non-characteristic surface,
and the PDE system (57) is (non-strictly) hyperbolic. Con-
sequently, given any data on a spacelike � for X2, that data
and the PDE system determines its normal derivatives. For
example taking data to satisfy (59) on �, one has a well-posed
unique solution for the “twin” X2, provided the analyticity
assumptions hold. Hence to integrate off the spacelike slice
requires those analyticity conditions to continue to hold, and
once one has chosen the values of X2 on�, the twin “evolves”
according to (58), but is dependent on the matter field inside
X1. Places where X1 vanishes are defects of some kind. They
would be a deformed version of Cauchy horizons, but are not
as severe as the curvature singularities arising in classical
GR: they signal a partial local breakdown of the predictabil-
ity of the theory, but not a full blown divergence. Since X1

is a classicized current derived from the matter field φ or ψ ,
it may be possible to avoid its vanishing at isolated points

where the quantum matter field is zero by smearing or taking
the currents’ expectation values. But defects where X1 = 0
(which may not necessarily be isolated) are still physically
possible and are intriguing twist-gravitational analogs of vor-
tices in superconductors or textural defects in the superfluid
phases of 3He. Also note that because X1 is generated in a
gauge invariant way from (the generalizations of) equations
(53) or (56) above, so its twin X2 is also gauge invariant
by the preceding Cauchy–Kovalevskaya analysis, and there-
fore the Abelian constraint is trivially preserved by matter
gauge transformations. This analysis of [Xa, Xb] = 0 is also
unaffected by the choice of the standard Lie derivative or its
gauge covariant version, see Eq. (40), also because the Xa

are gauge invariant.
Turning now to N = 3, this case is readily demonstrated

to be over-constrained. Suppose one already has one pair of
twins X1 and X2 with [X1, X2] = 0, and wishes to construct
a third real valued X3 that Lie commutes with the first two.
That would generically impose a system of 8 independent
PDEs on X3, which only has 4 degrees of freedom at each
spacetime event. That ends the story for N = 3, unless one
restricts the matter and gauge degrees of freedom.

The commutative twist F = exp[−(λ/2)θabXa ⊗ Xb]
displays interesting symmetries. If there are N linearly inde-
pendent Xa , then F is invariant under global O(N ) symme-
try; i.e. N × N real orthogonal linear transformations. It is
easily verified that for the transformation

Xa → X̄a
.= OabXb, (62)

θab → θ̄ab
.= (OθO)ab, (63)

with O ∈ O(N ), θ̄ab is also a real symmetric matrix. We
may picture this global transform as a rigid rotation of the
Xa in GM space. However, this transform is not yet a sym-
metry of the action because the coupling constants θab are
also transformed together with the Xa . Since θab is real and
a, b symmetric, it always possible to find some basis by a
real orthogonal transform so that the transformed θ̄ab is real
diagonal in a, b. There are only two cases of physical inter-
est: N = 1 and N = 2. The former has a twist in the form
F = exp [− (λ/2) θ XM ⊗ XM ], O(1) is trivial, and there
is no global continuous symmetry of F . For N = 2 after
diagonalization the twist takes the form

F = exp

(
−λ

2
θ [X ′M ⊗ X ′M ± k2X ′T ⊗ X ′T ]

)
, (64)

for k, θ nonzero real constants. Since the Abelian constraint
[X ′M , X ′T ] = 0 is preserved under a global rescaling X ′M �→
X̃T = kX ′T and X ′M �→ X̃M = X ′M , the N = 2 twist can
always be cast into the form

F = exp

(
−λ

2
θ [X̃M ⊗ X̃M ± X̃T ⊗ X̃T ]

)
. (65)
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The sign is determined by the relative signs of the two real
eigenvalues of the 2 × 2 numerical matrix of coupling con-
stants θab. For the upper choice of sign, this form of the twist
is invariant under the global transform of only the vector
generators given by(
X̃M (x)
X̃T (x)

)
�→

(
cos ϕ sin ϕ

− sin ϕ cos ϕ

) (
X̃M (x)
X̃T (x)

)
.

Obviously this 2 × 2 matrix is an element of the familiar
connected compact Lie group SO(2). Similarly for the lower
choice of sign one has the global symmetry(
X̃M (x)
X̃T (x)

)
�→

(
cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

) (
X̃M (x)
X̃T (x)

)
.

This matrix is an element of the real symplectic group
Sp(2,R), a connected noncompact Lie group of dimension
one.

Can this N = 2 global symmetry be promoted to a gauge
symmetry? The role of F in the action lies inside�, creating
insertions into the Lagrangian density of arbitrary powers of
(39). For these insertions to be gauge invariant one requires
[29, pp. 2–7; p. 7, eqn. 15.2.2]

∂(
L)

∂(Xμ
a )

(tα) b
a � Xμ

b = 0, (66)

where the tα are the N × N real antisymmetric generators of
the (undeformed) Lie algebra o(N ). It is straightforward to
verify the corresponding condition

(tα)ac [θabXc ⊗ Xb + θba Xb ⊗ Xc] = 0. (67)

Hence the global O(N ) can be gauged inside the insertions
introduced into the action by F .

But this is not the end of the N = 2 gauge story! What
about the Abelian constraint [XM , XT ] = 0, is that O(2)

gauge invariant? Specifically, the spacetime position depen-
dent transformation in GM space modifies XM to some X ′M .
If N = 2, one then constructs the twin XT of XM as dis-
cussed earlier from [XM , XT ] = 0, and XT is also altered
by the same spacetime position dependent transformation in
GM space to X ′T . Is [X ′M , X ′T ] = 0 for a general smoothly
position dependent SO(2) transformation of XM and XT ?
This issue does not arise for N = 1 where there really is no
meaningful transformation. So consider the following posi-
tion dependent SO(2) transform of the two twist generators
for the upper choice of sign in Eq. (65):(
X ′M (x)
X ′T (x)

)
=

(
cos ϕ(x) sin ϕ(x)
− sin ϕ(x) cos ϕ(x)

)
�

(
XM (x)
XT (x)

)
,

parametrized by the now position dependent ϕ(x). Using
[XM , XT ] = 0, it is easy to show that[
X ′M , X ′T

]μ = − (
Xμ
M � Xσ

M + Xμ
T � Xσ

T

)� ∂σ ϕ(x),

(68)

and similarly for the lower sign case in Eq. (65):[
X ′M , X ′T

]μ = (
Xμ
M � Xσ

M − Xμ
T � Xσ

T

)� ∂σ ϕ(x).

(69)

Both of these are nonvanishing for generic XM unless ϕ is
position independent; that is, only global O(2) symmetries
generally preserve the N = 2 Abelian constraint, so the
symmetry cannot be gauged.

For N = 2 if we assume that the undeformed non-GM
sector is invariant under global GM O(2) of XM and XT ,
then the entire action is globally GM O(2) invariant. This
will be the case if the Xa only enter the action through the
twist and the�-product. Associated with this global symme-
try there are Noether charges and their conserved currents.
It is interesting to inquire a bit further into these Noether
charges and currents. Therefore consider the infinitesimal
O(2) transformation of the Xa given by

XM �→ XM + εXT , (70)

XT �→ XT − εXM , (71)

where ε is an infinitesimal real constant. The corresponding
Noether current is then

Jμ
N =

∂L

∂(LμXν
M )

Xν
T −

∂L

∂(LμXν
T )

Xν
M , (72)

where L is the deformed Lagrangian density and Lμ is the
standard Lie derivative. This requires the evaluation of the
quantity

∂

∂(LμXν
a)

(X1 · · · Xn · F) , (73)

with F some factor appearing before or after an �-product
inside L . F is not Xa dependent by assumption. However,
because [Xa, Xb] vanishes, one can commute the X1 · · · Xn

so that the X being acted upon by ∂/∂(LμXν
a) lies to the

extreme left, and then the partial derivative operation gives
zero. Hence the global Noether currents Jμ all vanish, as
do the associated conserved charges. Alternatively put, for
either value of N , both fermionic Xa from (53) and scalar-
based twist vector generators Xa from (56) carry no charges
themselves, while the matter that constitutes them can. So
the Abelian constraint that maintains associativity of the �-
product removes physical predictive power from Noether’s
theorem in this case, as well as obstructing the promotion
of global O(2) symmetry to a N = 2 gauge symmetry. In
particular, global O(2) GM symmetry does not place any
constraints on GM matter’s gauge groups or gauge coupling
constants (GM charges).

