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Abstract

Background: Accumulating evidence has shown that the inflammatory process participates in the pathogenesis of
amyotrophic lateral sclerosis (ALS), suggesting a therapeutic potential of anti-inflammatory agents. Janus kinase 2
(JAK2), one of the key molecules in inflammation, transduces signals downstream of various inflammatory cytokines,
and some Janus kinase inhibitors have already been clinically applied to the treatment of inflammatory diseases.
However, the efficacy of JAK2 inhibitors in treatment of ALS remains to be demonstrated. In this study, we
examined the role of JAK2 in ALS by administering a selective JAK2 inhibitor, R723, to an animal model of ALS
(mSOD1G93A mice).

Findings: Orally administered R723 had sufficient access to spinal cord tissue of mSOD1G93A mice and significantly
reduced the number of Ly6c positive blood monocytes, as well as the expression levels of IFN-γ and nitric oxide
synthase 2, inducible (iNOS) in the spinal cord tissue. R723 treatment did not alter the expression levels of Il-1β, Il-6,
TNF, and NADPH oxidase 2 (NOX2), and suppressed the expression of Retnla, which is one of the markers of
neuroprotective M2 microglia. As a result, R723 did not alter disease progression or survival of mSOD1G93A mice.

Conclusions: JAK2 inhibitor was not effective against ALS symptoms in mSOD1G93A mice, irrespective of
suppression in several inflammatory molecules. Simultaneous suppression of anti-inflammatory microglia with a
failure to inhibit critical other inflammatory molecules might explain this result.

Keywords: Amyotrophic lateral sclerosis, SOD1-G93A transgenic mice, R723, Janus kinase 2, JAK2 inhibitor,
Neuroinflammation, Interferon gamma, M1/M2 microglia
Findings
Introduction
Amyotrophic lateral sclerosis (ALS) is a devastating
disease characterized by progressive degeneration of
motor neurons in the brain and spinal cord, resulting
in muscle weakness. Although the precise mechanism of
ALS remains unknown, inflammatory microglial activation
* Correspondence: okuno@neurol.med.osaka-u.ac.jp; yuji@neurol.med.osaka-u.ac.jp
1Department of Neurology, Osaka University Graduate School of Medicine,
2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
Full list of author information is available at the end of the article

© 2014 Tada et al.; licensee BioMed Central Lt
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
plays an important role in pathogenesis [1-3]. The in-
flammatory molecule IFN-γ, which is primarily produced
by Th1 lymphocytes and is a potent activating factor for
inflammatory M1 microglia, contributes to the loss of
motor neurons in ALS [4,5]. Furthermore, a recent report
showed that Ly6c-high inflammatory monocytes are
recruited to the spinal cord in mSOD1G93A mice, and
that treatment with anti-Ly6c monoclonal antibodies
reduces monocyte recruitment to the spinal cord and
ameliorates neurodegeneration in these animals [6].
Janus kinases (JAKs) are centrally implicated in cytokine

receptor-mediated cell signaling pathways, which drive a
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range of myeloid malignancies [7] as well as inflammatory
diseases [8]. The JAK family member JAK2 is responsible
for transducing signals for several proinflammatory cy-
tokines including IFN-γ and Il-12, as well as for differenti-
ation of myeloid cells [9]. In an animal model of
rheumatoid arthritis (RA) and experimental autoimmune
encephalitis (EAE), suppression of the JAK pathway
ameliorated disease severity by suppressing Th1 cells
and deactivating monocytes [10,11]. A growing number
of JAK inhibitors have been developed and clinically
applied to the treatment of various inflammatory disease
including RA, psoriasis, and inflammatory bowel disease
[12-14]. Although activators of JAK2 such as IFN-γ, Il-6,
and Il-12 are reported to be implicated in ALS pathogen-
esis [3], the role of JAK2 in the ALS-related neuroinflam-
mation remains totally unknown.
Based on these findings, we hypothesized that JAK2

inhibition could ameliorate neurodegeneration in ALS
model mice by inhibiting harmful inflammatory processes
in microglia/macrophages. To test this idea, we treated
transgenic mice overexpressing the familial ALS-associated
G93A SOD1 mutation (mSOD1G93A mice) with R723, an
orally active inhibitor of JAK2 [15].

Methods
Ethics statements
All animal experiments were conducted in accordance
with the guidelines of Osaka University, which specifically
approved this study (Permit number: Biken-AP-H21-28-0).

RNA extraction and RT-qPCR analysis
Spinal cord tissues were collected from mSOD1G93A mice
and total mRNA and cDNA were generated as previously
described [1]. The synthesized cDNA was amplified using
SYBR Premix Ex Taq II (for TNF, MCP1, Il-12b, iNOS,
Il-6, Il-1b, NOX2, Ly6c, Arg1, Ym1, Il-4, EPO, CSF3
and Retnla) (Takara Bio Inc., Otsu, Japan) or TaqMan
Gene Expression Assays (for IFN-γ, Il-6, Il-12a and
GM-CSF) (Applied Biosystems, Foster City, CA, USA)
and analyzed as previously described [1].

Immunohistochemistry
Spinal cord sections of mSOD1G93A mice were prepared
as previously described [1]. The following antibodies
were used: rabbit anti-JAK2 (phospho Y1007 + Y1008)
monoclonal antibody (1:200; Abcam, Cambridge, UK),
rabbit anti-iNOS polyclonal antibody (1:50; BD Biosciences,
Franklin Lakes, NJ, USA) and Alexa Fluor 488®-conjugated
mouse anti-glial fibrillary acidic protein (GFAP) monoclo-
nal antibody (1:200; Cell Signaling Technology, Beverly,
MA, USA). The following secondary antibodies were ap-
plied: Cy5-conjugated F(ab’) 2 fragment donkey anti-rabbit
IgG (1:500; Jackson ImmunoResearch Laboratories, West
Grove, PA, USA).
Animals and R723 administration
mSOD1G93A mice were obtained from The Jackson
Laboratory and backcrossed with C57BL/6 mice for at
least 10 generations. R723 was administered by oral
gavage starting on day 90. For the analysis of motor
function by rotarod test, weight measurement, and survival,
R723 dosing continued until day 120 (70 mg/kg twice daily;
5 days on, 2 days off). To evaluate in vivo pharmacokinet-
ics, plasma and spinal cord tissues were collected at 0.5, 1,
2, and 4 hours post-dose, and R723 levels in plasma and
spinal cord tissue were determined by LC/MS/MS.
Flow cytometry of peripheral blood cells
Peripheral blood cells were collected from mSOD1G93A

mice on day 4 post-dose. The following antibodies were
used: APC-Cy7-labeled anti-CD11b (M1/70; BioLegend,
San Diego, CA, USA) and fluorescein isothiocyanate
(FITC)-labeled anti-Ly6c (HK1.4; BioLegend, San Diego,
CA, USA). Flow cytometry was performed using a FACS
Canto™ II with the Diva ™ software (Becton Dickinson,
Franklin Lakes, NJ, USA). Acquired data were analyzed
using the FlowJo software (Tree Star, Inc., Ashland,
OR, USA).
Lectin staining
Sections were permeabilized with 0.2% tris-buffered saline
with tween (TBST) for 10 minutes and then incubated
with FITC-conjugated tomato (Lycopersicon esculentum)
lectin (Sigma-Aldrich, St Louis, MO, USA) diluted 1:750
in PBS overnight at 4°C. The sections were washed ×3 in
0.2% TBST for 5 minutes and mounted with VECTA-
SHIELD Mounting Medium containing 4′,6-diamidino-2-
phenylindole (DAPI) (Vector Laboratories, Burlingame,
CA, USA). The fluorescently labeled sections were exam-
ined using a LSM 510 confocal microscope (Carl Zeiss
Microscopy, Jena, Germany).
Nissl staining
Spinal cord sections of mSOD1G93A mice were prepared as
previously described [1]. Every fifth section was collected
and stained with cresyl violet.
Statistics
Data are expressed as means ± SEM. Differences in animal
weight measurements and rotarod tests were assessed
using analysis of variance (ANOVA). Statistical signifi-
cance in survival experiments was determined using
Kaplan-Meier survival statistics. Statistical significance
in all other experiments was assessed using the Mann-
Whitney U-test. P < 0.05 was considered statistically
significant.
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Results
To confirm whether expression of inflammatory cyto-
kines was upregulated in the spinal cords of late-stage
mSOD1G93A mice, we evaluated spinal cord mRNA ex-
pression of several genes encoding inflammatory molecules.
Consistent with a previous report [16], RT-qPCR analysis
revealed that the expression levels of IFN-γ, Il-6, Il-
12a, and granulocyte macrophage colony-stimulating
factor (GM-CSF) increased along with disease progres-
sion (Figure 1A and Additional file 1: Supplementary
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To investigate the role of JAK2 pathway in ALS, we
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inhibitor originally developed by Rigel Pharmaceuticals
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Figure 2 Pharmacological properties of R723 and its effects on peripheral monocytes. (A, B) Pharmacological profile of R723 in plasma
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and the proportions of CD11b + and Ly6c + cells were evaluated by FACS. (C) The proportion of CD11b +monocytes was significantly reduced in
peripheral blood of R723-treated mSOD1G93A mice. (D) Four-day treatment with R723 reduced the proportion of Ly6c + CD11b +monocytes in
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*P < 0.05, Mann-Whitney U-test.
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thrombocythemia and primary myelofibrosis (Additional
file 2: Figure S1A) [15]. First, to investigate the drug
distribution, we administered R723 by oral gavage to
mSOD1G93A mice and measured concentrations of R723
in serum and spinal cord tissue. R723 had sufficient access
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had significantly fewer CD11b-positive cells and Ly6c-
positive monocytes in peripheral blood (Figure 2C, D
and Additional file 1: Supplementary information).
To further confirm the anti-inflammatory effect of