The actions (45) and (54) together with FC are addi-
tionally invariant under the discrete Z2 symmetry σ̂ :
φa → −φa , which acts as the identity on SM fields. If this
also applies to the SM–GM interactions, such as might be
described by a φ–Higgs interaction like L ∝ (H† � H) �
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φa � φa , and also if the ground state |0〉 is Z2 symmetric
σ |0〉 = |0〉, so there is no GM ground state condensate,
then this symmetry can protect against energetically allowed
processes with an odd number of φ scalars decaying into
purely SM products. This may easily be seen by examining
the quantity

Q = 〈0|
( ∏
n∈SM

ân

)
Ĥint â

†
φ |0〉, (74)

where Ĥint is some SM–GM interaction, or the corresponding
part of the (delta function free piece of) the S-matrix. All
decay rates are proportional to |Q|2. By inserting a factor
1 = σ̂−1σ̂ after Ĥint and using [Ĥint, σ̂ ] = 0, one finds

Q = 〈0|
( ∏
n∈SM

ân

)
σ̂−1 Ĥint σ̂ â†

φ |0〉

= −〈0|
( ∏
n∈SM

ân

)
Ĥint â

†
φ |0〉 = −Q, (75)

since σ̂ and its inverse have no action on SM fields, and
σ̂ â†

φ |0〉 = −â†
φ |0〉. Hence Q = 0, and the Z2 symmetry

protects a single isolated φ particle from decaying into only
SM particles under the above assumptions. This is stability is
desirable for φa , whose job requirements include managing
the ubiquitous �-product.

Aside from how GM matter might interact with SM fields,
how are the theoretical foundations of the SM affected by
the GM matter generated commutative twist? The SM gauge
symmetries would all remain intact, since as discussed in
Sect. 3, their fiber bundle structure still functions with the
deformed commutative product and the same gauge groups.
Internal symmetries, like weak isospin, are also maintained,
since they are not acted on by diffs. Similarly, discrete sym-
metries are either unaffected by the twist’s Lie derivatives or,
for C, P, T and various combinations thereof, are preserved
since the twist is C, P, T invariant. Lorentz invariance is also
untouched since the twist has been explicitly constructed
to maintain it, and its SO(3, 1) gauge structure remains
in place. The SM quantum numbers are unchanged from
the undeformed case. The effect of the twist on renormal-
izability and experimental measurements will be discussed
in the next section, after estimates have been made for its
size.

What happens to the cornerstones of classical gravitation
[30], namely the Equivalence Principles? Commutatively
deformed classical spacetime is not purely described by the
metric tensor but also by the twist, which varies from event
to event with its generators, the Xa . The twist is then a geo-
metric property of spacetime, describing how the (3 + 1)-
diffs act nonlocally on all objects living in M, including
on the φa themselves, as may be seen from the presence
of � in (54). However, a “point” mass (specifically mean-

ing having a size sufficiently small so that gravitational tidal
forces are negligible) interacting purely gravitationally will
still have a classical trajectory given by a geodesic of the
deformed metric tensor, so the weak Equivalence Principle
holds. But the strong Equivalence Principle would be vio-
lated since spacetime is no longer solely described by the
metric tensor, or by an equivalence class of metric tensors.
Roughly speaking, the φa resemble the Brans–Dicke the-
ory’s scalar dilation field �, which describes variations of
the Newton–Cavendish “constant” G. Discussion of the Ein-
stein Equivalence Principle, intermediate between the strong
and weak, is hampered by semantics over whether the Xa

should be deemed “matter” or “geometry.” In a sense they
are both. The fields like the φa and ψ introduced above will
act as a typical matter source of curvature via stress-energy
is the usual way: Their Lagrangians (45) and (54) generate
a contribution to the stress-energy tensor (36) and then act
as sources of the gravitational field by the gravitational field
equations (35), and at the same time the twist produced by
the Xa(φ) encodes how (3+ 1)-diffs operate. So commuta-
tively deformed general relativity, like Brans–Dicke theory,
blurs the sharp distinction between matter and geometry that
is a familiar feature of Einsteinian gravity. From this we also
see the GM fields interact with each other and the SM fields
gravitationally.

The twist F and its matter field generators Xa are com-
puted self-consistently together with all the matter and gauge
fields. This is necessary because both the twist generators Xa

as well as the action of the gauge covariant Lie derivative L̂μ

on matter fields depend on the twist itself, as seen simply from
the presence of the �-product in expressions (40), (53), and
(56). That is, the twist partially depends on itself. A simi-
lar back-action or feedback situation also occurs in classi-
cal (and semi-classical) undeformed general relativity, since
the gravitational fields there are determined from the mat-
ter energy-momentum tensor, which in turn depends on the
(quantum) matter dynamics, which is partially dependent on
the gravitational fields, also requiring self-consistency for a
solution. Now the twist gets caught up in this loop as well. We
sketch this procedure here, but emphasize from the start that
it is schematic and formal at this stage, without proof of its
convergence. For purposes of simplicity it is illustrated below
using scalar GM matter. Back-action effects are ignored in
subsequent sections.

We will apply the Seiberg–Witten map [22] from the unde-
formed (φ, A) to the deformed (φ̂, Â) gauge theories. Given
some undeformed scalars φ

[0]
a and gauge potentials A[0] as

“seed fields,” we will apply a commutative version of the
Seiberg–Witten map and its corresponding differential equa-
tion to calculate the deformed fields for a fixed twist, and
then iterate this process by computing a new twist from those
deformed fields.

In slightly more detail, the stages of the calculation are:
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0. Initialization: Start with the undeformed (“seed”) station-
ary points of (φ

[0]
a , A[0]), and compute Xa from Eq. (56)

using the undeformed A[0] while setting the � prod-
uct to the ordinary product for this initialization. Then
F [0] = F(X [0]) is the seed twist. Set n = 0.

1. Keeping the twist fixed as F [n] by freezing only the
X [n]a inside it, deform the undeformed fields to arbitrary
order in λ with that fixed twist by acting on the seed
(φ[0], A[0]) using the Seiberg–Witten map recursion rela-
tions described below. This gives the deformed fields
(φ[n+1], A[n+1]) .= (φ̂, Â) to all orders in λ for F [n].

2. Use Eq. (53) or (56) to compute one deformed vector
generator X [n+1] from (φ[n+1], A[n+1]) using F [n] to
evaluate � on the RHS (followed by classicizing it and
constructing its twin, if necessary). With those new gen-
erators, calculate a new twist F [n+1], and then return to
(1) after incrementing n.

3. Hope that Nature smiles gracefully, and that, for “suffi-
ciently small deformations,” She allows this “deforma-
tion flow” to converge to a fixed point by some quantita-
tive measure as n increases or gets large. This deforma-
tion flow is reminiscent of renormalization group flow,
except that here the φ and A fields are flowing (together
with all the other fields as well), but not the twist cou-
pling constant λ. Some order of magnitude estimates for
“sufficiently small deformations” will be presented later
to justify this, and the relative size of the first order defor-
mation flow in the generators Xa is found below in (97)
to be of order 10−28.

Employing a fixed twist F [n] at each depth of iteration
[n] ensures that for each [n] the overall Abelian constraint,
as well as the associativity and commutativity of � are
maintained at each iteration [n] throughout the deformation
flow. Had one instead expanded the Xa in a power series in
λ as Xa[[λ]], and then tried to calculate the expansion of
F = exp{−(λ/2)θabXa[[λ]] ⊗ Xb[[λ]]} order by order in
λ by brute force, one would find it difficult to preserve the
associativity of � during the process. In the self-consistent
twist procedure λ is more than merely a formal expansion
parameter, and, as discussed in the next section, acquires the
status of a dimensionful coupling constant.

To present the recursive solutions of the Seiberg–Witten
mapping differential equation in greater detail requires a bit
more notation. Any fixed F defines the r th power in λ con-
tribution to f � g without concern for gauges by

f (x)�r g(x)
.= 1

r !
(

λ

2

)r

θμ1ν1 · · · θμr νr

×(Lμ1 · · ·Lμr f (x))(Lν1 · · ·Lνr g(x))

(76)

θμν .= θabXμ
a X

ν
b , (77)

where the standard (non-gauge covariant) Lie derivative is
employed. We will use superscripts unenclosed by parenthe-
ses or brackets to denote the (non-summed) fixed power of
λ for a fixed twist at which a quantity has been calculated.

As previously demonstrated [23], the Seiberg–Witten
mapping leads to the all-order (in λ) for fixed twist (fixed
[n] and fixed θμν field) recursive solution for matter fields
(suppressing the GM index a on φa and on the gauge poten-
tial, as well as the twist iteration superscript [n] for clarity),
and now taking n to denote the power of λ:

φ̂n+1 = − λn+1

4(n + 1)
θκλ

∑
p+q+r=n

Âp
k �r (∂λφ̂

q + (D̂λφ̂)q), with

(78)

(D̂μφ)n
.= ∂μφ̂n − i

∑
p+q+r=n

Âp
μ �r φ̂q . (79)

Here φ is assumed to transform under the fundamental repre-
sentation of the gauge group, but similar results obtain under
the adjoint representation. The implied all λ order summed
deformed scalar field for fixed twist is

φ̂(n+1) .= φ0 + φ̂1 + · · · + φ̂n+1 (80)

= φ0 − (1/4)

n+1∑
k=1

(1/k!)(θμ1ν1 · · · θμkνk )

×
[

∂k−1

∂θμ2ν2 · · · ∂θμkνk

× Â(k)
μ1
� (∂ν1 φ̂

(k) + (D̂ν1 φ̂)(k))

]
θ=0

, (81)

(D̂μφ̂)(n) .= ∂μφ̂(n) − i Â(n)
μ � φ̂(n). (82)

Here we have used the same convention from [23], and taken
gauge covariant derivative operators as ∂μ − i Aμ.

There is a similar set of recursive solutions for the
deformed (non-GM) gauge fields Â in terms of the unde-
formed A. The Seiberg–Witten differential equation for Âμ

reads ({·, ·}� is the anti-commutator with respect to �):

δθμν ∂ Âγ

∂θμν
= −(1/4)θκλ{ Âκ , (Lλ Âγ )+ F̂λγ }�. (83)

For θ symmetric in its indices, this reduces to

∂ Âγ

∂θκλ
= −(1/8){ Âκ , (Lλ Âγ )+ F̂λγ }�
− (1/8){ Âλ, (Lκ Âγ )+ F̂κγ }�. (84)

Defining

Â(n)
μ = Aμ + Â1

μ + · · · + Ân
μ, (85)

one has the recursive solution

Ân+1
γ = − λn+1

2(n + 1)
θμν

∑
p+q+r=n

Âp
μ �r ((Lν Â

q
γ )+ F̂q

νγ ).

(86)
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These expressions allow one to obtain the deformed λ power
summed Â and φ̂ to arbitrary order in λ for any fixed twist.

For the remainder of this article we will detour this inter-
esting but computationally intricate deformation flow, and
assume that the appropriate self-consistently deformed fields
exist and are well defined so we can focus on the physical
implications of the model. This is similar to ignoring back-
action effects in general relativity.

5 Estimates for nonlocality lengths and particle zoo tour

Now we turn to study the argument of the exponential in the
Abelian twist F , namely (λ/2)θabXa ⊗ Xb, by dimensional
analysis. We utilize the fact that the classical (canonical) mass
dimension of a quantum field f is DM ( f ) = 1+ s f , where
for a field of Lorentz type (A, B), s f = A+ B. However, if
f describes a vector field, and there is a conserved (Noether)
current not depending on f , then s f = 0; notable exam-
ples being the photon and graviton. The undeformed interac-
tions we consider in the XDφ and the Xγψ models are all
renormalizable. Two alternative, physically motivated mod-
els will be briefly considered below. However, they turn out
to be nonrenormalizable when undeformed, and will be dis-
carded. This way we can be ensured that at the energy scale
of the Xa (or the fields that comprise them), any ultraviolet
divergences can be renormalized or regulated so there are no
energy cut-offs lurking about to upset the dimensional anal-
ysis done here. Within the classical twist, the Xa are classi-
cal fields, which should not receive any quantum corrections
from fluctuations if they are computed from stationary points
of the matter actions.

Let us start with a XDφ model that admits N = 1 or 2
scalar fields, obeying the φ4 action, possibly with GM gauge
fields. Because we are using dimensional analysis, the mass
models that take Ql = ml have to be treated separately, so
we perform the estimate for the other models where Ql is
dimensionless first. Since DM (φ) = 1, so from Eq. (56) one
has DM (Xa) = 3. Alternatively, in the Xγψ model based on
Dirac fermion fields ψ of canonical mass dimension 3/2, one
finds the same result DM (Xa) = 3 from Eq. (53). Take λ to be
a real valued dimensionful coupling constant, similar to the
Newton–Cavendish G constant or the cosmological constant
� entering the Einstein–Hilbert action. For the exponent of
F to be dimensionless requires

(Mλ)
DM (λ)(Mφ)6(ξc)

−2 ∼ 1, (87)

where Mλ is an unknown mass characterizing the coupling
constant λ. ξc is a length scale arising from the Lie derivatives
introduced by the Xa , describing the proper distance over
which F introduces nonlocality into the �-product. Equa-
tion (87) implies DM (λ) = −8 for both these models, and λ

then acquires a negative mass dimension, similar to G. The

resulting order of magnitude estimate for ξc is (making no
distinction here between φ and ψ)

ξc

L P
∼ (151.) (Mλ/3× 103 TeV)−4 (Mφ/TeV)3Q, (88)

with LP
.= (h̄G/c3)1/2 � 1.6 × 10−35 m being the Planck

length, and The Xa fields have been approximated by the
third power of Mφ , and similarly for λ. The mass models
similarly yield(

ξc

L P

)
mass

∼ (151.) (Mλ/6× 102 TeV)−5 (Mφ/TeV)4,

(89)

These estimates demonstrate that there is a window of plau-
sible values for Mλ and Mφ for which the XDφ and Xγψ

models can lead to nonlocality scales ξc in excess of LP ,
which is required for classical self-consistency: Mφ, Mλ �
(ξc)

−1 � (LP )−1 (in h̄ = c = 1 units). This general conclu-
sion is robust with respect to nonvanishing anomalous dimen-
sions [18, p. 436], [29, pp. 115–119, 123–125, 133] entering
this analysis, as they may alter the exponents in (88), and thus
modify the (Mλ, Mφ) window, but such a window will still
exist. Moreover, as previously discussed, such anomalous
dimensions are expected to vanish for both the undeformed
XDφ and Xγψ models. This kind of classical ξc is pre-
cisely what the macroscopic Lieb–Robinson approach needs
to produce microcausality on longer scales.

What about the causality issues [6,19,20] that have long
plagued noncommutative geometry, have they been truly
banished? This question can be addressed by examining the
scalar field Green’s operators P as studied by [6]. One finds
that, for commutative�-products, the equation for P reduces
to the standard Klein–Gordon equation incorporating the
Laplace–Beltrami operator in the presence of the deformed
metric. Standard light cone physics remains intact, and scalar
fields do not perceive the nonlocality scale ξc for mass scales
M such that ξc � h̄/Mc, where the Compton wavelength on
the right hand side is the length scale for quantum blurring
of the light cone. The banishment appears quite final.

These numerical estimates may be used to rule out some
of the ways of constructing the Xa from matter fields dis-
cussed previously. Suppose the Xa were composed entirely
from SM fields, either by taking Ql to be either the particle’s
(dimensionless) standard U (1) electric charge or unity. The
twist generated by the electron field has to have ξc/LP > 1
to possess a classical nonlocality length. This implies Mλ <

200 GeV. But then the twist produced by the mass 174
GeV top quark would yield a nonlocality scale ξc longer
than 4.3 × 10−19 m or (460 GeV)−1 at its Compton radius
�C , making it nonlocal and problematic for it to be causally
behaved at experimentally accessible energies since one no
longer has ξc � �C . Next consider a SM mass model with
Ql = ml . A similar estimate using Eq. (89) for the electron
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to first constrain Mλ by ξc/LP > 1 then yields ξc for the
Higgs of order 1.3× 10−13 m, also long enough to make the
Higgs start to act nonlocally in experiments. SM mass mod-
els with Ql = (ml)

n , with fixed power n > 1, only make
this problem worse. Likewise, considering a fermionic model
coupling only to electronic lepton number, and using a mass
of 0.32 eV for the electron neutrino to bound Mλ, leads to an
experimentally unacceptable ξc in excess of 1.3 × 10−15 m
for the electron. However, a SM fermionic model coupling
to baryon number B survives a similar numerical trial when
applied to the proton and top quark. Consequently, either all
the SM baryons produce a twist or none, and the mesons
generate none.

It is also possible to use symmetries to further restrict the
possible Ql entering the Xa . In particular, let us examine
the weak interaction and its SU (2)L invariance. One finds
that Ql must be none of: the electron number(s), the neu-
trino number(s), the proton number, or the neutron number;
otherwise the deformed action would be SU (2)L variant,
and so would the deformed Einstein equation. This happens
since the (left-handed parts of) the u and d quarks, as well
as the electron and its neutrino, gauge transform as SU (2)L
doublets. SimilarlyQl = (B−L)l is ruled out by the numer-
ical analysis for the electronic lepton number just discussed.
However Ql could still be the sterile (right-handed) neutrino
number or the baryon number Bl for species l (within the
SM).