R723, we evaluated the microgliosis and astrocytosis in
spinal cord tissue of R723-treated mSOD1G93A mice.
Lectin staining revealed that R723 treatment had sup-
pressed microgliosis in the spinal cords of mSOD1G93A

mice, although it did not affect astrocytosis (Figure 3A
and Additional file 3: Figure S2A). In addition, we evalu-
ated the mRNA expression of inflammation-related and
M1/M2 microglia-related genes in spinal cord tissue of
R723-treated mSOD1G93A mice. Consistent with the
anti-inflammatory effects of JAK2 inhibitor as previously
reported [17], R723 treatment suppressed IFN-γ and
iNOS expression dose-dependently, suggesting that the
drug exerted anti-inflammatory effects in the spinal cords
of mSOD1G93A mice (Figure 3B, C and Additional file 4:
Figure S3A). In addition, the effect of R723 against iNOS
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expression was confirmed by immunohistochemical
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and reduced the expression of several inflammatory
genes in the spinal cords of mSOD1G93A mice, leading
to suppressed microglial activation.
Because R723 suppresses several pathways that seem

to be harmful in ALS, we tested whether R723 could
ameliorate neurodegeneration in mSOD1G93A mice. Oral
administration of R723 (70 mg/kg, twice daily; 5 days
on, 2 days off) to mSOD1G93A mice was started at 90 days
of age and continued until 120 days of age. Motor per-
formance was evaluated by rotarod test, and muscle atro-
phy was monitored by body weight reduction. Decline in
motor performance of the R723-treated mSOD1G93A mice
was compared with that of the vehicle-treated littermates.
Throughout the disease process, there was no signifi-
cant change in rotarod performance or body weight
between the two groups (Figure 4A, B) (P > 0.05 for
each time point, ANOVA). Additionally, survival times
for R723-treated and vehicle-treated mSOD1G93A mice
were comparable (Figure 4C) (average survival time;
R723 treated group: 155.6 ± 1.8 days (n = 25); vehicle-
treated group: 155.1 ± 2.2 days (n = 28), P = 0.96, log-rank
test). Consistent with these observations, Nissl staining re-
vealed that R723 treatment had led to unaltered motor
neuron survival in the spinal cords of mSOD1G93A mice
in both groups (Figure 4D). Collectively, these results
showed that R723 penetrated the spinal cord of
mSOD1G93A mice and suppressed inflammation, but did
not affect neurodegeneration in vivo.