Non-standard GM matter could have (non-U (1)SM )
U (1)GM interactions, either with or without additional non-
Abelian gauges. In particular, unbroken U (1) gauge theories
in hidden or dark sectors have been previously investigated by
several researchers [31–37]. Interestingly, such gauge theo-
ries are naturally admissiblewithin commutatively deformed
general relativity produced by the GM matter sector, from
whose twist nonlocality the microcausality of classical space-
time emerges by the Lieb–Robinson route. A GM sector,
however, is not required to be U (1)GM interacting, and it
could still engender a twist via a numerical or mass model
that does need U (1) charge.

We will now take the reader on a brief guided tour of the
GM particle zoo for the separate cases of the GM scalar and
Dirac fields, which might include spontaneous breaking of
ground state global symmetries [38]. Some of these particles
could be dark matter (DM) candidates, and a more detailed
analysis of the GM particles’ viability as DM candidates will
be presented later. The matter content of the GM sector is the
same for N = 2 as for N = 1, the only difference being that
for N = 2 one has to build XT from XM and the Abelian con-
straint by the Cauchy–Kovalevskaya construction discussed
earlier.

GM scalars Turning first to the scalar XDφ model: We
note that new scalars will not upset the SM’s delicate gauge

anomaly cancelations, regardless of whether or not they carry
non-singlet SM gauge representations. At the same time, the
SM does not furnish any stable scalars, and that stability is
a requirement if a current constructed from that field is to
generate the twist in the gravitational sector. So such GM
scalars are required to be non-SM fields.

The φ are self-interacting via gravitation, the φ4 term in
the Lagrangian, and also any possible gauge fields Aμ enter-
ing the currents produced by φ in the construction given by
(56), or its ql �→ Ql extensions. These gauge interactions
could include any of the known SM gauge fields, and/or ones
coupling only to the GM sector, and will not violate Z2 sym-
metry in the model described by (54). For instance a non-SM
“dark” U (1)GM interacting only with these GM scalars by
a version of scalar electromagnetism would be admissible.
The φ4 interaction can alter the number of φ particles if φ

is a self-adjoint scalar. If there are additional Z2 symmetric,
non-gauge, direct couplings to the SM sector (not included in
Eq. (54)), such as φ�φ�H†�H , where H is the SM scalar
Higgs weak SU (2) doublet, then that symmetry will give iso-
lated single φ particles protection against decays into purely
SM products. If m2 < 0, the Z2 symmetry is spontaneously
broken, and single φ particles could then decay into suitably
coupled, energetically allowed SM products. Depending on
φ’s gauge couplings, there could be a Higgs mechanism in
this tachyonic case. A broken symmetry ground state for φ

will then affect the expression for the twist generator X via
Eq. (56), since the vacuum expectation 〈φ〉 acquires a non-
vanishing, spacetime position independent value.

GM fermions Next we consider the fermionic Xγψ model.
There is no renormalizable four fermion interaction, but it
is expected to be gravitationally self-interacting (so it would
clump astrophysically), and it could also interact viaU (1)GM

and/or non-Abelian gauge fields. If the GM fermion carries
no SM gauge degrees of freedom, the only renormalizable
direct (non-gauge) interaction with the SM sector would have
the form ψ̄ψH , with H being the Higgs scalar. However, that
would violate SM SU (2)L symmetry. If ψ were a non-SM
left-handed fermion, and it also carried nonzero SM weak
hypercharge y, then there would be a gravitational anomaly
in the SM [29, p. 386]. So this (these) fermion(s) is (are)
at least one of: all the SM baryons coupling via Ql = Bl ,
right-handed, or carrying no weak U (1) hypercharge y. It
must also be stable (or possess a stable member within its
family) in order to be of relevance in the present epoch as
a twist generator. Considering first a right-handed fermion
such as a light sterile neutrino, this is generally considered
to lie in the mass range 1 keV to about 10 MeV [39]. To keep
ξc/LP ∼ 100 then would require Mλ ∼ (0.056−560) GeV.
A heavy sterile neutrino could also have mass in excess of
45 GeV, necessary to maintain the theoretical–experimental
agreement for the Z0 total decay rate. Such a heavy neutrino
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would have �Sh2 � 10−3 � �DMh2 � .106 ± 0.08, so it
could not constitute most of DM, but could still generate the
twist [40]. The stable SM possibility for a twist producing
fermion is the baryons in stable configurations, such as the
proton, coupling to baryon number Ql = Bl . Although any
stable spin 1/2 nuclei are also conceivable as candidates for
this twist generator, they cannot be the only source for the
twist since they were not present before Big Bang nucleosyn-
thesis or even later. But it nevertheless remains a possibility
that the familiar SM baryons could be the twist generating
fermions hiding in plain sight. We will examine the case that
this fermion is a non-SM y = 0 particle in more detail below.

Because of the Fermi statistics, the case m2 < 0 for
fermions does not lead to condensates unless there is some
kind of pairing as in BCS superconductivity, superfluid 3He
or the QCD quark condensate. Also since there is no renor-
malizable four fermion interaction to take the role of the
scalar φ4 interaction, this case becomes unstable (its Hamil-
tonian is unbounded below), so the tachyonic fermions are
not physically interesting.

Because one is now possibly introducing new fermion
fields, one must be cautious about upsetting the delicate
gauge anomaly cancelations of the SM [29, p. 386]. Specifi-
cally, this means

Dαβγ
.= 1

2
tr ({Tα, Tβ} Tγ ) = 0, (90)

where Tα is the representation of the gauge algebra on all left-
handed fermion and anti-fermion fields, and tr is a sum over
those species. Additionally, there are possible gravitational
anomalies (violations of diff covariance), whose absence
requires tr Tα = 0 for all U (1) gauge generators. The con-
clusions of such an analysis are the following: Recall the SM
weak hypercharge defined as y/g′ .= t3/g − q/e, where t j
for j = 1, 2, 3 are the generators of weak isospin SU (2) with
coupling constant g, q is the particle’s electric charge, and g′
is coupling constant to the electroweak U (1) generator y. If
the SM weak hypercharges y of the GM fermion(s) all van-
ish, then there are no gravitational U (1)SM gauge anomalies
in the SM. If there is a (non-SM) U (1)GM gauge interaction
in a fermionic GM sector, and if any U (1)GM hypercharge
y′ vanishes for all GM and SM fermions, then there are no
gravitational U (1)GM gauge anomalies. It is also easy to
show from the absence of a SU (2)–SU (2)–U (1)GM gauge
anomaly that either both (electron, neutrino) and (u,d) quarks
or neither SU (2) doublet have y′ �= 0, consistent with the
absence of gravitational gauge anomalies. It is therefore pos-
sible to take y = 0 for all fermionic GM particles and y′ = 0
for both the GM and SM sectors, which will be the start-
ing point for the viability of this case as DM and for com-
parisons to observations in a later section. Setting y to be
zero for GM fermions also avoids the complication of mix-
ing between any U (1)GM and U (1)SM gauge fields; that is

there will be no term in the Lagrangian density of the form
(FGM )μν (FSM )μν [37].

For completeness we next examine two alternative models
for how to construct self-consistent twist generators Xa from
nonscalar matter fields. One possibility is simply to take the
vector fields Xa to be massive (non-gauge) vector bosons,
having canonical mass dimension 2. These bosons might be
described by an action of the form

S[X ] =
N∑

a=1

∫
M

d4x |g|1/2

�
(
−γa

4
Fa

μν � Fμν
a − m2

a

2
Xμ
a � Xa

μ

)
(91)

Fa
μν

.= ∇μX
a
ν −∇νX

a
μ. (92)

This yields estimate for the nonlocality scale ξc:

ξc(vector boson)/LP = (4.6× 105)(MX/TeV)2

× (Mλ/3× 103 TeV)−3. (93)

However, while the second term has a coupling that superfi-
cially resembles a mass, ma actually has mass dimension 0.
The Yang–Mills kinetic term has a coupling constant γa with
mass dimension −2, making this a nonrenormalizable field
theory on the basis of power counting. We therefore discard it.

As a final possibility, consider a Universe with nonzero
cosmological constant �. The twist exponent might be con-
jectured to be (λ/2)�gμν∂μ ⊗ ∂ν . However, gμν generally
has too many degrees of freedom to be written in the form
θabXμ

a Xν
b using N ≤ 2 Abelian vector fields Xa . So this

model would have a non-Abelian twist, resting on shaky
mathematical foundations with a generally nonassociative
product. One way out is if the Universe were highly symmet-
rical, and the Xa could then be chosen to be the Killing vec-
tors of the appropriate de Sitter (or anti-de Sitter) Friedmann–
Lemaître–Robertson–Walker geometry [6]. Then using the
�CDM (cold dark matter) model value M� � 8.94 meV
would imply the estimate(

ξc

L P

)
�

∼ (890.)(M�/8.94 meV)(Mλ/TeV)−2. (94)

So generating the twist from the cosmological constant could
nevertheless produce a plausibly valued ξc for a range of Mλ,
but only in highly symmetrical cases. Its renormalizability
is also an issue, since the metric tensor generating the twist
comes from the Einstein–Hilbert action, which is well known
to be nonrenormalizable. Due to these deficiencies, we also
abandon this way of constructing the twist.

As an alternative to coupling SM to GM matter by having
GM matter carry nontrivial SM gauge group representation
indices, one could imagine there might be direct couplings
between the scalar GM and SM sectors [37,41]. One could,
for example, couple the SM Higgs SU (2) doublet H to the
scalar GM sector’s φa by including a (renormalizable) term
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in the Lagrangian density of the form

LSM-GM = gSM-GM

N∑
a=1

(H† � H)� (φa � φa), (95)

with a dimensionless coupling constant. This would still pre-
serve the GM sector’s Z2 discrete and O(N ) gauge symme-
tries, as well as SM SU (2) invariance. Simple GM scalar φ to
SM fermion ψSM couplings are also restricted: ψ̄SM ψ ′SM φ

violates Z2 symmetry and GM charge conservation; and
ψ̄SM ψ ′SM φ φ is nonrenormalizable. Similarly, the familiar
Yukawa couplings of two SM SU (2) doublets to a single GM
sector fermion would violate both U (1)SM gauge invariance
and any possible GM charge conservation. Notice that the
amplitude of any process driven by these kinds of terms will
be (to zeroth order in the twist) independent of twist param-
eters such as θab or Mλ. We will discuss SM–GM couplings
further below when the astrophysical implications of GM
matter are discussed.

Just how small are the deformations we have been con-
sidering? For instance, first consider atomic or nuclear spec-
troscopy. A simple order of magnitude estimate for the twist
induced relative first order change 
H in the energy level
spacings H0 is

|
H/H0| ∼ (ξc/Lchar)
2, (96)

where Lchar is some characteristic size of the process.
Using ξc/LP ∼ 102–105, one finds that atomic electronic
transitions have relative twist induced changes of order
10−46–10−40. Nuclear or hyperfine transitions display rela-
tive changes of 10−36–1030. Particle physics branching ratios
in the TeV range have relative perturbations of order 10−28–
10−22. Such minuscule changes are significantly beyond
present experimental detectability. One way to understand
this is that the nonlocal effects are practically of Planck scale.

Using the above models one may also estimate the rela-
tive size of change a single twist produces on the X fields
themselves (twist self-dependency) to first order in λ as

η
.= X1

X0 ∼ (10−28)(Mφ/TeV)8(Mλ/3× 103 TeV)−8. (97)

The presence of the twist means the variation of the action
δS/δψ receives contributions from δ � /δψ , which are
deformed sources for any field ψ , even on shell. Such sources
have relative size smaller than the standard ones by at least
one power of λ. In the gravitational sector, the twist has even
greater numerical efficiency: A simple order of magnitude
calculation utilizing either the scalar or fermion model yields
the first order deformed metric tensor as

|g1
μν | ∼

(
�grav

MλLc

) (
Mφ

Mλ

)7

. (98)

Here �grav is the dimensionless Newtonian gravitational
potential, and Lc is the (minimum) radius of curvature of

spacetime at the event in question. Using Mλ = 3 × 103

TeV and Mφ = 1 TeV, the first order deformation part of
the metric tensor at the Earth’s surface is |g1| ∼ 10−67. This
is about 1058 times smaller than the Newtonian contribution
to the metric tensor at the reader’s present location. Travel-
ing at the speed of thought to another astrophysical extreme,
at the event horizon of a 10 km radius black hole one finds
|g1| ∼ 10−51. Clearly geodesics will be very subtly perturbed
from their undeformed courses. These tiny deformations lend
some credence to the assumption that deformation flow will
converge to a self-consistent twist solution for astrophysical
situations.

Next we turn to renormalizability of the twisted field the-
ory. The role of the twist is to introduce arbitrary many pow-
ers of 
L

.= −(λ/2)θabXμ
a Xν

bL̂μ⊗L̂ν into the undeformed
Lagrangian. Here the Xa are classicized fields, and λ has
canonical mass dimension−8. Even though these insertions
by themselves are of total mass dimension zero by construc-
tion, their Lie derivatives L̂μ act on the other fields in the
Lagrangian to generate terms in the deformed Lagrangian
with sufficient derivations to become nonrenormalizable.
That is, those terms will have an overall coupling constant of
negative mass dimension. Hence the deformed Lagrangian
is a nonrenormalizable effective quantum field theory. How-
ever, renormalizability is not a fundamental requirement for
a physical theory. As lucidly discussed by S. Weinberg in “Is
Renormalizability Necessary?” [18, pp. 516–525], as long as
one includes in the Lagrangian all of the infinite number of
interactions allowed by the symmetries, then there will be
counterterms available to cancel every UV divergence. The
twist will do this because of the systematic way it inserts
arbitrarily many factors of 
L into the undeformed action.
Then, on dimensional grounds, the terms having couplings
with negative mass dimension gi � M
i

i , with 
i < 0 and
Mi some mass characterizing the i th interaction, will have
their effects suppressed for momenta k � Mi by a factor
(k/Mi )

−
i � 1. Einstein–Hilbert gravity is well known to
be nonrenormalizable, with a characteristic energy scale of
order the Planck energy EP . So what is the effective energy
scale of the deformations being considered here? The defor-
mation’s single insertions are of the form ξ2

c (L F1) · (L F2),
where F1, F2 are factors of the Lagrangian outside this twist’s
single action. Therefore the energy scale of the deforma-
tions are on the scale ξ−1

c ∼ (10−5–10−2)EP , which is
close to, but not at, the Planck scale EP ∼ 8 × 1016

TeV. Notice this is not the other scales entering the twist:
Mλ ∼ 103 TeV or Mφ ∼TeV. The nonrenormalizable effects
at momentum k << ξ−1

c are then suppressed by a factor
(kξc)2 � (10−28 − 10−22)(k/TeV)2. As k approaches ξ−1

c
from below, and starts to exceed it, there will be nonunitary
contributions to the S-matrix in this model. These arise from
the new quantum character of the nonlocality at those scales:
the Xa can no longer be taken as coming from classical sta-
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tionary points or expectation values as this model does, and
the twist becomes a quantum object, along with spacetime
itself. This emergence of new physics at a scale correspond-
ing to that of nonrenormalizability is roughly similar to what
occurs at the electroweak scale of about 300 GeV, and is well
beyond the scope of this article.

6 Dark matter implications of classical commutative
deformations

Commutatively deformed classical gravitation has several
interesting potential implications for astrophysics, cosmol-
ogy, and quantum gravity. Foremost among these is the pos-
sibility that the GM matter could be DM. To summarize
that relationship so far: GM matter acts just like SM mat-
ter from a gravitational point of view; it responds to and acts
on both GM and SM matter in the classical way. Therefore it
will clump gravitationally, provided it is nonrelativistic in a
cosmologically comoving frame. Due to their expected TeV
range mass, similar to weakly interacting massive particles
(WIMPs), that is likely to be the case. Stability over cosmo-
logical time scales is required of GM matter to generate the
twist and for DM as well. GM matter possesses no a priori
strong, electromagnetic, or weak interactions; however, non-
minimal coupling is not precluded, and in particular it could
be weakly interacting [37,41]. DM is observationally known
to be neither electromagnetically nor strongly interacting. In
the following we will examine both minimal (totally non-SM
interacting) GM matter and weakly interacting nonminimal
GM matter as DM candidates. Measurements of spin inde-
pendent elastic scattering cross sections of weakly interact-
ing DM off nuclei have ruled out DM particles with nonzero
weak hypercharge y unless appropriate weak couplings are
introduced [41], consistent with the assumption that GM has
y = 0, as discussed earlier. Additionally, several of the GM
models are self interacting, and observations show DM to
have some self interactions σ/M � 0.1− 1.25 cm2/g, while
maintaining their collisionless galactic dynamics [37]. To be
viable as a DM candidate, the GM must also pass a well-
known abundance test [42,43], which will be performed dur-
ing the following pass through the GM sector from the DM
perspective.