Discussion
In this study, we tried to suppress harmful inflammatory
processes in mSOD1G93A mice by treating them with a
JAK2 inhibitor. Although R723 was effective in depleting
Ly6c-positive monocytes and suppressing IFN-γ and
iNOS expression in the spinal cord, the drug did not
affect disease progression or survival of these mice.
We examined the expression levels of inflammation-

related genes including TNF, MCP1, Il-1β, and NOX2,
which play critical roles in the pathogenesis of ALS [3],
and found that they were not reduced after JAK2 inhib-
ition. It is possible that inflammation driven by these
molecules masked the effects of reductions in IFN-γ and
iNOS expression.
One explanation for the lack of a neuroprotective ef-

fect of R723 could be the suppression of Retnla, an M2
microglia-related gene. M2 microglial activation, which
is driven by Il-4 and Il-13 produced by Th2 lymphocytes,
exerts protective roles in ALS [3]. Recently, another
group reported that JAK2 is activated after the recruitment
of Il-13 to its receptor, and revealed that Il-13 utilizes the
JAK2 signaling pathway [18]. Therefore, we speculate that
suppression of Retnla counteracts the anti-inflammatory
effects of R723, preventing it from exerting a neuroprotec-
tive effect in vivo.
Alternatively, R723 might have inhibited a neuroprotec-
tive effect of JAK2. There is a report that suggests JAK2
signaling is implicated in the prevention of neuronal apop-
tosis in traumatic brain injury [19].
In conclusion, R723 alone was not sufficient to protect

against neurodegeneration in mSOD1G93A mice, although
it suppressed the expression of several proinflammatory
molecules and depleted monocytes. Based on our results,
it is possible that in order to ameliorate neurodegenera-
tion in ALS, we need not only to suppress JAK2 mediated
inflammation but also prevent other inflammatory path-
ways. Furthermore, we may need to activate neuroprotec-
tive M2 microglia to alleviate neurodegeneration in ALS.

Additional files

Additional file 1: Supplementary information. Immunohistochemical
analysis of the spinal cord of mSOD1G93A mice and flow cytometric analysis
of the peripheral blood monocytes of mSOD1G93A mice. (A) Sections of
mSOD1G93A mouse spinal cord were co-stained with FITC-conjugated
anti-CD206 receptor antibodies and Cy5-conjugated anti–iNOS antibodies.
Scale bar = 200 μm. (B) The number of Ly6c positive and CD11b positive
blood monocyte remained unchanged along with the disease progression.
Peripheral blood cells were collected from mSOD1G93A mice (70 days old
mice and 130 days old ones). The following antibodies were used:
APC-Cy7–labeled anti-CD11b and FITC-labeled anti-Ly6c. Flow cytometry
was performed using a FACS Canto™ II with the Diva ™ software and
acquired data were analyzed using the FlowJo software.

Additional file 2: Figure S1. R723 is a selective small-molecule JAK2
inhibitor. (A) Chemical structure of R723 is shown.

Additional file 3: Figure S2. R723 had no effect on astrocytosis in the
spinal cords of mSOD1G93A mice. (A) The number of GFAP-positive astrocytes
in the spinal cord did not differ between R723-treated mSOD1G93A mice and
vehicle-treated controls. Lumbar sections of the spinal cord were stained with
Alexa Fluor 488®-conjugated anti-GFAP antibody. Scale bar =100 μm. Data are
representative of three animals.

Additional file 4: Figure S3. R723 had a dose-dependent effect on the
suppression of inflammation-related genes. (A) Quantitative RT-PCR analyses
revealed that lower dose of R723 (17.5mg/kg, twice a day, 5 days on/2 days
off regimen) did not change the expression profiles of IFN-γ, iNOS and
Retnla in the spinal cords of mSOD1G93A mice (n = 3 in lower dose group
and n = 4 in other groups). (B) Quantitative RT-PCR analyses in spinal cords
of R723-treated mSOD1G93A mice and vehicle-treated controls were per-
formed after 5 days of treatment (n = 3 in each group). The expression level
of iNOS was significantly reduced in the R723-treated group (P = 0.0495).
Data are expressed as means ± SEM. *P < 0.05, Mann-Whitney U-test.

Abbreviations
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