DM abundance estimates assume that at some time in the
early Universe DM was in local thermodynamic equilibrium
both with itself and with the other constituents. Later on the
reaction rates for processes maintaining these equilibria fell
below the Hubble expansion rate, and then those processes
became “frozen out.” The time scale for the reaction grew
longer than the age of the Universe. If a reaction had differing
numbers of DM matter particles on its left and right sides,
then it can contribute to the measured abundance of DM.
Reactions that have the same number of DM particles on
both sides do not affect the abundance of DM, although they

can play a role in DM self interactions. The analysis of the
abundance determining reactions is handled by a Boltzmann
equation approach, where the quantum statistics of the parti-
cles is ignored because the densities are far from the quantum
degeneracy regime. The result is a relationship expressing the
DM abundance in terms of the particle mass, its thermally
averaged cross section σ0

.= 〈σv〉, and the number of degrees
of freedom at freeze out. Here v is the relative velocity of the
annihilating particles in a cosmologically comoving frame in
c = 1 units. A given DM model, together with the measured
DM abundance �DMh2 � 0.106 then yields σ0 in terms of
the particle’s mass, or vice versa if one can independently
calculate the cross section [37,41]. This can be made more
complex by resonant enhancement effects (co-annihilations),
which are ignored below [42]. We now consider GM sector
case by case to identify these processes.

As discussed earlier, the value of N does not affect the
matter content of the GM sector. We first turn to the GM
scalars, which are necessarily non-SM particles:

Real scalar GM matter without GM charges, GM gauges,
or weak interactions has its abundance determined from reac-
tions of the form φφφ ↔ φ arising from the φ4 interac-
tion in the Lagrangian. Similarly that term will also gen-
erate short range GM–GM interactions, which can freeze
out. Single φ particles can be Z2 stabilized against decay.
In order to agree with the observed DM abundance, one
finds this case yields (M/TeV, σ0/pbarn) values (0.1, 0.68),
(1.0, 0.76), (10., 0.89), and (100., 0.91). The picobarn char-
acteristic size of σ0 is of the same order as calculated from
WIMP DM models. If φ is not weakly interacting, this could
be used to bound the size of the φ4 coupling constant, which
is left for future research. If one allows φ to interact by SM
weak interactions, then it was shown in [41] that the simplest
y = 0 scalar would be a weak SU (2) triplet, its electrically
neutral particle would be the GM φ having a dark matter
abundance determined mass of 2.0 TeV, coming from its cal-
culated weak cross section. It is accompanied by two oppo-
sitely electrically charged particles having a mass 166 MeV
larger, which would decay into the lighter neutral particle.
This mass is in accord with the above estimate derived from
the twist. Z2 symmetry would block φ → H†H decays, but
not φφ → H†H , which would determine the φ abundance.
The tachyonic case m2 < 0, would be unstable with respect
to the first weak decay channel if M(φ) ≥ 2M(H) � 250
GeV, and then tachyonic φ would not be a viable DM candi-
date.

As an alternative, a GM charged scalar φ̃ interacting via a
U (1)GM gauge field would be complex valued, and there will
be no φ4 mediated φφφ ↔ φ reaction since that would vio-
late GM charge conservation (GM gauge invariance). How-
ever, these scalars interact with massless dark U (1)GM pho-
tons γ̂ , so pair annihilation |φ̃|2 ↔ 2γ̂ can determine the
freeze out abundance, even in the absence of weak inter-
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actions. An analysis similar to the real scalar finds σ0 varies
from 0.70 to 0.93 pbarn as the GM particle mass ranges from
0.1 through 100 TeV. This could be used to derive the dark
scalar fine structure constant (GM charge) as a function of
Mφ , provided the Feynman rules for scalar electrodynamics
are in hand, a project off the main track of this article and left
for later study. If this scalar couples to the SM weak inter-
action, then the Z2 allowed process |φ̃|2 ↔ H†H is also a
possible abundance determining reaction. φ̃ ↔ H†H vio-
lates U (1)GM gauge invariance. Z2 symmetry is no longer
required to stabilize DM in this case since the lowest mass
GM particles carry conserved GM charge. DM becomes a
GM plasma, displaying scalar dark U (1) electromagnetism.
For m2 < 0, there are no more long range GM gauge inter-
actions since the U (1)GM gauge boson becomes massive,
and a GM neutral Higgs δφ emerges. If δφ is nonrelativistic
in a cosmologically comoving frame, there is no energeti-
cally allowed abundance determining process without weak
interactions. With weak interactions, δφ → H†H is allowed
if M(δφ) ≥ 2M(H) � 250 GeV since Z2 is broken, and
δφ2 ↔ H†H is also allowed if M(δφ) ≥ M(H) � 125
GeV. The first decay mode could render tachyonic φ̃ weakly
unstable, and then it would be an implausible DM candidate.

Now we turn to the fermionic twist models.
As discussed earlier, the twist generating fermion could

be a sterile neutrino, a light stable SM particle coupling
to baryon number, or possibly DM in the form of a non-
SM particle. Here we examine the last possibility. In the
absence of a renormalizable four fermion process and gauges,
there are no abundance determining reactions without cou-
pling to the weak interactions, hence no implied relation-
ship between averaged cross section and particle mass. One
can estimate the mean free path � of these inert ψ parti-
cles due to their mutual scattering by � � 1/(nσ), and
crudely estimate the cross section’s order of magnitude using
σ ∼ (h̄/Mψc)2. At the present density of dark matter, this
gives � ∼ (2.8×105 Gly)(Mψ/GeV)3. This estimate renders
this GM fermion essentially noninteracting, and it would be
problematic for the ψ to thermalize among themselves. Thus
without being weakly interacting, this fermion would be an
undesirable DM candidate. Hence we look to the weak cou-
pling of ψ . Following Cirelli, Fornengo, and Strumia (here-
after CFS) [41], the simplest way to accomplish this is to
make ψ one member of a SM weak SU (2) triplet, the other
two particles being U (1)SM (electrically) charged. Requir-
ing agreement with the observed dark matter abundance, CFS
find M(ψ) = 2.4 TeV, consistent with the twist estimate (88),
and lying 166 MeV below the charged members of the triplet.

A U (1)GM GM charged fermion, together with its dark
massless U (1)GM photons γ̂ , will have long range interac-
tions, and its abundance determining process without weak
interactions is pair annihilation: ψ̄ψ ↔ 2γ̂ . As in the com-
plex scalar case, Z2 symmetry is no longer required to stabi-

lize the GM sector. This dark version of SM spinor elec-
tromagnetism is an appealing GM model for DM, a GM
plasma similar to the complex scalar case just discussed.
Its phenomenological consequences were investigated by
Ackerman, Buckley, Carroll, and Kamionkowski (hereafter
ABCK) [37], motivated by theoretical considerations of
unbroken U (1) gauges in hidden sectors [31–36]. ABCK
demonstrated that there are no constraints from either Big
Bang nucleosynthesis or the cosmic microwave background
on the additional relativistic degrees of freedom from dark
radiation or from nonrelativistic (heavy) degrees of freedom
in this model. These bounds arise because the Big Bang
nucleosynthesis of the observed ratios of cosmic nuclear
abundances are very sensitive to the expansion rate of the
Universe at that time (T ∼ 1 MeV), which is related to the
energy density of radiation by the Friedmann equation [33].
In fact, the analysis of ABCK is readily applied to all the other
DM models considered here, with the same conclusion. They
further showed that the abundance bounds on the DM annihi-
lation to dark photons are inconsistent with collisionless DM
in galactic dynamics unless Mψ > 102 TeV, where the dark
spinor electrodynamical fine structure constant α̂ becomes
nonperturbative. That is, the dark photons interact among
themselves very effectively via GM matter loop mediated
processes. However, ABCK could achieve the observed DM
abundance at lower α̂ by opening weak annihilation chan-
nels. Even in the presence of those weak channels there is
no dark photon to visible photon mixing, there is vanishing
leading order dark photon coupling to SM fermions, and the
lowest order of that coupling is proportional to α2α̂ coming
from a GM loop.

To summarize: Both GM fermionic models would neces-
sarily have to be SM weakly interacting in order to describe
DM. Twist fermions need not be DM, and alternatively might
either be a light stable SM particle coupling to baryon num-
ber or a sterile right-handed neutrino. More work is neces-
sary to determine whether the m2 > 0 scalar GM models
also need to be coupled to SM weak interactions. The scalar
tachyonic models are not likely to be good DM candidates.
When the models interact via the SM weak interaction, the
observed DM abundance combined with the calculated weak
cross section gives a particle mass in the low TeV range
where the twist produces a nonlocality scale ξc on the order
of 102LP . The GM charged twist models provide a theoret-
ical basis for DM as U (1)GM gauge interacting plasmas of
GM scalars or spinors, which do not require Z2 symmetry to
be stable. They can arise from twist deformed nonlocal clas-
sical diffs, which at the same time produce microcausality at
proper length scales longer than the length ξc characterizing
the nonlocality. More complicated GM matter models might
be constructed by incorporating non-Abelian GM gauges,
but there is little observational motivation or guidance for
that step at this point.
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7 First order deformed electromagnetic plane wave
propagation through GM matter

One common experimental probe of quantum gravity the-
ories is to search for dispersion and attenuation of electro-
magnetic radiation propagating through near vacuum over
cosmological distances, on the order of giga-lightyears (Gly)
or longer [44,45]. Because classical commutative twists will
insert new terms into the Maxwell equations for electromag-
netic plane waves traversing the matter generating the twist,
one anticipates similar effects could arise. Here we estimate
the size of those effects to first order in the twist parameter
λ together with a simple model for the φ or ψ field depen-
dent couplings. This is essentially first order deformed on
shell (classical) electromagnetism. As will explained, this
can also be taken as a test of GM matter as DM.

In order to simplify the mathematics, it is necessary to
make some assumptions. First we assume a flat spacetime
so that curvature effects, |g|1/2 factors, and so on may be
dropped. The GM fields generating the twist will be found
to couple to the electric E j and magnetic Bj fields through
contraction of indices, like the spatial j . We assume the GM
matter may be modeled as a homogeneous and isotropic gas
of particles. Consequently, on average all odd order spatial
tensors comprised from the GM fields, such as GM gauge
fields Aμ or Dμφ, vanish. Even order tensors are taken to
decompose into isotropic linear combinations of Kronecker
deltas times constants depending on expectation values of the
GM fields. We also neglect the variation of those constants in
time and along the electromagnetic radiation’s propagation
path. More sophisticated models of GM matter will be left
for future research.

In the absence of external electromagnetic currents, the
action takes the form

Sem = Sundef + Sdeform

= −1

4

∫
dx4

{
(∂μAν − ∂ν Aμ)(∂μAν − ∂ν Aμ)

−
(

1

4

) (
θabλ

2

)
∂λ(∂μAν − ∂ν Aμ)∂σ

× (∂μAν − ∂ν Aμ)(Xλ
a X

σ
b )

}
. (99)

From this it is straightforward to derive (overdots designate
time derivatives)

Ė j − (∇ × B) j = −(θcurl) j
.=

(−θabλ

2

) 6∑
i=1

Ki ,

K1 = (Xλ
a X

σ
b )(∂λ∂σ )

(− Ė j + (∇ × B) j
)
,

K2 = ∂λ

(− Ė j + (∇ × B) j
)[

∂σ (Xλ
a X

σ
b )

]
,

K3 = −(∂σ ∂t )(X
λ
a X

σ
b )(∂λE j ),

K4 =
[(

∂σ ∂k
)
(Xλ

a X
σ
b )

][
ε jkl∂λBl

]
,

K5 = −
[
∂k(X

λ
a X

σ
b )

]
(∂σ ∂λ)(εk jl Bl),

K6 = −
[
∂t (X

λ
a X

σ
b )

][
(∂σ ∂λ)E j

]
, (100)

and

∇ · E = θdiv
.=

(−θabλ

2

) 4∑
i=1

Li ,

L1 = −(∂σ ∂λ)(∇ · E)(Xλ
a X

σ
b ),

L2 = −(∂λ∇ · E)[∂σ (Xλ
a X

σ
b )],

L3 = −(∂λE j )[(∂σ ∂ j )(X
λ
a X

σ
b )],

L4 = −(∂σ ∂λE j )[∂ j (X
λ
a X

σ
b )], (101)

together with the undeformed Maxwell equations ∇ · B = 0
and (∇ × E) j + Ḃ j = 0. Using the homogeneous isotropic
gas model for the φ particles discussed above, these may be
reduced to

(θcurl) j = F Ė j + H ∇2E j + G Ë j +O(λ‖θab‖/2)2, and

(102)

θdiv = 0+O(λ‖θab‖/2)2. (103)

We have defined

αab .= λθab/2 (104)

F
.= ((2/3)∂l∂t 〈Xl

a X
0
b〉 + ∂t∂t 〈X0

a X
0
b〉

+ (1/3)∂l∂s〈Xl
a X

s
b〉)αab (105)

H
.= (−1/3)∂t 〈Xn

a X
n
b 〉αab (106)

G
.= (

(2/3)∂k〈X0
a X

k
b〉 − ∂t 〈X0

a X
0
b〉

)
αab. (107)

The angle brackets denote volume averages, discussed more
in a moment. These yield the first order deformed wave equa-
tions

∇2Bj − B̈ j = −(∇ × θcurl) j , (108)

∇2E j − Ë j = F (∂t )
2E j + G (∂t )

3E j + H ∇2(∂t )E j .

(109)

Substituting the plane wave form E j ∼ exp[−iωt + i �k · �x]
one finally arrives at

ω2 − k2 = −Fω2 + i Hωk2 + iGω3. (110)

This may be further decomposed into

vg − 1
.= dω/d(Re k)− 1 = −F/2+ O(λ2), and (111)

γ
.= Im k = −(1/2)(G + H)ω2 + O(λ2). (112)

The coefficients F,G, H enter the Euler–Lagrange (Maxwell)
equations describing the propagation of U (1)SM radiation
through a uniform gas of GM particles. For now we take the
GM particles to be dark matter, and use our results to test that
hypothesis. Since the average density of dark matter in the
present epoch using parameters from the �CDM model is
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nD � (1.26 m−3)(Mφ/TeV)−1, the typical φ particle spac-

ing is n−1/3
D ∼ (1 m) � �C ∼ (10−18 m)(Mφ/TeV)−1,

where �C is the Compton wavelength of φ. So one has a
dilute classical gas of widely spaced particles. To enforce uni-
formity, one has to average the deformed Maxwell or wave
equations over a scale at least as large as the typical inter-
particle spacing. Consequently one has 〈|Xa |〉 ∼ η|X |pk,
with η denoting the volume filling factor η � nD�3

C �
(9.6×10−60)(Mφ/TeV)−4a−3, and |X |pk is the value of the
φ field smeared over its Compton radius. a is the cosmolog-
ical scale factor, set to unity in the present epoch. This type
of volume averaging does not occur within the twist itself,
since F should not depend on averaging over details of its
“environment,” unlike the electromagnetic wave propagating
through a homogeneous gas considered here.

For the scalar and fermion models, and roughly approx-
imating 〈X2〉 ∼ 〈|X |〉2, one obtains the order of magnitude
estimate

F ∼ (1.5× 10−87)(Mφ/TeV)4(Mλ/3× 103 TeV)−8a−3

(113)

as a frequency independent index change produced by the
φ particle gas due to its deformation of the classical elec-
tromagnetic field. While such a small “dispersion” would be
nearly impossible to measure, it is nevertheless consistent
with all experimental measurements to date for the absence
of vacuum dispersion. Even without the smearing factor η the
dispersion F would be ∼10−28, still immeasurably small.

The corresponding penetration depth � of electromag-
netic radiation is estimated to be

� ∼ (1.4× 1055 Gly)(Eph/MeV)−2(Mλ/3× 103 TeV)8

× (Mφ/TeV)−3, (114)

for photon energy Eph. This implies photons will be absorbed
(photon observations will be cut off) after traveling cosmo-
logical distances � when

Eph > Eco ∼ (4.× 105 EPl)(�/Gly)−1/2

× (Mλ/3× 103 TeV)4(Mφ/TeV)−3/2a3/2, (115)

where EPl � 7.75 × 1016 TeV is the Planck energy. It
is noteworthy that ignoring the filling factor by setting η

to unity would instead yield a cut off energy of E ′co ∼
(1.2× 10−2 MeV)(�/Gly)−1/2. Thus the volume averaging
leading to η � nD �3

C is crucial in allowing observations
of high energy photons arriving at Earth from cosmological
distances with energies well in excess of E ′co, such as those
originating from Gamma Ray Bursters having photon ener-
gies in the TeV range, as have been detected by Fermi-LAT
[45]. Since a ∼ 10−4 at photon decoupling (atomic recom-
bination) with a3/2 ∼ 10−6, photons all the way up to Planck
scale energies have been able to travel gigalightyear distances

without twist induced absorption ever since. Before then, dur-
ing the radiation dominated hot Big Bang, the photon atten-
uation distance was severely limited by plasma effects well
before photons could travel over cosmological length scales.

To summarize this section: The first order O(λ1) defor-
mation effects of a commutative twist on classical elec-
tromagnetism using the XDφ and Xγψ models, in con-
junction with approximating the twist generating GM par-
ticles as an isotropic and homogeneous gas having a num-
ber density equal the present epoch’s value for the aver-
age dark matter density, predicts no cosmological disper-
sive or absorptive effects detectable with the current technol-
ogy. This result is consistent with measurements of vacuum
absorption and dispersion made so far, and it supports the
viability of the twist-based GM sector as dark matter. Tak-
ing the twist generating fermionic matter to be the proton,
and examining similar effects on photon propagation over
10 km through a substance like liquid water with number
densities ∼ 3 × 1022 cm−3, implies a cutoff photon energy
of about 2 × 107 TeV, which is not of physical relevance.
There is expected to be an analogous effect of the twist on
gravitational wave propagation, which calculation has not yet
been performed. However, it too is anticipated to be experi-
mentally undetectable, particularly since present day gravi-
tational wave observatories search at low frequencies (hun-
dreds of Hz, with some proposals at a few GHz).

8 Self-criticism, future directions, and conclusion

Where are the weak spots? One potential source of undesir-
able mathematical pathologies could be the use of the differ-
ential form of the twist. Similar to Fourier analysis through-
out physics and engineering, this can lead to troubles if the
objects it acts on, or is made of, do not have a sufficiently
rapid fall off at large relative distances. Here those objects
are the vector generators Xa , coming from classicized GM
matter currents, along with the other SM fields. The typical
remedy is to appeal to the Riemann–Lebesgue theorem and
to require those fields or currents to be L1, or to set the fields
to zero outside some 4-volume or box. The latter approach
would be inadvisable here since the points where Xa vanishes
are defects in the N = 2 models. But one could still insist that
the classical X1 be drawn from some suitable Schwartz space
where they fall off nicely at spatial infinity, but along the way
do not vanish. Essentially this imposes a restriction on the
long distance fall off of the fields. Alternatively, one might
use an integral kernel in momentum space as an approach
to constructing the twist, as has been applied to commuta-
tive deformations of flat spacetime [7], while maintaining
background independence by constructing that kernel from
matter fields, as the Xa have been here. It would certainly be
worthwhile to study such an approach.
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The defects where X1 = 0 arising in the construction of
the twin X2 for the N = 2 cases are simultaneously interest-
ing and threatening. The implied breakdown of predictability
and classical determinism is not new to gravitational physics,
but the defects remain a concern. They are precisely the points
that are not regular in the sense of Aschieri and Castellani
[12], discussed in Sect. 2. If X2 also vanished at such loca-
tions, the Lieb–Robinson mechanism would not be able to
produce microcausality there since the twist would become
trivial. If the set of X1 = 0 defects consists of isolated
events or has sufficiently small dimensionality or measure,
one might be able to assign a nonvanishing value to the twin
X2 at those X1 = 0 locations by smoothness, thereby remov-
ing the problem. However, this is only a conjecture at this
point. Unlike Cauchy horizons or singularities inside black
holes, these defects are not cloaked by an event horizon.
Space travelers take note.

Another place where ignorance could have deleterious
consequences is the role of nonzero anomalous dimensions
which enter the Xa when they are classicized as expectation
values of quantum currents. While these are not expected to
enter, an uninvited guest might still perturb the dimensional
analysis for nonlocality scale ξc. However, if we choose to
adjust Mλ and/or Mφ to keep ξc in the range (102–105)LP ,
this would not appreciably affect the twist’s estimated exper-
imental consequences, or the nature of the effective field the-
ory. The existence of that window for ξc is robust with respect
to those possible anomalous dimensions.

The computationally complex deformation flow to a self-
consistent twist is practically unexamined, and needs to be
understood in greater detail.

There are several different future theoretical directions to
explore. The scalar model needs more work to determine
whether it is required to be weakly interacting as a picture
of DM. Commutatively deformed classical gravitation might
also have something interesting to say about information flow
and entropy at black hole event horizons, where nonlocality
might be physically significant [46]. Additionally, one could
apply the deformations to other classical gravitational actions
such as the first order (Palatini) formulation of the Einstein–
Hilbert action, the Holst action, or the Einstein–Cartan the-
ory where torsion plays a role. If commutatively deformed
general relativity does describe classical spacetime, then it
would replace the undeformed version as the suitable clas-
sical limit of quantum theories of gravity. This first classical
step toward deformed gravitation is UV incomplete, and its
quantum version should be explored.

Finally, from an experimental point of view, the theory is
extremely difficult to test, precisely because its energy scale
is nearly Planckian. For example, Big Bang nucleosynthe-
sis (BBN) and the observed primordial abundance of ele-
ments A = 2 − 7 are highly sensitive to the value of the
time derivative of the cosmological scale factor a during that

epoch through the Friedmann equations for the Friedmann–
Lemaître–Robertson–Walker cosmology [47]. The twist will
perturb those equations, and the observed isotopic abun-
dances might be used to provide further constraints on Mφ

and Mλ. Regrettably, a simple order of magnitude estimate
reveals that if the nonlocality scale ξc lies in the range 102–
105 LP , then the relative perturbations to the Friedmann
equations at BBN are only 10−88–10−79, producing changes
in abundances well within the observational error bars. The
twist is simply too small to measurably affect BBN.

An alternative route might be to rule out experimentally
the possibility that twist producing matter is comprised of
SM baryons. Using the estimate (88), one finds if all (and
equivalently by the symmetry considerations of Sect. 5, any)
SM baryons generate a twist through Ql = Bl , then baryons
having rest masses M exceeding a nonlocality mass MNL

will find it problematic to act according to a local field theory
that respects microcausality. This is because for M � MNL,
the particle’s own twist produced nonlocality scale ξc(M)

becomes a significant fraction of its Compton wavelength
�C (M). Specifically, one obtains

MNL � (56.5 TeV)(ξc(M)/�C (M))1/4 (ξc(proton)/LP )−1/4.

(116)

For instance, ξc(proton)/LP � 102 and ξc(M)/�C (M) �
0.1 imply MNL � 10.0 TeV, and ξc(proton)/LP � 105

together with ξc(M)/�C (M) � 0.1 yield MNL � 1.8 TeV.
These energies still lie mostly beyond present day accelerator
laboratory capabilities; but as baryons of higher rest mass are
studied and found to continue to behave as law abiding citi-
zens of standard model local quantum field theory, then the
bounds excluding SM baryonic matter as twist producing par-
ticles become tighter. Of course such a continuation of bary-
onic microcausality into the TeV range by itself would not
constitute positive experimental evidence for commutatively
deformed general relativity. The baryons’ rest masses M gen-
erally (but not monotonically) increase with their total angu-
lar momentum J , so one expects eventually to find baryons
with M(J ) � MNL , which will violate microcausality if the
baryons are twist producing. If we anticipate baryonic micro-
causality to hold through rest masses of a few tens of TeV, that
would only leave a right-handed neutrino or a non-standard
GM matter sector as twist generating possibilities.

In this article we have studied commutatively deformed
diffeomorphisms (diffs) of curved classical spacetime. This
was motivated by a search for a physical origin for classical
nonlocality from which microcausality may emerge by the
Lieb–Robinson route, despite the fact that many models of
background free quantum gravity are acausal even in some
classical limit [10]. The use of coordinate-free Hopf algebra
methods maintains the essential background independence of
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general relativity, but at the same time the deformed infinites-
imal diffs obey a Lie algebra distinct from the undeformed
ones, so the theories possess different symmetries. The use
of quasi-triangular Hopf algebras ensures that gauge flow in
canonical gravity in the presence of an external time remains
anomaly free. The twist producing matter could be as familiar
as all the SM baryons (which would be acausal for rest masses
above ∼1–10 TeV) or a more exotic sterile neutrino. How-
ever, the nonlocally acting deformed diffs may also arise nat-
urally from a new sector of matter fields, and there is a range
of their masses and coupling constants that imply a nonlocal-
ity length ξc ∼ 102−105 times the Planck length LP , which
the Lieb–Robinson mechanism may use to generate micro-
causality on longer scales. The commutatively deformed diffs
preserve the theoretical architecture of the standard model.
They also engender presently immeasurable perturbations of
Big Bang nucleosynthesis, solar system orbits, atomic and
nuclear spectra, and particle physics branching ratios due to
the near Planckian scale of the nonlocality. In several cases
the new sector of matter fields generating the deformed diffs
provide viable dark matter candidates. If the twist generat-
ing matter acts as dark matter, then it will not measurably
affect classical electromagnetic radiation propagating over
cosmological distances. This approach to dark matter makes
no appeal to grand unified theories, extra dimensions, super-
symmetry, strings, mirror worlds, or modifications of New-
tonian gravity.
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